
L∞ Error and Bandwidth Selection for Kernel Density
Estimates of Large Data

Yan Zheng
yanzheng@cs.utah.edu

University of Utah

Jeff M. Phillips
jeffp@cs.utah.edu

University of Utah

ABSTRACT
Kernel density estimates are a robust way to reconstruct a
continuous distribution from a discrete point set. Typically
their effectiveness is measured either in L1 or L2 error. In
this paper we investigate the challenges in using L∞ (or
worst case) error, a stronger measure than L1 or L2. We
present efficient solutions to two linked challenges: how to
evaluate the L∞ error between two kernel density estimates
and how to choose the bandwidth parameter for a kernel
density estimate built on a subsample of a large data set. 1

1. INTRODUCTION
Kernel density estimates (kdes) are essential tools [33,

31, 11, 12] for understanding a continuous distribution rep-
resented by a finite set of points. For instance, kdes are
used in data mining amid uncertainty to provide an effec-
tive intermediate representation, which captures informa-
tion about the noise in the underlying data [2]. They are
also used in classification problems by constructing the class
of conditional probability density functions that are used in
a Bayesian classifier [25]. They have many applications in
other areas, such as network outlier detection [8], human
motion tracking [6], financial data modeling [3] and geomet-
ric inference [27].

Given a point set P ⊂ Rd and a kernel Kσ : Rd×Rd → R+

with bandwidth parameter σ, for any point x ∈ Rd, a kernel
density estimate is defined as kdeP (x) = 1

|P |
∑
p∈P Kσ(p, x).

We focus on symmetric, shift-invariant kernels which de-
pend only on z = ‖p− x‖ and σ, then a kernel can be writ-
ten as function Kσ(p, x) = kσ(‖p− x‖) = kσ(z). Intuitively,
kdeP (x) smoothes the effect of each p ∈ P for the evalu-
ation point x. For d = 1 this object can be used in place
of an equi-width histogram; it removes the choice of how to
shift the boundary of bins and thus kdes are more robust.
Moreover, they generalize naturally to higher dimensions.

1Thanks to NSF Awards 1350888, 1251019, and 1443046.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
KDD’15, August 10-13, 2015, Sydney, NSW, Australia.
c© 2015 ACM. ISBN 978-1-4503-3664-2/15/08 ...$15.00.

DOI: http://dx.doi.org/10.1145/2783258.2783357.

The brute force solution of evaluating a kernel density
estimate requires O(|P |) time, and is thus untenable as a
data structure for large data sets. And a lot research has
gone towards speeding up these queries [7, 37, 9, 40]. One
of the techniques [40] is to produce a coreset representation
Q of the data which can be used as proxy for the true data
P while guaranteeing approximation error. The size of Q
depends only on the required error, not on any properties
of P ; these go beyond just randomly sampling Q from P .
Written concretely, given P , and some error parameter ε >
0, the goal is to construct a point set Q to ensure

L∞(P,Q) = err(P,Q) = max
x∈Rd

|kdeP (x)− kdeQ(x)| ≤ ε,

or written err(P, σ,Q, ω) if the bandwidths σ and ω for kdeP,σ
and kdeQ,ω are under consideration. This line of work shows
that an L∞ error measure, compared with L1 or L2 error, is
a more natural way to assess various properties about ker-
nel density estimates. This work (like other work [7, 37, 9])
assumes σ is given, and then implicitly also assumes ω = σ.
In this paper, we will investigate choosing a bandwidth ω
for kdeQ under L∞ error given P, σ,Q.

Thus, we empirically study two concrete problems:

1. Given two point sets P,Q ⊂ Rd and a kernel K, esti-
mate err(P,Q).

2. Given two point sets P,Q ⊂ Rd, a kernel K, and a
bandwidth σ, estimate ω = arg minω err(P, σ,Q, ω).

It should be apparent that the first problem is a key sub-
problem for the second, but it is also quite interesting in its
own right. We will observe that L∞ is a strictly stronger
measure than L1 or L2, yet can still be assessed. To the
best of our knowledge, we provide the first rigorous empir-
ical study of how to measure this L∞ error in practice in
an efficient way, following theoretical investigations demon-
strating it should be possible.

Bandwidth parameter is hugely important in the result-
ing kde, and hence, there have been a plethora of proposed
approaches [33, 31, 11, 12, 24, 34, 17, 28, 4, 32, 18, 29, 14,
30, 21, 36, 16, 23, 39, 10, 20, 19] to somehow automatically
choose the “correct” value. These typically attempt to min-
imize the L2 [33, 31] or L1 error [11, 12] (or less commonly
other error measures [24]) between kdeP and some unknown
distribution µ that it is assumed P is randomly drawn from.
Perhaps unsurprisingly, for such an abstract problem differ-
ent methods produce wildly different results. In practice,
many practitioners choose a bandwidth value in a ad-hoc
manner through visual inspection and domain knowledge.

In this paper we argue that the choice of bandwidth should
not be completely uniquely selected. Rather this value pro-
vides a choice of scale at which the data is inspected, and
for some data sets there can be more than one correct choice
depending on the goal. We demonstrate this on real and
synthetic data in 1 and 2 dimensions. As an intuitive 1-
dimensional example, given temperature data collected from
a weather station, there are very obvious modal trends at
the scale of 1 day and at the scale of 1 year, and depending
at which phenomenon one wishes to study, the bandwidth
parameter should be chosen along the corresponding scale,
so it is totally reasonable if we assume σ for kdeP is given.

Via examinations of problem (2), we observe that in some
cases (but not all), given P,Q, and σ, we can choose a new
bandwidth ω (with ω > σ) so that err(P, σ,Q, ω) is signif-
icantly smaller than the default err(P, σ,Q, σ). This corre-
sponds with fine-grained phenomenon disappearing with less
data (as |Q| < |P |), and has been prognosticated by theory
about L2 [33] or L1 [11] error where the optimal bandwidth
for kdeQ is a strictly shrinking function of |Q|. Yet, we urge
more caution than this existing bandwidth theory indicates
since we only observe this phenomenon in specific data sets
with features present at different scales (like the daily/yearly
temperature data example in Section 2.3).
Organization. Section 2 formalizes and further motivates the
problem. Section 3 addresses problem (1), and Section 4
problem (2). Then Section 5 describes detailed experimental
validations of our proposed approaches. Finally, Section 6
provides some concluding thoughts.

2. BACKGROUND AND MOTIVATION
In addition to the symmetric, shift-invariant properties

of the kernels, it is convenient to enforce one of two other
properties. A normalized kernel satisfies∫

x∈Rd

Kσ(p, x)dx = 1,

so that the kernel and the kernel density estimate are prob-
ability distributions. A unit kernel satisfies

Kσ(x, x) = 1 so that 0 ≤ Kσ(x, p) ≤ 1,

which ensures that kdeP (x) ≤ 1. Unlike with the normal-
ized kernel, the changing of bandwidth does not affect the
coefficient of kernel function, so Kσ(p, x) = k(‖p− x‖/σ).

Although this paper focuses on the Gaussian kernel
Kσ(p, x) = 1

σd(2π)d/2
exp(−‖p−x‖2/2σ2), probably the most

commonly used kernel, there are many other symmetric,
shift invariant kernels such as

• Laplace Kernel:
Kσ(p, x) = 1

σdcdd!
exp(−‖x− p‖/σ),

• Triangular Kernel:
Kσ(p, x) = d

σdcd−1
max{0, 1− ‖x− p‖/σ},

• Epanechnikov Kernel:
Kσ(p, x) = d+2

2σdcd
max{0, 1− ‖x− p‖2/σ2}, or

• Ball Kernel:
Kσ(p, x) = { 1

σdcd−1
if ‖p− x‖ ≤ σ; o.w. 0},

where cd = rdπ
d
2

Γ(d
2

+1)
is the volume of the unit d-dimensional

sphere. These are shown as normalized kernels, to make
them unit kernels, the coefficient is simply set to 1.

2.1 Unit Kernels or Normalized Kernels?
Unit kernels are more natural to estimate the L∞ errors

of kernel density estimates [26, 38] since the range of values
are in [0, 1]. For normalized kernels as σ varies, the only
bound in the range is [0,∞).

Moreover, unit kernels, under a special case, correspond
to the total variation distance of probability measures. In
probability theory, the total variation distance for two prob-
ability measures P and Q on a sigma-algebra F of subsets
of sample space Ω is defined as:

δ(P,Q) = sup
A∈F
|P (A)−Q(A)|.

Terms P (A), resp. Q(A), refer to the probability restricted
to subset A. If we use F as the set of all balls of radius σ,
so A is one such ball, then P (A) is the fraction of points of
P falling in A. Hence P (A) can be viewed as the kdeP,σ(x)
under the ball kernel, where x is the center of ball A. When
Q is the coreset of P , then Q(A) is the fraction of points of Q
falling in A, so it can be viewed as the kdeQ,σ(x) under the
ball kernel. In this sense, the total variance distance is the
L∞ error, specifically err(P,Q) where K is the ball kernel.
The total variation distance also maps to other unit kernels
if F can admit weighted subsets, not just subsets.

However, normalized kernels are more useful in bandwidth
selection. In this case, there is a finite value for σ ∈ (0,∞)
which minimizes the L1 or L2 error between kdeP,σ and
kdeQ,σ, whereas for unit kernels this is minimized for σ → 0.

But recall that unit and normalized kernels are only differ-
ent in the scaling coefficient, so given one setting it is simple
to convert to the other without changing the bandwidth.
Hence we use both types of kernels in different scenarios:
unit kernels for choosing the coresets, and normalized ker-
nel for problem (1) and problem (2).

2.2 Why Coresets?
In the big data era, we are creating and accessing vastly

more data than ever before. For example, mobile phones
are consistently (implicitly) generating positional data along
with various aspects of meta data including call duration
and quality. To analyze or monitor the quality of signals or
demand for this connections, we rarely need the entire data
set, just an approximate version of it. A coreset can provide
such a summary with accuracy guarantees, and by virtue of
smaller size much more efficient and affordable access to it.

More formally, a coreset of a point set P is a subset Q
such that (1) one can perform a family of queries on Q in-
stead of P and the returned results are guaranteed to have
bounded errors, and (2) the size of Q is much smaller than
P , often independent of the size of P and only depends on
the guaranteed error on the queries. For this paper, we
consider coresets which preserve properties about the ker-
nel density estimate, namely that for any query point x
that |kdeQ(x) − kdeP (x)| ≤ ε for some error parameter
ε > 0. The study of the worst case error was initiated by
Phillips [26], and similar results under the L2 error have
been studied by Chen et al. [9] using an approach called
kernel herding. Zheng et.al. [40] empirically improved these
approaches to finding such a coreset in one and two dimen-
sions, using methods based on random sampling, iteratively
matching and halving of the data set, and Z-order curves.
For instance, the experiments in [40] show that in two di-
mension, a coreset of 10,000 points can be constructed in
less than 5 seconds from a 160 million record data set with
approximation ε = 0.01.

2.3 Why σ is given?
Recall that problem (2) takes as given two point sets P

and Q as well as a bandwidth σ associated with P , and then
tries to find the best bandwidth ω for Q so that kdeP,σ is
close to kdeQ,ω. This is different from how the “bandwidth
selection problem” is typically posed [11, 33]: a single point
set Q is given with no bandwidth, and it is assumed that Q
is drawn randomly from an unknown distribution.

We break from this formulation for two reasons. First,
we often consider the point set Q chosen as a coreset from
P , and this may not be randomly from P , as more intricate
techniques [40] can obtain the same error with much smaller
size setsQ. These non-random samples break most modeling
assumptions essential to the existing techniques.

Second, the choice of bandwidth may vary largely within
the same data set, and these varied choices may each high-
light a different aspect of the data. As an extended example
consider temperature data (here we treat a reading of 50
degrees as 50 data points at that time) from a MesoWest
weather station KSLC read every hour in all of 2012. This
results in 8760 total readings, illustrated in Figure 1. For
three bandwidth values of 3, 72, and 1440, kdes are shown to
represent daily, weekly, and yearly trends. All are useful rep-
resentations of the data; there is no “one right bandwidth.”
Section 5 shows a 2-dimensional example of population den-
sities where similarly there are several distinct reasonable
choices of bandwidths.

Figure 1: KDEs with different bandwidths showing
daily, weekly and yearly temperature trends. Left
shows the full year data, and right shows the one
week data.

2.4 Why L∞ Error?
As mentioned the most common measures for comparing

kdes are the L1 or L2 error, defined for p = {1, 2} as

Lp(P,Q) = ‖kdeP − kdeQ‖p

=

(∫
x∈Rd

|kdeP (x)− kdeQ(x)|p
)1/p

.

Although this integral can be reasoned about, it is difficult
to estimate precisely. Rather many techniques only evaluate
at the points P and simply calculate(1

|P |
∑
q∈P

|kdeP (p)− kdeQ(p)|p
)1/p

.

These average over the domain or P ; hence if |kdeP (x) −
kdeQ(x)| ≤ ε for all x, then Lp(P,Q) is also at most ε. That
“for all” bound is precisely what is guaranteed by L∞(P,Q),
hence it is a stronger bound.

Another reason to study L∞ error is that it preserves
the worst case error. This is particularly important when

kdeP (x) values above a threshold trigger an alarm. For in-
stance in tracking densities of tweets, too much activity in
one location may indicate some event worth investigating.
L1 or L2 error from a baseline may be small, but still have
high error in one location either triggering a false alarm, or
missing a real event.

2.5 Related Work on Bandwidth Selection
There is a vast literature on bandwidth selection under

the L1 [11, 12] or L2 [33, 31] metric. In these settings Q
is drawn, often at random, from an unknown continuous
distribution µ (but µ can be evaluated at any single point x).
Then the goal is to choose ω to minimize ‖µ−kdeQ,ω‖{1,2}.
This can be conceptualized in two steps as ‖µ−kdeµ,ω‖ and
‖kdeµ,ω − kdeQ,ω‖. The first step is minimized as ω → 0
and the second step as ω → ∞. Together, there is a value
ω{1,2} ∈ (0,∞) that minimizes the overall objective.

The most common error measure for ω under L2 are In-
tegrated Squared Errors(ISE) ISE(ω) =

∫
x∈Rd(kdeQ,ω −

µ)2dx and its expected value, the Mean Integrated Squared
Error (MISE) MISE(ω) = EQ∼µ[

∫
x∈Rd(kdeQ,ω − µ)2dx].

As MISE is not mathematically tractable, often approxi-
mations such as the Asymptotic Mean Integrated Squared
Error (AMISE) or others [33, 34] are used. Cross-validation
techniques [17, 28, 4, 32, 29, 14] are used to evaluate various
parameters in these approximations. Alternatively, plug-in
methods [30, 21, 36] recursively build approximations to µ
using kdeQ,ωi , and then refine the estimate of ωi+1 using
kdeQ,ωi . Bayesian approaches [5, 16, 23, 39, 10, 20] build
on these models and select ω using MCMC approaches.

An alternative to these L2 approaches is using an L1

measure, like integrated absolute error (IAE) of kdeQ,ω is
IAE(ω) =

∫
x∈Rd |kdeQ,ω − µ|dx, which has simple inter-

pretation of being the area between the two functions. De-
vroye and Györfi [11] describe several robustness advantages
(better tail behavior, transformation invariance) to these ap-
proaches. Several of the approximation approaches from L2

can be extended to L1 [19].
Perplexingly, however, the bandwidths generated by these

methods can vary quite drastically! In this paper, we as-
sume that some bandwidth is given to indicate the intended
scale, and then we choose a bandwidth for a sparser point
set. Hence the methods surveyed above are not directly
comparable to our proposed approaches. We include the ex-
periment results from some of the above methods to show
that different approaches give quite different“optimal”band-
width, which in another way shows us there are more than
one correct bandwidth for some data sets.

3. COMPUTING err(P,Q)
The goal of this section is to calculate

err(P,Q) = max
x∈Rd

|kdeP (x)− kdeQ(x)|.

For notational convenience let G(x) = |kdeP (x)−kdeQ(x)|.
We focus on the case where the kernel K is a unit Gaussian.
Since even calculating maxx∈Rd kdeP (x) (which is a special
case of err(P,Q) where Q is empty) appears hard, and only
constant factor approximations are known [1, 27], we will
not calculate err(P,Q) exactly. Unfortunately these approx-
imation techniques [1, 27] for maxx∈Rd kdeP (x) do not eas-
ily extend to estimating err(P,Q). They can focus on dense
areas of P , since the maximum must occur there, but in

err(P,Q), these dense areas may perfectly cancel out. These
approaches are also much more involved than the strategies
we will explore.

3.1 Approximation Strategy
Towards estimating err(P,Q), which is optimized over all

of Rd, our strategy is to generate a finite set X ⊂ Rd, and
then return errX(P,Q) = maxx∈X G(x). Our goal in the
generation of X is so that in practice our returned estimate
errX(P,Q) is close to err(P,Q), but also so that under this
process as |X| → ∞ then formally errX(P,Q) → err(P,Q).
We say such a process converges.

We formalize this in two steps. First we show G(x) is
Lipschitz-continuous, hence a point x̂ ∈ Rd close to the point
x∗ = arg maxx∈Rd G(x) will also have error close to x∗. Then
given this fact, we show that our strategy will, for any radius
r, as |X| → ∞ generate a point x̂ ∈ X so that ‖x∗− x̂‖ ≤ r.
This will be aided by the following structural theorem on the
location of x∗, with proofs in 1 and 2 dimensions deferred
to Appendix A. (M is illustrated in Figure 2.)

Theorem 1. For Kσ a unit Gaussian kernel, and two
point sets P,Q ∈ Rd, then x∗ = arg maxx∈Rd G(x) must be
in M , the Minkowski sum of a ball of radius σ and the convex
hull of P ∪Q.

�

p1

Figure 2: Illustration of the Minkowski sum of a ball
of radius σ and convex hull of P ∪Q.

We will not focus on proving theoretical bounds on the
rate of convergence of these processes since they are quite
data dependent, but will thoroughly empirically explore this
rate in Section 5. As |X| grows, the max error value in X
will consistently approach some error value (the same value
for several provably converging approaches), and we can
then have some confidence that as these processes plateau,
they have successfully estimated err(P,Q). Our best pro-
cess WCen6 converges quickly (e.g. |X| = 100); it is likely
that the maximum error is approximately achieved in many
locations.

Now as a basis for formalizing these results we first show
G(x) is Lipschitz continuous. Recall a function f : Rd → R
is Lipschitz continuous if there exists some constant β such
that for any two points x, y ∈ Rd that |f(x) − f(y)|/‖x −
y‖ ≤ β. This result follows from the Gaussian kernel (as
well as all other kernels mentioned in Section 1 except the
Ball kernel) also being Lipschitz continuous. Then since the
function f(x) = kdeP (x)−kdeQ(x) is a finite weighted sum
of Gaussian kernels, each of which is Lipschitz continuous, so
is f(x). Since taking absolute value does not affect Lipschitz
continuity, the claim holds.

3.2 Generation of Evaluation Points
We now consider strategies to generate a set of points X

so that errX(P,Q) is close to err(P,Q). Recall that M , the
Minkowski sum of a ball of radius σ with the convex hull of
P ∪Q must contain the point x∗ which results in err(P,Q).
In practice, it is typically easier to use B, the smallest axis-
aligned bounding box that contains M . For discussion we
assume Q ⊂ P so P = P ∪Q.
Rand: Choose each point uniformly at random from B.

Since x∗ ∈ M ⊂ B, eventually some point x ∈ X will be
close enough to x∗, and this process converges.
Orgp: Choose points uniformly at random from P .

This process does not converge since the maximum error
point may not be in P . Yet Section 5 shows that this process
converges to its limit very quickly. So many of the following
proposed approaches will attempt to adapt this approach
while still converging.
Orgp+N: Choose points randomly from the original point set
P then add Gaussian noise with bandwidth σ, where σ is the
bandwidth of K.

Since the Gaussian has infinite support, points in X can
be anywhere in Rd, and will eventually become close enough
to x∗. So this process converges.
Grid: Place a uniform grid on B (we assume each grid cell is
a square) and choose one point in each grid. For example
in 2 dimension, if four evaluation points are needed, the grid
would be 2 × 2 and if nine points are needed, it would be
3×3. So with this method, the number of evaluation points
is a non-prime integer.

Since x∗ ∈ B, and eventually the grid cell radius is arbi-
trarily small, then some point x ∈ X is close enough to x∗.
Thus this process converges.
Cen{E[m]}: Randomly select one point p1 from the original
point set P and randomly choose m neighbor points of p1

within the distance of 3σ. m is chosen through a Exponen-
tial process with rate 1/E[m]. Then we use the centroid of
the selected neighbor points as the evaluation point. This
method is inspired by [15], which demonstrates interesting
maximums of kdes at the centroids of the data points.

Since P is fixed, the centroid of any combination of points
in P is also finite, and the set of these centroids may not
include x∗. So this process does not converge. We next
modify it in a way so it does converge.
WCen{E[m]}: Randomly select one point p1 from the original
point set P and select the neighbor point pn ∈ P as candi-

date neighbor proportional to exp(− ||pn−p1||
2

2σ2), where σ is
the bandwidth for K. The smaller the distance between pn
and p1, the higher probability it will be the chosen. Repeat to
choose m total points including p1, where again m is from
an Exponential process with rate 1/E[m]. Now refine the m
neighbor points so with probability 0.9, it remains the origi-
nal point pn ∈ P , with the remaining probability it is chosen
randomly from a ball of radius σ centered at pn. Next, we
assign each point a random weight in [0, 1] so that all weights
add to 1. Then finally the evaluation point is the weighted
centroid of these points.

This method retains much of the effectiveness of Cen, but
does converge. Without the 0.1 probability rule of being in a
ball of radius σ around each point, this method can generate
any points within the convex hull of P . That 0.1 probability
allows it to expand to M , the Minkowski sum of the convex
hull of P with a ball of radius σ. Since x∗ ∈M , by Theorem
1, this process converges.

P1 P2

P3 P4

e

(a) Original dataset.

Q1 Q2

Q3 Q4

e

(b) Coreset.

Figure 3: The example of necessary of larger band-
width for coreset Q. The radius of the circle repre-
sents the chosen bandwidth.

Comb: Rand + Orgp: The combination of method Rand and
Orgp, of which 20% points generated from B and 80% points
generated from original points.

The 20% of points from Rand guarantees convergence, but
retain most empirical properties of Orgp. This was used
before with little discussion [40].

Section 5 describes extensive experiments on both syn-
thetic and real data to evaluate these methods. The weighted
centroid method WCen{E[m]} with large parameter (e.g.
E[m] = 6) works very well for 1 and 2 dimensions, and also
converges, so in general this technique is recommended. Al-
though in some situations, it does not perform significantly
better than other approaches like Rand+Orgp, which are
simpler and also converge, so those may be a good option.

4. BANDWIDTH SELECTION
In this section we consider being given two point sets

P,Q ⊂ R2, a kernel K, and a bandwidth σ associated with
P . We consider K as a normalized Gaussian kernel, and
where Q is a coreset of P . The goal is to find another band-
width ω to associate with Q so that err(P, σ,Q, ω) is small.

4.1 Refining the Bandwidth for Coresets
In [40], coresets are constructed assuming that kdeQ uses

the same bandwidth σ as kdeP . Can we improve this rela-
tionship by using a different bandwidth ω for Q? The theory
for L1 or L2 error (assuming Q is a random sample from P)
dictates that as |Q| decreases, the bandwidth ω should in-
crease. This intuition holds under any error measure since
with fewer data points, the kde should have less resolution.
It also matches the L∞ theoretical error bounds described
previously [26].

We first reinforce this with a simple 2-dimensional exam-
ple. Consider point set P = ∪{P1, P2, P3, P4} in Figure 3(a),
the radius of the circle represents the bandwidth σ for P .
Figure 3(b) gives the coresetQ of P : Q = ∪{Q1, Q2, Q3, Q4},
each Qi contains only one black point. Now suppose our
evaluation point is point e. If we use the original bandwidth
σ, kdeQ,σ(e) = 0 with ball kernel, but if we use ω, which is
the radius of larger circle centered at e, then kdeQ,ω(e) > 0,
so the error is decreased. But, we don’t want ω too large,
as it would reach the points in other Qi, which is not the
case for σ in P , so the error would be increased again. Thus
there seems to be a good choice for ω > σ.

But the situation of finding the ωopt that minimizes h(ω) =
err(P, σ,Q, ω) is more complicated. For each ω, err(P, σ,Q, ω)

is a maximization over x ∈ Rd. There may in fact be more
than one local minimum for ω in h(ω).

However, equipped with the WCen6 procedure to evaluate
err(P,Q), we propose a relatively simple optimization algo-
rithm. We can perform a golden section search over ω, using
WCen6 to obtain a set X and evaluate errX(P, σ,Q, ω). Such
a search procedure requires a convex function for any sort
of guarantees, and this property may not hold. However, we
show next that h(ω) has some restricted Lipschitz property,
so that with random restarts it should be able to find reason-
able local minimum. This is illustrated in Figure 4, where
the curve that is Lipschitz either has a large, relatively con-
vex region around the global minimum, or has shallow local
minimums. The other curve without a Lipschitz property
has a very small convex region around the global minimum,
and any search procedure will have a hard time finding it.

�

C2

C1

!opt !
Figure 4: Two curves, dark one is Lipschitz, dashed
curve is not.

4.2 Lipschitz Properties of h
In general, however, h(ω) is not Lipschitz in ω. But, we

can show it is Lipschitz over a restricted domain, specifically
when ω ≥ σ ≥ 1/A for some absolute constant A. Define
y(ω, a) = 1

2πω2 exp(−a2/(2ω2)).

Lemma 1. For any ω ≥ σ ≥ 1/A, y(ω, a) is β-Lipschitz
with respect to ω, with β = |a2 − 1/π|A3.

Proof. By taking the first derivative of y(ω), we have

dy(ω, a)

dω
= (a2 − 1

π
)ω−3 exp(−a2/(2ω2)).

And thus∣∣∣∣dy(ω, a)

dω

∣∣∣∣ = |a2 − 1/π|ω−3 exp(−a2/(2ω2))

≤ |a2 − 1/π|σ−3 ≤ |a2 − 1/π|A3.

So the absolute value of largest slope of function y(ω, a) is
β = |a2 − 1/π|A3, thus y(ω, a) is β-Lipschitz continuous on
ω.

Theorem 2. For any ω ≥ σ ≥ 1/A, h(ω) is β-Lipschitz
with respect to ω, for β = 1

|Q|
∑
q∈Q |(x

∗ − q)2 − 1/π|A3

where x∗ = arg maxx∈R2 |kdeP,σ(x)− kdeQ,ω(x)|.

Proof. If kdeP,σ(x∗) ≥ kdeQ,ω(x∗) then

h(ω) = |kdeP,σ(x∗)− kdeQ,ω(x∗)|

= kdeP,σ(x∗)− 1

|Q|
∑
q∈Q

1

2πω2
exp

(
−(x∗ − q)2

2ω2

)
= kdeP,σ(x∗)− 1

|Q|
∑
q∈Q

y(ω, (x∗ − q))).

Since h(ω) is linear combination of |Q| functions of y(ω, a)
plus a constant and y(ω, a) is Lipschitz continuous, based
on the Lemma 1, h(ω) is Lipschitz continuous on ω. We can
get the same result if kdeP,σ(x∗) ≤ kdeQ,ω(x∗). In both
directions, the first derivative of the function is bounded, so
h(ω) is bounded.

4.3 Random Golden Section Search
From the above properties, we design a search procedure

that will be effective in finding the bandwidth ω minimizing
err(P, σ,Q, ω). The random golden section search is based
on the golden section search [22], a technique to find ex-
tremum in a strictly unimodal function. To find a minimum,
it successively narrows a range [`, r] with known function val-
ues h(`), h(m1), h(m2), and h(r) with ` < m1 < m2 < r
and with both h(m1), h(m2) less than h(`) and h(r). If
h(m1) < h(m2) the new search range is [`,m2] and other-
wise it is [m1, r]. In either case a new fourth point is chosen
according to the golden ratio in such a way that the interval
shrinks by a constant factor on each step.

However, h(ω) in our case can be a multi-modal function,
thus golden section search is not guaranteed to work. We
apply random restarts as follows. Starting with a range
[` = σ, r = 10σ] we choose one middle point at m = λσ for
λ ∼ Unif(1, 10). If h(m) > h(r) we increase r by a factor
10 until it is (e.g. r = 100σ). Then the second middle
point is chosen using the golden ratio, and the search is run
deterministically. We repeat with several random values λ.

5. EXPERIMENTS
Here we run an extensive set of experiments to validate

our techniques. We compare kdeP where P is in 1 and 2
dimensions with kernel density estimate under smaller core-
set kdeQ for both synthetic and real data. To show our
methods work well in large data sets, we use the large syn-
thetic data set(0.5 million) and real data set(1 million) in 2
dimension.

5.1 Data Sets
We consider data sets that have different features at var-

ious scales, so that as more data is present using a smaller
bandwidth more fine-grain features are brought out, and a
larger bandwidth only shows the coarse features. Our real
data set in 1 dimension is the temperature data in Figure 1,
with default σ = 72 (3 days). We use parameter ε = 0.02 to
generate a coreset Q with the Sort-selection technique [40].

We can also simulate data with multi-scale features. On a
domain [0, 1] we generate P recursively, starting with p1 = 0
and p2 = 1. Next we consider the interval between [p1, p2]
and insert two points at p3 = 2/5 and p4 = 3/5. There
are now 3 intervals [p1, p3], [p3, p4], and [p4, p2]. For each
interval [pi, pj] we recursively insert 2 new points at pi +
(2/5) ·(pj−pi) and at pi+(3/5) ·(pj−pi), until |P | = 19684.
The kde of this data set with σ = 0.01 is shown in Figure
5(d), along with that of a coreset Q of size |Q| = 100.

We construct the 2-dimensional synthetic data set in a
similar way. The data is in [0, 1]2 starting with four points
p1 = (0, 0), p2 = (0, 1), p3 = (1, 0), p4 = (1, 1). We recurse
on this rectangle by adding 4 new point in the middle m: the
x-coordinates are either at the 0.5-quantile or 0.8-quantile of
the x-coordinates, and same for new y-coordinates. These 4
new points creates 9 smaller empty rectangles. We further
recurse on each of these rectangles until |P | = 532900. The

kdeP with σ = 0.01 is shown in Figure 10(a). We use Grid
matching [40] to generate a coreset Q with ε = 0.1 and size
|Q| = 1040. Under the original bandwidth σ, the kdeQ is
shown in Figure 10(b); due to a small bandwidth this kde
has many more modes than the original, which motivates
the larger bandwidth kde shown in Figure 10(c).

For real data with multiple scales in 2 dimension we con-
sider OpenStreetMap data from the state of Iowa. Specifi-
cally, we use the longitude and latitude of all highway data
points, then rescale so it lies in [0, 1] × [0, 1]. It was recog-
nized in the early 1900s [35] that agricultural populations,
such as Iowa, exhibited population densities at several scales.
In experiment, we use the original data of size |P | = 1155102
with σ = 0.01, and Q as a smaller coreset with ε = 0.1 and
|Q| = 1128. These are illustrated in Figure 11.

5.2 Evaluating Point Generation for errX(P,Q)
To find the best evaluation point generation techniques,

we compare the various ways to generate a set X to evaluate
errX(P,Q). The larger numbers are better, so we want to
find point sets X so that errX(P,Q) is maximized with |X|
small. As most of our methods are random, five evaluation
point sets are generated for each method and the average
errX(P,Q) is considered.

We start in 1 dimension, and investigate which parame-
ter of the Cen and WCen methods work best. We will then
compare the best in class against the remaining approaches.
Recall the parameter E[m] determines the expected number
of points (under a Exponential process) chosen to take the
centroid or weighted centroid of, respectively. We only show
the test result with E[m] from 2 to 7, since the results are
similar when E[m] is larger than 7, and the larger the param-
eter the slower (and less desirable) the process. The results
are plotted in Figure 5 on the 1-dimensional synthetic data.
Specifically, Figure 5(a) shows the Cen method and Figure
5(b) the WCen method. Both methods plateau, for some pa-
rameter setting, after around |X| = 100, with WCen more
robust to parameter choice. In particular WCen converges

(a) Centroid methods (b) Weighted centroid meth

(c) All methods (d) kdeP,σ and kdeQ,ω with
original and best bandwidth

Figure 5: Choosing best evaluating point generation
techniques for 1-dimensional synthetic data.

(a) Centroid methods (b) Weighted centroid meth

(c) All methods (d) kdeP,σ and kdeQ,ω with
original and best bandwidth

Figure 6: Choosing best evaluating point generation
techniques for 1-dimensional real data.

slightly faster but with not much pattern across the choice of
parameter. We use Cen6 and WCen6 as representatives. We
next compare these approaches directly against each other
as well as Rand, Orgp, Orgp+N, Grid, and Comb in Figure
5(c). WCen6 appears the best in this experiment, but it has
been selected as best WCen technique from random trials.
The Rand and Grid techniques which also converge perform
well, and are simpler to implement.

Similar results are seen on the real 1-dimensional data in
Figure 6. We can take best in class from Cen and WCen
parameter choices, shown as Cen6 and WCen6 in Figure
6(a) and Figure 6(b). These perform well and similar to the
simpler Rand, Grid, and Orgp in Figure 6(c). Since Rand
and Grid also converge, in 1 dimension we would recommend
one of these simple methods.

For 2-dimensional data, the techniques perform a bit dif-
ferently. We again start with Cen and WCen methods as
shown in Figure 7 on real and synthetic data. The con-
vergence results are not as good as in 1 dimension, as ex-
pected, and it takes roughly |X| = 10000 points to converge.
All methods perform roughly the same for various parame-
ter settings, so we use Cen6 and WCen6 as representatives.
Comparing against all techniques in Figure 7(e), most tech-
niques perform roughly the same relative to each other, and
again WCen6 appears to be a good choice to use. The no-
table exceptions is that Grid and Rand perform worse in
2-d than in 1-d; likely indicating that the data dependent
approaches are more important in this setting.

5.3 Choosing New Bandwidth Evaluation
We now apply a random golden section search to find

new bandwidth values for coresets on 1-dimensional and 2-
dimensional synthetic and real data. In all 10 random trials
we always find the same local minimum, and report this
value. We will see that a value ω > σ can often give better
error results, both visually and empirically, by smoothing
out the noise from the smaller coresets.

Figure 8 shows evaluation of errX(P, σ,Q, ω) for various
ω values chosen while running the random golden section
search on synthetic and real 1-dimensional data. In both

(a) Centroid methods (b) Centroid methods

(c) Weighted centroid meth (d) Weighted centroid meth

(e) All methods (f) All methods

Figure 7: Choosing the best evaluation set X for
2-dimensional synthetic (left) and real (right) data.

(a) Synthetic data (b) Real data

Figure 8: ω∗ = arg minω errX(P, σ,Q, ω) in R1.

cases, setting ω = σ (as ω = 0.01 and ω = 72, respectively)
gives roughly twice as much error as using an omega roughly
twice as large (ω = 0.017 and ω = 142, respectively).

We can see the same results in 2-dimensional data sets
in Figure 9. We observe in Figure 9(a) on synthetic data
that with the original ω = σ = 0.01 the error is roughly
3.6, but by choosing ω = 0.013 that we can reduce the error
to roughly 2.7. This is also shown visually in Figure 10,
where a small coreset Q is chosen to do kdeQ,σ (Figure
10(b)) and the large-scale pattern in kdeP,σ is replaced by
many isolated points; kdeQ,ω=0.013 (Figure 10(c)) increases
the bandwidth and the desired visual pattern re-emerges.
On real data, a similar pattern is seen in Figure 9(b). The
original ω = σ = 0.01 has error roughly 3.0, and an ω =
0.024 (more than 2 times larger) gives error about 1.1. This
extra smoothing is illustrated in Figure 11.

Thus we see that it is indeed useful to increase the band-
width of kernel density estimates on a coreset, even though
theoretical bounds already hold for using the same band-
width. We show that doing so can decrease the error by

(a) Synthetic data (b) Real data

Figure 9: ω∗ = arg minω expX(P, σ,Q, ω) in R2.

(a) kdeP,σ=0.01. (b) kdeQ,ω=0.01. (c) kdeQ,ω=0.013.

Figure 10: Visualization of KDEP and KDEQ for
2-dimensional synthetic data using different band-
width.

(a) kdeP,σ=0.01. (b) kdeQ,ω=0.01. (c) kdeQ,ω=0.024.

Figure 11: Visualization of KDEP and KDEQ for
2-dimensional real data using different bandwidth.

a factor of 2 or more. Since we consider ω = σ, and only
decrease the error in the process, we can claim the same the-
oretical bounds for the new ω value. It is an open question
of whether one can prove tighter coreset bounds by adapting
the bandwidth value.

5.4 New Bandwidth for L1 and L2 Error
The above bandwidth selection method can be extended

to minimizing the L1 and L2 errors. Differing from L∞ error,
the L1 and L2 errors do not require finding a witness point
of large error, but rather are the averaged over a region or,
more commonly, the input points P . Figure 12 shows the
L1, L2, and L∞ errors for 2-dimensional synthetic and real
data; other settings gave similar results. The results show
that minimizing L∞ does not give significantly worse errors
than minimizing L1 or L2 in our setting. For example, in
Figure 12(a), we see that the choice of ω = 0.013 minimizes
L∞ errors, ω = 0.014 gave a minimum L2 error of 0.608 and
ω = 0.016 minimizes L1 error of 0.450. Comparing instead
to ω = 0.013 which provided the minimum L∞ error, then
we get L2 error of 0.618 and L1 error of 0.476; both are
within 1% of the minimum solutions.

5.5 Comparing Bandwidth Selection Methods
We compare against some traditional bandwidth selection

methods for the 2-dimensional synthetic and real data using.

(a) Synthetic data (b) Real data

Figure 12: Relations of L1, L2 and L∞ error and ω

We consider the following exemplars, among those surveyed
in Section 2.5: biased cross-validation (BCV), least-squares
cross-validation (LSCV), plug-in (PI), and smoothed cross-
validation (SCV). We use the kernel smoothing R package
(ks), which was originally introduced by Duong in 2007 [13]
and improved in 2014. In the experiment, our data set is
normalized and we assume data in each dimension is inde-
pendent and share the same bandwidth; so we use the largest
value from the main diagonal of bandwidth matrix computed
from the R package. For the 2-dimensional synthetic data
set, we use the same coreset with |Q| = 1040. The four
exemplar methods, respectively, resulted in the following
bandwidths ωBCV = 0.0085, ωLSCV = 0.024, ωPI = 0.0036,
and ωSCV = 0.0043. For the 2-dimensional real data set,
with the coreset |Q| = 1128, the bandwidth chosen by the
four exemplar methods, respectively, are ωBCV = 0.0078,
ωLSCV = 0.0003, ωPI = 0.0029, ωSCV = 0.004. The corre-
sponding error trends compared to our method for these two
data sets are shown in Figure 13, where ωOPT denotes the
optimal bandwidth from our method. Both of these figures
show our method achieves the smallest error compared, and
sometimes it is much (a factor of 20) smaller.

(a) Synthetic data (b) Real data

Figure 13: ω∗ = arg minω expX(P, σ,Q, ω) in R2.

6. CONCLUSION
This paper considers evaluating kernel density estimates

under L∞ error, and how to use these criteria to select the
bandwidth of a coreset. The L∞ error is stronger than the
more traditional L1 or L2 error, it provides approximation
guarantees for all points in the domain, and it aligns with
recent theoretical results [26] of kernel range space. Thus
it is worth rigorously investigating, and this paper presents
the first such study.

We propose several methods to efficiently evaluate the L∞
error between two kernel density estimates and provide a
convergence guarantee. The method Grid works well, and is
very simple to implement in R1. In R2, methods that adapt
more to the data perform much better, and our technique

WCen is shown accurate and efficient on real and synthetic
data. We then use these technique to select a new bandwidth
value for coresets which can improve the error by a factor of
2 to 3. We demonstrate this both visually and empirically
on real and synthetic large data sets.

7. REFERENCES
[1] P. K. Agarwal, S. Har-Peled, H. Kaplan, and

M. Sharir. Union of random minkowski sums and
network vulnerability analysis. In SOCG, 2013.

[2] C. C. Aggarwal. On density based transforms for
uncertain data mining. In ICDE, 2007.

[3] T. Bouezmarni and J. V. Rombouts. Nonparametric
density estimation for multivariate bounded data. J.
Statistical Planning and Inference, 140:139–152, 2010.

[4] A. W. Bowman. An alternative method of
cross-validation for the smoothing of density
estimates. Biometrika, 71(2):353–360, 1984.

[5] M. J. Brewer. A bayesian model for local smoothing in
kernel density estimation. Statistics and Computing,
10(4):299–309, 2000.

[6] T. Brox, B. Rosenhahn, D. Cremers, and H.-P. Seidel.
Nonparametric density estimation with adaptive,
anisotropic kernels for human motion tracking. In
Human Motion–Understanding, Modeling, Capture
and Animation, pages 152–165. Springer, 2007.

[7] P. B. Callahan and S. R. Kosaraju. Algorithms for
dynamic closest-pair and n-body potential fields. In
SODA, 1995.

[8] Y. Cao, H. He, H. Man, and X. Shen. Integration of
self-organizing map (SOM) and kernel density
estimation (KDE) for network intrusion detection. In
SPIE Europe Security+ Defence, 2009.

[9] Y. Chen, M. Welling, and A. Smola. Super-samples
from kernel hearding. In UAI, 2010.

[10] M. S. de Lima and G. S. Atuncar. A bayesian method
to estimate the optimal bandwidth for multivariate
kernel estimator. Journal of Nonparametric Statistics,
23(1):137–148, 2011.

[11] L. Devroye and L. Györfi. Nonparametric Density
Estimation: The L1 View. Wiley, 1984.

[12] L. Devroye and G. Lugosi. Combinatorial Methods in
Density Estimation. Springer-Verlag, 2001.

[13] T. Duong et al. ks: Kernel density estimation and
kernel discriminant analysis for multivariate data in r.
Journal of Statistical Software, 21(7):1–16, 2007.

[14] T. Duong and M. L. Hazelton. Cross-validation
bandwidth matrices for multivariate kernel density
estimation. Scandinavian J. of Stat., 32:485–506, 2005.

[15] H. Edelsbrunner, B. T. Fasy, and G. Rote. Add
isotropic Gaussian kernels at own risk: More and more
resiliant modes in higher dimensions. SOCG, 2012.

[16] A. Gangopadhyay and K. Cheung. Bayesian approach
to choice of smoothing parameter in kernel density
estimation. J. of Nonparam. Stat., 14:655–664, 2002.

[17] J. Habbema, J. Hermans, and K. van den Broek. A
stepwise discrimination analysis program using density
estimation. Proc. in Computational Statistics, 1974.

[18] P. Hall, J. Marron, and B. U. Park. Smoothed
cross-validation. Prob. The. and Rel. Fields, 92:1–20,
1992.

[19] P. Hall and M. P. Wand. Minimizing L1 distance in
nonparametric density estimation. Journal of
Multivariate Analysis, 26(1):59–88, 1988.

[20] S. Hu, D. S. Poskitt, and X. Zhang. Bayesian adaptive
bandwidth kernel density estimation of irregular
multivariate distributions. CS&DA, 56:732–740, 2012.

[21] M. Jones and S. Sheather. Using non-stochastic terms
to advantage in kernel-based estimation of integrated
squared density derivatives. Statistics & Probability
Letters, 11:511–514, 1991.

[22] J. Kiefer. Sequential minimax search for a maximum.
Proc. Am. Mathematical Society, 4:502–506, 1953.

[23] K. Kulasekera and W. Padgett. Bayes bandwidth
selection in kernel density estimation with censored
data. Nonparametric statistics, 18(2):129–143, 2006.

[24] J. Marron and A. Tsybakov. Visual error criteria for
qualitative smoothing. Journal of the American
Statistical Association, 90(430):499–507, 1995.

[25] A. Pérez, P. Larrañaga, and I. Inza. Bayesian
classifiers based on kernel density estimation: Flexible
classifiers. Int. J. Approximate Reasoning, 50:341–362,
2009.

[26] J. M. Phillips. eps-samples for kernels. SODA, 2013.

[27] J. M. Phillips, B. Wang, and Y. Zheng. Geometric
inference on kernel density estimates. In SoCG, 2015.

[28] M. Rudemo. Empirical choice of histograms and kernel
density estimators. Scandin. J. of Stat., 9:65–78, 1982.

[29] S. R. Sain, K. A. Baggerly, and D. W. Scott.
Cross-validation of multivariate densities. J. American
Statistical Association, 89:807–817, 1994.

[30] D. Scott, R. Tapia, and J. Thompson. Kernel density
estimation revisited,. Nonlinear Analysis, Theory,
Methods and Appplication, 1:339–372, 1977.

[31] D. W. Scott. Multivariate Density Estimation:
Theory, Practice, and Visualization. Wiley, 1992.

[32] D. W. Scott and G. R. Terrell. Biased and unbiased
cross-validation in density estimation. J. ASA,
82:1131–1146, 1987.

[33] B. W. Silverman. Density Estimation for Statistics
and Data Analysis. Chapman & Hall/CRC, 1986.

[34] G. R. Terrell. Maximal smoothing principle in density
estimation. J. ASA, 85:470–477, 1990.

[35] E. Ullman. A theory of location for cities. American
Journal of Sociology, pages 853–864, 1941.

[36] M. Wand and M. Jones. Multivariate plug-in
bandwidth selection. J. Comp. Stat, 9:97–116, 1994.

[37] C. Yang, R. Duraiswami, and L. S. Davis. Efficient
kernel machines using the improved fast gauss
transform. In NIPS, 2004.

[38] C. Yang, R. Duraiswami, N. A. Gumerov, and
L. Davis. Improved fast Gauss transform and efficient
kernel density estimation. In ICCV, 2003.

[39] X. Zhang, M. L. King, and R. J. Hyndman. A
bayesian approach to bandwidth selection for
multivariate kernel density estimation. CS&DA,
50:3009–3031, 2006.

[40] Y. Zheng, J. Jestes, J. M. Phillips, and F. Li. Quality
and efficiency in kernel density estimates for large
data. In SIGMOD, 2013.

APPENDIX
A. STRUCTURAL PROOFS

To prove the weighted centroid method converges, we want
to prove Theorem 1 in 1 and 2 dimension. For simplicity,
we assume Q ⊂ P so P = P ∪Q.

First we work on the weighted 1-dimensional data, and
extend to 2 dimension using that the cross section of a 2-
dimensional Gaussian is still a 1-dimensional Gaussian. We
focus on when P and Q use the same bandwidth σ, and
a unit kernel Kσ. We start to examine two points in 1
dimension, and without loss of generality, we assume p1 = d
and p2 = −d for d ≥ 0, and that the coreset of P is Q =
{p2}. We assign the weight for p1 as w1 and the weight
for p2 as w2. Plug in P , Q and the weight for each point,
G(x) = |kdeP (x)− kdeQ(x)| is expanded as following:

G(x) =

∣∣∣∣12w1 exp
(
− (x− d)2

2σ2

)
− 1

2
w2 exp

(
− (x+ d)2

2σ2

)∣∣∣∣.
We assume w1 ≥ w2, the largest error point must be closer to
p1. So we only need to discuss when x ≥ 0, then 1

2
w1 exp

(
−

(x−d)2
2σ2

)
≥ 1

2
w2 exp

(
− (x+d)2

2σ2

)
, so

G(x) =
1

2
w1 exp

(
− (x− d)2

2σ2

)
− 1

2
w2 exp

(
− (x+ d)2

2σ2

)
.

Lemma 2. For Kσ a unit Gaussian kernel, P = {p1, p2}
and Q = {p2} where p1 = d and p2 = −d, when x ≥ 0,
function G(x) has only one local maximum, which is between
d and d+ σ and G(x) is decreasing when x > d.

Proof. By taking the derivative of G(x), we can get

dG(x)

dx
=

1

2
w2 exp

(
− (x+ d)2

2σ2

)x+ d

σ2

− 1

2
w1 exp

(
− (x− d)2

2σ2

)x− d
σ2

.

When 0 ≤ x < d, both 1
2
w2 exp

(
− (x+d)2

2σ2

)
x+d
σ2 and− 1

2
w1 exp

(
−

(x−d)2
2σ2

)
x−d
σ2 > 0, thus dG(x)

dx
> 0, so G(x) is always increas-

ing.
When x = d,

dG(x)

dx
=

1

2
w2 exp

(
− 2d2

σ2

)2d

σ2
≥ 0.

To understand x > d we examine the ratio function

r(x) =
1
2
w2 exp

(
− (x+d)2

2σ2

)
x+d
σ2

1
2
w1 exp

(
− (x−d)2

2σ2

)
x−d
σ2

=
w2

w1
exp

(
− 2xd

σ2

)x+ d

x− d .

Since both exp
(
− 2xd

σ2

)
and x+d

x−d are decreasing and positive,

r(x) and thus dG(x)
dx

is decreasing when x > d.
When x = d+ σ, the ratio function is

r(d+ σ) =
w2

w1
exp(−2σd+ 2d2

σ2
)
σ + 2d

σ
.

We can view the above equation as a function of variable d.

r(d) =
w2

w1
exp(−2σd+ 2d2

σ2
)
σ + 2d

σ
,

and take the derivative of r(d):

dr(d)

dd
= −4d(d+ σ)

σ3

w2

w1
exp(−2σd+ 2d2

σ2
) ≤ 0.

With d ≥ 0 then dr(d)
dd
≤ 0 and thus r(d) is a decreasing

function which attains maximum w2
w1
≤ 1 when d = 0; thus

r(d) ≤ 1. So when x = d + σ, dG(x)
dx
≤ 0. With the above

fact that dG(x)
dx

≥ 0 when x = d and dG(x)
dx

is decreasing
when x > d, there is only one point between d and d + σ

making dG(x)
dx

= 0. Since when 0 ≤ x < d, dG(x)
dx

> 0. There
is only one maximum point of G(x) between d and d + σ
when x ≥ 0.

From Lemma 2, we show that the evaluation point having
largest error is between d and d+ σ. Due to the symmetry
of p1 and p2, when w1 ≤ w2 , G(x) gets its largest error
between −d and −d− σ.

With the results on both sides, we now show the maximum
value point of G(x) can’t be outside σ distance of Conv(P).

Now we discuss the case for n points in 1 dimension.

Lemma 3. For Kσ a unit Gaussian kernel, P has n points
and |Q| = |P |/2, arg maxx∈R1 G(x) for 1-dimensional data
is within σ distance of Conv(P).

Proof. Suppose n = 2k, P = {p1, p2, p3, p4, ..., p2k−1, p2k},
choose any k points in Q. Then pair any point in Q with
any point in P not in Q, so each point in P is in exactly one
pair. For simplicity we set Q = {p1, p3, ..., p2k−1} and the
pairs are {p1, p2}, {p3, p4}, ..., {p2k−1, p2k}.

Suppose e1 = arg maxx∈R1 G(x) is not within σ distance of
Conv(P) and p1 is the point closest to e1. Based on Lemma
2, for P has only two points, function G(x) is decreasing as a
point outside σ moves away from p1. So if we choose another
point e2 infinitesimally closer to p1, and we set P1 = {p1, p2},
Q1 = {p1} , GP1,Q1(e2) has larger value than GP1,Q1(e1).
Since p1 is the closest point in P , for any other set P2 =
{p3, p4}, Q2 = {p3}, e2 is closer to P2 than e1 is to P2,
hence GP2,Q2(e2) is also larger than GP2,Q2(e1). The same
result holds for all pairs {p2i−1, p2i}, where i is from 1 to
k. So G(e2) > G(e1), which contradicts the assumption
that e1 = arg maxx∈R1 G(x). So the largest error evaluation
point should be within σ distance of Conv(P).

In 2 dimensions we show a similar result. We illustrate
the Minkowski sum M of a set of points P with a ball of
radius σ in Figure 2.

Theorem 3. For Kσ a unit Gaussian kernel, and two
point sets P,Q ∈ R2, |Q| = |P |/2, arg maxx∈R2 G(x) should
be within the Minkowski sum M of a ball of radius σ and
Conv(P).

Proof. Now we have n points in P ∈ R2. Suppose the
largest error position e1 = arg maxx∈R2 G(x) 6∈ M , then for
some direction v no point in the convex hull of P is closer
than σ to e1 after both are projected onto v. Then since
any cross section of a Gaussian is a 1-dimensional Gaussian
(with reduced weight), we can now invoke the 1-dimensional
result in Lemma 3 to show that e1 is not the largest error
position along the direction v, thus e1 6= arg maxx∈R2 G(x).
So arg maxx∈R2 G(x) should be within the Minkowski sum
M of a ball of radius σ and Conv(P).

	Introduction
	Background and Motivation
	Unit Kernels or Normalized Kernels?
	Why Coresets?
	Why is given?
	Why L Error?
	Related Work on Bandwidth Selection

	Computing err(P,Q)
	Approximation Strategy
	Generation of Evaluation Points

	Bandwidth Selection
	Refining the Bandwidth for Coresets
	Lipschitz Properties of h
	Random Golden Section Search

	Experiments
	Data Sets
	Evaluating Point Generation for errX(P,Q)
	Choosing New Bandwidth Evaluation
	New Bandwidth for L1 and L2 Error
	Comparing Bandwidth Selection Methods

	Conclusion
	References
	Structural Proofs

