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> In ML convexity is a common (and often implicit) assumption (e.g. SVM)

» Generalization property of neural network corresponds to convexity in
the feature space

» Measuring convexity is hard

> We propose random polytope descriptor (RPD) as a relaxation of the
convex hull which is easy to compute and robust with respect to outliers.

> We evaluate the convexity of autoencoded data to assess networks
generalization and robustness to out-of-distribution attacks.
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> Feature “auto-selection”: forcing neural network to go through a
bottleneck (i.e. compress/encode the input)
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» The standard objective is to minimize reconstruction error

DY (@) — x|l

» Variational objective is to minimize a function based on what happens
in the latent space, regularized by reconstruction error, e.g.
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objective regularizer

> Network with such an objective is called Variational autoencoder (VAE).
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Where are the polytopes?

What are the features learned by an encoder?

>

» What happened in the latent space to our data?

» Are natural clusters in the data well preserved in the latent space?
>

Is the learned representation of the data robust?
Solution: assess the convexity.
> Create the convex-hull of the points from a given class in the latent
space.

> Use the proximity to the convex hull to explain the networks decisions.

» Compute the intersections of convex hulls to quantify the entanglement
of encoded classes.
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» Convex hull computations are infeasible in reasonable dimensions
» Computing distance to a polytope is costly
Solution:

Definition

The dual bounding body of X with respect to (a set of directions) Y is the
polyhedron

Dy(X) = {vew

(v,y) <sup(x,y) forye Y} .
XEX
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De-idealizing the setup: take two

> The input is inprecise and often noisy (soft boundaries) while polytopes
are very rigid

Definition

Let £ € [0,1]. The random polytope descriptor of X with respect to Y (=a
set of m directions chosen uniformly at random) is the polyhedron

RPD,, ¢(X) := {ve R

(v, y) < Hg,y su);?{(x,y)}, ye Y}

where pp, sup denotes the £-th percentile of probability measure u on X
projected onto direction y.
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Experimental Results
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> How tight and convex are the clusters encoded by (variational)
autoencoders?

» We trained autoencoder networks to embed the MNIST dataset in
different dimensions.

> Assess the convexity/disentanglement of clusers by measuring the
performance of RPDs as classifiers.
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» check how well a neural network recognizes out-of-distribution samples.

> network trained on FMNIST (more complex) is fed MNIST (less complex)

AE network trained on FMNIST, |=2

mnist mean
—— fmnist mean

scaling distance




» Generalization corresponds to convexity in the latent space.

» Random Polytope Descriptor is a computable and flexible relaxation of
the convex hull.

> Convexity in the latent space can be assessed by the performance of
RPD and scaling distance as classifier.

» RPD can be used to evaluate robustness of a NN to out-of-distribution
attacks.
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