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What is this talk about?

ñ In ML convexity is a common (and often implicit) assumption (e.g. SVM)

ñ Generalization property of neural network corresponds to convexity in
the feature space

ñ Measuring convexity is hard
ñ We propose random polytope descriptor (RPD) as a relaxation of the

convex hull which is easy to compute and robust with respect to outliers.
ñ We evaluate the convexity of autoencoded data to assess networks

generalization and robustness to out-of-distribution attacks.
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Autoencoders (AE)

ñ Let Φ : RN → Rn and Ψ : Rn → RN be a pair (encoder, decoder) of NN.

ñ The standard objective is to minimize reconstruction error∑
x
‖Ψ(Φ(x))− x‖

ñ Variational objective is to minimize a function based on what happens
in the latent space, regularized by reconstruction error, e.g.∑

x
|‖Φ(x)‖ − 1|︸ ︷︷ ︸

objective

+
∑
x
‖Ψ(Φ(x))− x‖︸ ︷︷ ︸

regularizer

ñ Network with such an objective is called Variational autoencoder (VAE).
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Where are the polytopes?

ñ What are the features learned by an encoder?

ñ What happened in the latent space to our data?
ñ Are natural clusters in the data well preserved in the latent space?
ñ Is the learned representation of the data robust?

Solution: assess the convexity.

ñ Create the convex-hull of the points from a given class in the latent
space.

ñ Use the proximity to the convex hull to explain the networks decisions.
ñ Compute the intersections of convex hulls to quantify the entanglement

of encoded classes.
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De-idealizing the setup: take one

ñ Convex hull computations are infeasible in reasonable dimensions

ñ Computing distance to a polytope is costly

Solution:

Definition

The dual bounding body of X with respect to (a set of directions) Y is the
polyhedron

DY(X) =
{
v ∈ Rd

∣∣∣∣∣ 〈v, y〉 ≤ sup
x∈X
〈x, y〉 for y ∈ Y

}
.
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De-idealizing the setup: take two

ñ The input is inprecise and often noisy (soft boundaries) while polytopes
are very rigid

Definition

Let ` ∈ [0, 1]. The random polytope descriptor of X with respect to Y (=a
set of m directions chosen uniformly at random) is the polyhedron

RPDm,`(X) :=
{
v ∈ Rd

∣∣∣∣∣ 〈v, y〉 ≤ µ`,y supx∈X
{〈x, y〉}, y ∈ Y

}

where µ`,y sup denotes the `-th percentile of probability measure µ on X
projected onto direction y.
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Experimental Results



Disentanglement/convexity

ñ How tight and convex are the clusters encoded by (variational)
autoencoders?

ñ We trained autoencoder networks to embed the MNIST dataset in
di�erent dimensions.

ñ Assess the convexity/disentanglement of clusers by measuring the
performance of RPDs as classifiers.
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Out of distribution attack

ñ check how well a neural network recognizes out-of-distribution samples.

ñ network trained on FMNIST (more complex) is fed MNIST (less complex)
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Recap

ñ Generalization corresponds to convexity in the latent space.
ñ Random Polytope Descriptor is a computable and flexible relaxation of

the convex hull.
ñ Convexity in the latent space can be assessed by the performance of

RPD and scaling distance as classifier.
ñ RPD can be used to evaluate robustness of a NN to out-of-distribution

attacks.

For further information see https://arxiv.org/abs/2009.13987
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