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Directional data
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Transformation groups (rotations, projective, affine)
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Shapes
Diffusion tensors, structure tensors

v

v

Diffeomorphisms (deformable transformations)



Manifold Statistics: Averages
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Manifold Statistics: Variability

-
Shape priors in segmentation




Manifold Statistics: Hypothesis Testing

Testing group differences
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Cates, et al. IPMI 2007 and ISBI 2008.



Manifold Statistics: Regression




What is Shape?
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What is Shape?

Shape is the geometry of an object modulo position,
orientation, and size.
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Shape Analysis

Shape Space
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A metric space structure provides a comparison
between two shapes.



Kendall’'s Shape Space

Define object with k points.

v

Represent as a vector in R?*.

v

Remove translation, rotation, and
scale.

v

End up with complex projective
space, CP¥~2,

v

Kendall, 1984



Quotient Spaces

What do we get when we “remove” scaling from R??




Quotient Spaces

What do we get when we “remove” scaling from R??

[x]




Quotient Spaces

What do we get when we “remove” scaling from R??

[x]




Quotient Spaces

What do we get when we “remove” scaling from R??

[x]




Quotient Spaces

What do we get when we “remove” scaling from R??

[x]

Notation: [x] € R?/R*
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Constructing Kendall's Shape Space

v

Consider planar landmarks to be points in the
complex plane.

An object is then a point (zy, 22, . . ., zx) € Ck.

v

Removing translation leaves us with C¥=1,

v

v

How to remove scaling and rotation?



Scaling and Rotation in the Complex Plane
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Recall a complex number can be writ-
ten as z = re'®, with modulus r and
argument ¢.
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Scaling and Rotation in the Complex Plane

Recall a complex number can be writ-
ten as z = re'®, with modulus r and
argument ¢.

Complex Multiplication:

se' x re'® = (sr)e'?*+%)

Multiplication by a complex number se'’
scaling by s and rotation by 6.

is equivalent to



Removing Scale and Translation
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by a constant w € C, just rotates and scales it.
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Removing Scale and Translation

Multiplying a centered point set, Z = (21,22, - . -, Z—1),
by a constant w € C, just rotates and scales it.

Thus the shape of z is an equivalence class:
z) = {(wz1,wza,...,wzi_1) : Yw € C}
This gives complex projective space CP*2 — much like

the sphere comes from equivalence classes of scalar
multiplication in R".



The Exponential and Log Maps

M

» The exponential map takes tangent vectors to
points along geodesics.

» The length of the tangent vector equals the length
along the geodesic segment.

» Its inverse is the log map — it gives distance
between points: d(p, q) = || Log,(q)]|-



Intrinsic Means (Fréchet, 1948)

The intrinsic mean of a collection of points xy, ..., xy on
a metric space M is
N
p=argmin > d(x,x;)?

xXeEM
i=1

If M is a Riemannian manifold, d is geodesic distance.
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PGA of Kidney

Mode 1 Mode 2 Mode 3



Robust Statistics: Motivation

» The mean is overly influenced by outliers due to
sum-of-squares.

» Robust statistical description of shape or other
manifold data.

» Deal with outliers due to imaging noise or data
corruption.

» Misdiagnosis, segmentation error, or outlier in a
population study.



Mean vs. Median in R"

Mean: least-squares problem
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Mean vs. Median in R"

Mean: least-squares problem
_ . 2
po=argmin » |lx — x|
xeR?

Closed-form solution (arithmetic average)

Geometric Median, or Fermat-Weber Point:

m= argminz ||x — x|

xeR”

No closed-form solution



Weiszfeld Algorithm in R"

Gradient descent on sum-of-distance:

v

My = my — aGy,

G = 3 e =] (Z|x,_mk| 1>

i€l i€l
» Stepsize: 0 < a <2

Exclude singular points: I, = {i : my # x;}
Weiszfeld (1937), Ostresh (1978)

v

v



Geometric Median on a Manifold

The geometric median of data x; € M is the point that
minimizes the sum of geodesic distances:

N
m = argmin » d(x,x;)

xeM
i=1

Fletcher, et al. CVPR 2008 and Neurolmage 2009.



Weiszfeld Algorithm for Manifolds

Gradient descent:

M1 = Exp,, (avy),

Logm X;
vk:Z mkkyxl /(;dmk,x, )

i€l;




Example: Rotations

Input data: 20 random rotations

Outlier set: random, rotated 90°



Example: Rotations

Mean
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Example on Kendall Shape Spaces
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Example on Kendall Shape Spaces

WRVRCR?

Mean:

# Outliers:



Example on Kendall Shape Spaces

Mean:
# Outliers: 0 2 6 12
Median:

508 8

# Outliers:



Image Metamorphosis

» Metric between images
» Includes both deformation and intensity change
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Image Metamorphosis

» Metric between images

» Includes both deformation and intensity change

1 1
1
U(vi, 1) :/ lvelly dr + —2/
0 o= Jo

2

dt
L2

dl,
jtt + <VI;, Vt>




Example: Metamorphosis

Input Data Median Atlas



Describing Shape Change

» How does shape change over time?
» Changes due to growth, aging, disease, etc.
» Example: 100 healthy subjects, 20-80 yrs. old

H808848008880088880888488
CEELEPEEETVLEELEELEET T

» We need regression of shape!



Regression on Manifolds
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Regression on Manifolds

Given:
Manifold data: y; € M
Scalar data: x; € R

Want:
M Relationship f: R — M
“how x explains y”

S )

KOS

X

Y



Parametric vs. Nonparametric Regression

Linear Regression Kernel Regression



Kernel Regression (Nadaraya-Watson)

Define regression function through weighted averaging:

f(t) = Z wi(1)Y;

wi(t) = 5}10 — T
> ic1 Kt = T))



Example: Gray Matter Volume

K,(t-s)

Gray Matter Volume / Total Brain Velume
&
@

a2t

Gray Matter Volume
Kernel Width=6; Sample Size=50

30 40 50 80 70

B8O



Manifold Kernel Regression

Using Fréchet weighted average:

N

ny(t) = I i(t)d ,Yi2
rina(t) argrrgﬂZW()(y )

Davis, et al. ICCV 2007



Geodesic Regression

» Generalization of linear regression.
» Find best fitting geodesic to the data (x;, y;).
» Least-squares problem:

N

E(pv) = 5 3" d (Expl(p. xv), )’

i=1

p,v) =arg min E(p,
(P, V) g min (P, v)



Geodesic Regression




Experiment: Corpus Callosum

v

The corpus callosum is the main interhemispheric
white matter connection

v

Known volume decrease with aging

32 corpus callosi segmented from OASIS MRI data

Point correspondences generated using
ShapeWorks www.sci.utah.edu/software/

v

v


www.sci.utah.edu/software/

The Tangent Bundle, TM

» Space of all tangent vectors (and their base points)
» Has a natural metric, called Sasaki metric

» Can compute geodesics, distances between
tangent vectors



Longitudinal Models

Lo

Individual geodesic trends:
Y; = Exp(Exp(p;, Xiu;), €;)
Average group trend (in TM):

(pi7 ui) = EXpS((a7 5)7 (Vi7 Wi))
Muralidharan & Fletcher, CVPR 2012



Longitudinal Corpus Callosum Experiment

» 12 subjects with dementia, 11 healthy controls
» 3 time points each, spanning 6 years

C VC D

Healthy Controls Dementia Patients

Statistically significant: p = 0.027
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Open Problems

Estimator properties: consistency, efficiency

v

v

Approximation quality (e.g., dimensionality
reduction)
Clustering, classification

v

v

Sparsity-like principles
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