Improved Algorithms for the Problem for

Haitao Wang ${ }^{1}$ Jie Xue ${ }^{2}$
${ }^{1}$ Utah State University
${ }^{2}$ University of Minnesota, Twin Cities

WADS 2019

Background

- 2-center problem in the plane Given a set S of n points in the plane, find two disks D_{1}^{*} and D_{2}^{*} such that $S \subseteq D_{1}^{*} \cup D_{2}^{*}$ and $\max \left\{\operatorname{rad}\left(D_{1}^{*}\right), \operatorname{rad}\left(D_{2}^{*}\right)\right\}$ is minimized.

Background

- 2-center problem in the plane

Given a set S of n points in the plane, find two disks D_{1}^{*} and D_{2}^{*} such that $S \subseteq D_{1}^{*} \cup D_{2}^{*}$ and $\max \left\{\operatorname{rad}\left(D_{1}^{*}\right), \operatorname{rad}\left(D_{2}^{*}\right)\right\}$ is minimized.

Background

- 2-center problem in the plane

Given a set S of n points in the plane, find two disks D_{1}^{*} and D_{2}^{*} such that $S \subseteq D_{1}^{*} \cup D_{2}^{*}$ and $\max \left\{\operatorname{rad}\left(D_{1}^{*}\right), \operatorname{rad}\left(D_{2}^{*}\right)\right\}$ is minimized.

Background

- 2-center problem in the plane

Given a set S of n points in the plane, find two disks D_{1}^{*} and D_{2}^{*} such that $S \subseteq D_{1}^{*} \cup D_{2}^{*}$ and $\max \left\{\operatorname{rad}\left(D_{1}^{*}\right), \operatorname{rad}\left(D_{2}^{*}\right)\right\}$ is minimized.

- An equivalent definition

Color each point in S as red or blue such that $\max \left\{\operatorname{rad}\left(D_{1}^{*}\right), \operatorname{rad}\left(D_{2}^{*}\right)\right\}$ is minimized where D_{1}^{*} (resp., D_{2}^{*}) is the smallest enclosing disk of all red (resp., blue) points.

Problem definition

- Bichromatic 2-center problem in the plane Given a set S of n pairs of points in the plane, for every pair, color one point as red and the other as blue such that $\max \left\{\operatorname{rad}\left(D_{1}^{*}\right), \operatorname{rad}\left(D_{2}^{*}\right)\right\}$ is minimized where $D_{1}^{*}\left(\right.$ resp., $\left.D_{2}^{*}\right)$ is the smallest enclosing disk of all red (resp., blue) points.

Previous work and our result

- Previous results for planar 2-center
- $O\left(n^{2} \log ^{3} n\right)$ time [Agarwal and Sharir, 1994]
- $O\left(n^{2}\right)$ time [Jaromczyk and Kowaluk, 1994]
- $O\left(n \log ^{9} n\right)$ time [Sharir, 1997]
- $O\left(n \log ^{2} n\right)$ expected time [Eppstein, 1997]
- $O\left(n \log ^{2} n \log ^{2} \log n\right)$ time [Chan, 1999]

Previous work and our result

- Previous results for planar 2-center
- $O\left(n^{2} \log ^{3} n\right)$ time [Agarwal and Sharir, 1994]
- $O\left(n^{2}\right)$ time [Jaromczyk and Kowaluk, 1994]
- $O\left(n \log ^{9} n\right)$ time [Sharir, 1997]
- $O\left(n \log ^{2} n\right)$ expected time [Eppstein, 1997]
- $O\left(n \log ^{2} n \log ^{2} \log n\right)$ time [Chan, 1999]
- Previous results for planar bichromatic 2-center
- $O\left(n^{3} \log ^{2} n\right)$ time [Arkin et al., 2015]
- ($1+\epsilon$)-approximation algorithms [Arkin et al., 2015]
- $O\left(\left(n / \varepsilon^{2}\right) \log n \log (1 / \varepsilon)\right)$ time [Arkin et al., 2015]
- $O\left(n+(1 / \varepsilon)^{6} \log ^{2}(1 / \varepsilon)\right)$ time [Arkin et al., 2015]

Previous work and our result

- Previous results for planar 2-center
- $O\left(n^{2} \log ^{3} n\right)$ time [Agarwal and Sharir, 1994]
- $O\left(n^{2}\right)$ time [Jaromczyk and Kowaluk, 1994]
- $O\left(n \log ^{9} n\right)$ time [Sharir, 1997]
- $O\left(n \log ^{2} n\right)$ expected time [Eppstein, 1997]
- $O\left(n \log ^{2} n \log ^{2} \log n\right)$ time [Chan, 1999]
- Previous results for planar bichromatic 2-center
- $O\left(n^{3} \log ^{2} n\right)$ time [Arkin et al., 2015]
- (1+ $)$-approximation algorithms [Arkin et al., 2015]
- $O\left(\left(n / \varepsilon^{2}\right) \log n \log (1 / \varepsilon)\right)$ time [Arkin et al., 2015]
- $O\left(n+(1 / \varepsilon)^{6} \log ^{2}(1 / \varepsilon)\right)$ time [Arkin et al., 2015]
- Our results for planar bichromatic 2-center
- $O\left(n^{2} \log ^{2} n\right)$ time exact algorithm
- $O\left(n+(1 / \varepsilon)^{3} \log ^{2}(1 / \varepsilon)\right)$ time $(1+\epsilon)$-approximation

Exact algorithm

- Let D_{1}^{*} and D_{2}^{*} be the two disks of an optimal solution.
- Without loss of generality, we may assume that
- D_{1}^{*} and D_{2}^{*} are congruent (let r^{*} denote their radius).
- The distance δ between the centers of D_{1}^{*} and D_{2}^{*} is minimized.

Exact algorithm

- Let D_{1}^{*} and D_{2}^{*} be the two disks of an optimal solution.
- Without loss of generality, we may assume that
- D_{1}^{*} and D_{2}^{*} are congruent (let r^{*} denote their radius).
- The distance δ between the centers of D_{1}^{*} and D_{2}^{*} is minimized.

Exact algorithm

- Let D_{1}^{*} and D_{2}^{*} be the two disks of an optimal solution.
- Without loss of generality, we may assume that
- D_{1}^{*} and D_{2}^{*} are congruent (let r^{*} denote their radius).
- The distance δ between the centers of D_{1}^{*} and D_{2}^{*} is minimized.
- High-level idea

Distinguish two cases:

- The distant case: $\delta \geq r^{*}$
- The nearby case: $\delta<r^{*}$
(Similar to the idea of [Sharir, 1997; Eppstein, 1997; Chan, 1999] for the planar 2-center problem)

A definition

Definition

We say a pair $\left(D_{1}, D_{2}\right)$ of disks bichromatically covers S if it is possible to color a point as red and the other as blue for every pair of S such that D_{1} (resp., D_{2}) covers all red (resp., blue) points.

A definition

Definition

We say a pair $\left(D_{1}, D_{2}\right)$ of disks bichromatically covers S if it is possible to color a point as red and the other as blue for every pair of S such that D_{1} (resp., D_{2}) covers all red (resp., blue) points.

D_{1} and D_{2} are always congruent in our discussion

The distant case:

- Basic strategy: parametric search + decision
- The decision problem

Given a value r, decide whether $r \geq r^{*}$, i.e., whether there exists a congruent pair of disks with radius r that bichromatically covers S.

The distant case

Observation (Eppstein, 1997)

One can determine in $O(n)$ time a set of $O(1)$ lines in which one line ℓ satisfies the following property.

- The subset P_{1} of all input points of S on the left side of ℓ are contained in one disk D_{1}^{*} of the optimal solution,
- At least one point of P_{1} is on the boundary of D_{1}^{*}
- D_{1}^{*} is the circurmcircle of two or three points of S.

The distant case

- By enumerating the $O(1)$ lines, we may assume that ℓ is known.

The distant case

- By enumerating the $O(1)$ lines, we may assume that ℓ is known.
- Let P_{1} be the points on the left side of ℓ.

The distant case

- By enumerating the $O(1)$ lines, we may assume that ℓ is known.
- Let P_{1} be the points on the left side of ℓ.

Lemma

$r \geq r^{*}$ iff there exists a pair $\left(D_{1}, D_{2}\right)$ of congruent disks of radius r bichromatically covering S with the following property.

- All points in P_{1} are contained in D_{1}
- At least one point of P_{1} is on the boundary of D_{1}.

The distant case

- $\mathcal{B}_{r}(a)$: the disk centered at a point a of radius r.
- $\mathcal{I}=\bigcap_{a \in P_{1}} \mathcal{B}_{r}(a)$

The distant case

- $\mathcal{B}_{r}(a)$: the disk centered at a point a of radius r.
- $\mathcal{I}=\bigcap_{a \in P_{1}} \mathcal{B}_{r}(a)$

Lemma

D_{1} satisfies the desired condition iff its center is on the boundary $\partial \mathcal{I}$ of \mathcal{I}.

The distant case

- $\mathcal{B}_{r}(a)$: the disk centered at a point a of radius r.
- $\mathcal{I}=\bigcap_{a \in P_{1}} \mathcal{B}_{r}(a)$

Lemma

D_{1} satisfies the desired condition iff its center is on the boundary $\partial \mathcal{I}$ of \mathcal{I}.

- We say a point c is feasible if there exists $\left(D_{1}, D_{2}\right)$ bichromatically covering S such that $D_{1}=\mathcal{B}_{r}(c)$.
- It suffices to test the existence of a feasible point on $\partial \mathcal{I}$.

The distant case

Find a feasible point on $\partial \mathcal{I}$:

- For each point $c \in S \backslash P_{1}$, compute the (at most two) intersections $\partial \mathcal{I} \cap \partial \mathcal{B}_{r}(c)$.
- Q : the set of all such intersection points
- $|Q|=O(n)$

The distant case

Find a feasible point on $\partial \mathcal{I}$:

- For each point $c \in S \backslash P_{1}$, compute the (at most two) intersections $\partial \mathcal{I} \cap \partial \mathcal{B}_{r}(c)$.
- Q : the set of all such intersection points
- $|Q|=O(n)$
- A feasible point exists on $\partial \mathcal{I}$ iff a feasible point exists in Q.
- For each point $c \in Q$, test whether it is a feasible point, i.e., whether there exists $\left(D_{1}, D_{2}\right)$ bichromatically covering S such that $D_{1}=\mathcal{B}_{r}(c)$.

The distant case

For each point $c \in Q$, test whether it is a feasible point:

- Check whether $\mathcal{B}_{r}(c)$ covers at least one point from each pair of S.

The distant case

For each point $c \in Q$, test whether it is a feasible point:

- Check whether $\mathcal{B}_{r}(c)$ covers at least one point from each pair of S.
- Check whether there exists a disk of radius r covering all points of $P(c)$ and at least one point from each pair of $S(c)$
- $P(c)$: points of S outside $\mathcal{B}_{r}(c)$
- $S(c)$: pairs of S whose both points are in $\mathcal{B}_{r}(c)$

The distant case

For each point $c \in Q$, test whether it is a feasible point:

- Check whether $\mathcal{B}_{r}(c)$ covers at least one point from each pair of S.
- Check whether there exists a disk of radius r covering all points of $P(c)$ and at least one point from each pair of $S(c)$
- $P(c)$: points of S outside $\mathcal{B}_{r}(c)$
- $S(c)$: pairs of S whose both points are in $\mathcal{B}_{r}(c)$

The distant case

For each point $c \in Q$, test whether it is a feasible point:

- Check whether $\mathcal{B}_{r}(c)$ covers at least one point from each pair of S.
- Check whether there exists a disk of radius r covering all points of $P(c)$ and at least one point from each pair of $S(c)$
- $P(c)$: points of S outside $\mathcal{B}_{r}(c)$
- $S(c)$: pairs of S whose both points are in $\mathcal{B}_{r}(c)$

- $O(n \log n)$ time

The distant case

- Decision algorithm: $O\left(n^{2} \log n\right)$ time

The distant case

- Decision algorithm: $O\left(n^{2} \log n\right)$ time
- Using Cole's parametric search, the optimization problem of the distant case can be solved in $O\left(n^{2} \log ^{2} n\right)$ time.
- Very similar to [Eppstein, 1997] for the planar 2-center problem.

The nearby case:

- Consider the intersection $D_{1}^{*} \cap D_{2}^{*}$, which has two vertices a and b.

Observation (Eppstein, 1997)

In $O(n)$ time, one can find $O(1)$ points in which one point o is in $D_{1}^{*} \cap D_{2}^{*}$ and either the vertical or the horizontal line through o separates a and b.

The nearby case

- By enumerating the $O(1)$ points, we may assume that the point o is known and the horizontal line ℓ through o separates a and b.

The nearby case

- By enumerating the $O(1)$ points, we may assume that the point o is known and the horizontal line ℓ through o separates a and b.
- Sort the points of S above (resp., below) ℓ counterclockwise around o.

The nearby case

- By enumerating the $O(1)$ points, we may assume that the point o is known and the horizontal line ℓ through o separates a and b.
- Sort the points of S above (resp., below) ℓ counterclockwise around o.

- Let $L_{i, j}=\left\{p_{i+1}, \ldots, p_{n^{\prime}}, q_{1}, \ldots, q_{j}\right\}$ for $i \in\left[n^{\prime}\right]$ and $j \in\left[n^{\prime \prime}\right]$.
- Let $R_{i, j}=\left\{q_{j+1}, \ldots, q_{n^{\prime \prime}}, p_{1}, \ldots, p_{i}\right\}$ for $i \in\left[n^{\prime}\right]$ and $j \in\left[n^{\prime \prime}\right]$.

The nearby case

Lemma

For some $i \in\left[n^{\prime}\right]$ and $j \in\left[n^{\prime \prime}\right], L_{i, j}$ is contained in one of D_{1}^{*} and D_{2}^{*} while $R_{i, j}$ is contained in the other.

The nearby case

Lemma

For some $i \in\left[n^{\prime}\right]$ and $j \in\left[n^{\prime \prime}\right], L_{i, j}$ is contained in one of D_{1}^{*} and D_{2}^{*} while $R_{i, j}$ is contained in the other.

- Why is this true?

The nearby case

Lemma

For some $i \in\left[n^{\prime}\right]$ and $j \in\left[n^{\prime \prime}\right], L_{i, j}$ is contained in one of D_{1}^{*} and D_{2}^{*} while $R_{i, j}$ is contained in the other.

- Why is this true?

- The points to the left (resp., right) of $\rho_{a} \& \rho_{b}$ are in D_{1}^{*} (resp., D_{2}^{*}).

The nearby case

- For $i \in\left[n^{\prime}\right]$ and $j \in\left[n^{\prime \prime}\right]$, consider the following problem: Finding a pair of congruent disks $\left(D_{1}, D_{2}\right)$ of smallest radus which bichromatically covers S such that $L_{i, j} \subseteq D_{1}$ and $R_{i, j} \subseteq D_{2}$.

The nearby case

- For $i \in\left[n^{\prime}\right]$ and $j \in\left[n^{\prime \prime}\right]$, consider the following problem: Finding a pair of congruent disks $\left(D_{1}, D_{2}\right)$ of smallest radus which bichromatically covers S such that $L_{i, j} \subseteq D_{1}$ and $R_{i, j} \subseteq D_{2}$.
- Let $r_{i, j}^{*}$ be the optimal radii for the above problem.

The nearby case

- For $i \in\left[n^{\prime}\right]$ and $j \in\left[n^{\prime \prime}\right]$, consider the following problem: Finding a pair of congruent disks $\left(D_{1}, D_{2}\right)$ of smallest radus which bichromatically covers S such that $L_{i, j} \subseteq D_{1}$ and $R_{i, j} \subseteq D_{2}$.
- Let $r_{i, j}^{*}$ be the optimal radii for the above problem.
- We have $r^{*} \leq r_{i, j}^{*}$ for all $i \in\left[n^{\prime}\right]$ and $j \in\left[n^{\prime \prime}\right]$.

The nearby case

- For $i \in\left[n^{\prime}\right]$ and $j \in\left[n^{\prime \prime}\right]$, consider the following problem:

Finding a pair of congruent disks $\left(D_{1}, D_{2}\right)$ of smallest radus which bichromatically covers S such that $L_{i, j} \subseteq D_{1}$ and $R_{i, j} \subseteq D_{2}$.

- Let $r_{i, j}^{*}$ be the optimal radii for the above problem.
- We have $r^{*} \leq r_{i, j}^{*}$ for all $i \in\left[n^{\prime}\right]$ and $j \in\left[n^{\prime \prime}\right]$.
- We have $r^{*}=r_{i, j}^{*}$ for some $i \in\left[n^{\prime}\right]$ and $j \in\left[n^{\prime \prime}\right]$.

The nearby case

- For $i \in\left[n^{\prime}\right]$ and $j \in\left[n^{\prime \prime}\right]$, consider the following problem:

Finding a pair of congruent disks $\left(D_{1}, D_{2}\right)$ of smallest radus which bichromatically covers S such that $L_{i, j} \subseteq D_{1}$ and $R_{i, j} \subseteq D_{2}$.

- Let $r_{i, j}^{*}$ be the optimal radii for the above problem.
- We have $r^{*} \leq r_{i, j}^{*}$ for all $i \in\left[n^{\prime}\right]$ and $j \in\left[n^{\prime \prime}\right]$.
- We have $r^{*}=r_{i, j}^{*}$ for some $i \in\left[n^{\prime}\right]$ and $j \in\left[n^{\prime \prime}\right]$.
- Therefore, $r^{*}=\min _{i, j} r_{i, j}^{*}$.

The nearby case

Lemma

Given $i \in\left[n^{\prime}\right]$ and $j \in\left[n^{\prime \prime}\right], r_{i, j}^{*}$ can be computed in $O\left(n \log ^{2} n\right)$ time.

- Proof idea: parametric search + decision

The nearby case

Lemma

Given $i \in\left[n^{\prime}\right]$ and $j \in\left[n^{\prime \prime}\right], r_{i, j}^{*}$ can be computed in $O\left(n \log ^{2} n\right)$ time.

- Proof idea: parametric search + decision

$r_{1,1}^{*}$	$r_{1,2}^{*}$	\cdots	$r_{1, n^{\prime \prime}}^{*}$
$r_{2,1}^{*}$	$r_{2,2}^{*}$	\cdots	$r_{2, n^{\prime \prime}}^{*}$
\vdots	\vdots	\ddots	\vdots
$r_{n^{\prime}, 1}^{*}$	$r_{n^{\prime}, 2}^{*}$	\cdots	$r_{n^{\prime}, n^{\prime \prime}}^{*}$

- Each entry of M can be computed in $O\left(n \log ^{2} n\right)$ time.
- Want the smallest entry of the matrix M.

The nearby case

- A naïve way to compute r^{*}

Evaluating all $\Theta\left(n^{2}\right)$ entries of the matrix $M: \Theta\left(n^{3} \log ^{2} n\right)$ time.

The nearby case

- A naïve way to compute r^{*} Evaluating all $\Theta\left(n^{2}\right)$ entries of the matrix $M: \Theta\left(n^{3} \log ^{2} n\right)$ time.
- A better way: $O\left(n^{2} \log ^{2} n\right)$ time

Apply matrix search technique: only evaluating $O(n)$ entries of M, we can obtain r^{*}.
Main idea: After considering a subproblem on an entry, either its upperright or lowerleft submatrix can be pruned.

Putting everything together

- $r_{1}^{*}=$ the " r "" returned by the distant-case algorithm.
- $r_{2}^{*}=$ the " r "" returned by the nearby-case algorithm.

Putting everything together

- $r_{1}^{*}=$ the " r "" returned by the distant-case algorithm.
- $r_{2}^{*}=$ the " r "" returned by the nearby-case algorithm.
- $r^{*}=\min \left\{r_{1}^{*}, r_{2}^{*}\right\}$.

Putting everything together

- $r_{1}^{*}=$ the " r "" returned by the distant-case algorithm.
- $r_{2}^{*}=$ the " r "" returned by the nearby-case algorithm.
- $r^{*}=\min \left\{r_{1}^{*}, r_{2}^{*}\right\}$.

Theorem

There is an exact algorithm for the plane bichromatic 2-center problem using $O\left(n^{2} \log ^{2} n\right)$ time, where n is the input size.

Future work

Future work

- Further improve the algorithms?

Future work

- Further improve the algorithms?
- Higher dimensions or more general settings?

Related work

- L_{∞} case: $O(n)$ time [Arkin et al., 2015]

Related work

- L_{∞} case: $O(n)$ time [Arkin et al., 2015]
- Min-Sum: minimizing the sum of the radii of the red and blue disks
- Euclidean case: $O\left(n^{4} \log ^{2} n\right)$ time [Arkin et al., 2015]
- L_{∞} case: $O\left(n \log ^{2} n\right)$ deterministic time or $O(n \log n)$ expected time [Arkin et al., 2015]

Thank you! Q \& A

