Improved Algorithms for the Bichromatic Two-Center Problem for Pairs of Points

Haitao Wang¹ Jie Xue²

¹Utah State University

²University of Minnesota, Twin Cities

WADS 2019

• 2-center problem in the plane

Given a set S of n points in the plane, find two disks D_1^* and D_2^* such that $S \subseteq D_1^* \cup D_2^*$ and $\max\{\operatorname{rad}(D_1^*), \operatorname{rad}(D_2^*)\}$ is minimized.

• 2-center problem in the plane

Given a set S of n points in the plane, find two disks D_1^* and D_2^* such that $S \subseteq D_1^* \cup D_2^*$ and $\max\{\operatorname{rad}(D_1^*), \operatorname{rad}(D_2^*)\}$ is minimized.

• 2-center problem in the plane

Given a set S of n points in the plane, find two disks D_1^* and D_2^* such that $S \subseteq D_1^* \cup D_2^*$ and $\max\{\operatorname{rad}(D_1^*), \operatorname{rad}(D_2^*)\}$ is minimized.

Background

• 2-center problem in the plane

Given a set S of n points in the plane, find two disks D_1^* and D_2^* such that $S \subseteq D_1^* \cup D_2^*$ and $\max\{\operatorname{rad}(D_1^*), \operatorname{rad}(D_2^*)\}$ is minimized.

An equivalent definition

Color each point in S as red or blue such that $\max\{\operatorname{rad}(D_1^*), \operatorname{rad}(D_2^*)\}$ is minimized where D_1^* (resp., D_2^*) is the smallest enclosing disk of all red (resp., blue) points.

• Bichromatic 2-center problem in the plane

Given a set S of n pairs of points in the plane, for every pair, color one point as red and the other as blue such that $\max\{\operatorname{rad}(D_1^*), \operatorname{rad}(D_2^*)\}$ is minimized where D_1^* (resp., D_2^*) is the smallest enclosing disk of all red (resp., blue) points.

Previous work and our result

Previous results for planar 2-center

- $O(n^2 \log^3 n)$ time [Agarwal and Sharir, 1994]
- $O(n^2)$ time [Jaromczyk and Kowaluk, 1994]
- *O*(*n* log⁹ *n*) time [Sharir, 1997]
- $O(n \log^2 n)$ expected time [Eppstein, 1997]
- $O(n \log^2 n \log^2 \log n)$ time [Chan, 1999]

Previous work and our result

• Previous results for planar 2-center

- $O(n^2 \log^3 n)$ time [Agarwal and Sharir, 1994]
- $O(n^2)$ time [Jaromczyk and Kowaluk, 1994]
- *O*(*n* log⁹ *n*) time [Sharir, 1997]
- $O(n \log^2 n)$ expected time [Eppstein, 1997]
- $O(n \log^2 n \log^2 \log n)$ time [Chan, 1999]

• Previous results for planar bichromatic 2-center

- $O(n^3 \log^2 n)$ time [Arkin et al., 2015]
- $(1 + \epsilon)$ -approximation algorithms [Arkin et al., 2015]
 - $O((n/\varepsilon^2) \log n \log(1/\varepsilon))$ time [Arkin et al., 2015]
 - $O(n + (1/\varepsilon)^6 \log^2(1/\varepsilon))$ time [Arkin et al., 2015]

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Previous work and our result

• Previous results for planar 2-center

- $O(n^2 \log^3 n)$ time [Agarwal and Sharir, 1994]
- $O(n^2)$ time [Jaromczyk and Kowaluk, 1994]
- *O*(*n* log⁹ *n*) time [Sharir, 1997]
- $O(n \log^2 n)$ expected time [Eppstein, 1997]
- $O(n \log^2 n \log^2 \log n)$ time [Chan, 1999]

• Previous results for planar bichromatic 2-center

- $O(n^3 \log^2 n)$ time [Arkin et al., 2015]
- $(1 + \epsilon)$ -approximation algorithms [Arkin et al., 2015]
 - $O((n/\varepsilon^2) \log n \log(1/\varepsilon))$ time [Arkin et al., 2015]
 - $O(n + (1/\varepsilon)^6 \log^2(1/\varepsilon))$ time [Arkin et al., 2015]

• Our results for planar bichromatic 2-center

- $O(n^2 \log^2 n)$ time exact algorithm
- $O(n + (1/\varepsilon)^3 \log^2(1/\varepsilon))$ time $(1 + \epsilon)$ -approximation

- 4 回 ト 4 回 ト 4 回 ト

- Let D_1^* and D_2^* be the two disks of an optimal solution.
- Without loss of generality, we may assume that
 - D_1^* and D_2^* are congruent (let r^* denote their radius).
 - The distance δ between the centers of D_1^* and D_2^* is minimized.

- Let D_1^* and D_2^* be the two disks of an optimal solution.
- Without loss of generality, we may assume that
 - D_1^* and D_2^* are congruent (let r^* denote their radius).
 - The distance δ between the centers of D_1^* and D_2^* is minimized.

- Let D_1^* and D_2^* be the two disks of an optimal solution.
- Without loss of generality, we may assume that
 - D_1^* and D_2^* are congruent (let r^* denote their radius).
 - The distance δ between the centers of D_1^* and D_2^* is minimized.

• High-level idea

Distinguish two cases:

- The distant case: $\delta \geq r^*$
- The nearby case: $\delta < r^*$

(Similar to the idea of [Sharir, 1997; Eppstein, 1997; Chan, 1999] for the planar 2-center problem)

A definition

Definition

We say a pair (D_1, D_2) of disks bichromatically covers S if it is possible to color a point as red and the other as blue for every pair of S such that D_1 (resp., D_2) covers all red (resp., blue) points.

A definition

Definition

We say a pair (D_1, D_2) of disks bichromatically covers S if it is possible to color a point as red and the other as blue for every pair of S such that D_1 (resp., D_2) covers all red (resp., blue) points.

 D_1 and D_2 are always congruent in our discussion

- Basic strategy: parametric search + decision
- The decision problem

Given a value r, decide whether $r \ge r^*$, i.e., whether there exists a congruent pair of disks with radius r that bichromatically covers S.

Observation (Eppstein, 1997)

One can determine in O(n) time a set of O(1) lines in which one line ℓ satisfies the following property.

- The subset P₁ of all input points of S on the left side of ℓ are contained in one disk D₁^{*} of the optimal solution,
- At least one point of P₁ is on the boundary of D₁^{*}
- D_1^* is the circurmcircle of two or three points of S.

• By enumerating the O(1) lines, we may assume that ℓ is known.

- By enumerating the O(1) lines, we may assume that ℓ is known.
- Let P_1 be the points on the left side of ℓ .

By enumerating the O(1) lines, we may assume that ℓ is known.
Let P₁ be the points on the left side of ℓ.

Lemma

 $r \ge r^*$ iff there exists a pair (D_1, D_2) of congruent disks of radius r bichromatically covering S with the following property.

- All points in P₁ are contained in D₁
- At least one point of P₁ is on the boundary of D₁.

B_r(a): the disk centered at a point a of radius r.
I = ∩_{a∈P1} B_r(a)

B_r(a): the disk centered at a point a of radius r.
I = ∩_{a∈P1} B_r(a)

Lemma

 D_1 satisfies the desired condition iff its center is on the boundary $\partial \mathcal{I}$ of \mathcal{I} .

B_r(a): the disk centered at a point a of radius r.
I = ∩_{a∈P1} B_r(a)

Lemma

 D_1 satisfies the desired condition iff its center is on the boundary $\partial \mathcal{I}$ of \mathcal{I} .

- We say a point c is feasible if there exists (D_1, D_2) bichromatically covering S such that $D_1 = \mathcal{B}_r(c)$.
- It suffices to test the existence of a feasible point on $\partial \mathcal{I}$.

Find a feasible point on $\partial \mathcal{I}$:

- For each point $c \in S \setminus P_1$, compute the (at most two) intersections $\partial \mathcal{I} \cap \partial \mathcal{B}_r(c)$.
- Q: the set of all such intersection points

•
$$|Q| = O(n)$$

Find a feasible point on $\partial \mathcal{I}$:

- For each point $c \in S \setminus P_1$, compute the (at most two) intersections $\partial \mathcal{I} \cap \partial \mathcal{B}_r(c)$.
- Q: the set of all such intersection points

•
$$|Q| = O(n)$$

- A feasible point exists on $\partial \mathcal{I}$ iff a feasible point exists in Q.
- For each point c ∈ Q, test whether it is a feasible point, i.e., whether there exists (D₁, D₂) bichromatically covering S such that D₁ = B_r(c).

For each point $c \in Q$, test whether it is a feasible point:

• Check whether $\mathcal{B}_r(c)$ covers at least one point from each pair of S.

For each point $c \in Q$, test whether it is a feasible point:

- Check whether $\mathcal{B}_r(c)$ covers at least one point from each pair of S.
- Check whether there exists a disk of radius r covering all points of P(c) and at least one point from each pair of S(c)
 - P(c): points of S outside $\mathcal{B}_r(c)$
 - S(c): pairs of S whose both points are in $\mathcal{B}_r(c)$

For each point $c \in Q$, test whether it is a feasible point:

- Check whether $\mathcal{B}_r(c)$ covers at least one point from each pair of S.
- Check whether there exists a disk of radius r covering all points of P(c) and at least one point from each pair of S(c)
 - P(c): points of S outside $\mathcal{B}_r(c)$
 - S(c): pairs of S whose both points are in $\mathcal{B}_r(c)$

For each point $c \in Q$, test whether it is a feasible point:

- Check whether $\mathcal{B}_r(c)$ covers at least one point from each pair of S.
- Check whether there exists a disk of radius r covering all points of P(c) and at least one point from each pair of S(c)
 - P(c): points of S outside $\mathcal{B}_r(c)$
 - S(c): pairs of S whose both points are in $\mathcal{B}_r(c)$

• Decision algorithm: $O(n^2 \log n)$ time

- Decision algorithm: $O(n^2 \log n)$ time
- Using Cole's parametric search, the optimization problem of the distant case can be solved in $O(n^2 \log^2 n)$ time.
 - Very similar to [Eppstein, 1997] for the planar 2-center problem.

The nearby case: $\delta < r^*$

• Consider the intersection $D_1^* \cap D_2^*$, which has two vertices *a* and *b*.

Observation (Eppstein, 1997)

In O(n) time, one can find O(1) points in which one point o is in $D_1^* \cap D_2^*$ and either the vertical or the horizontal line through o separates a and b.

The nearby case

 By enumerating the O(1) points, we may assume that the point o is known and the horizontal line ℓ through o separates a and b.

The nearby case

- By enumerating the O(1) points, we may assume that the point o is known and the horizontal line ℓ through o separates a and b.
- Sort the points of S above (resp., below) ℓ counterclockwise around o.

The nearby case

- By enumerating the O(1) points, we may assume that the point o is known and the horizontal line ℓ through o separates a and b.
- Sort the points of S above (resp., below) ℓ counterclockwise around o.

• Let $L_{i,j} = \{p_{i+1}, \dots, p_{n'}, q_1, \dots, q_j\}$ for $i \in [n']$ and $j \in [n'']$. • Let $R_{i,j} = \{q_{j+1}, \dots, q_{n''}, p_1, \dots, p_i\}$ for $i \in [n']$ and $j \in [n'']$.

Lemma

For some $i \in [n']$ and $j \in [n'']$, $L_{i,j}$ is contained in one of D_1^* and D_2^* while $R_{i,i}$ is contained in the other.

- < ≣ ≻ <

Image: Image:

Lemma

For some $i \in [n']$ and $j \in [n'']$, $L_{i,j}$ is contained in one of D_1^* and D_2^* while $R_{i,j}$ is contained in the other.

• Why is this true?

→ ∃ →

Lemma

For some $i \in [n']$ and $j \in [n'']$, $L_{i,j}$ is contained in one of D_1^* and D_2^* while $R_{i,j}$ is contained in the other.

• Why is this true?

• The points to the left (resp., right) of $\rho_a \& \rho_b$ are in D_1^* (resp., D_2^*).

 For i ∈ [n'] and j ∈ [n''], consider the following problem: Finding a pair of congruent disks (D₁, D₂) of smallest radus which bichromatically covers S such that L_{i,j} ⊆ D₁ and R_{i,j} ⊆ D₂.

- For i ∈ [n'] and j ∈ [n''], consider the following problem: Finding a pair of congruent disks (D₁, D₂) of smallest radus which bichromatically covers S such that L_{i,j} ⊆ D₁ and R_{i,j} ⊆ D₂.
- Let $r_{i,i}^*$ be the optimal radii for the above problem.

- For i ∈ [n'] and j ∈ [n''], consider the following problem: Finding a pair of congruent disks (D₁, D₂) of smallest radus which bichromatically covers S such that L_{i,j} ⊆ D₁ and R_{i,j} ⊆ D₂.
- Let $r_{i,i}^*$ be the optimal radii for the above problem.
- We have $r^* \leq r^*_{i,j}$ for all $i \in [n']$ and $j \in [n'']$.

- For i ∈ [n'] and j ∈ [n''], consider the following problem: Finding a pair of congruent disks (D₁, D₂) of smallest radus which bichromatically covers S such that L_{i,j} ⊆ D₁ and R_{i,j} ⊆ D₂.
- Let $r_{i,i}^*$ be the optimal radii for the above problem.
- We have $r^* \leq r^*_{i,i}$ for all $i \in [n']$ and $j \in [n'']$.
- We have $r^* = r^*_{i,i}$ for some $i \in [n']$ and $j \in [n'']$.

- For i ∈ [n'] and j ∈ [n''], consider the following problem: Finding a pair of congruent disks (D₁, D₂) of smallest radus which bichromatically covers S such that L_{i,j} ⊆ D₁ and R_{i,j} ⊆ D₂.
- Let $r_{i,i}^*$ be the optimal radii for the above problem.
- We have $r^* \leq r^*_{i,j}$ for all $i \in [n']$ and $j \in [n'']$.
- We have $r^* = r^*_{i,i}$ for some $i \in [n']$ and $j \in [n'']$.
- Therefore, $r^* = \min_{i,j} r^*_{i,j}$.

- **(1))) (1))))))**

Lemma

Given $i \in [n']$ and $j \in [n'']$, $r_{i,j}^*$ can be computed in $O(n \log^2 n)$ time.

• Proof idea: parametric search + decision

Lemma

Given $i \in [n']$ and $j \in [n'']$, $r_{i,j}^*$ can be computed in $O(n \log^2 n)$ time.

• **Proof idea:** parametric search + decision

- Each entry of *M* can be computed in $O(n \log^2 n)$ time.
- Want the smallest entry of the matrix *M*.

• A naïve way to compute r^* Evaluating all $\Theta(n^2)$ entries of the matrix $M: \Theta(n^3 \log^2 n)$ time.

Haitao Wang and Jie Xue

The nearby case

- A naïve way to compute r^* Evaluating all $\Theta(n^2)$ entries of the matrix $M: \Theta(n^3 \log^2 n)$ time.
- A better way: $O(n^2 \log^2 n)$ time

Apply matrix search technique: only evaluating O(n) entries of M, we can obtain r^* .

Main idea: After considering a subproblem on an entry, either its upperright or lowerleft submatrix can be pruned.

- r_1^* = the " r^* " returned by the distant-case algorithm.
- r_2^* = the " r^* " returned by the nearby-case algorithm.

- r_1^* = the " r^* " returned by the distant-case algorithm.
- r_2^* = the " r^* " returned by the nearby-case algorithm.
- $r^* = \min\{r_1^*, r_2^*\}.$

- r_1^* = the " r^* " returned by the distant-case algorithm.
- r_2^* = the " r^* " returned by the nearby-case algorithm.
- $r^* = \min\{r_1^*, r_2^*\}.$

Theorem

There is an exact algorithm for the plane bichromatic 2-center problem using $O(n^2 \log^2 n)$ time, where n is the input size.

Future work

Haitao Wang and Jie Xue

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

• Further improve the algorithms?

- Further improve the algorithms?
- Higher dimensions or more general settings?

• L_{∞} case: O(n) time [Arkin et al., 2015]

- L_{∞} case: O(n) time [Arkin et al., 2015]
- Min-Sum: minimizing the sum of the radii of the red and blue disks
 - Euclidean case: $O(n^4 \log^2 n)$ time [Arkin et al., 2015]
 - L_{∞} case: $O(n \log^2 n)$ deterministic time or $O(n \log n)$ expected time [Arkin et al., 2015]

Thank you! Q & A

・ロト ・日下・ ・日下