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Background

@ Geometric intersection graphs
The intersection graph of a set of geometric objects
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o Unit-disk graphs (UDGs)
The intersection graph of unit-disks or disks of




Background

e Single-source shortest path (SSSP) problem
Given a positively weighted graph G = (V, E, w) and a source s € V,
compute the shortest paths from s to all the other vertices of G.
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Background

e Single-source shortest path (SSSP) problem
Given a positively weighted graph G = (V, E, w) and a source s € V,
compute the shortest paths from s to all the other vertices of G.

@ SSSP on UDGs?

e Two ways to weight a UDG
1. Edges are weighted identically (Unweighted UDGs)
2. Edges are weighted using Euclidean distances between the disk
centers (Weighted UDGs)
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Classical SSSP algorithms
Dijkstra's algorithm

e Johnson's algorithm

e Bellman-Ford algorithm

o

These algorithms requires Q(|E|) time for solving SSSP.

It is a lower bound for general graphs, due to the Q(|E|) input size.

The input size for an n-vertex UDG is only O(n).

However, |E| = Q(n?) in an n-vertex UDG in worst case.

e Maybe we can break the Q(|E|) lower bound for UDGs?
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@ SSSP on unweighted UDGs
e O(nlogn) time and O(n) space
by [Cabello and Jejgi¢ 2015]

e O(n) time and O(n) space after presorting
by [Chan and Skrepetos 2016]
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@ SSSP on unweighted UDGs
e O(nlogn) time and O(n) space
by [Cabello and Jejéi¢ 2015]
e O(n) time and O(n) space after presorting
by [Chan and Skrepetos 2016]

@ SSSP on weighted UDGs
o O(n**?) time and O(n'*9) space for any § > 0
by [Cabello and Jejéi¢ 2015]
o O(nlog**™°™ ) expected time and O(nlog® n) space (randomized)
by [Kaplan et al. 2017]
o O(nlogn/s?) time and O(n/=?) space for (1 + £)-approximation
by [Chan and Skrepetos 2016]
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Our results

@ The subject of this work: SSSP on weighted UDGs

Theorem (Exact algorithm)

There is an SSSP algorithm on weighted UDGs using O(nlog? n) time and
O(n) space, where n is the input size.

Theorem (Approximation algorithm)

There is a (1 + ¢)-approximate SSSP algorithm on weighted UDGs using
O(nlog n + nlog?(1/)) time and O(n) space, where n is the input size.
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Our results

@ Our results are achieved by relating SSSP on weighted UDGs to the
offline insertion-only weighted nearest-neighbor (OIWNN) problem.

e The OIWNN problem in R?
[Input] a sequence of n operations each of which is one of
Insert(s) - insert a new weighted site s € R?

Query(q) - query the WNN of g € R? among the current sites
[Goal] answer all queries

@ We reduce SSSP on weighted UDGs to the OIWNN problem in R?.
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@ This is the bottleneck of our algorithm.

Theorem (Approximation)

If the OIWNN problem with n operations in which at most k operations
are insertions can be solved in f(n, k) time, then (1 + ¢)-approximate
SSSP on weighted UDGs can be solved in O(nlogn+ f(n,1/¢)) time.

@ We show that f(n, k) = O(nlog? k) (D&C + WVD).
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The exact SSSP algorithm

@ For convenience, assume UDG is defined by disks of radii %

@ Given n disks of radii % let S be the set of the disk centers.

@ Two points a, b € S are connected by an edge iff |[a — b|| < 1.
(The edge is weighted by ||a — b|.)

@ Let s € S be a given source.

@ Our goal is to compute a table dist[-], where dist[a] stores the length
of the shortest path from s to a, for all a € S.
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The exact SSSP algorithm

Dijkstra’s algorithm
[Input] G = (V,E,w) and s € V
Q dist[s] < 0, dist[a] oo for all a € V\{s}, A« V
@ Pick c € A with the smallest dist|[c]
@ For all neighbors b € A of ¢, dist[b] <— min{dist[b], dist[c] + w(b, c)}
Q A+ A\{c}, gotoStep 2if A#(

@ The previous works [Cabello and Jej¢i¢ 2015] and [Kaplan et al. 2017]
use Dijkstra's algorithm + dynamic bichromatic closest pair

@ The framework of our SSSP algorithm is different from Dijkstra’s,
but it exploits the basic intuition of Dijkstra's.
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The exact SSSP algorithm

Define an operation UPDATE as follows.

UpPDATE(U, V) for U,V C S
Q dist'[u] + dist[u] for all u € U
@ For each v € V, find the neighbor u, € U of v that minimizes
dist'[u,] + ||uy — V||
@ dist[v] « min{dist[v],dist'[u,] + ||u, — v|} for all v € V

Roughly speaking, UPDATE(U, V) uses the shortest-path information
of U to update the shortest-path information of V.

@ The table dist’ is used for lazy update in case U NV # ).
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The exact SSSP algorithm

o First step: build a grid I" of width % on the plane
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The exact SSSP algorithm

o First step: build a grid I" of width % on the plane

@ [, = the cell of I" containing a
H, = the 5 x 5 patch centered at [,

@ All points in S N[, are neighbors of a.
@ All neighbors of a are in S NH,.
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The exact SSSP algorithm

@ Our SSSP algorithm
Q dist[s] «+ 0, dist[a] « oo for all a € V\{s}, A« V
@ Pick ¢ € A with the smallest dist[c]
© UprpATE(ANHE,ANO,)
© UppATE(AND,ANH,)
Q@ A+ A\, gotoStep2if A%

@ Convert our algorithm to Dijkstra's algorithm?
Remove Step 3 and replace O with {c}

o If we forget Step 3, the main difference between Dijkstra’s and ours is
- Dijkstra’s considers the single point ¢ in each iteration.
- Ours considers all points in [ in each iteration.
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The exact SSSP algorithm

@ Why do we need Step 37

In Dijkstra’s algorithm, when c is chosen, dist[c]| is correct.

@ So after using ¢ to update its neighbors, removing ¢ from A is safe.

In our algorithm, when c is chosen, we cannot guarantee that dist|[a]
is correct for all a €¢ AN ..

But we need the correctness to do Step 4 and Step 5 safely.

Step 3 is used to make dist[a] correct for all a € AN ..

After Step 3 of our algorithm, dist[a] equals to the length of the shortest
path from s to a for all a € AN [l..
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The exact SSSP algorithm

@ How to efficiently implement our algorithm?

Haitao Wang and Jie Xue 16 / 20



The exact SSSP algorithm

@ How to efficiently implement our algorithm?

@ The critical steps: Step 3 and Step 4

Haitao Wang and Jie Xue 16 / 20



The exact SSSP algorithm

@ How to efficiently implement our algorithm?

@ The critical steps: Step 3 and Step 4

e Step 3. UpPDATE(ANHE,ANDO,)

@ dist'[u] + dist[u] for all v € ANH,

@ For each v e ANnOy, find its neighbor u, € ANH, that minimizes
dist'[u,] + ||uy — V||
@ dist[v] «+ min{dist[v], dist'[u,] + ||u, — v||} for all v € AN,

Haitao Wang and Jie Xue 16 / 20



The exact SSSP algorithm

@ How to efficiently implement our algorithm?

@ The critical steps: Step 3 and Step 4

e Step 3. UpPDATE(ANHE,ANDO,)
@ dist'[u] + dist[u] for all v € ANH,

@ For each v e ANnOy, find its neighbor u, € ANH, that minimizes
dist'[u,] + ||uy — V||
@ dist[v] «+ min{dist[v], dist'[u,] + ||u, — v||} for all v € AN,

@ What if we remove the constraint that v, is a neighbor of v?

Haitao Wang and Jie Xue 16 / 20



The exact SSSP algorithm

@ How to efficiently implement our algorithm?

@ The critical steps: Step 3 and Step 4

e Step 3. UpPDATE(ANHE,ANDO,)

@ dist'[u] + dist[u] for all v € ANH,
@ For each v e ANnOy, find its neighbor u, € ANH, that minimizes
dist'[u,] + ||uy — V||
@ dist[v] «+ min{dist[v], dist'[u,] + ||u, — v||} for all v € AN,
@ What if we remove the constraint that u, is a neighbor of v?
Then u, is exactly the weighted nearest neighbor of v in AN H,

(each u € ANH, is assigned the weight dist'[u]).
In this case, the problem can be solved by building a WVD on ANH,..
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The exact SSSP algorithm

Even if we remove the neighborhood constraint, the point u, we find is
still a neighbor of v.
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The exact SSSP algorithm

Even if we remove the neighborhood constraint, the point u, we find is
still a neighbor of v.

e dist'[u] > dist'[c]
o lu—v[>12]c—v|
o = dist'[u] + ||u— v|| > dist'[c] + |[c — v|| = u # u,
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The exact SSSP algorithm

o Step 3 can be done in O(mlog m) time where m = |A N H,|.

@ How to implement Step 47

@ Basic idea: reducing to the OIWNN problem
Step 4 can be done in O(mlog m+ f(m)) time where m = |A N H|
and f(m) is the time for solving an m-operation OIWNN instance.

@ By showing f(m) = O(mlog® m), we conclude the following.

There is an SSSP algorithm on weighted UDGs using O(nlog? n) time and
O(n) space, where n is the input size.
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Open questions

@ Improve the running time to O(nlog n)?
o APSP in weighted UDGs in o(nlog? n) time?

@ Can our approach be used to solve other problems in UDGs?
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