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Background

Geometric intersection graphs
The intersection graph of a set of geometric objects
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Background

Unit-disk graphs (UDGs)
The intersection graph of unit-disks or disks of identical radii
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Background

Single-source shortest path (SSSP) problem
Given a positively weighted graph G = (V ,E ,w) and a source s ∈ V ,
compute the shortest paths from s to all the other vertices of G .

SSSP on UDGs?

Two ways to weight a UDG
1. Edges are weighted identically (Unweighted UDGs)
2. Edges are weighted using Euclidean distances between the disk
centers (Weighted UDGs)
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Background

Classical SSSP algorithms
Dijkstra’s algorithm
Johnson’s algorithm
Bellman-Ford algorithm
...

These algorithms requires Ω(|E |) time for solving SSSP.

It is a lower bound for general graphs, due to the Ω(|E |) input size.

The input size for an n-vertex UDG is only O(n).

However, |E | = Ω(n2) in an n-vertex UDG in worst case.

Maybe we can break the Ω(|E |) lower bound for UDGs?
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Background

SSSP on unweighted UDGs
O(n log n) time and O(n) space
by [Cabello and Jejčič 2015]
O(n) time and O(n) space after presorting
by [Chan and Skrepetos 2016]

SSSP on weighted UDGs
O(n1+δ) time and O(n1+δ) space for any δ > 0
by [Cabello and Jejčič 2015]

O(n log12+o(1) n) expected time and O(n log3 n) space (randomized)
by [Kaplan et al. 2017]
O(n log n/ε2) time and O(n/ε2) space for (1 + ε)-approximation
by [Chan and Skrepetos 2016]
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Our results

The subject of this work: SSSP on weighted UDGs

Theorem (Exact algorithm)

There is an SSSP algorithm on weighted UDGs using O(n log2 n) time and
O(n) space, where n is the input size.

Theorem (Approximation algorithm)

There is a (1 + ε)-approximate SSSP algorithm on weighted UDGs using
O(n log n + n log2(1/ε)) time and O(n) space, where n is the input size.
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Our results

Our results are achieved by relating SSSP on weighted UDGs to the
offline insertion-only weighted nearest-neighbor (OIWNN) problem.

The OIWNN problem in R2

[Input] a sequence of n operations each of which is one of
Insert(s) - insert a new weighted site s ∈ R2

Query(q) - query the WNN of q ∈ R2 among the current sites
[Goal] answer all queries

We reduce SSSP on weighted UDGs to the OIWNN problem in R2.
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Our results

Theorem (Exact)

If the OIWNN problem with n operations can be solved in f (n) time, then
SSSP on weighted UDGs can be solved in O(n log n + f (n)) time.

We show that f (n) = O(n log2 n) (D&C + WVD).

This is the bottleneck of our algorithm.

Theorem (Approximation)

If the OIWNN problem with n operations in which at most k operations
are insertions can be solved in f (n, k) time, then (1 + ε)-approximate
SSSP on weighted UDGs can be solved in O(n log n + f (n, 1/ε)) time.

We show that f (n, k) = O(n log2 k) (D&C + WVD).
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The exact SSSP algorithm

For convenience, assume UDG is defined by disks of radii 1
2 .

Given n disks of radii 1
2 , let S be the set of the disk centers.

Two points a, b ∈ S are connected by an edge iff ‖a− b‖ ≤ 1.
(The edge is weighted by ‖a− b‖.)

Let s ∈ S be a given source.

Our goal is to compute a table dist[·], where dist[a] stores the length
of the shortest path from s to a, for all a ∈ S .

Haitao Wang and Jie Xue 10 / 20



The exact SSSP algorithm

For convenience, assume UDG is defined by disks of radii 1
2 .

Given n disks of radii 1
2 , let S be the set of the disk centers.

Two points a, b ∈ S are connected by an edge iff ‖a− b‖ ≤ 1.
(The edge is weighted by ‖a− b‖.)

Let s ∈ S be a given source.

Our goal is to compute a table dist[·], where dist[a] stores the length
of the shortest path from s to a, for all a ∈ S .

Haitao Wang and Jie Xue 10 / 20



The exact SSSP algorithm

For convenience, assume UDG is defined by disks of radii 1
2 .

Given n disks of radii 1
2 , let S be the set of the disk centers.

Two points a, b ∈ S are connected by an edge iff ‖a− b‖ ≤ 1.
(The edge is weighted by ‖a− b‖.)

Let s ∈ S be a given source.

Our goal is to compute a table dist[·], where dist[a] stores the length
of the shortest path from s to a, for all a ∈ S .

Haitao Wang and Jie Xue 10 / 20



The exact SSSP algorithm

For convenience, assume UDG is defined by disks of radii 1
2 .

Given n disks of radii 1
2 , let S be the set of the disk centers.

Two points a, b ∈ S are connected by an edge iff ‖a− b‖ ≤ 1.
(The edge is weighted by ‖a− b‖.)

Let s ∈ S be a given source.

Our goal is to compute a table dist[·], where dist[a] stores the length
of the shortest path from s to a, for all a ∈ S .

Haitao Wang and Jie Xue 10 / 20



The exact SSSP algorithm

Dijkstra’s algorithm

[Input] G = (V ,E ,w) and s ∈ V

1 dist[s]← 0, dist[a]←∞ for all a ∈ V \{s}, A← V

2 Pick c ∈ A with the smallest dist[c]

3 For all neighbors b ∈ A of c , dist[b]← min{dist[b], dist[c] + w(b, c)}
4 A← A\{c}, go to Step 2 if A 6= ∅

The previous works [Cabello and Jejčič 2015] and [Kaplan et al. 2017]
use Dijkstra’s algorithm + dynamic bichromatic closest pair

The framework of our SSSP algorithm is different from Dijkstra’s,
but it exploits the basic intuition of Dijkstra’s.
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The exact SSSP algorithm

Define an operation Update as follows.

Update(U,V ) for U,V ⊆ S

1 dist′[u]← dist[u] for all u ∈ U

2 For each v ∈ V , find the neighbor uv ∈ U of v that minimizes
dist′[uv ] + ‖uv − v‖

3 dist[v ]← min{dist[v ], dist′[uv ] + ‖uv − v‖} for all v ∈ V

Roughly speaking, Update(U,V ) uses the shortest-path information
of U to update the shortest-path information of V .

The table dist′ is used for lazy update in case U ∩ V 6= ∅.
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The exact SSSP algorithm

First step: build a grid Γ of width 1
2 on the plane

�a = the cell of Γ containing a
�a = the 5× 5 patch centered at �a

a

�a

a

�a

All points in S ∩�a are neighbors of a.

All neighbors of a are in S ∩�a.
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The exact SSSP algorithm

Our SSSP algorithm

1 dist[s]← 0, dist[a]←∞ for all a ∈ V \{s}, A← V

2 Pick c ∈ A with the smallest dist[c]

3 Update(A ∩�c ,A ∩�c)

4 Update(A ∩�c ,A ∩�c)

5 A← A\�c , go to Step 2 if A 6= ∅

Convert our algorithm to Dijkstra’s algorithm?
Remove Step 3 and replace �c with {c}

If we forget Step 3, the main difference between Dijkstra’s and ours is
- Dijkstra’s considers the single point c in each iteration.
- Ours considers all points in �c in each iteration.
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The exact SSSP algorithm

Why do we need Step 3?

In Dijkstra’s algorithm, when c is chosen, dist[c] is correct.

So after using c to update its neighbors, removing c from A is safe.

In our algorithm, when c is chosen, we cannot guarantee that dist[a]
is correct for all a ∈ A ∩�c .

But we need the correctness to do Step 4 and Step 5 safely.

Step 3 is used to make dist[a] correct for all a ∈ A ∩�c .

Lemma

After Step 3 of our algorithm, dist[a] equals to the length of the shortest
path from s to a for all a ∈ A ∩�c .
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The exact SSSP algorithm

How to efficiently implement our algorithm?

The critical steps: Step 3 and Step 4

Step 3. Update(A ∩�c ,A ∩�c)

1 dist′[u]← dist[u] for all u ∈ A ∩�c

2 For each v ∈ A ∩�c , find its neighbor uv ∈ A ∩�c that minimizes
dist′[uv ] + ‖uv − v‖

3 dist[v ]← min{dist[v ], dist′[uv ] + ‖uv − v‖} for all v ∈ A ∩�c

What if we remove the constraint that uv is a neighbor of v?
Then uv is exactly the weighted nearest neighbor of v in A ∩�c

(each u ∈ A ∩�c is assigned the weight dist′[u]).
In this case, the problem can be solved by building a WVD on A∩�c .
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The exact SSSP algorithm

Lemma

Even if we remove the neighborhood constraint, the point uv we find is
still a neighbor of v .

v
c

u

dist′[u] ≥ dist′[c]

‖u − v‖ > 1 ≥ ‖c − v‖
=⇒ dist′[u] + ‖u − v‖ > dist′[c] + ‖c − v‖ =⇒ u 6= uv
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The exact SSSP algorithm

Step 3 can be done in O(m logm) time where m = |A ∩�c |.

How to implement Step 4?

Basic idea: reducing to the OIWNN problem
Step 4 can be done in O(m logm + f (m)) time where m = |A ∩�c |
and f (m) is the time for solving an m-operation OIWNN instance.

By showing f (m) = O(m log2m), we conclude the following.

Theorem

There is an SSSP algorithm on weighted UDGs using O(n log2 n) time and
O(n) space, where n is the input size.
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Open questions

Improve the running time to O(n log n)?

APSP in weighted UDGs in o(n log2 n) time?

Can our approach be used to solve other problems in UDGs?
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Thank you!
Q & A
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