Near-optimal Algorithms for Shortest Paths in Weighted Unit-Disk Graphs

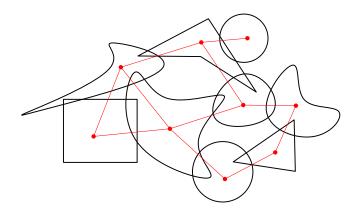
Haitao Wang¹ Jie Xue²

¹Utah State University

²University of Minnesota, Twin Cities

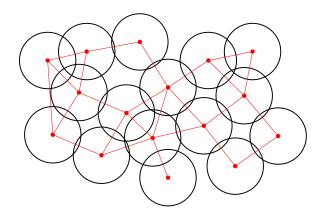
Geometric intersection graphs

The intersection graph of a set of geometric objects



Unit-disk graphs (UDGs)

The intersection graph of unit-disks or disks of identical radii



• Single-source shortest path (SSSP) problem Given a positively weighted graph G = (V, E, w) and a source $s \in V$, compute the shortest paths from s to all the other vertices of G.

- Single-source shortest path (SSSP) problem Given a positively weighted graph G = (V, E, w) and a source $s \in V$, compute the shortest paths from s to all the other vertices of G.
- SSSP on UDGs?

- Single-source shortest path (SSSP) problem Given a positively weighted graph G = (V, E, w) and a source $s \in V$, compute the shortest paths from s to all the other vertices of G.
- SSSP on UDGs?
- Two ways to weight a UDG
 - 1. Edges are weighted identically (Unweighted UDGs)
 - 2. Edges are weighted using Euclidean distances between the disk centers (Weighted UDGs)

- Dijkstra's algorithm
- Johnson's algorithm
- Bellman-Ford algorithm
- ...

- Dijkstra's algorithm
- Johnson's algorithm
- Bellman-Ford algorithm
- ...
- These algorithms requires $\Omega(|E|)$ time for solving SSSP.
- It is a lower bound for general graphs, due to the $\Omega(|E|)$ input size.

- Dijkstra's algorithm
- Johnson's algorithm
- Bellman-Ford algorithm
- ...
- These algorithms requires $\Omega(|E|)$ time for solving SSSP.
- It is a lower bound for general graphs, due to the $\Omega(|E|)$ input size.
- The input size for an *n*-vertex UDG is only O(n).
- However, $|E| = \Omega(n^2)$ in an *n*-vertex UDG in worst case.

- Dijkstra's algorithm
- Johnson's algorithm
- Bellman-Ford algorithm
- ...
- These algorithms requires $\Omega(|E|)$ time for solving SSSP.
- It is a lower bound for general graphs, due to the $\Omega(|E|)$ input size.
- The input size for an *n*-vertex UDG is only O(n).
- However, $|E| = \Omega(n^2)$ in an *n*-vertex UDG in worst case.
- Maybe we can break the $\Omega(|E|)$ lower bound for UDGs?

SSSP on unweighted UDGs

- $O(n \log n)$ time and O(n) space by [Cabello and Jejčič 2015]
- O(n) time and O(n) space after presorting by [Chan and Skrepetos 2016]

SSSP on unweighted UDGs

- $O(n \log n)$ time and O(n) space by [Cabello and Jejčič 2015]
- O(n) time and O(n) space after presorting by [Chan and Skrepetos 2016]

SSSP on weighted UDGs

- $O(n^{1+\delta})$ time and $O(n^{1+\delta})$ space for any $\delta > 0$ by [Cabello and Jejčič 2015]
- $O(n \log^{12+o(1)} n)$ expected time and $O(n \log^3 n)$ space (randomized) by [Kaplan et al. 2017]
- $O(n \log n/\varepsilon^2)$ time and $O(n/\varepsilon^2)$ space for $(1+\varepsilon)$ -approximation by [Chan and Skrepetos 2016]

• The subject of this work: SSSP on weighted UDGs

The subject of this work: SSSP on weighted UDGs

Theorem (Exact algorithm)

There is an SSSP algorithm on weighted UDGs using $O(n \log^2 n)$ time and O(n) space, where n is the input size.

The subject of this work: SSSP on weighted UDGs

Theorem (Exact algorithm)

There is an SSSP algorithm on weighted UDGs using $O(n \log^2 n)$ time and O(n) space, where n is the input size.

Theorem (Approximation algorithm)

There is a $(1 + \varepsilon)$ -approximate SSSP algorithm on weighted UDGs using $O(n \log n + n \log^2(1/\varepsilon))$ time and O(n) space, where n is the input size.

• Our results are achieved by relating SSSP on weighted UDGs to the offline insertion-only weighted nearest-neighbor (OIWNN) problem.

- Our results are achieved by relating SSSP on weighted UDGs to the offline insertion-only weighted nearest-neighbor (OIWNN) problem.
- The OIWNN problem in \mathbb{R}^2 [Input] a sequence of n operations each of which is one of Insert(s) insert a new weighted site $s \in \mathbb{R}^2$ Query(q) query the WNN of $q \in \mathbb{R}^2$ among the current sites

- Our results are achieved by relating SSSP on weighted UDGs to the offline insertion-only weighted nearest-neighbor (OIWNN) problem.
- The OIWNN problem in \mathbb{R}^2 [Input] a sequence of n operations each of which is one of Insert(s) insert a new weighted site $s \in \mathbb{R}^2$ Query(q) query the WNN of $q \in \mathbb{R}^2$ among the current sites [Goal] answer all queries

- Our results are achieved by relating SSSP on weighted UDGs to the offline insertion-only weighted nearest-neighbor (OIWNN) problem.
- The OIWNN problem in \mathbb{R}^2 [Input] a sequence of n operations each of which is one of Insert(s) insert a new weighted site $s \in \mathbb{R}^2$ Query(q) query the WNN of $q \in \mathbb{R}^2$ among the current sites [Goal] answer all queries
- \bullet We reduce SSSP on weighted UDGs to the OIWNN problem in $\mathbb{R}^2.$

Theorem (Exact)

If the OIWNN problem with n operations can be solved in f(n) time, then SSSP on weighted UDGs can be solved in $O(n \log n + f(n))$ time.

Theorem (Exact)

If the OIWNN problem with n operations can be solved in f(n) time, then SSSP on weighted UDGs can be solved in $O(n \log n + f(n))$ time.

- We show that $f(n) = O(n \log^2 n)$ (D&C + WVD).
- This is the bottleneck of our algorithm.

Theorem (Exact)

If the OIWNN problem with n operations can be solved in $\frac{f(n)}{f(n)}$ time, then SSSP on weighted UDGs can be solved in $\frac{O(n \log n + f(n))}{f(n)}$ time.

- We show that $f(n) = O(n \log^2 n)$ (D&C + WVD).
- This is the bottleneck of our algorithm.

Theorem (Approximation)

If the OIWNN problem with n operations in which at most k operations are insertions can be solved in f(n,k) time, then $(1+\varepsilon)$ -approximate SSSP on weighted UDGs can be solved in $O(n\log n + f(n,1/\varepsilon))$ time.

Theorem (Exact)

If the OIWNN problem with n operations can be solved in f(n) time, then SSSP on weighted UDGs can be solved in $O(n \log n + f(n))$ time.

- We show that $f(n) = O(n \log^2 n)$ (D&C + WVD).
- This is the bottleneck of our algorithm.

Theorem (Approximation)

If the OIWNN problem with n operations in which at most k operations are insertions can be solved in f(n,k) time, then $(1+\varepsilon)$ -approximate SSSP on weighted UDGs can be solved in $O(n\log n + f(n,1/\varepsilon))$ time.

• We show that $f(n, k) = O(n \log^2 k)$ (D&C + WVD).

• For convenience, assume UDG is defined by disks of radii $\frac{1}{2}$.

- For convenience, assume UDG is defined by disks of radii $\frac{1}{2}$.
- Given *n* disks of radii $\frac{1}{2}$, let *S* be the set of the disk centers.

- For convenience, assume UDG is defined by disks of radii $\frac{1}{2}$.
- Given *n* disks of radii $\frac{1}{2}$, let *S* be the set of the disk centers.
- Two points $a, b \in S$ are connected by an edge iff $||a b|| \le 1$. (The edge is weighted by ||a b||.)

- For convenience, assume UDG is defined by disks of radii $\frac{1}{2}$.
- Given *n* disks of radii $\frac{1}{2}$, let *S* be the set of the disk centers.
- Two points $a, b \in S$ are connected by an edge iff $||a b|| \le 1$. (The edge is weighted by ||a b||.)
- Let $s \in S$ be a given source.
- Our goal is to compute a table $dist[\cdot]$, where dist[a] stores the length of the shortest path from s to a, for all $a \in S$.

Dijkstra's algorithm

[Input] G = (V, E, w) and $s \in V$

Dijkstra's algorithm

[Input]
$$G = (V, E, w)$$
 and $s \in V$

- **1** dist[s] ← 0, dist[a] ← ∞ for all $a \in V \setminus \{s\}$, $A \leftarrow V$
- ② Pick $c \in A$ with the smallest dist[c]
- **3** For all neighbors $b \in A$ of c, $dist[b] \leftarrow min\{dist[b], dist[c] + w(b, c)\}$
- **4** $A \leftarrow A \setminus \{c\}$, go to **Step 2** if $A \neq \emptyset$

Dijkstra's algorithm

[Input] G = (V, E, w) and $s \in V$

- **1** dist[s] ← 0, dist[a] ← ∞ for all $a \in V \setminus \{s\}$, $A \leftarrow V$
- 2 Pick $c \in A$ with the smallest dist[c]
- **③** For all neighbors $b \in A$ of c, $dist[b] \leftarrow min\{dist[b], dist[c] + w(b, c)\}$
- **4** $A \leftarrow A \setminus \{c\}$, go to **Step 2** if $A \neq \emptyset$
- The previous works [Cabello and Jejčič 2015] and [Kaplan et al. 2017] use Dijkstra's algorithm + dynamic bichromatic closest pair

Dijkstra's algorithm

[Input] G = (V, E, w) and $s \in V$

- **1** dist[s] ← 0, dist[a] ← ∞ for all $a \in V \setminus \{s\}$, $A \leftarrow V$
- 2 Pick $c \in A$ with the smallest dist[c]
- **3** For all neighbors $b \in A$ of c, $\operatorname{dist}[b] \leftarrow \min\{\operatorname{dist}[b], \operatorname{dist}[c] + w(b, c)\}$
- **4** $A \leftarrow A \setminus \{c\}$, go to **Step 2** if $A \neq \emptyset$
 - The previous works [Cabello and Jejčič 2015] and [Kaplan et al. 2017] use Dijkstra's algorithm + dynamic bichromatic closest pair
 - The framework of our SSSP algorithm is different from Dijkstra's, but it exploits the basic intuition of Dijkstra's.

• Define an operation **UPDATE** as follows.

- Define an operation **UPDATE** as follows.
- UPDATE(U, V) for $U, V \subseteq S$

 - ② For each $v \in V$, find the neighbor $u_v \in U$ of v that minimizes $\operatorname{dist}'[u_v] + \|u_v v\|$
 - **3** dist[v] ← min{dist[v], dist'[u_v] + $||u_v v||$ } for all $v \in V$

- Define an operation **UPDATE** as follows.
- UPDATE(U, V) for $U, V \subseteq S$

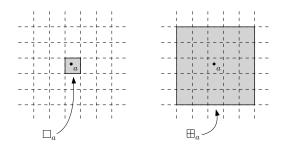
 - ② For each $v \in V$, find the neighbor $u_v \in U$ of v that minimizes $\operatorname{dist}'[u_v] + \|u_v v\|$
- Roughly speaking, UPDATE(U, V) uses the shortest-path information of U to update the shortest-path information of V.

- Define an operation **UPDATE** as follows.
- UPDATE(U, V) for $U, V \subseteq S$

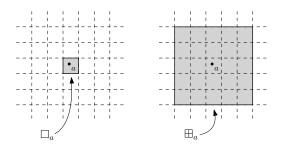
 - ② For each $v \in V$, find the neighbor $u_v \in U$ of v that minimizes $\operatorname{dist}'[u_v] + \|u_v v\|$
 - **3** dist[v] ← min{dist[v], dist'[u_v] + $||u_v v||$ } for all $v \in V$
- Roughly speaking, UPDATE(U, V) uses the shortest-path information of U to update the shortest-path information of V.
- The table dist' is used for lazy update in case $U \cap V \neq \emptyset$.

• First step: build a grid Γ of width $\frac{1}{2}$ on the plane

- First step: build a grid Γ of width $\frac{1}{2}$ on the plane
- \square_a = the cell of Γ containing a \boxplus_a = the 5×5 patch centered at \square_a



- First step: build a grid Γ of width $\frac{1}{2}$ on the plane
- \square_a = the cell of Γ containing a \boxplus_a = the 5×5 patch centered at \square_a



- All points in $S \cap \square_a$ are neighbors of a.
- All neighbors of a are in $S \cap \coprod_a$.

Our SSSP algorithm

- **1** dist[s] ← 0, dist[a] ← ∞ for all $a \in V \setminus \{s\}$, $A \leftarrow V$
- 2 Pick $c \in A$ with the smallest dist[c]
- **3** UPDATE $(A \cap \boxplus_c, A \cap \square_c)$
- **4** UPDATE($A \cap \Box_c$, $A \cap \boxminus_c$)
- **5** $A \leftarrow A \setminus \square_c$, go to **Step 2** if $A \neq \emptyset$

- Our SSSP algorithm
 - **1** dist[s] ← 0, dist[a] ← ∞ for all $a \in V \setminus \{s\}$, $A \leftarrow V$
 - ② Pick $c \in A$ with the smallest dist[c]
 - **3** UPDATE $(A \cap \boxplus_c, A \cap \square_c)$
 - **4** UPDATE($A \cap \Box_c$, $A \cap \boxminus_c$)
 - **5** $A \leftarrow A \setminus \square_c$, go to **Step 2** if $A \neq \emptyset$
- Convert our algorithm to Dijkstra's algorithm?
 - Remove **Step 3** and replace \square_c with $\{c\}$

- Our SSSP algorithm
 - **1** dist[s] ← 0, dist[a] ← ∞ for all $a \in V \setminus \{s\}$, $A \leftarrow V$
 - 2 Pick $c \in A$ with the smallest dist[c]
 - **3** UPDATE($A \cap \coprod_c, A \cap \coprod_c$)
 - 4 UPDATE $(A \cap \square_c, A \cap \boxplus_c)$
 - **5** $A \leftarrow A \setminus \square_c$, go to **Step 2** if $A \neq \emptyset$
- Convert our algorithm to Dijkstra's algorithm?
 Remove Step 3 and replace □_c with {c}
- If we forget **Step 3**, the main difference between Dijkstra's and ours is
 - Dijkstra's considers the single point *c* in each iteration.
 - Ours considers all points in \square_c in each iteration.

• Why do we need **Step 3**?

- Why do we need **Step 3**?
- In Dijkstra's algorithm, when c is chosen, dist[c] is correct.
- So after using c to update its neighbors, removing c from A is safe.

- Why do we need **Step 3**?
- In Dijkstra's algorithm, when c is chosen, dist[c] is correct.
- So after using c to update its neighbors, removing c from A is safe.
- In our algorithm, when c is chosen, we cannot guarantee that dist[a] is correct for all $a \in A \cap \square_c$.
- But we need the correctness to do Step 4 and Step 5 safely.

- Why do we need **Step 3**?
- In Dijkstra's algorithm, when c is chosen, dist[c] is correct.
- So after using c to update its neighbors, removing c from A is safe.
- In our algorithm, when c is chosen, we cannot guarantee that dist[a] is correct for all $a \in A \cap \square_c$.
- But we need the correctness to do Step 4 and Step 5 safely.
- **Step 3** is used to make dist[a] correct for all $a \in A \cap \square_c$.

- Why do we need **Step 3**?
- In Dijkstra's algorithm, when c is chosen, dist[c] is correct.
- So after using c to update its neighbors, removing c from A is safe.
- In our algorithm, when c is chosen, we cannot guarantee that dist[a] is correct for all $a \in A \cap \square_c$.
- But we need the correctness to do Step 4 and Step 5 safely.
- **Step 3** is used to make dist[a] correct for all $a \in A \cap \square_c$.

Lemma

After **Step 3** of our algorithm, dist[a] equals to the length of the shortest path from s to a for all $a \in A \cap \square_c$.

• How to efficiently implement our algorithm?

- How to efficiently implement our algorithm?
- The critical steps: Step 3 and Step 4

- How to efficiently implement our algorithm?
- The critical steps: Step 3 and Step 4
- Step 3. Update $(A \cap \boxplus_c, A \cap \square_c)$
 - **1** dist'[u] ← dist[u] for all $u \in A \cap \coprod_c$
 - ② For each $v \in A \cap \square_c$, find its neighbor $u_v \in A \cap \boxplus_c$ that minimizes $\text{dist}'[u_v] + ||u_v v||$
 - ③ $\operatorname{dist}[v] \leftarrow \min\{\operatorname{dist}[v],\operatorname{dist}'[u_v] + \|u_v v\|\}$ for all $v \in A \cap \Box_c$

- How to efficiently implement our algorithm?
- The critical steps: Step 3 and Step 4
- Step 3. Update $(A \cap \boxplus_c, A \cap \Box_c)$
 - **1** dist'[u] ← dist[u] for all $u \in A \cap \coprod_c$
 - ② For each $v \in A \cap \square_c$, find its neighbor $u_v \in A \cap \boxplus_c$ that minimizes $\text{dist}'[u_v] + ||u_v v||$
 - **3** dist[v] ← min{dist[v], dist'[u_v] + $||u_v v||$ } for all $v \in A \cap \Box_c$
- What if we remove the constraint that u_v is a neighbor of v?

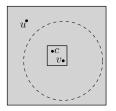
- How to efficiently implement our algorithm?
- The critical steps: Step 3 and Step 4
- Step 3. Update $(A \cap \coprod_c, A \cap \Box_c)$
 - **1** dist'[u] ← dist[u] for all $u \in A \cap \coprod_c$
 - ② For each $v \in A \cap \square_c$, find its neighbor $u_v \in A \cap \boxplus_c$ that minimizes $\text{dist}'[u_v] + ||u_v v||$
 - ③ dist[v] ← min{dist[v], dist'[u_v] + $||u_v v||$ } for all $v \in A \cap \Box_c$
- What if we remove the constraint that u_v is a neighbor of v? Then u_v is exactly the weighted nearest neighbor of v in $A \cap \boxplus_c$ (each $u \in A \cap \boxplus_c$ is assigned the weight $\operatorname{dist}'[u]$). In this case, the problem can be solved by building a WVD on $A \cap \boxplus_c$.

Lemma

Even if we remove the neighborhood constraint, the point u_v we find is still a neighbor of v.

Lemma

Even if we remove the neighborhood constraint, the point u_v we find is still a neighbor of v.



- $\operatorname{dist}'[u] \ge \operatorname{dist}'[c]$
- $||u v|| > 1 \ge ||c v||$
- $\bullet \implies \mathsf{dist}'[u] + \|u v\| > \mathsf{dist}'[c] + \|c v\| \implies u \neq u_v$

• Step 3 can be done in $O(m \log m)$ time where $m = |A \cap \boxplus_c|$.

- **Step 3** can be done in $O(m \log m)$ time where $m = |A \cap \boxplus_c|$.
- How to implement **Step 4**?

- **Step 3** can be done in $O(m \log m)$ time where $m = |A \cap \boxplus_c|$.
- How to implement **Step 4**?
- Basic idea: reducing to the OIWNN problem Step 4 can be done in $O(m \log m + f(m))$ time where $m = |A \cap \boxplus_c|$ and f(m) is the time for solving an m-operation OIWNN instance.

- **Step 3** can be done in $O(m \log m)$ time where $m = |A \cap \boxplus_c|$.
- How to implement **Step 4**?
- Basic idea: reducing to the OIWNN problem Step 4 can be done in $O(m \log m + f(m))$ time where $m = |A \cap \boxplus_c|$ and f(m) is the time for solving an m-operation OIWNN instance.
- By showing $f(m) = O(m \log^2 m)$, we conclude the following.

Theorem

There is an SSSP algorithm on weighted UDGs using $O(n \log^2 n)$ time and O(n) space, where n is the input size.

Open questions

- Improve the running time to $O(n \log n)$?
- APSP in weighted UDGs in $o(n \log^2 n)$ time?
- Can our approach be used to solve other problems in UDGs?

Thank you! Q & A