
Near-optimal Algorithms for Shortest Paths in

Weighted Unit-Disk Graphs

Haitao Wang1 Jie Xue2

1Utah State University

2University of Minnesota, Twin Cities

Student

 Presentation

Haitao Wang and Jie Xue 1 / 20

Background

Geometric intersection graphs
The intersection graph of a set of geometric objects

Haitao Wang and Jie Xue 2 / 20

Background

Unit-disk graphs (UDGs)
The intersection graph of unit-disks or disks of identical radii

Haitao Wang and Jie Xue 3 / 20

Background

Single-source shortest path (SSSP) problem
Given a positively weighted graph G = (V ,E ,w) and a source s ∈ V ,
compute the shortest paths from s to all the other vertices of G .

SSSP on UDGs?

Two ways to weight a UDG
1. Edges are weighted identically (Unweighted UDGs)
2. Edges are weighted using Euclidean distances between the disk
centers (Weighted UDGs)

Haitao Wang and Jie Xue 4 / 20

Background

Single-source shortest path (SSSP) problem
Given a positively weighted graph G = (V ,E ,w) and a source s ∈ V ,
compute the shortest paths from s to all the other vertices of G .

SSSP on UDGs?

Two ways to weight a UDG
1. Edges are weighted identically (Unweighted UDGs)
2. Edges are weighted using Euclidean distances between the disk
centers (Weighted UDGs)

Haitao Wang and Jie Xue 4 / 20

Background

Single-source shortest path (SSSP) problem
Given a positively weighted graph G = (V ,E ,w) and a source s ∈ V ,
compute the shortest paths from s to all the other vertices of G .

SSSP on UDGs?

Two ways to weight a UDG
1. Edges are weighted identically (Unweighted UDGs)
2. Edges are weighted using Euclidean distances between the disk
centers (Weighted UDGs)

Haitao Wang and Jie Xue 4 / 20

Background

Classical SSSP algorithms
Dijkstra’s algorithm
Johnson’s algorithm
Bellman-Ford algorithm
...

These algorithms requires Ω(|E |) time for solving SSSP.

It is a lower bound for general graphs, due to the Ω(|E |) input size.

The input size for an n-vertex UDG is only O(n).

However, |E | = Ω(n2) in an n-vertex UDG in worst case.

Maybe we can break the Ω(|E |) lower bound for UDGs?

Haitao Wang and Jie Xue 5 / 20

Background

Classical SSSP algorithms
Dijkstra’s algorithm
Johnson’s algorithm
Bellman-Ford algorithm
...

These algorithms requires Ω(|E |) time for solving SSSP.

It is a lower bound for general graphs, due to the Ω(|E |) input size.

The input size for an n-vertex UDG is only O(n).

However, |E | = Ω(n2) in an n-vertex UDG in worst case.

Maybe we can break the Ω(|E |) lower bound for UDGs?

Haitao Wang and Jie Xue 5 / 20

Background

Classical SSSP algorithms
Dijkstra’s algorithm
Johnson’s algorithm
Bellman-Ford algorithm
...

These algorithms requires Ω(|E |) time for solving SSSP.

It is a lower bound for general graphs, due to the Ω(|E |) input size.

The input size for an n-vertex UDG is only O(n).

However, |E | = Ω(n2) in an n-vertex UDG in worst case.

Maybe we can break the Ω(|E |) lower bound for UDGs?

Haitao Wang and Jie Xue 5 / 20

Background

Classical SSSP algorithms
Dijkstra’s algorithm
Johnson’s algorithm
Bellman-Ford algorithm
...

These algorithms requires Ω(|E |) time for solving SSSP.

It is a lower bound for general graphs, due to the Ω(|E |) input size.

The input size for an n-vertex UDG is only O(n).

However, |E | = Ω(n2) in an n-vertex UDG in worst case.

Maybe we can break the Ω(|E |) lower bound for UDGs?

Haitao Wang and Jie Xue 5 / 20

Background

SSSP on unweighted UDGs
O(n log n) time and O(n) space
by [Cabello and Jejčič 2015]
O(n) time and O(n) space after presorting
by [Chan and Skrepetos 2016]

SSSP on weighted UDGs
O(n1+δ) time and O(n1+δ) space for any δ > 0
by [Cabello and Jejčič 2015]

O(n log12+o(1) n) expected time and O(n log3 n) space (randomized)
by [Kaplan et al. 2017]
O(n log n/ε2) time and O(n/ε2) space for (1 + ε)-approximation
by [Chan and Skrepetos 2016]

Haitao Wang and Jie Xue 6 / 20

Background

SSSP on unweighted UDGs
O(n log n) time and O(n) space
by [Cabello and Jejčič 2015]
O(n) time and O(n) space after presorting
by [Chan and Skrepetos 2016]

SSSP on weighted UDGs
O(n1+δ) time and O(n1+δ) space for any δ > 0
by [Cabello and Jejčič 2015]

O(n log12+o(1) n) expected time and O(n log3 n) space (randomized)
by [Kaplan et al. 2017]
O(n log n/ε2) time and O(n/ε2) space for (1 + ε)-approximation
by [Chan and Skrepetos 2016]

Haitao Wang and Jie Xue 6 / 20

Our results

The subject of this work: SSSP on weighted UDGs

Theorem (Exact algorithm)

There is an SSSP algorithm on weighted UDGs using O(n log2 n) time and
O(n) space, where n is the input size.

Theorem (Approximation algorithm)

There is a (1 + ε)-approximate SSSP algorithm on weighted UDGs using
O(n log n + n log2(1/ε)) time and O(n) space, where n is the input size.

Haitao Wang and Jie Xue 7 / 20

Our results

The subject of this work: SSSP on weighted UDGs

Theorem (Exact algorithm)

There is an SSSP algorithm on weighted UDGs using O(n log2 n) time and
O(n) space, where n is the input size.

Theorem (Approximation algorithm)

There is a (1 + ε)-approximate SSSP algorithm on weighted UDGs using
O(n log n + n log2(1/ε)) time and O(n) space, where n is the input size.

Haitao Wang and Jie Xue 7 / 20

Our results

The subject of this work: SSSP on weighted UDGs

Theorem (Exact algorithm)

There is an SSSP algorithm on weighted UDGs using O(n log2 n) time and
O(n) space, where n is the input size.

Theorem (Approximation algorithm)

There is a (1 + ε)-approximate SSSP algorithm on weighted UDGs using
O(n log n + n log2(1/ε)) time and O(n) space, where n is the input size.

Haitao Wang and Jie Xue 7 / 20

Our results

Our results are achieved by relating SSSP on weighted UDGs to the
offline insertion-only weighted nearest-neighbor (OIWNN) problem.

The OIWNN problem in R2

[Input] a sequence of n operations each of which is one of
Insert(s) - insert a new weighted site s ∈ R2

Query(q) - query the WNN of q ∈ R2 among the current sites
[Goal] answer all queries

We reduce SSSP on weighted UDGs to the OIWNN problem in R2.

Haitao Wang and Jie Xue 8 / 20

Our results

Our results are achieved by relating SSSP on weighted UDGs to the
offline insertion-only weighted nearest-neighbor (OIWNN) problem.

The OIWNN problem in R2

[Input] a sequence of n operations each of which is one of
Insert(s) - insert a new weighted site s ∈ R2

Query(q) - query the WNN of q ∈ R2 among the current sites

[Goal] answer all queries

We reduce SSSP on weighted UDGs to the OIWNN problem in R2.

Haitao Wang and Jie Xue 8 / 20

Our results

Our results are achieved by relating SSSP on weighted UDGs to the
offline insertion-only weighted nearest-neighbor (OIWNN) problem.

The OIWNN problem in R2

[Input] a sequence of n operations each of which is one of
Insert(s) - insert a new weighted site s ∈ R2

Query(q) - query the WNN of q ∈ R2 among the current sites
[Goal] answer all queries

We reduce SSSP on weighted UDGs to the OIWNN problem in R2.

Haitao Wang and Jie Xue 8 / 20

Our results

Our results are achieved by relating SSSP on weighted UDGs to the
offline insertion-only weighted nearest-neighbor (OIWNN) problem.

The OIWNN problem in R2

[Input] a sequence of n operations each of which is one of
Insert(s) - insert a new weighted site s ∈ R2

Query(q) - query the WNN of q ∈ R2 among the current sites
[Goal] answer all queries

We reduce SSSP on weighted UDGs to the OIWNN problem in R2.

Haitao Wang and Jie Xue 8 / 20

Our results

Theorem (Exact)

If the OIWNN problem with n operations can be solved in f (n) time, then
SSSP on weighted UDGs can be solved in O(n log n + f (n)) time.

We show that f (n) = O(n log2 n) (D&C + WVD).

This is the bottleneck of our algorithm.

Theorem (Approximation)

If the OIWNN problem with n operations in which at most k operations
are insertions can be solved in f (n, k) time, then (1 + ε)-approximate
SSSP on weighted UDGs can be solved in O(n log n + f (n, 1/ε)) time.

We show that f (n, k) = O(n log2 k) (D&C + WVD).

Haitao Wang and Jie Xue 9 / 20

Our results

Theorem (Exact)

If the OIWNN problem with n operations can be solved in f (n) time, then
SSSP on weighted UDGs can be solved in O(n log n + f (n)) time.

We show that f (n) = O(n log2 n) (D&C + WVD).

This is the bottleneck of our algorithm.

Theorem (Approximation)

If the OIWNN problem with n operations in which at most k operations
are insertions can be solved in f (n, k) time, then (1 + ε)-approximate
SSSP on weighted UDGs can be solved in O(n log n + f (n, 1/ε)) time.

We show that f (n, k) = O(n log2 k) (D&C + WVD).

Haitao Wang and Jie Xue 9 / 20

Our results

Theorem (Exact)

If the OIWNN problem with n operations can be solved in f (n) time, then
SSSP on weighted UDGs can be solved in O(n log n + f (n)) time.

We show that f (n) = O(n log2 n) (D&C + WVD).

This is the bottleneck of our algorithm.

Theorem (Approximation)

If the OIWNN problem with n operations in which at most k operations
are insertions can be solved in f (n, k) time, then (1 + ε)-approximate
SSSP on weighted UDGs can be solved in O(n log n + f (n, 1/ε)) time.

We show that f (n, k) = O(n log2 k) (D&C + WVD).

Haitao Wang and Jie Xue 9 / 20

Our results

Theorem (Exact)

If the OIWNN problem with n operations can be solved in f (n) time, then
SSSP on weighted UDGs can be solved in O(n log n + f (n)) time.

We show that f (n) = O(n log2 n) (D&C + WVD).

This is the bottleneck of our algorithm.

Theorem (Approximation)

If the OIWNN problem with n operations in which at most k operations
are insertions can be solved in f (n, k) time, then (1 + ε)-approximate
SSSP on weighted UDGs can be solved in O(n log n + f (n, 1/ε)) time.

We show that f (n, k) = O(n log2 k) (D&C + WVD).

Haitao Wang and Jie Xue 9 / 20

The exact SSSP algorithm

For convenience, assume UDG is defined by disks of radii 1
2 .

Given n disks of radii 1
2 , let S be the set of the disk centers.

Two points a, b ∈ S are connected by an edge iff ‖a− b‖ ≤ 1.
(The edge is weighted by ‖a− b‖.)

Let s ∈ S be a given source.

Our goal is to compute a table dist[·], where dist[a] stores the length
of the shortest path from s to a, for all a ∈ S .

Haitao Wang and Jie Xue 10 / 20

The exact SSSP algorithm

For convenience, assume UDG is defined by disks of radii 1
2 .

Given n disks of radii 1
2 , let S be the set of the disk centers.

Two points a, b ∈ S are connected by an edge iff ‖a− b‖ ≤ 1.
(The edge is weighted by ‖a− b‖.)

Let s ∈ S be a given source.

Our goal is to compute a table dist[·], where dist[a] stores the length
of the shortest path from s to a, for all a ∈ S .

Haitao Wang and Jie Xue 10 / 20

The exact SSSP algorithm

For convenience, assume UDG is defined by disks of radii 1
2 .

Given n disks of radii 1
2 , let S be the set of the disk centers.

Two points a, b ∈ S are connected by an edge iff ‖a− b‖ ≤ 1.
(The edge is weighted by ‖a− b‖.)

Let s ∈ S be a given source.

Our goal is to compute a table dist[·], where dist[a] stores the length
of the shortest path from s to a, for all a ∈ S .

Haitao Wang and Jie Xue 10 / 20

The exact SSSP algorithm

For convenience, assume UDG is defined by disks of radii 1
2 .

Given n disks of radii 1
2 , let S be the set of the disk centers.

Two points a, b ∈ S are connected by an edge iff ‖a− b‖ ≤ 1.
(The edge is weighted by ‖a− b‖.)

Let s ∈ S be a given source.

Our goal is to compute a table dist[·], where dist[a] stores the length
of the shortest path from s to a, for all a ∈ S .

Haitao Wang and Jie Xue 10 / 20

The exact SSSP algorithm

Dijkstra’s algorithm

[Input] G = (V ,E ,w) and s ∈ V

1 dist[s]← 0, dist[a]←∞ for all a ∈ V \{s}, A← V

2 Pick c ∈ A with the smallest dist[c]

3 For all neighbors b ∈ A of c , dist[b]← min{dist[b], dist[c] + w(b, c)}
4 A← A\{c}, go to Step 2 if A 6= ∅

The previous works [Cabello and Jejčič 2015] and [Kaplan et al. 2017]
use Dijkstra’s algorithm + dynamic bichromatic closest pair

The framework of our SSSP algorithm is different from Dijkstra’s,
but it exploits the basic intuition of Dijkstra’s.

Haitao Wang and Jie Xue 11 / 20

The exact SSSP algorithm

Dijkstra’s algorithm

[Input] G = (V ,E ,w) and s ∈ V

1 dist[s]← 0, dist[a]←∞ for all a ∈ V \{s}, A← V

2 Pick c ∈ A with the smallest dist[c]

3 For all neighbors b ∈ A of c , dist[b]← min{dist[b], dist[c] + w(b, c)}
4 A← A\{c}, go to Step 2 if A 6= ∅

The previous works [Cabello and Jejčič 2015] and [Kaplan et al. 2017]
use Dijkstra’s algorithm + dynamic bichromatic closest pair

The framework of our SSSP algorithm is different from Dijkstra’s,
but it exploits the basic intuition of Dijkstra’s.

Haitao Wang and Jie Xue 11 / 20

The exact SSSP algorithm

Dijkstra’s algorithm

[Input] G = (V ,E ,w) and s ∈ V

1 dist[s]← 0, dist[a]←∞ for all a ∈ V \{s}, A← V

2 Pick c ∈ A with the smallest dist[c]

3 For all neighbors b ∈ A of c , dist[b]← min{dist[b], dist[c] + w(b, c)}
4 A← A\{c}, go to Step 2 if A 6= ∅

The previous works [Cabello and Jejčič 2015] and [Kaplan et al. 2017]
use Dijkstra’s algorithm + dynamic bichromatic closest pair

The framework of our SSSP algorithm is different from Dijkstra’s,
but it exploits the basic intuition of Dijkstra’s.

Haitao Wang and Jie Xue 11 / 20

The exact SSSP algorithm

Dijkstra’s algorithm

[Input] G = (V ,E ,w) and s ∈ V

1 dist[s]← 0, dist[a]←∞ for all a ∈ V \{s}, A← V

2 Pick c ∈ A with the smallest dist[c]

3 For all neighbors b ∈ A of c , dist[b]← min{dist[b], dist[c] + w(b, c)}
4 A← A\{c}, go to Step 2 if A 6= ∅

The previous works [Cabello and Jejčič 2015] and [Kaplan et al. 2017]
use Dijkstra’s algorithm + dynamic bichromatic closest pair

The framework of our SSSP algorithm is different from Dijkstra’s,
but it exploits the basic intuition of Dijkstra’s.

Haitao Wang and Jie Xue 11 / 20

The exact SSSP algorithm

Define an operation Update as follows.

Update(U,V) for U,V ⊆ S

1 dist′[u]← dist[u] for all u ∈ U

2 For each v ∈ V , find the neighbor uv ∈ U of v that minimizes
dist′[uv] + ‖uv − v‖

3 dist[v]← min{dist[v], dist′[uv] + ‖uv − v‖} for all v ∈ V

Roughly speaking, Update(U,V) uses the shortest-path information
of U to update the shortest-path information of V .

The table dist′ is used for lazy update in case U ∩ V 6= ∅.

Haitao Wang and Jie Xue 12 / 20

The exact SSSP algorithm

Define an operation Update as follows.

Update(U,V) for U,V ⊆ S

1 dist′[u]← dist[u] for all u ∈ U

2 For each v ∈ V , find the neighbor uv ∈ U of v that minimizes
dist′[uv] + ‖uv − v‖

3 dist[v]← min{dist[v], dist′[uv] + ‖uv − v‖} for all v ∈ V

Roughly speaking, Update(U,V) uses the shortest-path information
of U to update the shortest-path information of V .

The table dist′ is used for lazy update in case U ∩ V 6= ∅.

Haitao Wang and Jie Xue 12 / 20

The exact SSSP algorithm

Define an operation Update as follows.

Update(U,V) for U,V ⊆ S

1 dist′[u]← dist[u] for all u ∈ U

2 For each v ∈ V , find the neighbor uv ∈ U of v that minimizes
dist′[uv] + ‖uv − v‖

3 dist[v]← min{dist[v], dist′[uv] + ‖uv − v‖} for all v ∈ V

Roughly speaking, Update(U,V) uses the shortest-path information
of U to update the shortest-path information of V .

The table dist′ is used for lazy update in case U ∩ V 6= ∅.

Haitao Wang and Jie Xue 12 / 20

The exact SSSP algorithm

Define an operation Update as follows.

Update(U,V) for U,V ⊆ S

1 dist′[u]← dist[u] for all u ∈ U

2 For each v ∈ V , find the neighbor uv ∈ U of v that minimizes
dist′[uv] + ‖uv − v‖

3 dist[v]← min{dist[v], dist′[uv] + ‖uv − v‖} for all v ∈ V

Roughly speaking, Update(U,V) uses the shortest-path information
of U to update the shortest-path information of V .

The table dist′ is used for lazy update in case U ∩ V 6= ∅.

Haitao Wang and Jie Xue 12 / 20

The exact SSSP algorithm

First step: build a grid Γ of width 1
2 on the plane

�a = the cell of Γ containing a
�a = the 5× 5 patch centered at �a

a

�a

a

�a

All points in S ∩�a are neighbors of a.

All neighbors of a are in S ∩�a.

Haitao Wang and Jie Xue 13 / 20

The exact SSSP algorithm

First step: build a grid Γ of width 1
2 on the plane

�a = the cell of Γ containing a
�a = the 5× 5 patch centered at �a

a

�a

a

�a

All points in S ∩�a are neighbors of a.

All neighbors of a are in S ∩�a.

Haitao Wang and Jie Xue 13 / 20

The exact SSSP algorithm

First step: build a grid Γ of width 1
2 on the plane

�a = the cell of Γ containing a
�a = the 5× 5 patch centered at �a

a

�a

a

�a

All points in S ∩�a are neighbors of a.

All neighbors of a are in S ∩�a.

Haitao Wang and Jie Xue 13 / 20

The exact SSSP algorithm

Our SSSP algorithm

1 dist[s]← 0, dist[a]←∞ for all a ∈ V \{s}, A← V

2 Pick c ∈ A with the smallest dist[c]

3 Update(A ∩�c ,A ∩�c)

4 Update(A ∩�c ,A ∩�c)

5 A← A\�c , go to Step 2 if A 6= ∅

Convert our algorithm to Dijkstra’s algorithm?
Remove Step 3 and replace �c with {c}

If we forget Step 3, the main difference between Dijkstra’s and ours is
- Dijkstra’s considers the single point c in each iteration.
- Ours considers all points in �c in each iteration.

Haitao Wang and Jie Xue 14 / 20

The exact SSSP algorithm

Our SSSP algorithm

1 dist[s]← 0, dist[a]←∞ for all a ∈ V \{s}, A← V

2 Pick c ∈ A with the smallest dist[c]

3 Update(A ∩�c ,A ∩�c)

4 Update(A ∩�c ,A ∩�c)

5 A← A\�c , go to Step 2 if A 6= ∅

Convert our algorithm to Dijkstra’s algorithm?
Remove Step 3 and replace �c with {c}

If we forget Step 3, the main difference between Dijkstra’s and ours is
- Dijkstra’s considers the single point c in each iteration.
- Ours considers all points in �c in each iteration.

Haitao Wang and Jie Xue 14 / 20

The exact SSSP algorithm

Our SSSP algorithm

1 dist[s]← 0, dist[a]←∞ for all a ∈ V \{s}, A← V

2 Pick c ∈ A with the smallest dist[c]

3 Update(A ∩�c ,A ∩�c)

4 Update(A ∩�c ,A ∩�c)

5 A← A\�c , go to Step 2 if A 6= ∅

Convert our algorithm to Dijkstra’s algorithm?
Remove Step 3 and replace �c with {c}

If we forget Step 3, the main difference between Dijkstra’s and ours is
- Dijkstra’s considers the single point c in each iteration.
- Ours considers all points in �c in each iteration.

Haitao Wang and Jie Xue 14 / 20

The exact SSSP algorithm

Why do we need Step 3?

In Dijkstra’s algorithm, when c is chosen, dist[c] is correct.

So after using c to update its neighbors, removing c from A is safe.

In our algorithm, when c is chosen, we cannot guarantee that dist[a]
is correct for all a ∈ A ∩�c .

But we need the correctness to do Step 4 and Step 5 safely.

Step 3 is used to make dist[a] correct for all a ∈ A ∩�c .

Lemma

After Step 3 of our algorithm, dist[a] equals to the length of the shortest
path from s to a for all a ∈ A ∩�c .

Haitao Wang and Jie Xue 15 / 20

The exact SSSP algorithm

Why do we need Step 3?

In Dijkstra’s algorithm, when c is chosen, dist[c] is correct.

So after using c to update its neighbors, removing c from A is safe.

In our algorithm, when c is chosen, we cannot guarantee that dist[a]
is correct for all a ∈ A ∩�c .

But we need the correctness to do Step 4 and Step 5 safely.

Step 3 is used to make dist[a] correct for all a ∈ A ∩�c .

Lemma

After Step 3 of our algorithm, dist[a] equals to the length of the shortest
path from s to a for all a ∈ A ∩�c .

Haitao Wang and Jie Xue 15 / 20

The exact SSSP algorithm

Why do we need Step 3?

In Dijkstra’s algorithm, when c is chosen, dist[c] is correct.

So after using c to update its neighbors, removing c from A is safe.

In our algorithm, when c is chosen, we cannot guarantee that dist[a]
is correct for all a ∈ A ∩�c .

But we need the correctness to do Step 4 and Step 5 safely.

Step 3 is used to make dist[a] correct for all a ∈ A ∩�c .

Lemma

After Step 3 of our algorithm, dist[a] equals to the length of the shortest
path from s to a for all a ∈ A ∩�c .

Haitao Wang and Jie Xue 15 / 20

The exact SSSP algorithm

Why do we need Step 3?

In Dijkstra’s algorithm, when c is chosen, dist[c] is correct.

So after using c to update its neighbors, removing c from A is safe.

In our algorithm, when c is chosen, we cannot guarantee that dist[a]
is correct for all a ∈ A ∩�c .

But we need the correctness to do Step 4 and Step 5 safely.

Step 3 is used to make dist[a] correct for all a ∈ A ∩�c .

Lemma

After Step 3 of our algorithm, dist[a] equals to the length of the shortest
path from s to a for all a ∈ A ∩�c .

Haitao Wang and Jie Xue 15 / 20

The exact SSSP algorithm

Why do we need Step 3?

In Dijkstra’s algorithm, when c is chosen, dist[c] is correct.

So after using c to update its neighbors, removing c from A is safe.

In our algorithm, when c is chosen, we cannot guarantee that dist[a]
is correct for all a ∈ A ∩�c .

But we need the correctness to do Step 4 and Step 5 safely.

Step 3 is used to make dist[a] correct for all a ∈ A ∩�c .

Lemma

After Step 3 of our algorithm, dist[a] equals to the length of the shortest
path from s to a for all a ∈ A ∩�c .

Haitao Wang and Jie Xue 15 / 20

The exact SSSP algorithm

How to efficiently implement our algorithm?

The critical steps: Step 3 and Step 4

Step 3. Update(A ∩�c ,A ∩�c)

1 dist′[u]← dist[u] for all u ∈ A ∩�c

2 For each v ∈ A ∩�c , find its neighbor uv ∈ A ∩�c that minimizes
dist′[uv] + ‖uv − v‖

3 dist[v]← min{dist[v], dist′[uv] + ‖uv − v‖} for all v ∈ A ∩�c

What if we remove the constraint that uv is a neighbor of v?
Then uv is exactly the weighted nearest neighbor of v in A ∩�c

(each u ∈ A ∩�c is assigned the weight dist′[u]).
In this case, the problem can be solved by building a WVD on A∩�c .

Haitao Wang and Jie Xue 16 / 20

The exact SSSP algorithm

How to efficiently implement our algorithm?

The critical steps: Step 3 and Step 4

Step 3. Update(A ∩�c ,A ∩�c)

1 dist′[u]← dist[u] for all u ∈ A ∩�c

2 For each v ∈ A ∩�c , find its neighbor uv ∈ A ∩�c that minimizes
dist′[uv] + ‖uv − v‖

3 dist[v]← min{dist[v], dist′[uv] + ‖uv − v‖} for all v ∈ A ∩�c

What if we remove the constraint that uv is a neighbor of v?
Then uv is exactly the weighted nearest neighbor of v in A ∩�c

(each u ∈ A ∩�c is assigned the weight dist′[u]).
In this case, the problem can be solved by building a WVD on A∩�c .

Haitao Wang and Jie Xue 16 / 20

The exact SSSP algorithm

How to efficiently implement our algorithm?

The critical steps: Step 3 and Step 4

Step 3. Update(A ∩�c ,A ∩�c)

1 dist′[u]← dist[u] for all u ∈ A ∩�c

2 For each v ∈ A ∩�c , find its neighbor uv ∈ A ∩�c that minimizes
dist′[uv] + ‖uv − v‖

3 dist[v]← min{dist[v], dist′[uv] + ‖uv − v‖} for all v ∈ A ∩�c

What if we remove the constraint that uv is a neighbor of v?
Then uv is exactly the weighted nearest neighbor of v in A ∩�c

(each u ∈ A ∩�c is assigned the weight dist′[u]).
In this case, the problem can be solved by building a WVD on A∩�c .

Haitao Wang and Jie Xue 16 / 20

The exact SSSP algorithm

How to efficiently implement our algorithm?

The critical steps: Step 3 and Step 4

Step 3. Update(A ∩�c ,A ∩�c)

1 dist′[u]← dist[u] for all u ∈ A ∩�c

2 For each v ∈ A ∩�c , find its neighbor uv ∈ A ∩�c that minimizes
dist′[uv] + ‖uv − v‖

3 dist[v]← min{dist[v], dist′[uv] + ‖uv − v‖} for all v ∈ A ∩�c

What if we remove the constraint that uv is a neighbor of v?

Then uv is exactly the weighted nearest neighbor of v in A ∩�c

(each u ∈ A ∩�c is assigned the weight dist′[u]).
In this case, the problem can be solved by building a WVD on A∩�c .

Haitao Wang and Jie Xue 16 / 20

The exact SSSP algorithm

How to efficiently implement our algorithm?

The critical steps: Step 3 and Step 4

Step 3. Update(A ∩�c ,A ∩�c)

1 dist′[u]← dist[u] for all u ∈ A ∩�c

2 For each v ∈ A ∩�c , find its neighbor uv ∈ A ∩�c that minimizes
dist′[uv] + ‖uv − v‖

3 dist[v]← min{dist[v], dist′[uv] + ‖uv − v‖} for all v ∈ A ∩�c

What if we remove the constraint that uv is a neighbor of v?
Then uv is exactly the weighted nearest neighbor of v in A ∩�c

(each u ∈ A ∩�c is assigned the weight dist′[u]).
In this case, the problem can be solved by building a WVD on A∩�c .

Haitao Wang and Jie Xue 16 / 20

The exact SSSP algorithm

Lemma

Even if we remove the neighborhood constraint, the point uv we find is
still a neighbor of v .

v
c

u

dist′[u] ≥ dist′[c]

‖u − v‖ > 1 ≥ ‖c − v‖
=⇒ dist′[u] + ‖u − v‖ > dist′[c] + ‖c − v‖ =⇒ u 6= uv

Haitao Wang and Jie Xue 17 / 20

The exact SSSP algorithm

Lemma

Even if we remove the neighborhood constraint, the point uv we find is
still a neighbor of v .

v
c

u

dist′[u] ≥ dist′[c]

‖u − v‖ > 1 ≥ ‖c − v‖
=⇒ dist′[u] + ‖u − v‖ > dist′[c] + ‖c − v‖ =⇒ u 6= uv

Haitao Wang and Jie Xue 17 / 20

The exact SSSP algorithm

Step 3 can be done in O(m logm) time where m = |A ∩�c |.

How to implement Step 4?

Basic idea: reducing to the OIWNN problem
Step 4 can be done in O(m logm + f (m)) time where m = |A ∩�c |
and f (m) is the time for solving an m-operation OIWNN instance.

By showing f (m) = O(m log2m), we conclude the following.

Theorem

There is an SSSP algorithm on weighted UDGs using O(n log2 n) time and
O(n) space, where n is the input size.

Haitao Wang and Jie Xue 18 / 20

The exact SSSP algorithm

Step 3 can be done in O(m logm) time where m = |A ∩�c |.

How to implement Step 4?

Basic idea: reducing to the OIWNN problem
Step 4 can be done in O(m logm + f (m)) time where m = |A ∩�c |
and f (m) is the time for solving an m-operation OIWNN instance.

By showing f (m) = O(m log2m), we conclude the following.

Theorem

There is an SSSP algorithm on weighted UDGs using O(n log2 n) time and
O(n) space, where n is the input size.

Haitao Wang and Jie Xue 18 / 20

The exact SSSP algorithm

Step 3 can be done in O(m logm) time where m = |A ∩�c |.

How to implement Step 4?

Basic idea: reducing to the OIWNN problem
Step 4 can be done in O(m logm + f (m)) time where m = |A ∩�c |
and f (m) is the time for solving an m-operation OIWNN instance.

By showing f (m) = O(m log2m), we conclude the following.

Theorem

There is an SSSP algorithm on weighted UDGs using O(n log2 n) time and
O(n) space, where n is the input size.

Haitao Wang and Jie Xue 18 / 20

The exact SSSP algorithm

Step 3 can be done in O(m logm) time where m = |A ∩�c |.

How to implement Step 4?

Basic idea: reducing to the OIWNN problem
Step 4 can be done in O(m logm + f (m)) time where m = |A ∩�c |
and f (m) is the time for solving an m-operation OIWNN instance.

By showing f (m) = O(m log2m), we conclude the following.

Theorem

There is an SSSP algorithm on weighted UDGs using O(n log2 n) time and
O(n) space, where n is the input size.

Haitao Wang and Jie Xue 18 / 20

Open questions

Improve the running time to O(n log n)?

APSP in weighted UDGs in o(n log2 n) time?

Can our approach be used to solve other problems in UDGs?

Haitao Wang and Jie Xue 19 / 20

Thank you!
Q & A

Haitao Wang and Jie Xue 20 / 20

