
Data	races	in	Parallel	and	High	
Performance	Compu7ng	

Simone	Atzeni	
simone@cs.utah.edu	

February	3,	2016	

What	is	a	data	race?	

•  A	data	race	occurs	when	two	or	more	threads:	
– access	the	same	memory	loca/on	(i.e.	shared	
variable)	

– at	least	one	thread	writes	the	memory	loca/on	
–  the	accesses	are	concurrent	and	unsynchronized	

•  Leads	to	non-determinis7c	behavior	(crashes,	
program	excep7ons,	wrong	results,	etc.)	

•  Hard	to	find	with	tradi7onal	debugging	tools	

2	

What	is	a	data	race?	

3	

#pragma omp parallel num_threads(N)

 sum = sum + 1;

void Thread1() { // Runs in Thread1.

 sum = sum + 1;
}

⋮

void ThreadN() { // Runs in ThreadN.

 sum = sum + 1;

}

PThreads	

OpenMP	

Why	is	finding	data	races	important?	

4	

•  Data	race	are	undefined	behavior:	
–  Non-determinis7c	results	
–  Program	errors	or	excep7ons	
–  Cri7cal	consequences	

•  Data	races	affect	several	fields:	
–  File	systems	
–  Security	
–  Life-cri7cal	systems	

•  Compiler	op7miza7on	can	introduce	races:	
–  “Benign”	races	(there	is	no	such	things!)	
–  Instruc7on	reordering	

•  Data	race	preven7on:	
–  Too	much	synchroniza7on	à	bad	performance	and	deadlocks	

OpenMP	Data	Races:	Example	1	
#pragma omp parallel for
 for (i = 1; i < N; i++) {

 a[i] = 2.0 * i * (i - 1);

 b[i] = a[i] - a[i - 1];

 }

•  Solu7on
Include	accesses	to	array	a	within	a	cri7cal	sec7on.	
or	
Recompute	the	second	espression.		

5	

OpenMP	Data	Races:	Example	1	
#pragma omp parallel for
 for (i = 1; i < N; i++) {

 #pragma omp critical

 {

 a[i] = 2.0 * i * (i - 1);

 b[i] = a[i] - a[i - 1];

 }
}

6	

OpenMP	Data	Races:	Example	1	
#pragma omp parallel for
 for (i = 1; i < N; i++) {

 a[i] = 2.0 * i * (i - 1);

 b[i] = a[i] – 2.0 * (i – 1) * (i - 2);

}

7	

OpenMP	Data	Races:	Example	2	

•  Solu7on
Remove	the	nowait	clause	from	first	for-loop.	

#pragma omp parallel

 {
#pragma omp for nowait

 for (i = 1; i < N; i++) {

 a[i] = 3.0 * i * (i + 1);

 }

#pragma omp for
 for (i = 1; i < N; i++) {

 b[i] = a[i] - a[i - 1];

 }

 }

}

8	

OpenMP	Data	Races:	Example	2	
#pragma omp parallel

 {
#pragma omp for
 for (i = 1; i < N; i++) {

 a[i] = 3.0 * i * (i + 1);

 }

#pragma omp for
 for (i = 1; i < N; i++) {

 b[i] = a[i] - a[i - 1];

 }

 }

}

9	

OpenMP	Data	Races:	Example	3	
#pragma omp parallel for
 for (i = 1; i < N; i++) {
 x = sqrt(b[i]) - 1;
 a[i] = x * x + 2 * x + 1;
 }
}

•  Solu7on
Add	private(x)	in	omp	pragma.	

10	

OpenMP	Data	Races:	Example	3	
#pragma omp parallel for private(x)
 for (i = 1; i < N; i++) {
 x = sqrt(b[i]) - 1;
 a[i] = x * x + 2 * x + 1;
 }
}

•  Solu7on
Add	private(x)	in	omp	pragma.	

11	

OpenMP	Data	Races:	Example	4	
#pragma omp parallel for
 for (i = 0; i < N; i++) {
 for (j = 0; j < M; j++) {
 a[i][j] = compute(i,j);
 }
 }

•  Solu7on
Add	private(x)	in	omp	pragma.	

12	

OpenMP	Data	Races:	Example	4	
#pragma omp parallel for private(j)
 for (i = 0; i < N; i++) {
 for (j = 0; j < M; j++) {
 a[i][j] = compute(i,j);
 }
 }

•  Solu7on
Add	private(x)	in	omp	pragma.	

•  Good	Prac7ce	
Use	clause	default(none),	explicitly	share	variables	with		
shared(…)	 13	

OpenMP	Data	Races:	Example	5	
#pragma omp parallel for

 for (i = 1; i < N; i++)
 {

 sum = sum + a[i];
 }
}

•  Solu7on
Add	reduction(+:sum) to	omp	pragma.	

14	

OpenMP	Data	Races:	Example	5	
#pragma omp parallel for reduction(+:sum)

 for (i = 1; i < N; i++)
 {

 sum = sum + a[i];
 }
}

•  Solu7on
Add	reduction(+:sum) to	omp	pragma.	

15	

OpenMP	Data	Races:	Example	6	
#pragma omp parallel for private(local)

{
 #pragma omp master

 init = 10;
 local = init
}

•  Solu7on	
master construct	does	not	have	an	implied	barrier	befer	
use single

16	

OpenMP	Data	Races:	Example	6	
#pragma omp parallel for private(local)

{
 #pragma omp single

 init = 10;
 local = init
}

•  Solu7on	
master construct	does	not	have	an	implied	barrier	befer	
use single

17	

“Benign”	data	races	in	OpenMP	
int num_threads;

#pragma omp parallel
{
 num_threads = omp_get_num_threads();
}

•  This	is	undefined	behavior	in	
C/C++.	

•  Compiler	transforma7ons	on	
racy	code	might	transform	a	
“benign	race”	in	a	very	bad	
behavior.	

18	

“Benign”	data	races	in	OpenMP	
#pragma omp parallel
{

 foo = …; // Store a pointer to function.

 num_threads = foo; // Spill from register into the stop variable.

 …
 foo = num_threads; // Restore from the stop variable into a register.

 call(foo) ...; // Call function pointed by foo.

 num_threads = omp_get_num_threads();

}

•  A	compiler	transforma7on	could	spill	some	temp	(i.e.	func7on	pointer)	value	
into	num_threads:	
–  One	thread	spills	pointer	to	write_file()	func7on.	
–  Another	thread	spills	pointer	to	launch_nuclear_missile() func7on.	

•  The	first	thread	restores	its	pointer,	it	will	get	the	wrong	pointer	to	
launch_nuclear_missile().	

•  The	“benign”	data	race	just	lead	to	an	accidental	missile	launch.	

“Benign”	races	are	bad,	find	and	fix	them	as	any	other	type	of	data	race!1	

1See	Benign	data	races:	what	could	possibly	go	wrong?	by	Dmitry	Vyukov.	
19	

Real-World	example	at	Lawrence	Livermore	Na/onal	Laboratory	
–  HYDRA	–	Large	mul7physics	MPI/OpenMP	applica7on.	
–  Por7ng	on	one	of	the	largest	supercomputer	in	the	world	Sequoia.	
–  Non-determinis7c	crashes	on	a	threaded	version	of	Hypre	library.	
–  Above	certain	op7miza7on	levels	and	certain	scales	(8K	MPI	processes).	
	

Archer	finds	data	races	on	HYDRA	(Hypre	library):	
–  Three	data	races	found	inside	fairly	complex	OpenMP	region.	
–  The	races	are	“benign”	(same	value	wrifen	mul7ple	7mes	in	the	same	memory	

loca7on).	
–  Crash	manifests	only	at	“>	O0”	op7miza7on	level.	
–  The	compiler	(IBM	XL),	assuming	race-free	code	for	op7miza7ons,	transforms	

“benign”	races	in	harmful	races.	

“Benign”	data	races	in	OpenMP	

20	

Data	Race	Detec7on	Techiniques	

•  Sta7c	Analysis	
–  Reasons	about	all	inputs/interleavings	
–  Very	imprecise,	many	false	posi7ves	and	miss	races	
–  Very	scalable	and	fast	(i.e.	no	run7me	overhead)	

•  Dynamic	Analysis	
–  Very	precise,	no	false	posi7ves	
–  Reports	races	only	in	branches	of	the	programs	that	
are	actually	executed	

–  Very	high	run7me	and	memory	overhead	

21	

Data	Race	Detec7on	Tools	

•  Not	many	OpenMP	race	detectors	out	there!	
•  Commercial	tools:	
–  Intel	Sta7c	Secure	Analysis	(sta7c	analysis)	
–  Intel	Inspector	XE	(dynamic	analysis)	

– Sun	Studio	Data-Race	Detec7on	Tool	(dynamic	analysis)	

•  Open-source	tools:	
– ThreadSani7zer	(only	PThreads	programs,	dynamic	analysis)	

– Archer,	based	on	Clang/LLVM	and	ThreadSani7zer	
(sta7c	and	dynamic	analysis)	

22	

ThreadSani7zer:	data	race	detector	

•  Error	checking	tool	for	
– Memory	errors	
–  Threading	errors	(Pthreads)	

•  Based	on	LLVM/Clang	
•  Run7me	analysis	
•  Available	for	Linux,	Windows	and	Mac	
•  Supports	C,	C++,	and	Fortran	
•  More	info:	hfps://github.com/google/sani7zers	

23	

ThreadSani7zer:	Usage	and	Limita7ons	
•  Compile	the	program	with	the	following	command:	

–  clang –g –fsanitize=thread myprog.c –o myprog
•  Run7me	check	

–  Error	detec7on	only	in	sopware	branches	that	are	executed	
•  Low	run7me	overhead	

–  Roughly	2x	-	20x	
–  Detect	races	only	in	PThreads	applica7ons	
–  No	false	posi7ves	

•  Compiler	instrumenta7on	
–  Slower	compila7on	process	(apply	different	passes	on	the	source	code	

to	iden7fy	race	free	regions	of	code,	instruments	only	the	rest),	faster	
and	more	precise	at	run7me	

24	

		5		int	var;	
		6	
		7		void	Thread1()	{	
		8					var++;	
		9		}	
10	
11		void	Thread2()	{	
12				var++;	
13		}	

WARNING:	ThreadSani7zer:	data	race		
Write	of	size	4	at	0x0000014b2e90	by	thread	
T2:	
				#0	Thread2	race1.c:12:6	
	
Previous	write	of	size	4	at	0x0000014b2e90	
by	thread	T1:	
				#0	Thread1	race1.c:8:6	
	
Loca7on	is	global	'var'	of	size	4	

ThreadSani7zer:	Result	Summary	

25	

Archer:	Features	and	Limita7ons	
•  Sta7c	Analysis	

–  Only	for	OpenMP	programs	
–  Exclude	race	free	regions	and	sequen7al	

code	from	run7me	analysis	to	reduce	overhead	
•  Run7me	check	

–  Error	detec7on	only	in	sopware	branches	that	are	executed	
•  Low	run7me	overhead	

–  Roughly	2x	-	20x	
–  Detect	races	in	large	OpenMP	applica7ons	
–  No	false	posi7ves	

•  Compiler	instrumenta7on	
–  Slower	compila7on	process	(apply	different	passes	on	the	source	code	

to	iden7fy	race	free	regions	of	code,	instruments	only	the	rest),	faster	
and	more	precise	at	run7me	

26	

Archer:	Usage	
–  Compile	the	program	with	the	–g	compiler	flag	

•  clang-archer myprog.c –o myprog
–  Run	the	program	under	control	of	Archer	Run7me	

•  export OMP_NUM_THREADS=...
./myprog

•  Detects	problems	only	in	sopware	branches	that	are	
executed	

–  Understand	and	correct	the	threading	errors	detected	
–  Edit	the	source	code	
–  Repeat	un7l	no	errors	reported	

27	

		6								#pragma	omp	parallel	
		7								{	
		8													for(int	i	=	0;	i	<	100;	i++)	
		9 	 								a[i]	=	a[i]	*	a[i];	
10  				}	
11	
12								#pragma	omp	parallel	
13								{	
14												if	(a	<	100)	{	
15																		#pragma	omp	cri7cal	
16																		a++;	
17												}	
18							}	

Excluded	from	them	run7me	check	because	
it	is	race	free.	
	
WARNING:	ThreadSani7zer:	data	race		
Read	of	size	4	at	0x7fffffffdcdc	by	thread	T2:	
				#0	.omp_outlined.	race.c:14	(race
+0x0000004a6dce)	
				#1	__kmp_invoke_microtask	<null>	
(libomp_tsan.so)	

	

Previous	write	of	size	4	at	0x7fffffffdcdc	by	
main	thread:	
				#0	.omp_outlined.	race.c:16	(race
+0x0000004a6e2c)	
				#1	__kmp_invoke_microtask	<null>	
(libomp_tsan.so)	

Archer:	Result	Summary	

28	

Archer:	OpenMP	data	race	detector	

•  Error	checking	tool	for	
– Memory	errors	
–  Threading	errors	(OpenMP,	Pthreads)	

•  Based	on	LLVM/Clang	and	ThreadSani7zer		
•  Sta7c	and	Run7me	analysis	
•  Available	for	Linux,	Windows	and	Mac	
•  Supports	C,	C++	
•  More	info:	hfps://github.com/PRUNER/archer	

29	

Archer:	Features	and	Limita7ons	
•  Sta7c	Analysis	

–  Only	for	OpenMP	programs	
–  Exclude	race	free	regions	and	sequen7al	

code	from	run7me	analysis	to	reduce	overhead	
•  Run7me	check	

–  Error	detec7on	only	in	sopware	branches	that	are	executed	
•  Low	run7me	overhead	

–  Roughly	2x	-	20x	
–  Detect	races	in	large	OpenMP	applica7ons	
–  No	false	posi7ves	

•  Compiler	instrumenta7on	
–  Slower	compila7on	process	(apply	different	passes	on	the	source	code	

to	iden7fy	race	free	regions	of	code,	instruments	only	the	rest),	faster	
and	more	precise	at	run7me	

30	

Archer:	Usage	
–  Compile	the	program	with	the	–g	compiler	flag	

•  clang-archer myprog.c –o myprog
–  Run	the	program	under	control	of	Archer	Run7me	

•  export OMP_NUM_THREADS=...
./myprog

•  Detects	problems	only	in	sopware	branches	that	are	
executed	

–  Understand	and	correct	the	threading	errors	detected	
–  Edit	the	source	code	
–  Repeat	un7l	no	errors	reported	

31	

		6								#pragma	omp	parallel	
		7								{	
		8													for(int	i	=	0;	i	<	100;	i++)	
		9 	 								a[i]	=	a[i]	*	a[i];	
10  				}	
11	
12								#pragma	omp	parallel	
13								{	
14												if	(a	<	100)	{	
15																		#pragma	omp	cri7cal	
16																		a++;	
17												}	
18							}	

Excluded	from	them	run7me	check	because	
it	is	race	free.	
	
WARNING:	ThreadSani7zer:	data	race		
Read	of	size	4	at	0x7fffffffdcdc	by	thread	T2:	
				#0	.omp_outlined.	race.c:14	(race
+0x0000004a6dce)	
				#1	__kmp_invoke_microtask	<null>	
(libomp_tsan.so)	

	

Previous	write	of	size	4	at	0x7fffffffdcdc	by	
main	thread:	
				#0	.omp_outlined.	race.c:16	(race
+0x0000004a6e2c)	
				#1	__kmp_invoke_microtask	<null>	
(libomp_tsan.so)	

Archer:	Result	Summary	

32	

