
Amdahl’s Law  
in the  
Multicore Era

A
s we enter the multicore era, we’re at an 
inflection point in the computing landscape. 
Computing vendors have announced chips 
with multiple processor cores. Moreover, 
vendor road maps promise to repeatedly 

double the number of cores per chip. These future chips 
are variously called chip multiprocessors, multicore 
chips, and many-core chips.

Designers must subdue more degrees of freedom for 
multicore chips than for single-core designs. They must 
address such questions as: How many cores? Should 
cores use simple pipelines or powerful multi-issue pipeline 
designs? Should cores use the same or different micro-
architectures? In addition, designers must concurrently 
manage power from both dynamic and static sources.

Although answering these questions for today’s multi-
core chip with two to eight cores is challenging now, it will 
become much more challenging in the future. Sources as 
varied as Intel and the University of California, Berkeley, 
predict a hundred,1 if not a thousand,2 cores.

As the “Amdahl’s Law” sidebar describes, this model 
has important consequences for the multicore era. To 
complement Amdahl’s software model, we offer a corol-
lary of a simple model of multicore hardware resources. 
Our results should encourage multicore designers to 
view the entire chip’s performance rather than focusing 
on core efficiencies. We also discuss several important 
limitations of our models to stimulate discussion and 
future work.

A COrollary for Multicore Chip COST
To apply Amdahl’s law to a multicore chip, we need 

a cost model for the number and performance of cores 
that the chip can support. 

We first assume that a multicore chip of given size and 
technology generation can contain at most n base core 
equivalents, where a single BCE implements the baseline 
core. This limit comes from the resources a chip designer 
is willing to devote to processor cores (with L1 caches). 
It doesn’t include chip resources expended on shared 
caches, interconnection networks, memory controllers, 
and so on. Rather, we simplistically assume that these 
nonprocessor resources are roughly constant in the mul-
ticore variations we consider.

We are agnostic on what limits a chip to n BCEs. It 
might be power, area, or some combination of power, 
area, and other factors.

Second, we assume that (micro-) architects have 
techniques for using the resources of multiple BCEs 
to create a core with greater sequential performance. 
Let the performance of a single-BCE core be 1. We 
assume that architects can expend the resources of r 
BCEs to create a powerful core with sequential per-
formance perf(r).

Architects should always increase core resources when 
perf(r) > r because doing so speeds up both sequential and 
parallel execution. When perf(r) < r, however, the trade
off begins. Increasing core performance aids sequential 
execution, but hurts parallel execution.

Augmenting Amdahl’s law with a corollary for multicore hardware makes it relevant to future 

generations of chips with multiple processor cores. Obtaining optimal multicore performance 

will require further research in both extracting more parallelism and making sequential cores 

faster.
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Our equations allow perf(r) to be an arbitrary func-
tion, but all our graphs follow Shekhar Borkar3 and 
assume perf(r) = r . In other words, we assume efforts 
that devote r BCE resources will result in sequential 
performance r . Thus, architectures can double per-
formance at a cost of four BCEs, triple it for nine BCEs, 
and so on. We tried other similar functions (for example, 

r1 5. ), but found no important changes to our results.

Symmetric Multicore Chips
A symmetric multicore chip requires that all its cores 

have the same cost. A symmetric multicore chip with a 
resource budget of n = 16 BCEs, for example, can sup-
port 16 cores of one BCE each, four cores of four BCEs 
each, or, in general, n/r cores of r BCEs each (our equa-
tions and graphs use a continuous approximation instead 
of rounding down to an integer number of cores). Figures 

1a and 1b show two hypothetical symmetric multicore 
chips for n = 16. 

Under Amdahl’s law, the speedup of a symmetric 
multicore chip (relative to using one single-BCE core) 
depends on the software fraction that is parallelizable 
(f), the total chip resources in BCEs (n), and the BCE 
resources (r) devoted to increase each core’s perfor-
mance. The chip uses one core to execute sequentially 
at performance perf(r). It uses all n/r cores to exe-
cute in parallel at performance perf(r) × n/r. Overall,  
we get:

Speedupsymmetric f n r
f

perf r
f r
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Consider Figure 2a. It assumes a symmetric multi-
core chip of n = 16 BCEs and perf(r) = r . The x-axis 

Amdahl’s Law
Everyone knows Amdahl’s law, but quickly for-
gets it.	 	 —Thomas Puzak, IBM, 2007

Most computer scientists learn Amdahl’s law in 
school: Let speedup be the original execution time 
divided by an enhanced execution time.

1
 The modern 

version of Amdahl’s law states that if you enhance a 
fraction f of a computation by a speedup S, the overall 
speedup is:

Speedupenhanced f S
f f

S
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−( ) +

1
1

Amdahl’s law applies broadly and has important 
corollaries such as:

Attack the common case: When f is small, optimi-
zations will have little effect.

• The aspects you ignore also limit speedup: 	
As S approaches infinity, speedup is bound by 
1/(1 – f ).

Four decades ago, Gene Amdahl defined his law for 
the special case of using n processors (cores) in parallel 
when he argued for the single-processor approach’s 
validity for achieving large-scale computing capa-
bilities.

1
 He used a limit argument to assume that a 

fraction f of a program’s execution time was infinitely 
parallelizable with no scheduling overhead, while 
the remaining fraction, 1 – f, was totally sequential. 
Without presenting an equation, he noted that the 
speedup on n processors is governed by:

Speedupparallel f n
f f

n
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−( ) +

1
1

•

•

Finally, Amdahl argued that typical values of 1 – f 
were large enough to favor single processors.

Despite their simplicity, Amdahl’s arguments 
held, and mainframes with one or a few proces-
sors dominated the computing landscape. They 
also largely held in the minicomputer and personal 
computer eras that followed. As recent technology 
trends usher us into the multicore era, Amdahl’s law 
is still relevant.

Amdahl’s equations assume, however, that the 
computation problem size doesn’t change when 
running on enhanced machines. That is, the frac-
tion of a program that is parallelizable remains 
fixed. John Gustafson argued that Amdahl’s law 
doesn’t do justice to massively parallel machines 
because they allow computations previously intrac-
table in the given time constraints.

2
 A machine 

with greater parallel computation ability lets com-
putations operate on larger data sets in the same 
amount of time. When Gustafson’s arguments 
apply, parallelism will be ample. In our view, how-
ever, robust general-purpose multicore designs 
should also operate well under Amdahl’s more 	
pessimistic assumptions.
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(a) (b) (c)

Figure 1. Varieties of multicore chips. (a) Symmetric multicore with 16 one-base core equivalent cores, (b) symmetric multicore 
with four four-BCE cores, and (c) asymmetric multicore with one four-BCE core and 12 one-BCE cores. These figures omit important 
structures such as memory interfaces, shared caches, and interconnects, and assume that area, not power, is a chip’s limiting 
resource.
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Figure 2. Speedup of (a, b) symmetric, (c, d) asymmetric, and (e, f) dynamic multicore chips with n = 16 BCEs (a, c, and e) or n = 256 
BCEs (b, d, and f).
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gives resources used to increase each core’s perfor-
mance: a value 1 says the chip has 16 base cores, while 
a value of r = 16 uses all resources for a single core. 
Lines assume different values for the parallel fraction  
(f = 0.5, 0.9, …, 0.999). The y-axis gives the symmet-
ric multicore chip’s speedup relative to its running on 
one single-BCE base core. The maximum speedup for 
f = 0.9, for example, is 6.7 using eight cores at a cost 
of two BCEs each.

Similarly, Figure 2b illustrates how tradeoffs change 
when Moore’s law allows n = 256 BCEs per chip. With 
f = 0.975, for example, the maximum speedup of 51.2 
occurs with 36 cores of 7.1 BCEs each.

Result 1. Amdahl’s law applies to multicore chips 
because achieving the best speedups requires fs that are 
near 1. Thus, finding parallelism is still critical.

Implication 1. Researchers should target increasing f 
through architectural support, compiler techniques, pro-
gramming model improvements, and so on.

This implication is the most obvious and important. 
Recall, however, that a system is cost-effective if speedup 
exceeds its costup.4 Multicore costup is the multicore  
system cost divided by the single-core system cost. 
Because this costup is often much less than n, speedups 
less than n can be cost-effective.

Result 2. Using more BCEs per core, r > 1, can be opti-
mal, even when performance grows by only r . For a 
given f, the maximum speedup can occur at one big core, 
n base cores, or with an intermediate number of middle-
sized cores. Recall that for n = 256 and f = 0.975, the 
maximum speedup occurs using 7.1 BCEs per core.

Implication 2. Researchers should seek methods of 
increasing core performance even at a high cost.

Result 3. Moving to denser chips increases the likeli-
hood that cores will be nonminimal. Even at f = 0.99, 
minimal base cores are optimal at chip size n = 16, but 
more powerful cores help at n = 256.

Implication 3. As Moore’s law leads to larger multi-
core chips, researchers should look for ways to design 
more powerful cores.

Asymmetric Multicore Chips
An alternative to a symmetric multicore chip is an 

asymmetric (or heterogeneous) multicore chip, in which 
one or more cores are more powerful than the others.5-8 
With the simplistic assumptions of Amdahl’s law, it 
makes most sense to devote extra resources to increase 
only one core’s capability, as Figure 1c shows.

With a resource budget of n = 16 BCEs, for example, an 
asymmetric multicore chip can have one four-BCE core 
and 12 one-BCE cores, one nine-BCE core and seven one-
BCE cores, and so on. In general, the chip can have 1 + n 
– r cores because the single larger core uses r resources and 
leaves n – r resources for the one-BCE cores. 

Amdahl’s law has a different effect on an asym-
metric multicore chip. This chip uses the one core 

with more resources to execute sequentially at per-
formance perf(r). In the parallel fraction, however, 
it gets performance perf(r) from the large core and 
performance 1 from each of the n – r base cores. 
Overall, we get:
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Figure 2c shows asymmetric speedup curves for  
n = 16 BCEs, while Figure 2d gives curves for n = 256 
BCEs. These curves are markedly different from the cor-
responding symmetric speedups in Figures 2a and 2b. 
The symmetric curves typically show either immediate 
performance improvement or performance loss as the 
chip uses more powerful cores, depending on the level of 
parallelism. In contrast, asymmetric chips often reach a 
maximum speedup between the extremes.

Result 4. Asymmetric multicore chips can offer poten-
tial speedups that are much greater than symmetric 
multicore chips (and never worse). For f = 0.975 and  
n = 256, for example, the best asymmetric speedup is 
125.0, whereas the best symmetric speedup is 51.2.

Implication 4. Researchers should continue to investi-
gate asymmetric multicore chips, including dealing with 
the scheduling and overhead challenges that Amdahl’s 
model doesn’t capture.

Result 5. Denser multicore chips increase both the 
speedup benefit of going asymmetric and the optimal 
performance of the single large core. For f = 0.975 and  
n = 1,024, an example not shown in our graphs, the best 
speedup is at a hypothetical design with one core of 345 
BCEs and 679 single-BCE cores.

Implication 5. Researchers should investigate methods 
of speeding sequential performance even if they appear 
locally inefficient—for example, perf(r) = r . This is 
because these methods can be globally efficient as they 
reduce the sequential phase when the chip’s other n – r 
cores are idle.

Dynamic Multicore Chips
What if architects could have their cake and eat it too? 

Consider dynamically combining up to r cores to boost 
performance of only the sequential component, as Fig-
ure 3 shows. This could be possible with, for example, 
thread-level speculation or helper threads.9-12 In sequen-
tial mode, this dynamic multicore chip can execute with 
performance perf(r) when the dynamic techniques can 
use r BCEs. In parallel mode, a dynamic multicore gets 
performance n using all base cores in parallel. Overall, 
we get:

Speedupdynamic f n r
f
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1

Figure 2e displays dynamic speedups when using r 
cores in sequential mode for perf(r) = r  for n = 16 
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BCEs, while Figure 2f gives curves for n = 256 BCEs. 
As the graphs show, performance always gets better 
as the software can exploit more BCE resources to 
improve the sequential component. Practical consid-
erations, however, might keep r much smaller than its 
maximum of n.

Result 6. Dynamic multicore chips can offer speed-
ups that can be greater (and are never worse) than 
asymmetric chips with identical perf(r) functions. 
With Amdahl’s sequential-parallel assumption, how-
ever, achieving much greater speedup than asymmetric 
chips requires dynamic techniques that harness more 
cores for sequential mode than is possible today. For  
f = 0.99 and n = 256, for example, effectively harness-
ing all 256 cores would achieve a speedup of 223, 
which is much greater than the comparable asymmet-
ric speedup of 165. This result follows because we 
assume that dynamic chips can both gang all resources 
together for sequential execution and free them for 
parallel execution.

Implication 6. Researchers should continue to inves-
tigate methods that approximate a dynamic multicore 
chip, such as thread-level speculation and helper threads. 
Even if the methods appear locally inefficient, as with 
asymmetric chips, the methods can be globally efficient. 
Although these methods can be difficult to apply under 
Amdahl’s extreme assumptions, they could flourish for 
software with substantial phases of intermediate-level 
parallelism.

Simple as Possible, but No Simpler
Amdahl’s law and the corollary we offer for multicore 

hardware seek to provide insight to stimulate discussion 
and future work. Nevertheless, our specific quantitative 
results are suspect because the real world is much more 
complex.

Currently, hardware designers can’t build cores that 
achieve arbitrary high performance by adding more 
resources, nor do they know how to dynamically har-
ness many cores for sequential use without undue perfor-
mance and hardware resource overhead. Moreover, our 
models ignore important effects of dynamic and static 
power, as well as on- and off-chip memory system and 
interconnect design.

Software is not just infinitely parallel and sequential. 
Software tasks and data movements add overhead. It’s 
more costly to develop parallel software than sequen-
tial software. Furthermore, scheduling software tasks 
on asymmetric and dynamic multicore chips could be 
difficult and add overhead. To this end, Tomer Morad 
and his colleagues13 and JoAnn Paul and Brett Meyer14 
developed sophisticated models that question the 
validity of Amdhal’s law to future systems, especially 
embedded ones. On the other hand, more cores might 
advantageously allow greater parallelism from larger 
problem sizes, as John Gustafson envisioned.15

P essimists will bemoan our model’s simplicity and 
lament that much of the design space we explore 
can’t be built with known techniques. We charge 

you, the reader, to develop better models, and, more 
importantly, to invent new software and hardware 
designs that realize the speedup potentials this article 
displays. Moreover, research leaders should temper the 
current pendulum swing from the past’s underemphasis 
on parallel research to a future with too little sequen-
tial research. To help you get started, we provide slides 
from a keynote talk as well as the code examples for 
this article’s models at www.cs.wisc.edu/multifacet/
amdahl. ■
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