
Amdahl’s Law
in the
Multicore Era

A
s we enter the multicore era, we’re at an
inflection point in the computing landscape.
Computing vendors have announced chips
with multiple processor cores. Moreover,
vendor road maps promise to repeatedly

double the number of cores per chip. These future chips
are variously called chip multiprocessors, multicore
chips, and many-core chips.

Designers must subdue more degrees of freedom for
multicore chips than for single-core designs. They must
address such questions as: How many cores? Should
cores use simple pipelines or powerful multi-issue pipeline
designs? Should cores use the same or different micro-
architectures? In addition, designers must concurrently
manage power from both dynamic and static sources.

Although answering these questions for today’s multi-
core chip with two to eight cores is challenging now, it will
become much more challenging in the future. Sources as
varied as Intel and the University of California, Berkeley,
predict a hundred,1 if not a thousand,2 cores.

As the “Amdahl’s Law” sidebar describes, this model
has important consequences for the multicore era. To
complement Amdahl’s software model, we offer a corol-
lary of a simple model of multicore hardware resources.
Our results should encourage multicore designers to
view the entire chip’s performance rather than focusing
on core efficiencies. We also discuss several important
limitations of our models to stimulate discussion and
future work.

A COrollary for Multicore Chip COST
To apply Amdahl’s law to a multicore chip, we need

a cost model for the number and performance of cores
that the chip can support.

We first assume that a multicore chip of given size and
technology generation can contain at most n base core
equivalents, where a single BCE implements the baseline
core. This limit comes from the resources a chip designer
is willing to devote to processor cores (with L1 caches).
It doesn’t include chip resources expended on shared
caches, interconnection networks, memory controllers,
and so on. Rather, we simplistically assume that these
nonprocessor resources are roughly constant in the mul-
ticore variations we consider.

We are agnostic on what limits a chip to n BCEs. It
might be power, area, or some combination of power,
area, and other factors.

Second, we assume that (micro-) architects have
techniques for using the resources of multiple BCEs
to create a core with greater sequential performance.
Let the performance of a single-BCE core be 1. We
assume that architects can expend the resources of r
BCEs to create a powerful core with sequential per-
formance perf(r).

Architects should always increase core resources when
perf(r) > r because doing so speeds up both sequential and
parallel execution. When perf(r) < r, however, the trade
off begins. Increasing core performance aids sequential
execution, but hurts parallel execution.

Augmenting Amdahl’s law with a corollary for multicore hardware makes it relevant to future

generations of chips with multiple processor cores. Obtaining optimal multicore performance

will require further research in both extracting more parallelism and making sequential cores

faster.

Mark D. Hill, University of Wisconsin-Madison

Michael R. Marty, Google

0018-9162/08/$25.00 © 2008 IEEE	 Published by the IEEE Computer Society 	 July 2008	 33

C o v e r f e a t u r e

	 34	 Computer

Our equations allow perf(r) to be an arbitrary func-
tion, but all our graphs follow Shekhar Borkar3 and
assume perf(r) = r . In other words, we assume efforts
that devote r BCE resources will result in sequential
performance r . Thus, architectures can double per-
formance at a cost of four BCEs, triple it for nine BCEs,
and so on. We tried other similar functions (for example,

r1 5.), but found no important changes to our results.

Symmetric Multicore Chips
A symmetric multicore chip requires that all its cores

have the same cost. A symmetric multicore chip with a
resource budget of n = 16 BCEs, for example, can sup-
port 16 cores of one BCE each, four cores of four BCEs
each, or, in general, n/r cores of r BCEs each (our equa-
tions and graphs use a continuous approximation instead
of rounding down to an integer number of cores). Figures

1a and 1b show two hypothetical symmetric multicore
chips for n = 16.

Under Amdahl’s law, the speedup of a symmetric
multicore chip (relative to using one single-BCE core)
depends on the software fraction that is parallelizable
(f), the total chip resources in BCEs (n), and the BCE
resources (r) devoted to increase each core’s perfor-
mance. The chip uses one core to execute sequentially
at performance perf(r). It uses all n/r cores to exe-
cute in parallel at performance perf(r) × n/r. Overall,
we get:

Speedupsymmetric f n r
f

perf r
f r

, ,() =
+−

()
⋅

1
1

pperf r n()⋅

Consider Figure 2a. It assumes a symmetric multi-
core chip of n = 16 BCEs and perf(r) = r . The x-axis

Amdahl’s Law
Everyone knows Amdahl’s law, but quickly for-
gets it.	 	 —Thomas Puzak, IBM, 2007

Most computer scientists learn Amdahl’s law in
school: Let speedup be the original execution time
divided by an enhanced execution time.

1
 The modern

version of Amdahl’s law states that if you enhance a
fraction f of a computation by a speedup S, the overall
speedup is:

Speedupenhanced f S
f f

S

,() =
−() +

1
1

Amdahl’s law applies broadly and has important
corollaries such as:

Attack the common case: When f is small, optimi-
zations will have little effect.

• The aspects you ignore also limit speedup: 	
As S approaches infinity, speedup is bound by
1/(1 – f).

Four decades ago, Gene Amdahl defined his law for
the special case of using n processors (cores) in parallel
when he argued for the single-processor approach’s
validity for achieving large-scale computing capa-
bilities.

1
 He used a limit argument to assume that a

fraction f of a program’s execution time was infinitely
parallelizable with no scheduling overhead, while
the remaining fraction, 1 – f, was totally sequential.
Without presenting an equation, he noted that the
speedup on n processors is governed by:

Speedupparallel f n
f f

n

,() =
−() +

1
1

•

•

Finally, Amdahl argued that typical values of 1 – f
were large enough to favor single processors.

Despite their simplicity, Amdahl’s arguments
held, and mainframes with one or a few proces-
sors dominated the computing landscape. They
also largely held in the minicomputer and personal
computer eras that followed. As recent technology
trends usher us into the multicore era, Amdahl’s law
is still relevant.

Amdahl’s equations assume, however, that the
computation problem size doesn’t change when
running on enhanced machines. That is, the frac-
tion of a program that is parallelizable remains
fixed. John Gustafson argued that Amdahl’s law
doesn’t do justice to massively parallel machines
because they allow computations previously intrac-
table in the given time constraints.

2
 A machine

with greater parallel computation ability lets com-
putations operate on larger data sets in the same
amount of time. When Gustafson’s arguments
apply, parallelism will be ample. In our view, how-
ever, robust general-purpose multicore designs
should also operate well under Amdahl’s more 	
pessimistic assumptions.

References
	1.	 G.M. Amdahl, “Validity of the Single-Processor Approach

to Achieving Large-Scale Computing Capabilities,” Proc.
Am. Federation of Information Processing Societies Conf., AFIPS
Press, 1967, pp. 483-485.

	2.	 J.L. Gustafson, “Reevaluating Amdahl’s Law,” Comm. ACM,
May 1988, pp. 532-533.

	 July 2008	 35

(a) (b) (c)

Figure 1. Varieties of multicore chips. (a) Symmetric multicore with 16 one-base core equivalent cores, (b) symmetric multicore
with four four-BCE cores, and (c) asymmetric multicore with one four-BCE core and 12 one-BCE cores. These figures omit important
structures such as memory interfaces, shared caches, and interconnects, and assume that area, not power, is a chip’s limiting
resource.

(a) (b)

(c) (d)

(e) (f)

20 4 8 16
r BCEs

Symmetric, n = 16

20 4 8 16 32 64 128 256

50

100

150

200

250

r BCEs

Sp
ee

du
p s

ym
m

et
ric

50

100

150

200

250

Sp
ee

du
p s

ym
m

et
ric

50

100

150

200

250

Sp
ee

du
p d

yn
am

ic

Sp
ee

du
p d

yn
am

ic

Symmetric, n = 256

2 4 8 16
r BCEs

Asymmetric, n = 16

20 4 8 16 32 64 128 256
r BCEs

Asymmetric, n = 256

2

0

0 4 8 16
2

4

6

8

10

12

14

16

Sp
ee

du
p s

ym
m

et
ric

2

4

6

8

10

12

14

16

Sp
ee

du
p s

ym
m

et
ric

2

4

6

8

10

12

14

16

r BCEs

Dynamic, n = 16

20 4 8 16 32 64 128 256
r BCEs

Dynamic, n = 256

f = 0.999
f = 0.99
f = 0.975
f = 0.9
f = 0.5

Figure 2. Speedup of (a, b) symmetric, (c, d) asymmetric, and (e, f) dynamic multicore chips with n = 16 BCEs (a, c, and e) or n = 256
BCEs (b, d, and f).

	 36	 Computer

gives resources used to increase each core’s perfor-
mance: a value 1 says the chip has 16 base cores, while
a value of r = 16 uses all resources for a single core.
Lines assume different values for the parallel fraction
(f = 0.5, 0.9, …, 0.999). The y-axis gives the symmet-
ric multicore chip’s speedup relative to its running on
one single-BCE base core. The maximum speedup for
f = 0.9, for example, is 6.7 using eight cores at a cost
of two BCEs each.

Similarly, Figure 2b illustrates how tradeoffs change
when Moore’s law allows n = 256 BCEs per chip. With
f = 0.975, for example, the maximum speedup of 51.2
occurs with 36 cores of 7.1 BCEs each.

Result 1. Amdahl’s law applies to multicore chips
because achieving the best speedups requires fs that are
near 1. Thus, finding parallelism is still critical.

Implication 1. Researchers should target increasing f
through architectural support, compiler techniques, pro-
gramming model improvements, and so on.

This implication is the most obvious and important.
Recall, however, that a system is cost-effective if speedup
exceeds its costup.4 Multicore costup is the multicore
system cost divided by the single-core system cost.
Because this costup is often much less than n, speedups
less than n can be cost-effective.

Result 2. Using more BCEs per core, r > 1, can be opti-
mal, even when performance grows by only r . For a
given f, the maximum speedup can occur at one big core,
n base cores, or with an intermediate number of middle-
sized cores. Recall that for n = 256 and f = 0.975, the
maximum speedup occurs using 7.1 BCEs per core.

Implication 2. Researchers should seek methods of
increasing core performance even at a high cost.

Result 3. Moving to denser chips increases the likeli-
hood that cores will be nonminimal. Even at f = 0.99,
minimal base cores are optimal at chip size n = 16, but
more powerful cores help at n = 256.

Implication 3. As Moore’s law leads to larger multi-
core chips, researchers should look for ways to design
more powerful cores.

Asymmetric Multicore Chips
An alternative to a symmetric multicore chip is an

asymmetric (or heterogeneous) multicore chip, in which
one or more cores are more powerful than the others.5-8
With the simplistic assumptions of Amdahl’s law, it
makes most sense to devote extra resources to increase
only one core’s capability, as Figure 1c shows.

With a resource budget of n = 16 BCEs, for example, an
asymmetric multicore chip can have one four-BCE core
and 12 one-BCE cores, one nine-BCE core and seven one-
BCE cores, and so on. In general, the chip can have 1 + n
– r cores because the single larger core uses r resources and
leaves n – r resources for the one-BCE cores.

Amdahl’s law has a different effect on an asym-
metric multicore chip. This chip uses the one core

with more resources to execute sequentially at per-
formance perf(r). In the parallel fraction, however,
it gets performance perf(r) from the large core and
performance 1 from each of the n – r base cores.
Overall, we get:

Speedupasymmetric f n r
f

perf r
f

p

, ,() =
+−

()

1
1

eerf r n r()+ −

Figure 2c shows asymmetric speedup curves for
n = 16 BCEs, while Figure 2d gives curves for n = 256
BCEs. These curves are markedly different from the cor-
responding symmetric speedups in Figures 2a and 2b.
The symmetric curves typically show either immediate
performance improvement or performance loss as the
chip uses more powerful cores, depending on the level of
parallelism. In contrast, asymmetric chips often reach a
maximum speedup between the extremes.

Result 4. Asymmetric multicore chips can offer poten-
tial speedups that are much greater than symmetric
multicore chips (and never worse). For f = 0.975 and
n = 256, for example, the best asymmetric speedup is
125.0, whereas the best symmetric speedup is 51.2.

Implication 4. Researchers should continue to investi-
gate asymmetric multicore chips, including dealing with
the scheduling and overhead challenges that Amdahl’s
model doesn’t capture.

Result 5. Denser multicore chips increase both the
speedup benefit of going asymmetric and the optimal
performance of the single large core. For f = 0.975 and
n = 1,024, an example not shown in our graphs, the best
speedup is at a hypothetical design with one core of 345
BCEs and 679 single-BCE cores.

Implication 5. Researchers should investigate methods
of speeding sequential performance even if they appear
locally inefficient—for example, perf(r) = r . This is
because these methods can be globally efficient as they
reduce the sequential phase when the chip’s other n – r
cores are idle.

Dynamic Multicore Chips
What if architects could have their cake and eat it too?

Consider dynamically combining up to r cores to boost
performance of only the sequential component, as Fig-
ure 3 shows. This could be possible with, for example,
thread-level speculation or helper threads.9-12 In sequen-
tial mode, this dynamic multicore chip can execute with
performance perf(r) when the dynamic techniques can
use r BCEs. In parallel mode, a dynamic multicore gets
performance n using all base cores in parallel. Overall,
we get:

Speedupdynamic f n r
f

perf r
f
n

, ,() =
+−

()

1
1

Figure 2e displays dynamic speedups when using r
cores in sequential mode for perf(r) = r for n = 16

	 July 2008	 37

BCEs, while Figure 2f gives curves for n = 256 BCEs.
As the graphs show, performance always gets better
as the software can exploit more BCE resources to
improve the sequential component. Practical consid-
erations, however, might keep r much smaller than its
maximum of n.

Result 6. Dynamic multicore chips can offer speed-
ups that can be greater (and are never worse) than
asymmetric chips with identical perf(r) functions.
With Amdahl’s sequential-parallel assumption, how-
ever, achieving much greater speedup than asymmetric
chips requires dynamic techniques that harness more
cores for sequential mode than is possible today. For
f = 0.99 and n = 256, for example, effectively harness-
ing all 256 cores would achieve a speedup of 223,
which is much greater than the comparable asymmet-
ric speedup of 165. This result follows because we
assume that dynamic chips can both gang all resources
together for sequential execution and free them for
parallel execution.

Implication 6. Researchers should continue to inves-
tigate methods that approximate a dynamic multicore
chip, such as thread-level speculation and helper threads.
Even if the methods appear locally inefficient, as with
asymmetric chips, the methods can be globally efficient.
Although these methods can be difficult to apply under
Amdahl’s extreme assumptions, they could flourish for
software with substantial phases of intermediate-level
parallelism.

Simple as Possible, but No Simpler
Amdahl’s law and the corollary we offer for multicore

hardware seek to provide insight to stimulate discussion
and future work. Nevertheless, our specific quantitative
results are suspect because the real world is much more
complex.

Currently, hardware designers can’t build cores that
achieve arbitrary high performance by adding more
resources, nor do they know how to dynamically har-
ness many cores for sequential use without undue perfor-
mance and hardware resource overhead. Moreover, our
models ignore important effects of dynamic and static
power, as well as on- and off-chip memory system and
interconnect design.

Software is not just infinitely parallel and sequential.
Software tasks and data movements add overhead. It’s
more costly to develop parallel software than sequen-
tial software. Furthermore, scheduling software tasks
on asymmetric and dynamic multicore chips could be
difficult and add overhead. To this end, Tomer Morad
and his colleagues13 and JoAnn Paul and Brett Meyer14
developed sophisticated models that question the
validity of Amdhal’s law to future systems, especially
embedded ones. On the other hand, more cores might
advantageously allow greater parallelism from larger
problem sizes, as John Gustafson envisioned.15

P essimists will bemoan our model’s simplicity and
lament that much of the design space we explore
can’t be built with known techniques. We charge

you, the reader, to develop better models, and, more
importantly, to invent new software and hardware
designs that realize the speedup potentials this article
displays. Moreover, research leaders should temper the
current pendulum swing from the past’s underemphasis
on parallel research to a future with too little sequen-
tial research. To help you get started, we provide slides
from a keynote talk as well as the code examples for
this article’s models at www.cs.wisc.edu/multifacet/
amdahl. ■

Acknowledgments
We thank Shailender Chaudhry, Robert Cypher,

Anders Landin, José F. Martínez, Kevin Moore, Andy
Phelps, Thomas Puzak, Partha Ranganathan, Karu
Sankaralingam, Mike Swift, Marc Tremblay, Sam
Williams, David Wood, and the Wisconsin Multi-
facet group for their comments or proofreading. The
US National Science Foundation supported this work
in part through grants EIA/CNS-0205286, CCR-
0324878, CNS-0551401, CNS-0720565, and CNS-
0720565. Donations from Intel and Sun Microsystems
also helped fund the work. Mark Hill has significant
financial interest in Sun Microsystems. The views
expressed herein aren’t necessarily those of the NSF,
Intel, Google, or Sun Microsystems.

References
	 1.	“From a Few Cores to Many: A Tera-scale Computing Research

Overview,” white paper, Intel, 2006; ftp://download.intel.com/
research/platform/terascale/terascale_overview_paper.pdf.

Sequential
mode

Parallel
mode

Figure 3. Dynamic multicore chip with 16 one-BCE cores.

	 38	 Computer

	 2.	K. Asanovic et al., The Landscape of Parallel Computing
Research: A View from Berkeley, tech. report UCB/EECS-
2006-183, Dept. Electrical Eng. and Computer Science, Univ.
of Calif., Berkeley, 2006.

	 3.	S. Borkar, “Thousand Core Chips—A Technology Perspec-
tive,” Proc. ACM/IEEE 44th Design Automation Conf.
(DAC), ACM Press, 2007, pp. 746-749.

	 4.	D.A. Wood and M.D. Hill, “Cost-Effective Parallel Comput-
ing,” Computer, Feb. 1995, pp. 69-72.

	 5.	S. Balakrishnan et al., “The Impact of Performance Asymme-
try in Emerging Multicore Architectures,” Proc. 32nd Ann.
Int’l Symp. Computer Architecture, ACM Press, 2005, pp.
506-517.

	 6.	J.A. Kahl et al., “Introduction to the Cell Multiprocessor,”
IBM J. Research and Development, vol. 49, no. 4, 2005, pp.
589-604.

	 7.	R. Kumar et al., “Single-ISA Heterogeneous Multi-Core
Architectures: The Potential for Processor Power Reduction,”
Proc. 36th Ann. IEEE/ACM Int’l Symp. Microarchitecture,
IEEE CS Press, 2003, pp. 81-92.

	 8.	M.A. Suleman et al., ACMP: Balancing Hardware Efficiency
and Programmer Efficiency, HPS tech. report, TRHPS-2007-
001, Univ. of Texas, Austin, 2007.

	 9.	L. Hammond, M. Willey, and K. Olukotun, “Data Specu-
lation Support for a Chip Multiprocessor,” Proc. 8th Int’l
Conf. Architectural Support for Programming Languages
and Operating Systems, ACM Press, 1998, pp. 58-69.

	10.	E. Ipek et al., “Core Fusion: Accommodating Software Diver-
sity in Chip Multiprocessors,” Proc. 34th Ann. Int’l Symp.
Computer Architecture, ACM Press, 2007, pp. 186-197.

	11.	J. Renau et al., “Energy-Efficient Thread-Level Speculation
on a CMP,” IEEE Micro, Jan./Feb. 2006, pp. 80-91.

	12.	G.S. Sohi, S. Breach, and T.N. Vijaykumar, “Multiscalar
Processors,” Proc. 22nd Ann. Int’l Symp. Computer Archi-
tecture, ACM Press, 1995, pp. 414-425.

	13.	T. Morad et al., “Performance, Power Efficiency, and
Scalability of Asymetric Cluster Chip Multiprocessors,”
Computer Architecture Letters, vol. 4, July 2005; www.
ee.technion.ac.il/people/morad/publications/accmp-computer-
architecture-letters-jul2005.pdf.

	14.	J.M. Paul and B.H. Meyer, “Amdahl’s Law Revisited for Sin-
gle Chip Systems,” Int’l J. Parallel Programming, vol. 35, no.
2, 2007, pp. 101-123.

	15.	J.L. Gustafson, “Reevaluating Amdahl’s Law,” Comm. ACM,
May 1988, pp. 532-533.

Mark D. Hill is a professor in the Computer Sciences and
the Electrical and Computer Engineering Departments at
the University of Wisconsin-Madison. His research inter-
ests include parallel computer system design, memory
system design, and computer simulation. Hill received a
PhD in computer science from the University of Califor-
nia, Berkeley. He is a Fellow of the IEEE and the ACM.
Contact him at markhill@cs.wisc.edu.

Michael R. Marty is an engineer at Google currently
working on its computing platform. His interests include
parallel computer systems design, distributed software
infrastructure, and simulation. Marty received a PhD
in computer science from the University of Wisconsin-
Madison. Contact him at mikemarty@google.com.

Get access
to individual IEEE Computer Society

documents online.

More than 100,000 articles and conference papers available!

$9US per article for members

$19US for nonmembers

www.computer.org/publications/dlib

