
At Sandia National Laboratories, we are currently engaged in research involving massively-parallel
processing. There is considerable skepticism regarding the viability of massive parallelism; the skepticism
centers around Amdahl’s law, an argument put forth by Gene Amdahl in 1967 [1] that even when the fraction of
serial work in a given problem is small, say s, the maximum speedup obtainable from even an infinite number of
parallel processors is only 1/s. We now have timing results for a 1024-processor system that demonstrate that
the assumptions underlying Amdahl’s 1967 argument are inappropriate for the current approach to massive
ensemble parallelism.

If N is the number of processors, s is the amount of time spent (by a serial processor) on serial parts of a
program and p is the amount of time spent (by a serial processor) on parts of the program that can be done in
parallel, then Amdahl’s law says that speedup is given by

Speedup = (s + p ) ⁄ (s + p ⁄ N )

= 1  ⁄ (s + p ⁄ N ),

where we have set total time s␣+␣p␣=␣1 for algebraic simplicity. For N = 1024, this is an unforgivingly steep
function of s near s = 0 (see Figure 1).

The steepness of the graph near s = 0 (approximately – N2 ) implies that very few problems will experi-
ence even a 100-fold speedup. Yet for three very practical applications (s = 0.4 – 0.8 percent) used at Sandia, we
have achieved the speedup factors on a 1024-processor hypercube which we believe are unprecedented [2]:
1021 for beam stress analysis using conjugate gradients, 1020 for baffled surface wave simulation using explicit
finite differences, and 1016 for unstable fluid flow using flux-corrected transport. How can this be, when
Amdahl’s argument would predict otherwise?
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FIGURE 1. Speedup under Amdahl’s Law
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The expression and graph both contain the implicit assumption that p is independent of N, which is
virtually never the case. One does not take a fixed-size problem and run it on various numbers of processors
except when doing academic research; in practice, the problem size scales with the number of processors. When
given a more powerful processor, the problem generally expands to make use of the increased facilities. Users
have control over such things as grid resolution, number of timesteps, difference operator complexity, and other
parameters that are usually adjusted to allow the program to be run in some desired amount of time. Hence, it
may be most realistic to assume that run time, not problem size, is constant.

As a first approximation, we have found that it is the parallel or vector part of a program that scales with
the problem size. Times for vector startup, program loading, serial bottlenecks and I/O that make up the s
component of the run do not grow with problem size. When we double the number of degrees of freedom in a
physical simulation, we double the number of processors. But this means that, as a first approximation, the
amount of work that can be done in parallel varies linearly with the number of processors. For the three applica-
tions mentioned above, we found that the parallel portion scaled by factors of 1023.9969, 1023.9965, and
1023.9965. If we use s’ and  p’  to represent serial and parallel time spent on the parallel system, then a serial
processor would  require time  s’ +  p’ x  N  to perform the task. This reasoning gives an alternative to Amdahl’s
law suggested by E. Barsis at Sandia:

Scaled speedup = (s’+ p’  x  N )  / ( s’ +  p’ )
=  s’+ p’ x  N
= N + (1   N ) x   s’

In contrast with Figure 1, this function is simply a line, and one with much more moderate slope: 1 – N.
It is thus much easier to achieve efficient parallel performance than is implied by Amdahl’s paradigm. The two
approaches, fixed-sized and scaled-sized, are contrasted and summarized in Figure 2a and b.

FIGURE 2a. Fixed-Size Model: Speedup = 1 ⁄ (s + p ⁄ N)
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FIGURE 2b. Scaled-Size Model:  Speedup = s + Np
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Figure 2a. Fixed-Size Model : Speedup = 1 / (s + p / N)



Our work to date shows that it is not an insurmountable task to extract very high efficiency from a
massively-parallel ensemble, for the reasons presented here. We feel that it is important for the computing
research community to overcome the “mental block” against massive parallelism imposed by a misuse of
Amdahl’s speedup formula; speedup should be measured by scaling the problem to the number of processors,
not fixing problem size. We expect to extend our success to a broader range of applications and even larger
values for N.
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