
Chapter 13
Randomized Algorithms

The idea that a process can be “random” is not a modern one; we can trace
the notion far back into the history of human thought and certainly see its
reflections in gambling and the insurance business, each of which reach into
ancient times. Yet, while similarly intuitive subjects like geometry and logic
have been treated mathematically for several thousand years, the mathematical
study of probability is surprisingly young; the first known attempts to seriously
formalize it came about in the 1600s. Of course, the history of computer science
plays out on a much shorter time scale, and the idea of randomization has been
with it since its early days.

Randomization and probabilistic analysis are themes that cut across many
areas of computer science, including algorithm design, and when one thinks
about random processes in the context of computation, it is usually in one of
two distinct ways. One view is to consider the world as behaving randomly:
One can consider traditional algorithms that confront randomly generated
input. This approach is often termed average-case analysis, since we are
studying the behavior of an algorithm on an “average” input (subject to some
underlying random process), rather than a worst-case input.

A second view is to consider algorithms that behave randomly: The world
provides the same worst-case input as always, but we allow our algorithm to
make random decisions as it processes the input. Thus the role of randomiza-
tion in this approach is purely internal to the algorithm and does not require
new assumptions about the nature of the input. It is this notion of a randomized
algorithm that we will be considering in this chapter.
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Why might it be useful to design an algorithm that is allowed to make
random decisions? A first answer would be to observe that by allowing ran-
domization, we’ve made our underlying model more powerful. Efficient de-
terministic algorithms that always yield the correct answer are a special case
of efficient randomized algorithms that only need to yield the correct answer
with high probability; they are also a special case of randomized algorithms
that are always correct, and run efficiently in expectation. Even in a worst-
case world, an algorithm that does its own “internal” randomization may be
able to offset certain worst-case phenomena. So problems that may not have
been solvable by efficient deterministic algorithms may still be amenable to
randomized algorithms.

But this is not the whole story, and in fact we’ll be looking at randomized
algorithms for a number of problems where there exist comparably efficient de-
terministic algorithms. Even in such situations, a randomized approach often
exhibits considerable power for further reasons: It may be conceptually much
simpler; or it may allow the algorithm to function while maintaining very little
internal state or memory of the past. The advantages of randomization seem
to increase further as one considers larger computer systems and networks,
with many loosely interacting processes—in other words, a distributed sys-
tem. Here random behavior on the part of individual processes can reduce the
amount of explicit communication or synchronization that is required; it is
often valuable as a tool for symmetry-breaking among processes, reducing the
danger of contention and “hot spots.” A number of our examples will come
from settings like this: regulating access to a shared resource, balancing load
on multiple processors, or routing packets through a network. Even a small
level of comfort with randomized heuristics can give one considerable leverage
in thinking about large systems.

A natural worry in approaching the topic of randomized algorithms is that
it requires an extensive knowledge of probability. Of course, it’s always better
to know more rather than less, and some algorithms are indeed based on
complex probabilistic ideas. But one further goal of this chapter is to illustrate
how little underlying probability is really needed in order to understand many
of the well-known algorithms in this area. We will see that there is a small set
of useful probabilistic tools that recur frequently, and this chapter will try to
develop the tools alongside the algorithms. Ultimately, facility with these tools
is as valuable as an understanding of the specific algorithms themselves.

13.1 A First Application: Contention Resolution
We begin with a first application of randomized algorithms—contention res-
olution in a distributed system—that illustrates the general style of analysis
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we will be using for many of the algorithms that follow. In particular, it is a
chance to work through some basic manipulations involving events and their
probabilities, analyzing intersections of events using independence as well as
unions of events using a simple Union Bound. For the sake of completeness,
we give a brief summary of these concepts in the final section of this chapter
(Section 13.15).

The Problem
Suppose we have n processes P1, P2, . . . , Pn, each competing for access to
a single shared database. We imagine time as being divided into discrete
rounds. The database has the property that it can be accessed by at most
one process in a single round; if two or more processes attempt to access
it simultaneously, then all processes are “locked out” for the duration of that
round. So, while each process wants to access the database as often as possible,
it’s pointless for all of them to try accessing it in every round; then everyone
will be perpetually locked out. What’s needed is a way to divide up the rounds
among the processes in an equitable fashion, so that all processes get through
to the database on a regular basis.

If it is easy for the processes to communicate with one another, then one
can imagine all sorts of direct means for resolving the contention. But suppose
that the processes can’t communicate with one another at all; how then can
they work out a protocol under which they manage to “take turns” in accessing
the database?

Designing a Randomized Algorithm
Randomization provides a natural protocol for this problem, which we can
specify simply as follows. For some number p > 0 that we’ll determine shortly,
each process will attempt to access the database in each round with probability
p, independently of the decisions of the other processes. So, if exactly one
process decides to make the attempt in a given round, it will succeed; if
two or more try, then they will all be locked out; and if none try, then the
round is in a sense “wasted.” This type of strategy, in which each of a set
of identical processes randomizes its behavior, is the core of the symmetry-
breaking paradigm that we mentioned initially: If all the processes operated
in lockstep, repeatedly trying to access the database at the same time, there’d
be no progress; but by randomizing, they “smooth out” the contention.

Analyzing the Algorithm
As with many applications of randomization, the algorithm in this case is
extremely simple to state; the interesting issue is to analyze its performance.



710 Chapter 13 Randomized Algorithms

Defining Some Basic Events When confronted with a probabilistic system
like this, a good first step is to write down some basic events and think about
their probabilities. Here’s a first event to consider. For a given process Pi and a
given round t, let A[i, t]denote the event that Pi attempts to access the database
in round t. We know that each process attempts an access in each round with
probability p, so the probability of this event, for any i and t, is Pr

[
A[i, t]

]
= p.

For every event, there is also a complementary event, indicating that the event
did not occur; here we have the complementary event A[i, t] that Pi does not
attempt to access the database in round t, with probability

Pr
[
A[i, t]

]
= 1− Pr

[
A[i, t]

]
= 1− p.

Our real concern is whether a process succeeds in accessing the database in
a given round. Let S[i, t]denote this event. Clearly, the process Pi must attempt
an access in round t in order to succeed. Indeed, succeeding is equivalent to
the following: Process Pi attempts to access the database in round t, and each
other process does not attempt to access the database in round t. Thus S[i, t] is
equal to the intersection of the event A[i, t]with all the complementary events
A[j, t], for j ̸= i:

S[i, t]= A[i, t]∩

⎛

⎝
⋂

j ̸=i

A[j, t]

⎞

⎠ .

All the events in this intersection are independent, by the definition of the
contention-resolution protocol. Thus, to get the probability of S[i, t], we can
multiply the probabilities of all the events in the intersection:

Pr
[
S[i, t]

]
= Pr

[
A[i, t]

]
·
∏

j ̸=i

Pr
[
A[j, t]

]
= p(1− p)n−1.

We now have a nice, closed-form expression for the probability that Pi
succeeds in accessing the database in round t; we can now ask how to set p
so that this success probability is maximized. Observe first that the success
probability is 0 for the extreme cases p = 0 and p = 1 (these correspond to the
extreme case in which processes never bother attempting, and the opposite
extreme case in which every process tries accessing the database in every
round, so that everyone is locked out). The function f (p) = p(1 − p)n−1 is
positive for values of p strictly between 0 and 1, and its derivative f ′(p) =
(1− p)n−1 − (n − 1)p(1− p)n−2 has a single zero at the value p = 1/n, where
the maximum is achieved. Thus we can maximize the success probability by
setting p = 1/n. (Notice that p = 1/n is a natural intuitive choice as well, if one
wants exactly one process to attempt an access in any round.)
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When we set p = 1/n, we get Pr
[
S[i, t]

]
= 1

n

(
1− 1

n

)n−1
. It’s worth getting

a sense for the asymptotic value of this expression, with the help of the
following extremely useful fact from basic calculus.

(13.1)

(a) The function
(
1− 1

n

)n
converges monotonically from 1

4 up to 1
e as n

increases from 2.

(b) The function
(
1− 1

n

)n−1
converges monotonically from 1

2 down to 1
e as n

increases from 2.

Using (13.1), we see that 1/(en) ≤ Pr
[
S[i, t]

]
≤ 1/(2n), and hence

Pr
[
S[i, t]

]
is asymptotically equal to !(1/n).

Waiting for a Particular Process to Succeed Let’s consider this protocol with
the optimal value p = 1/n for the access probability. Suppose we are interested
in how long it will take process Pi to succeed in accessing the database at least
once. We see from the earlier calculation that the probability of its succeeding
in any one round is not very good, if n is reasonably large. How about if we
consider multiple rounds?

Let F[i, t] denote the “failure event” that process Pi does not succeed
in any of the rounds 1 through t. This is clearly just the intersection of
the complementary events S[i, r] for r = 1, 2, . . . , t. Moreover, since each of
these events is independent, we can compute the probability of F[i, t] by
multiplication:

Pr
[
F[i, t]

]
= Pr

[ t⋂

r=1

S[i, r]

]

=
t∏

r=1

Pr
[
S[i, r]

]
=

[

1− 1
n

(
1− 1

n

)n−1
]t

.

This calculation does give us the value of the probability; but at this point,
we’re in danger of ending up with some extremely complicated-looking ex-
pressions, and so it’s important to start thinking asymptotically. Recall that
the probability of success was !(1/n) after one round; specifically, it was
bounded between 1/(en) and 1/(2n). Using the expression above, we have

Pr
[
F[i, t]

]
=

t∏

r=1

Pr
[
S[i, r]

]
≤

(
1− 1

en

)t

.

Now we notice that if we set t = en, then we have an expression that can be
plugged directly into (13.1). Of course en will not be an integer; so we can
take t = ⌈en⌉ and write

Pr
[
F[i, t]

]
≤

(
1− 1

en

)⌈en⌉
≤

(
1− 1

en

)en

≤ 1
e

.
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This is a very compact and useful asymptotic statement: The probability
that process Pi does not succeed in any of rounds 1 through ⌈en⌉ is upper-
bounded by the constant e−1, independent of n. Now, if we increase t by some
fairly small factors, the probability that Pi does not succeed in any of rounds
1 through t drops precipitously: If we set t = ⌈en⌉ · (c ln n), then we have

Pr
[
F[i, t]

]
≤

(
1− 1

en

)t

=
((

1− 1
en

)⌈en⌉)c ln n

≤ e−c ln n = n−c.

So, asymptotically, we can view things as follows. After !(n) rounds,
the probability that Pi has not yet succeeded is bounded by a constant; and
between then and !(n ln n), this probability drops to a quantity that is quite
small, bounded by an inverse polynomial in n.

Waiting for All Processes to Get Through Finally, we’re in a position to ask
the question that was implicit in the overall setup: How many rounds must
elapse before there’s a high probability that all processes will have succeeded
in accessing the database at least once?

To address this, we say that the protocol fails after t rounds if some process
has not yet succeeded in accessing the database. Let Ft denote the event that
the protocol fails after t rounds; the goal is to find a reasonably small value of
t for which Pr

[
Ft

]
is small.

The event Ft occurs if and only if one of the events F[i, t] occurs; so we
can write

Ft =
n⋃

i=1

F[i, t].

Previously, we considered intersections of independent events, which were
very simple to work with; here, by contrast, we have a union of events that are
not independent. Probabilities of unions like this can be very hard to compute
exactly, and in many settings it is enough to analyze them using a simple Union
Bound, which says that the probability of a union of events is upper-bounded
by the sum of their individual probabilities:

(13.2) (The Union Bound) Given events E1, E2, . . . , En, we have

Pr

[ n⋃

i=1

Ei

]

≤
n∑

i=1

Pr
[
Ei

]
.

Note that this is not an equality; but the upper bound is good enough
when, as here, the union on the left-hand side represents a “bad event” that
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we’re trying to avoid, and we want a bound on its probability in terms of
constituent “bad events” on the right-hand side.

For the case at hand, recall that Ft = ⋃n
i=1 F[i, t], and so

Pr
[
Ft

]
≤

n∑

i=1

Pr
[
F[i, t]

]
.

The expression on the right-hand side is a sum of n terms, each with the same
value; so to make the probability of Ft small, we need to make each of the
terms on the right significantly smaller than 1/n. From our earlier discussion,
we see that choosing t = !(n) will not be good enough, since then each term
on the right is only bounded by a constant. If we choose t = ⌈en⌉ · (c ln n),
then we have Pr

[
F[i, t]

]
≤ n−c for each i, which is what we want. Thus, in

particular, taking t = 2⌈en⌉ ln n gives us

Pr
[
Ft

]
≤

n∑

i=1

Pr
[
F[i, t]

]
≤ n · n−2 = n−1,

and so we have shown the following.

(13.3) With probability at least 1− n−1, all processes succeed in accessing
the database at least once within t = 2⌈en⌉ ln n rounds.

An interesting observation here is that if we had chosen a value of t equal
to qn ln n for a very small value of q (rather than the coefficient 2e that we
actually used), then we would have gotten an upper bound for Pr

[
F[i, t]

]
that

was larger than n−1, and hence a corresponding upper bound for the overall
failure probability Pr

[
Ft

]
that was larger than 1—in other words, a completely

worthless bound. Yet, as we saw, by choosing larger and larger values for
the coefficient q, we can drive the upper bound on Pr

[
Ft

]
down to n−c for

any constant c we want; and this is really a very tiny upper bound. So, in a
sense, all the “action” in the Union Bound takes place rapidly in the period
when t = !(n ln n); as we vary the hidden constant inside the !(·), the Union
Bound goes from providing no information to giving an extremely strong upper
bound on the probability.

We can ask whether this is simply an artifact of using the Union Bound
for our upper bound, or whether it’s intrinsic to the process we’re observing.
Although we won’t do the (somewhat messy) calculations here, one can show
that when t is a small constant times n ln n, there really is a sizable probability
that some process has not yet succeeded in accessing the database. So a
rapid falling-off in the value of Pr

[
Ft

]
genuinely does happen over the range

t = !(n ln n). For this problem, as in many problems of this flavor, we’re
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really identifying the asymptotically “correct” value of t despite our use of the
seemingly weak Union Bound.

13.2 Finding the Global Minimum Cut
Randomization naturally suggested itself in the previous example, since we
were assuming a model with many processes that could not directly commu-
nicate. We now look at a problem on graphs for which a randomized approach
comes as somewhat more of a surprise, since it is a problem for which perfectly
reasonable deterministic algorithms exist as well.

The Problem
Given an undirected graph G = (V , E), we define a cut of G to be a partition
of V into two non-empty sets A and B. Earlier, when we looked at network
flows, we worked with the closely related definition of an s-t cut: there, given
a directed graph G = (V , E) with distinguished source and sink nodes s and t,
an s-t cut was defined to be a partition of V into sets A and B such that s ∈ A
and t ∈ B. Our definition now is slightly different, since the underlying graph
is now undirected and there is no source or sink.

For a cut (A, B) in an undirected graph G, the size of (A, B) is the number of
edges with one end in A and the other in B. A global minimum cut (or “global
min-cut” for short) is a cut of minimum size. The term global here is meant
to connote that any cut of the graph is allowed; there is no source or sink.
Thus the global min-cut is a natural “robustness” parameter; it is the smallest
number of edges whose deletion disconnects the graph. We first check that
network flow techniques are indeed sufficient to find a global min-cut.

(13.4) There is a polynomial-time algorithm to find a global min-cut in an
undirected graph G.

Proof. We start from the similarity between cuts in undirected graphs and s-t
cuts in directed graphs, and with the fact that we know how to find the latter
optimally.

So given an undirected graph G = (V , E), we need to transform it so that
there are directed edges and there is a source and sink. We first replace every
undirected edge e = (u, v) ∈ E with two oppositely oriented directed edges,
e′ = (u, v) and e′′ = (v, u), each of capacity 1. Let G′ denote the resulting
directed graph.

Now suppose we pick two arbitrary nodes s, t ∈ V, and find the minimum
s-t cut in G′. It is easy to check that if (A, B) is this minimum cut in G′, then
(A, B) is also a cut of minimum size in G among all those that separate s from
t. But we know that the global min-cut in G must separate s from something,
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since both sides A and B are nonempty, and s belongs to only one of them.
So we fix any s ∈ V and compute the minimum s-t cut in G′ for every other
node t ∈ V−{s}. This is n − 1 directed minimum-cut computations, and the
best among these will be a global min-cut of G.

The algorithm in (13.4) gives the strong impression that finding a global
min-cut in an undirected graph is in some sense a harder problem than finding
a minimum s-t cut in a flow network, as we had to invoke a subroutine for the
latter problem n − 1 times in our method for solving the former. But it turns out
that this is just an illusion. A sequence of increasingly simple algorithms in the
late 1980s and early 1990s showed that global min-cuts in undirected graphs
could actually be computed just as efficiently as s-t cuts or even more so, and by
techniques that didn’t require augmenting paths or even a notion of flow. The
high point of this line of work came with David Karger’s discovery in 1992 of
the Contraction Algorithm, a randomized method that is qualitatively simpler
than all previous algorithms for global min-cuts. Indeed, it is sufficiently simple
that, on a first impression, it is very hard to believe that it actually works.

Designing the Algorithm
Here we describe the Contraction Algorithm in its simplest form. This version,
while it runs in polynomial time, is not among the most efficient algorithms
for global min-cuts. However, subsequent optimizations to the algorithm have
given it a much better running time.

The Contraction Algorithm works with a connected multigraph G = (V , E);
this is an undirected graph that is allowed to have multiple “parallel” edges
between the same pair of nodes. It begins by choosing an edge e = (u, v) of G
uniformly at random and contracting it, as shown in Figure 13.1. This means
we produce a new graph G′ in which u and v have been identified into a single
new node w; all other nodes keep their identity. Edges that had one end equal
to u and the other equal to v are deleted from G′. Each other edge e is preserved
in G′, but if one of its ends was equal to u or v, then this end is updated to be
equal to the new node w. Note that, even if G had at most one edge between
any two nodes, G′ may end up with parallel edges.

The Contraction Algorithm then continues recursively on G′, choosing
an edge uniformly at random and contracting it. As these recursive calls
proceed, the constituent vertices of G′ should be viewed as supernodes: Each
supernode w corresponds to the subset S(w) ⊆ V that has been “swallowed
up” in the contractions that produced w. The algorithm terminates when
it reaches a graph G′ that has only two supernodes v1 and v2 (presumably
with a number of parallel edges between them). Each of these super-nodes vi
has a corresponding subset S(vi) ⊆ V consisting of the nodes that have been
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Figu re 13.1 T h e C o n t r act i o n A lgo r i t h m a p p lie d t o a f o u r-n o d e i n p u t gr a p h .

contracted into it, and these two sets S(v1) and S(v2) form a partition of V. We
output (S(v1), S(v2)) as the cut found by the algorithm.

The Contraction Algorithm applied to a multigraph G = (V , E):

For each node v, we will record

the set S(v) of nodes that have been contracted into v

Initially S(v) = {v} for each v

If G has two nodes v1 and v2, then return the cut (S(v1), S(v2))

Else choose an edge e = (u, v) of G uniformly at random

Let G′ be the graph resulting from the contraction of e,

with a new node zuv replacing u and v

Define S(zuv) = S(u) ∪ S(v)

Apply the Contraction Algorithm recursively to G′

Endif

Analyzing the Algorithm
The algorithm is making random choices, so there is some probability that it
will succeed in finding a global min-cut and some probability that it won’t. One
might imagine at first that the probability of success is exponentially small.
After all, there are exponentially many possible cuts of G; what’s favoring the
minimum cut in the process? But we’ll show first that, in fact, the success
probability is only polynomially small. It will then follow that by running the
algorithm a polynomial number of times and returning the best cut found in
any run, we can actually produce a global min-cut with high probability.

(13.5) The Contraction Algorithm returns a global min-cut of G with proba-
bility at least 1/

(n
2

)
.

Proof. We focus on a global min-cut (A, B) of G and suppose it has size k;
in other words, there is a set F of k edges with one end in A and the other
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in B. We want to give a lower bound on the probability that the Contraction
Algorithm returns the cut (A, B).

Consider what could go wrong in the first step of the Contraction Algo-
rithm: The problem would be if an edge in F were contracted. For then, a node
of A and a node of B would get thrown together in the same supernode, and
(A, B) could not be returned as the output of the algorithm. Conversely, if an
edge not in F is contracted, then there is still a chance that (A, B) could be
returned.

So what we want is an upper bound on the probability that an edge in F is
contracted, and for this we need a lower bound on the size of E. Notice that if
any node v had degree less than k, then the cut ({v}, V−{v}) would have size
less than k, contradicting our assumption that (A, B) is a global min-cut. Thus
every node in G has degree at least k, and so |E| ≥ 1

2kn. Hence the probability
that an edge in F is contracted is at most

k
1
2kn

= 2
n

.

Now consider the situation after j iterations, when there are n − j super-
nodes in the current graph G′, and suppose that no edge in F has been
contracted yet. Every cut of G′ is a cut of G, and so there are at least k edges
incident to every supernode of G′. Thus G′ has at least 1

2k(n − j) edges, and
so the probability that an edge of F is contracted in the next iteration j + 1 is
at most

k
1
2k(n − j)

= 2
n − j

.

The cut (A, B) will actually be returned by the algorithm if no edge
of F is contracted in any of iterations 1, 2, . . . , n − 2. If we write Ej for
the event that an edge of F is not contracted in iteration j, then we have
shown Pr

[
E1

]
≥ 1− 2/n and Pr

[
Ej+1 | E1 ∩ E2 . . . ∩ Ej

]
≥ 1− 2/(n − j). We are

interested in lower-bounding the quantity Pr
[
E1 ∩ E2 . . . ∩ En−2

]
, and we

can check by unwinding the formula for conditional probability that this is
equal to

Pr
[
E1

]
· Pr

[
E2 | E1

] . . . Pr
[
Ej+1 | E1 ∩ E2 . . . ∩ Ej

] . . . Pr
[
En−2 | E1 ∩ E2 . . . ∩ En−3

]

≥
(

1− 2
n

) (
1− 2

n − 1

)
. . .

(
1− 2

n − j

)
. . .

(
1− 2

3

)

=
(

n − 2
n

) (
n − 3
n − 1

) (
n − 4
n − 2

)
. . .

(
2
4

) (
1
3

)

= 2
n(n − 1)

=
(

n
2

)−1

.
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So we now know that a single run of the Contraction Algorithm fails to
find a global min-cut with probability at most (1− 1/

(n
2

)
). This number is very

close to 1, of course, but we can amplify our probability of success simply
by repeatedly running the algorithm, with independent random choices, and
taking the best cut we find. By fact (13.1), if we run the algorithm

(n
2

)
times,

then the probability that we fail to find a global min-cut in any run is at most

(
1− 1/

(
n
2

))(n
2)

≤ 1
e

.

And it’s easy to drive the failure probability below 1/e with further repetitions:
If we run the algorithm

(n
2

)
ln n times, then the probability we fail to find a

global min-cut is at most e− ln n = 1/n.

The overall running time required to get a high probability of success is
polynomial in n, since each run of the Contraction Algorithm takes polynomial
time, and we run it a polynomial number of times. Its running time will be
fairly large compared with the best network flow techniques, since we perform
!(n2) independent runs and each takes at least "(m) time. We have chosen to
describe this version of the Contraction Algorithm since it is the simplest and
most elegant; it has been shown that some clever optimizations to the way in
which multiple runs are performed can improve the running time considerably.

Further Analysis: The Number of Global Minimum Cuts
The analysis of the Contraction Algorithm provides a surprisingly simple
answer to the following question: Given an undirected graph G = (V , E) on
n nodes, what is the maximum number of global min-cuts it can have (as a
function of n)?

For a directed flow network, it’s easy to see that the number of minimum
s-t cuts can be exponential in n. For example, consider a directed graph with
nodes s, t , v1, v2, . . . , vn, and unit-capacity edges (s, vi) and (vi, t) for each i.
Then s together with any subset of {v1, v2, . . . , vn} will constitute the source
side of a minimum cut, and so there are 2n minimum s-t cuts.

But for global min-cuts in an undirected graph, the situation looks quite
different. If one spends some time trying out examples, one finds that the n-
node cycle has

(n
2

)
global min-cuts (obtained by cutting any two edges), and

it is not clear how to construct an undirected graph with more.

We now show how the analysis of the Contraction Algorithm settles this
question immediately, establishing that the n-node cycle is indeed an extreme
case.
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(13.6) An undirected graph G = (V , E) on n nodes has at most
(n

2

)
global

min-cuts.

Proof. The key is that the proof of (13.5) actually established more than was
claimed. Let G be a graph, and let C1, . . . , Cr denote all its global min-cuts.
Let Ei denote the event that Ci is returned by the Contraction Algorithm, and
let E = ∪r

i=1Ei denote the event that the algorithm returns any global min-cut.

Then, although (13.5) simply asserts that Pr [E]≥ 1/
(n

2

)
, its proof actually

shows that for each i, we have Pr
[
Ei

]
≥ 1/

(n
2

)
. Now each pair of events Ei

and Ej are disjoint—since only one cut is returned by any given run of the
algorithm—so by the Union Bound for disjoint events (13.49), we have

Pr [E]= Pr
[
∪r

i=1Ei
]
=

r∑

i=1

Pr
[
Ei

]
≥ r/

(
n
2

)
.

But clearly Pr [E]≤ 1, and so we must have r ≤
(n

2

)
.

13.3 Random Variables and Their Expectations
Thus far our analysis of randomized algorithms and processes has been based
on identifying certain “bad events” and bounding their probabilities. This is
a qualitative type of analysis, in the sense that the algorithm either succeeds
or it doesn’t. A more quantitative style of analysis would consider certain
parameters associated with the behavior of the algorithm—for example, its
running time, or the quality of the solution it produces—and seek to determine
the expected size of these parameters over the random choices made by the
algorithm. In order to make such analysis possible, we need the fundamental
notion of a random variable.

Given a probability space, a random variable X is a function from the
underlying sample space to the natural numbers, such that for each natural
number j, the set X−1(j) of all sample points taking the value j is an event.
Thus we can write Pr [X = j] as loose shorthand for Pr

[
X−1(j)

]
; it is because

we can ask about X’s probability of taking a given value that we think of it as
a “random variable.”

Given a random variable X, we are often interested in determining its
expectation—the “average value” assumed by X. We define this as

E [X]=
∞∑

j=0

j · Pr [X = j] ,
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declaring this to have the value ∞ if the sum diverges. Thus, for example,
if X takes each of the values in {1, 2, . . . , n} with probability 1/n, then
E [X]= 1(1/n) + 2(1/n) + . . . + n(1/n) =

(n+1
2

)
/n = (n + 1)/2.

Example: Waiting for a First Success
Here’s a more useful example, in which we see how an appropriate random
variable lets us talk about something like the “running time” of a simple
random process. Suppose we have a coin that comes up headswith probability
p > 0, and tails with probability 1 − p. Different flips of the coin have
independent outcomes. If we flip the coin until we first get a heads, what’s
the expected number of flips we will perform? To answer this, we let X denote
the random variable equal to the number of flips performed. For j > 0, we
have Pr [X = j]= (1− p)j−1p: in order for the process to take exactly j steps,
the first j − 1 flips must come up tails, and the jth must come up heads.
Now, applying the definition, we have

E [X] =
∞∑

j=0

j · Pr [X = j]=
∞∑

j=1

j(1− p)j−1p = p
1− p

∞∑

j=1

j(1− p)j

= p
1− p

· (1− p)

p2
= 1

p
.

Thus we get the following intuitively sensible result.

(13.7) If we repeatedly perform independent trials of an experiment, each of
which succeeds with probability p > 0, then the expected number of trials we
need to perform until the first success is 1/p.

Linearity of Expectation
In Sections 13.1 and 13.2, we broke events down into unions of much simpler
events, and worked with the probabilities of these simpler events. This is a
powerful technique when working with random variables as well, and it is
based on the principle of linearity of expectation.

(13.8) Linearity of Expectation. Given two random variables X and Y defined
over the same probability space, we can define X + Y to be the random variable
equal to X(ω) + Y(ω) on a sample point ω. For any X and Y, we have

E [X + Y]= E [X]+ E [Y] .

We omit the proof, which is not difficult. Much of the power of (13.8)
comes from the fact that it applies to the sum of any random variables; no
restrictive assumptions are needed. As a result, if we need to compute the
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expectation of a complicated random variable X, we can first write it as a
sum of simpler random variables X = X1 + X2 + . . .+ Xn, compute each E

[
Xi

]
,

and then determine E [X]= ∑
E

[
Xi

]
. We now look at some examples of this

principle in action.

Example: Guessing Cards
Memoryless Guessing To amaze your friends, you have them shuffle a deck
of 52 cards and then turn over one card at a time. Before each card is turned
over, you predict its identity. Unfortunately, you don’t have any particular
psychic abilities—and you’re not so good at remembering what’s been turned
over already—so your strategy is simply to guess a card uniformly at random
from the full deck each time. On how many predictions do you expect to be
correct?

Let’s work this out for the more general setting in which the deck has n
distinct cards, using X to denote the random variable equal to the number of
correct predictions. A surprisingly effortless way to compute X is to define the
random variable Xi, for i = 1, 2, . . . , n, to be equal to 1 if the ith prediction is
correct, and 0 otherwise. Notice that X = X1 + X2 + . . . + Xn, and

E
[
Xi

]
= 0 · Pr

[
Xi = 0

]
+ 1 · Pr

[
Xi = 1

]
= Pr

[
Xi = 1

]
= 1

n
.

It’s worth pausing to note a useful fact that is implicitly demonstrated by the
above calculation: If Z is any random variable that only takes the values 0 or
1, then E [Z]= Pr [Z = 1].

Since E
[
Xi

]
= 1

n for each i, we have

E [X]=
n∑

i=1

E
[
Xi

]
= n

(
1
n

)
= 1.

Thus we have shown the following.

(13.9) The expected number of correct predictions under the memoryless
guessing strategy is 1, independent of n.

Trying to compute E [X] directly from the definition
∑∞

j=0 j · Pr [X = j]
would be much more painful, since it would involve working out a much more
elaborate summation. A significant amount of complexity is hidden away in
the seemingly innocuous statement of (13.8).

Guessing with Memory Now let’s consider a second scenario. Your psychic
abilities have not developed any further since last time, but you have become
very good at remembering which cards have already been turned over. Thus,
when you predict the next card now, you only guess uniformly from among



722 Chapter 13 Randomized Algorithms

the cards not yet seen. How many correct predictions do you expect to make
with this strategy?

Again, let the random variable Xi take the value 1 if the ith prediction is
correct, and 0 otherwise. In order for the ith prediction to be correct, you need
only guess the correct one out of n − i + 1 remaining cards; hence

E
[
Xi

]
= Pr

[
Xi = 1

]
= 1

n − i + 1
,

and so we have

Pr [X]=
n∑

i=1

E
[
Xi

]
=

n∑

i=1

1
n − i + 1

=
n∑

i=1

1
i
.

This last expression
∑n

i=1
1
i = 1 + 1

2 + 1
3 + . . . + 1

n is the harmonic number
H(n), and it is something that has come up in each of the previous two
chapters. In particular, we showed in Chapter 11 that H(n), as a function of
n, closely shadows the value

∫ n+1
1

1
x dx = ln(n + 1). For our purposes here, we

restate the basic bound on H(n) as follows.

(13.10) ln(n + 1) < H(n) < 1+ ln n, and more loosely, H(n) = !(log n).

Thus, once you are able to remember the cards you’ve already seen, the
expected number of correct predictions increases significantly above 1.

(13.11) The expected number of correct predictions under the guessing strat-
egy with memory is H(n) = !(log n).

Example: Collecting Coupons
Before moving on to more sophisticated applications, let’s consider one more
basic example in which linearity of expectation provides significant leverage.

Suppose that a certain brand of cereal includes a free coupon in each box.
There are n different types of coupons. As a regular consumer of this brand,
how many boxes do you expect to buy before finally getting a coupon of each
type?

Clearly, at least n boxes are needed; but it would be sort of surprising if
you actually had all n types of coupons by the time you’d bought n boxes. As
you collect more and more different types, it will get less and less likely that a
new box has a type of coupon you haven’t seen before. Once you have n − 1
of the n different types, there’s only a probability of 1/n that a new box has
the missing type you need.

Here’s a way to work out the expected time exactly. Let X be the random
variable equal to the number of boxes you buy until you first have a coupon
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of each type. As in our previous examples, this is a reasonably complicated
random variable to think about, and we’d like to write it as a sum of simpler
random variables. To think about this, let’s consider the following natural
idea: The coupon-collecting process makes progress whenever you buy a box
of cereal containing a type of coupon you haven’t seen before. Thus the goal
of the process is really to make progress n times. Now, at a given point in time,
what is the probability that you make progress in the next step? This depends
on how many different types of coupons you already have. If you have j types,
then the probability of making progress in the next step is (n − j)/n: Of the
n types of coupons, n − j allow you to make progress. Since the probability
varies depending on the number of different types of coupons we have, this
suggests a natural way to break down X into simpler random variables, as
follows.

Let’s say that the coupon-collecting process is in phase j when you’ve
already collected j different types of coupons and are waiting to get a new
type. When you see a new type of coupon, phase j ends and phase j + 1begins.
Thus we start in phase 0, and the whole process is done at the end of phase
n − 1. Let Xj be the random variable equal to the number of steps you spend
in phase j. Then X = X0 + X1 + . . . + Xn−1, and so it is enough to work out
E

[
Xj

]
for each j.

(13.12) E
[
Xj

]
= n/(n − j).

Proof. In each step of phase j, the phase ends immediately if and only if the
coupon you get next is one of the n − j types you haven’t seen before. Thus,
in phase j, you are really just waiting for an event of probability (n − j)/n to
occur, and so, by (13.7), the expected length of phase j is E

[
Xj

]
= n/(n − j).

Using this, linearity of expectation gives us the overall expected time.

(13.13) The expected time before all n types of coupons are collected is
E [X]= nH(n) = !(n log n).

Proof. By linearity of expectation, we have

E [X]=
n−1∑

j=0

E
[
Xj

]
=

n−1∑

j=0

n
n − j

= n
n−1∑

j=0

1
n − j

= n
n∑

i=1

1
i

= nH(n).

By (13.10), we know this is asymptotically equal to !(n log n).

It is interesting to compare the dynamics of this process to one’s intuitive
view of it. Once n − 1 of the n types of coupons are collected, you expect to



724 Chapter 13 Randomized Algorithms

buy n more boxes of cereal before you see the final type. In the meantime, you
keep getting coupons you’ve already seen before, and you might conclude that
this final type is “the rare one.” But in fact it’s just as likely as all the others;
it’s simply that the final one, whichever it turns out to be, is likely to take a
long time to get.

A Final Definition: Conditional Expectation
We now discuss one final, very useful notion concerning random variables
that will come up in some of the subsequent analyses. Just as one can define
the conditional probability of one event given another, one can analogously
define the expectation of a random variable conditioned on a certain event.
Suppose we have a random variable X and an event E of positive probability.
Then we define the conditional expectation of X, given E, to be the expected
value of X computed only over the part of the sample space corresponding
to E. We denote this quantity by E [X | E]. This simply involves replacing the
probabilities Pr [X = j] in the definition of the expectation with conditional
probabilities:

E [X | E]=
∞∑

j=0

j · Pr [X = j | E] .

13.4 A Randomized Approximation Algorithm
for MAX 3-SAT

In the previous section, we saw a number of ways in which linearity of
expectation can be used to analyze a randomized process. We now describe
an application of this idea to the design of an approximation algorithm. The
problem we consider is a variation of the 3-SAT Problem, and we will see that
one consequence of our randomized approximation algorithm is a surprisingly
strong general statement about 3-SAT that on its surface seems to have nothing
to do with either algorithms or randomization.

The Problem
When we studied NP-completeness, a core problem was 3-SAT: Given a set of
clauses C1, . . . , Ck, each of length 3, over a set of variables X = {x1, . . . , xn},
does there exist a satisfying truth assignment?

Intuitively, we can imagine such a problem arising in a system that tries
to decide the truth or falsehood of statements about the world (the variables
{xi}), given pieces of information that relate them to one another (the clauses
{Cj}). Now the world is a fairly contradictory place, and if our system gathers
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enough information, it could well end up with a set of clauses that has no
satisfying truth assignment. What then?

A natural approach, if we can’t find a truth assignment that satisfies all
clauses, is to turn the 3-SAT instance into an optimization problem: Given the
set of input clauses C1, . . . , Ck, find a truth assignment that satisfies as many
as possible. We’ll call this the Maximum 3-Satisfiability Problem (or MAX
3-SAT for short). Of course, this is an NP-hard optimization problem, since
it’s NP-complete to decide whether the maximum number of simultaneously
satisfiable clauses is equal to k. Let’s see what can be said about polynomial-
time approximation algorithms.

Designing and Analyzing the Algorithm
A remarkably simple randomized algorithm turns out to give a strong perfor-
mance guarantee for this problem. Suppose we set each variable x1, . . . , xn
independently to 0 or 1 with probability 1

2 each. What is the expected number
of clauses satisfied by such a random assignment?

Let Z denote the random variable equal to the number of satisfied clauses.
As in Section 13.3, let’s decompose Z into a sum of random variables that each
take the value 0 or 1; specifically, let Zi = 1 if the clause Ci is satisfied, and 0
otherwise. Thus Z = Z1 + Z2 + . . . + Zk. Now E

[
Zi

]
is equal to the probability

that Ci is satisfied, and this can be computed easily as follows. In order for Ci
not to be satisfied, each of its three variables must be assigned the value that
fails to make it true; since the variables are set independently, the probability
of this is ( 1

2)3 = 1
8 . Thus clause Ci is satisfied with probability 1− 1

8 = 7
8 , and

so E
[
Zi

]
= 7

8 .

Using linearity of expectation, we see that the expected number of satisfied
clauses is E [Z]= E

[
Z1

]
+ E

[
Z2

]
+ . . . + E

[
Zk

]
= 7

8k. Since no assignment can
satisfy more than k clauses, we have the following guarantee.

(13.14) Consider a 3-SAT formula, where each clause has three different
variables. The expected number of clauses satisfied by a random assignment is
within an approximation factor 7

8 of optimal.

But, if we look at what really happened in the (admittedly simple) analysis
of the random assignment, it’s clear that something stronger is going on. For
any random variable, there must be some point at which it assumes some
value at least as large as its expectation. We’ve shown that for every instance
of 3-SAT, a random truth assignment satisfies a 7

8 fraction of all clauses in
expectation; so, in particular, there must exist a truth assignment that satisfies
a number of clauses that is at least as large as this expectation.
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(13.15) For every instance of 3-SAT, there is a truth assignment that satisfies
at least a 7

8 fraction of all clauses.

There is something genuinely surprising about the statement of (13.15).
We have arrived at a nonobvious fact about 3-SAT—the existence of an
assignment satisfying many clauses—whose statement has nothing to do with
randomization; but we have done so by a randomized construction. And,
in fact, the randomized construction provides what is quite possibly the
simplest proof of (13.15). This is a fairly widespread principle in the area
of combinatorics—namely, that one can show the existence of some structure
by showing that a random construction produces it with positive probability.
Constructions of this sort are said to be applications of the probabilistic method.

Here’s a cute but minor application of (13.15): Every instance of 3-SAT
with at most seven clauses is satisfiable. Why? If the instance has k ≤ 7 clauses,
then (13.15) implies that there is an assignment satisfying at least 7

8k of them.
But when k ≤ 7, it follows that 7

8k > k − 1; and since the number of clauses
satisfied by this assignment must be an integer, it must be equal to k. In other
words, all clauses are satisfied.

Further Analysis: Waiting to Find a Good Assignment
Suppose we aren’t satisfied with a “one-shot” algorithm that produces a single
assignment with a large number of satisfied clauses in expectation. Rather,
we’d like a randomized algorithm whose expected running time is polynomial
and that is guaranteed to output a truth assignment satisfying at least a 7

8
fraction of all clauses.

A simple way to do this is to generate random truth assignments until one
of them satisfies at least 7

8k clauses. We know that such an assignment exists,
by (13.15); but how long will it take until we find one by random trials?

This is a natural place to apply the waiting-time bound we derived in
(13.7). If we can show that the probability a random assignment satisfies at
least 7

8k clauses is at least p, then the expected number of trials performed by
the algorithm is 1/p. So, in particular, we’d like to show that this quantity p is
at least as large as an inverse polynomial in n and k.

For j = 0, 1, 2, . . . , k, let pj denote the probability that a random assign-
ment satisfies exactly j clauses. So the expected number of clauses satisfied, by
the definition of expectation, is equal to

∑k
j=0 jpj; and by the previous analysis,

this is equal to 7
8k. We are interested in the quantity p = ∑

j≥7k/8 pj. How can
we use the lower bound on the expected value to give a lower bound on this
quantity?
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We start by writing

7
8

k =
k∑

j=0

jpj =
∑

j<7k/8

jpj +
∑

j≥7k/8

jpj.

Now let k′ denote the largest natural number that is strictly smaller than 7
8k.

The right-hand side of the above equation only increases if we replace the
terms in the first sum by k′pj and the terms in the second sum by kpj. We also

observe that
∑

j<7k/8

pj = 1− p, and so

7
8

k ≤
∑

j<7k/8

k′pj +
∑

j≥7k/8

kpj = k′(1− p) + kp ≤ k′ + kp,

and hence kp ≥ 7
8k − k′. But 7

8k − k′ ≥ 1
8 , since k′ is a natural number strictly

smaller than 7
8 times another natural number, and so

p ≥
7
8k − k′

k
≥ 1

8k
.

This was our goal—to get a lower bound on p—and so by the waiting-time
bound (13.7), we see that the expected number of trials needed to find the
satisfying assignment we want is at most 8k.

(13.16) There is a randomized algorithm with polynomial expected running
time that is guaranteed to produce a truth assignment satisfying at least a 7

8
fraction of all clauses.

13.5 Randomized Divide and Conquer:
Median-Finding and Quicksort

We’ve seen the divide-and-conquer paradigm for designing algorithms at
various earlier points in the book. Divide and conquer often works well in
conjunction with randomization, and we illustrate this by giving divide-and-
conquer algorithms for two fundamental problems: computing the median of
n numbers, and sorting. In each case, the “divide” step is performed using
randomization; consequently, we will use expectations of random variables to
analyze the time spent on recursive calls.

The Problem: Finding the Median
Suppose we are given a set of n numbers S = {a1, a2, . . . , an}. Their median
is the number that would be in the middle position if we were to sort them.
There’s an annoying technical difficulty if n is even, since then there is no
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“middle position”; thus we define things precisely as follows: The median of
S = {a1, a2, . . . , an} is equal to the kth largest element in S, where k = (n + 1)/2
if n is odd, and k = n/2 if n is even. In what follows, we’ll assume for the sake
of simplicity that all the numbers are distinct. Without this assumption, the
problem becomes notationally more complicated, but no new ideas are brought
into play.

It is clearly easy to compute the median in time O(n log n) if we simply
sort the numbers first. But if one begins thinking about the problem, it’s far
from clear why sorting is necessary for computing the median, or even why
"(n log n) time is necessary. In fact, we’ll show how a simple randomized
approach, based on divide-and-conquer, yields an expected running time of
O(n).

Designing the Algorithm
A Generic Algorithm Based on Splitters The first key step toward getting
an expected linear running time is to move from median-finding to the more
general problem of selection. Given a set of n numbers S and a number k
between 1and n, consider the function Select(S, k) that returns the kth largest
element in S. As special cases, Select includes the problem of finding the
median of S via Select(S, n/2) or Select(S, (n + 1)/2); it also includes the
easier problems of finding the minimum (Select(S, 1)) and the maximum
(Select(S, n)). Our goal is to design an algorithm that implements Select so
that it runs in expected time O(n).

The basic structure of the algorithm implementing Select is as follows.
We choose an element ai ∈ S, the “splitter,” and form the sets S− = {aj :aj < ai}
and S+ = {aj : aj > ai}. We can then determine which of S− or S+ contains the
kth largest element, and iterate only on this one. Without specifying yet how
we plan to choose the splitter, here’s a more concrete description of how we
form the two sets and iterate.

Select(S,k):

Choose a splitter ai ∈ S

For each element aj of S

Put aj in S− if aj < ai

Put aj in S+ if aj > ai

Endfor

If |S−| = k − 1 then

The splitter ai was in fact the desired answer

Else if |S−| ≥ k then

The kth largest element lies in S−

Recursively call Select(S−, k)
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Else suppose |S−| = ℓ < k − 1

The kth largest element lies in S+

Recursively call Select(S+, k − 1− ℓ)

Endif

Observe that the algorithm is always called recursively on a strictly smaller set,
so it must terminate. Also, observe that if |S| = 1, then we must have k = 1,
and indeed the single element in S will be returned by the algorithm. Finally,
from the choice of which recursive call to make, it’s clear by induction that the
right answer will be returned when |S| > 1 as well. Thus we have the following

(13.17) Regardless of how the splitter is chosen, the algorithm above returns
the kth largest element of S.

Choosing a Good Splitter Now let’s consider how the running time of Select
depends on the way we choose the splitter. Assuming we can select a splitter
in linear time, the rest of the algorithm takes linear time plus the time for the
recursive call. But how is the running time of the recursive call affected by the
choice of the splitter? Essentially, it’s important that the splitter significantly
reduce the size of the set being considered, so that we don’t keep making
passes through large sets of numbers many times. So a good choice of splitter
should produce sets S− and S+ that are approximately equal in size.

For example, if we could always choose the median as the splitter, then
we could show a linear bound on the running time as follows. Let cn be the
running time for Select, not counting the time for the recursive call. Then,
with medians as splitters, the running time T(n) would be bounded by the
recurrence T(n) ≤ T(n/2) + cn. This is a recurrence that we encountered at the
beginning of Chapter 5, where we showed that it has the solution T(n) = O(n).

Of course, hoping to be able to use the median as the splitter is rather
circular, since the median is what we want to compute in the first place! But,
in fact, one can show that any “well-centered” element can serve as a good
splitter: If we had a way to choose splitters ai such that there were at least
εn elements both larger and smaller than ai, for any fixed constant ε > 0,
then the size of the sets in the recursive call would shrink by a factor of at
least (1− ε) each time. Thus the running time T(n) would be bounded by
the recurrence T(n) ≤ T((1− ε)n) + cn. The same argument that showed the
previous recurrence had the solution T(n) = O(n) can be used here: If we
unroll this recurrence for any ε > 0, we get
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T(n) ≤ cn + (1− ε)cn + (1− ε)2cn + . . . =
[
1+ (1− ε) + (1− ε)2 + . . .

]

cn ≤ 1
ε

· cn,

since we have a convergent geometric series.

Indeed, the only thing to really beware of is a very “off-center” splitter.
For example, if we always chose the minimum element as the splitter, then we
may end up with a set in the recursive call that’s only one element smaller
than we had before. In this case, the running time T(n) would be bounded
by the recurrence T(n) ≤ T(n − 1) + cn. Unrolling this recurrence, we see that
there’s a problem:

T(n) ≤ cn + c(n − 1) + c(n − 2) + . . . = cn(n + 1)
2

= !(n2).

Random Splitters Choosing a “well-centered” splitter, in the sense we have
just defined, is certainly similar in flavor to our original problem of choosing
the median; but the situation is really not so bad, since any well-centered
splitter will do.

Thus we will implement the as-yet-unspecified step of selecting a splitter
using the following simple rule:

Choose a splitter ai ∈ S uniformly at random

The intuition here is very natural: since a fairly large fraction of the elements
are reasonably well-centered, we will be likely to end up with a good splitter
simply by choosing an element at random.

The analysis of the running time with a random splitter is based on this
idea; we expect the size of the set under consideration to go down by a fixed
constant fraction every iteration, so we should get a convergent series and
hence a linear bound as previously. We now show how to make this precise.

Analyzing the Algorithm
We’ll say that the algorithm is in phase j when the size of the set under
consideration is at most n( 3

4 )j but greater than n( 3
4 )j+1. Let’s try to bound

the expected time spent by the algorithm in phase j. In a given iteration of the
algorithm, we say that an element of the set under consideration is central if
at least a quarter of the elements are smaller than it and at least a quarter of
the elements are larger than it.

Now observe that if a central element is chosen as a splitter, then at least
a quarter of the set will be thrown away, the set will shrink by a factor of 3

4
or better, and the current phase will come to an end. Moreover, half of all the
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elements in the set are central, and so the probability that our random choice
of splitter produces a central element is 1

2. Hence, by our simple waiting-time
bound (13.7), the expected number of iterations before a central element is
found is 2; and so the expected number of iterations spent in phase j, for any
j, is at most 2.

This is pretty much all we need for the analysis. Let X be a random variable
equal to the number of steps taken by the algorithm. We can write it as the
sum X = X0 + X1 + X2 + . . ., where Xj is the expected number of steps spent
by the algorithm in phase j. When the algorithm is in phase j, the set has
size at most n( 3

4 )j, and so the number of steps required for one iteration in
phase j is at most cn( 3

4 )j for some constant c. We have just argued that the
expected number of iterations spent in phase j is at most two, and hence we
have E

[
Xj

]
≤ 2cn( 3

4 )j. Thus we can bound the total expected running time
using linearity of expectation,

E [X]=
∑

j

E
[
Xj

]
≤

∑

j

2cn
(

3
4

)j

= 2cn
∑

j

(
3
4

)j

≤ 8cn,

since the sum
∑

j(
3
4 )j is a geometric series that converges. Thus we have the

following desired result.

(13.18) The expected running time of Select(n, k) is O(n).

A Second Application: Quicksort
The randomized divide-and-conquer technique we used to find the median
is also the basis of the sorting algorithm Quicksort. As before, we choose a
splitter for the input set S, and separate S into the elements below the splitter
value and those above it. The difference is that, rather than looking for the
median on just one side of the splitter, we sort both sides recursively and glue
the two sorted pieces together (with the splitter in between) to produce the
overall output. Also, we need to explicitly include a base case for the recursive
code: we only use recursion on sets of size at least 4. A complete description
of Quicksort is as follows.

Quicksort(S):

If |S| ≤ 3 then

Sort S

Output the sorted list

Else

Choose a splitter ai ∈ S uniformly at random

For each element aj of S
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Put aj in S− if aj < ai

Put aj in S+ if aj > ai

Endfor

Recursively call Quicksort(S−) and Quicksort(S+)

Output the sorted set S−, then ai, then the sorted set S+

Endif

As with median-finding, the worst-case running time of this method is
not so good. If we always select the smallest element as a splitter, then the
running time T(n) on n-element sets satisfies the same recurrence as before:
T(n) ≤ T(n − 1) + cn, and so we end up with a time bound of T(n) = !(n2).
In fact, this is the worst-case running time for Quicksort.

On the positive side, if the splitters selected happened to be the medians
of the sets at each iteration, then we get the recurrence T(n) ≤ 2T(n/2) + cn,
which arose frequently in the divide-and-conquer analyses of Chapter 5; the
running time in this lucky case is O(n log n).

Here we are concerned with the expected running time; we will show that
this can be bounded by O(n log n), almost as good as in the best case when the
splitters are perfectly centered. Our analysis of Quicksort will closely follow
the analysis of median-finding. Just as in the Select procedure that we used
for median-finding, the crucial definition is that of a central splitter—one that
divides the set so that each side contains at least a quarter of the elements. (As
we discussed earlier, it is enough for the analysis that each side contains at
least some fixed constant fraction of the elements; the use of a quarter here is
chosen for convenience.) The idea is that a random choice is likely to lead to a
central splitter, and central splitters work well. In the case of sorting, a central
splitter divides the problem into two considerably smaller subproblems.

To simplify the presentation, we will slightly modify the algorithm so that
it only issues its recursive calls when it finds a central splitter. Essentially, this
modified algorithm differs from Quicksort in that it prefers to throw away
an “off-center” splitter and try again; Quicksort, by contrast, launches the
recursive calls even with an off-center splitter, and at least benefits from the
work already done in splitting S. The point is that the expected running time
of this modified algorithm can be analyzed very simply, by direct analogy
with our analysis for median-finding. With a bit more work, a very similar but
somewhat more involved analysis can also be done for the original Quicksort
algorithm as well; however, we will not describe this analysis here.

Modified Quicksort(S):

If |S| ≤ 3 then

Sort S
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Output the sorted list

Endif

Else

While no central splitter has been found

Choose a splitter ai ∈ S uniformly at random

For each element aj of S

Put aj in S− if aj < ai

Put aj in S+ if aj > ai

Endfor

If |S−| ≥ |S|/4 and |S+| ≥ |S|/4 then

ai is a central splitter

Endif

Endwhile

Recursively call Quicksort(S−) and Quicksort(S+)

Output the sorted set S−, then ai, then the sorted set S+

Endif

Consider a subproblem for some set S. Each iteration of the While loop
selects a possible splitter ai and spends O(|S|) time splitting the set and deciding
if ai is central. Earlier we argued that the number of iterations needed until
we find a central splitter is at most 2. This gives us the following statement.

(13.19) The expected running time for the algorithm on a set S, excluding
the time spent on recursive calls, is O(|S|).

The algorithm is called recursively on multiple subproblems. We will group
these subproblems by size. We’ll say that the subproblem is of type j if the size
of the set under consideration is at most n( 3

4 )j but greater than n( 3
4 )j+1. By

(13.19), the expected time spent on a subproblem of type j, excluding recursive
calls, is O(n( 3

4 )j). To bound the overall running time, we need to bound the
number of subproblems for each type j. Splitting a type j subproblem via a
central splitter creates two subproblems of higher type. So the subproblems of
a given type j are disjoint. This gives us a bound on the number of subproblems.

(13.20) The number of type j subproblems created by the algorithm is at most
( 4

3)j+1.

There are at most ( 4
3)j+1 subproblems of type j, and the expected time

spent on each is O(n( 3
4 )j) by (13.19). Thus, by linearity of expectation, the

expected time spent on subproblems of type j is O(n). The number of different
types is bounded by log 4

3
n = O(log n), which gives the desired bound.

(13.21) The expected running time of Modified Quicksort is O(n log n).
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We considered this modified version of Quicksort to simplify the analy-
sis. Coming back to the original Quicksort, our intuition suggests that the
expected running time is no worse than in the modified algorithm, as accept-
ing the noncentral splitters helps a bit with sorting, even if it does not help as
much as when a central splitter is chosen. As mentioned earlier, one can in
fact make this intuition precise, leading to an O(n log n) expected time bound
for the original Quicksort algorithm; we will not go into the details of this
here.

13.6 Hashing: A Randomized Implementation of
Dictionaries

Randomization has also proved to be a powerful technique in the design
of data structures. Here we discuss perhaps the most fundamental use of
randomization in this setting, a technique called hashing that can be used
to maintain a dynamically changing set of elements. In the next section, we
will show how an application of this technique yields a very simple algorithm
for a problem that we saw in Chapter 5—the problem of finding the closest
pair of points in the plane.

The Problem
One of the most basic applications of data structures is to simply maintain a
set of elements that changes over time. For example, such applications could
include a large company maintaining the set of its current employees and
contractors, a news indexing service recording the first paragraphs of news
articles it has seen coming across the newswire, or a search algorithm keeping
track of the small part of an exponentially large search space that it has already
explored.

In all these examples, there is a universe U of possible elements that is
extremely large: the set of all possible people, all possible paragraphs (say, up
to some character length limit), or all possible solutions to a computationally
hard problem. The data structure is trying to keep track of a set S ⊆ U whose
size is generally a negligible fraction of U, and the goal is to be able to insert
and delete elements from S and quickly determine whether a given element
belongs to S.

We will call a data structure that accomplishes this a dictionary. More
precisely, a dictionary is a data structure that supports the following operations.

. MakeDictionary. This operation initializes a fresh dictionary that can
maintain a subset S of U; the dictionary starts out empty.

. Insert(u) adds element u ∈ U to the set S. In many applications, there
may be some additional information that we want to associate with u
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(for example, u may be the name or ID number of an employee, and we
want to also store some personal information about this employee), and
we will simply imagine this being stored in the dictionary as part of a
record together with u. (So, in general, when we talk about the element
u, we really mean u and any additional information stored with u.)

. Delete(u) removes element u from the set S, if it is currently present.

. Lookup(u) determines whether u currently belongs to S; if it does, it also
retrieves any additional information stored with u.

Many of the implementations we’ve discussed earlier in the book involve
(most of) these operations: For example, in the implementation of the BFS
and DFS graph traversal algorithms, we needed to maintain the set S of nodes
already visited. But there is a fundamental difference between those problems
and the present setting, and that is the size of U. The universe U in BFS or DFS
is the set of nodes V, which is already given explicitly as part of the input.
Thus it is completely feasible in those cases to maintain a set S ⊆ U as we
did there: defining an array with |U | positions, one for each possible element,
and setting the array position for u equal to 1 if u ∈ S, and equal to 0 if u ̸∈ S.
This allows for insertion, deletion, and lookup of elements in constant time
per operation, by simply accessing the desired array entry.

Here, by contrast, we are considering the setting in which the universe
U is enormous. So we are not going to be able to use an array whose size is
anywhere near that of U. The fundamental question is whether, in this case,
we can still implement a dictionary to support the basic operations almost as
quickly as when U was relatively small.

We now describe a randomized technique called hashing that addresses
this question. While we will not be able to do quite as well as the case in
which it is feasible to define an array over all of U, hashing will allow us to
come quite close.

Designing the Data Structure
As a motivating example, let’s think a bit more about the problem faced by
an automated service that processes breaking news. Suppose you’re receiving
a steady stream of short articles from various wire services, weblog postings,
and so forth, and you’re storing the lead paragraph of each article (truncated
to at most 1,000 characters). Because you’re using many sources for the sake
of full coverage, there’s a lot of redundancy: the same article can show up
many times.

When a new article shows up, you’d like to quickly check whether you’ve
seen the lead paragraph before. So a dictionary is exactly what you want for this
problem: The universe U is the set of all strings of length at most 1,000 (or of
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length exactly 1,000, if we pad them out with blanks), and we’re maintaining
a set S ⊆ U consisting of strings (i.e., lead paragraphs) that we’ve seen before.

One solution would be to keep a linked list of all paragraphs, and scan
this list each time a new one arrives. But a Lookup operation in this case takes
time proportional to |S|. How can we get back to something that looks like an
array-based solution?

Hash Functions The basic idea of hashing is to work with an array of size
|S|, rather than one comparable to the (astronomical) size of U.

Suppose we want to be able to store a set S of size up to n. We will
set up an array H of size n to store the information, and use a function
h : U → {0, 1, . . . , n − 1} that maps elements of U to array positions. We call
such a function h a hash function, and the array H a hash table. Now, if we
want to add an element u to the set S, we simply place u in position h(u) of
the array H. In the case of storing paragraphs of text, we can think of h(·) as
computing some kind of numerical signature or “check-sum” of the paragraph
u, and this tells us the array position at which to store u.

This would work extremely well if, for all distinct u and v in our set S, it
happened to be the case that h(u) ̸= h(v). In such a case, we could look up
u in constant time: when we check array position H[h(u)], it would either be
empty or would contain just u.

In general, though, we cannot expect to be this lucky: there can be distinct
elements u, v ∈ S for which h(u) = h(v). We will say that these two elements
collide, since they are mapped to the same place in H. There are a number
of ways to deal with collisions. Here we will assume that each position H[i]
of the hash table stores a linked list of all elements u ∈ S with h(u) = i. The
operation Lookup(u) would now work as follows.

. Compute the hash function h(u).

. Scan the linked list at position H[h(u)] to see if u is present in this list.

Hence the time required for Lookup(u) is proportional to the time to compute
h(u), plus the length of the linked list at H[h(u)]. And this latter quantity, in
turn, is just the number of elements in S that collide with u. The Insert and
Delete operations work similarly: Insert adds u to the linked list at position
H[h(u)], and Delete scans this list and removes u if it is present.

So now the goal is clear: We’d like to find a hash function that “spreads
out” the elements being added, so that no one entry of the hash table H
contains too many elements. This is not a problem for which worst-case
analysis is very informative. Indeed, suppose that |U | ≥ n2 (we’re imagining
applications where it’s much larger than this). Then, for any hash function h
that we choose, there will be some set S of n elements that all map to the same
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position. In the worst case, we will insert all the elements of this set, and then
our Lookup operations will consist of scanning a linked list of length n.

Our main goal here is to show that randomization can help significantly
for this problem. As usual, we won’t make any assumptions about the set of
elements S being random; we will simply exploit randomization in the design
of the hash function. In doing this, we won’t be able to completely avoid
collisions, but can make them relatively rare enough, and so the lists will be
quite short.

Choosing a Good Hash Function We’ve seen that the efficiency of the
dictionary is based on the choice of the hash function h. Typically, we will think
of U as a large set of numbers, and then use an easily computable function h
that maps each number u ∈ U to some value in the smaller range of integers
{0, 1, . . . , n − 1}. There are many simple ways to do this: we could use the first
or last few digits of u, or simply take u modulo n. While these simple choices
may work well in many situations, it is also possible to get large numbers
of collisions. Indeed, a fixed choice of hash function may run into problems
because of the types of elements u encountered in the application: Maybe the
particular digits we use to define the hash function encode some property of
u, and hence maybe only a few options are possible. Taking u modulo n can
have the same problem, especially if n is a power of 2. To take a concrete
example, suppose we used a hash function that took an English paragraph,
used a standard character encoding scheme like ASCII to map it to a sequence
of bits, and then kept only the first few bits in this sequence. We’d expect a
huge number of collisions at the array entries corresponding to the bit strings
that encoded common English words like The, while vast portions of the array
can be occupied only by paragraphs that begin with strings like qxf , and hence
will be empty.

A slightly better choice in practice is to take (u mod p) for a prime number
p that is approximately equal to n. While in some applications this may yield
a good hashing function, it may not work well in all applications, and some
primes may work much better than others (for example, primes very close to
powers of 2 may not work so well).

Since hashing has been widely used in practice for a long time, there is a
lot of experience with what makes for a good hash function, and many hash
functions have been proposed that tend to work well empirically. Here we
would like to develop a hashing scheme where we can prove that it results in
efficient dictionary operations with high probability.

The basic idea, as suggested earlier, is to use randomization in the con-
struction of h. First let’s consider an extreme version of this: for every element
u ∈ U, when we go to insert u into S, we select a value h(u) uniformly at



738 Chapter 13 Randomized Algorithms

random in the set {0, 1, . . . , n − 1}, independently of all previous choices. In
this case, the probability that two randomly selected values h(u) and h(v) are
equal (and hence cause a collision) is quite small.

(13.22) With this uniform random hashing scheme, the probability that two
randomly selected values h(u) and h(v) collide—that is, that h(u) = h(v)—is
exactly 1/n.

Proof. Of the n2 possible choices for the pair of values (h(u), h(v)), all are
equally likely, and exactly n of these choices results in a collision.

However, it will not work to use a hash function with independently
random chosen values. To see why, suppose we inserted u into S, and then
later want to perform either Delete(u) or Lookup(u). We immediately run into
the “Where did I put it?” problem: We will need to know the random value
h(u) that we used, so we will need to have stored the value h(u) in some form
where we can quickly look it up. But this is exactly the same problem we were
trying to solve in the first place.

There are two things that we can learn from (13.22). First, it provides a
concrete basis for the intuition from practice that hash functions that spread
things around in a “random” way can be effective at reducing collisions. Sec-
ond, and more crucial for our goals here, we will be able to show how a more
controlled use of randomization achieves performance as good as suggested
in (13.22), but in a way that leads to an efficient dictionary implementation.

Universal Classes of Hash Functions The key idea is to choose a hash
function at random not from the collection of all possible functions into
[0, n − 1], but from a carefully selected class of functions. Each function h in
our class of functions H will map the universe U into the set {0, 1, . . . , n − 1},
and we will design it so that it has two properties. First, we’d like it to come
with the guarantee from (13.22):

. For any pair of elements u, v ∈ U, the probability that a randomly chosen
h ∈ H satisfies h(u) = h(v) is at most 1/n.

We say that a class H of functions is universal if it satisfies this first property.
Thus (13.22) can be viewed as saying that the class of all possible functions
from U into {0, 1, . . . , n − 1} is universal.

However, we also need H to satisfy a second property. We will state this
slightly informally for now and make it more precise later.

. Each h ∈ H can be compactly represented and, for a given h ∈ H and
u ∈ U, we can compute the value h(u) efficiently.
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The class of all possible functions failed to have this property: Essentially, the
only way to represent an arbitrary function from U into {0, 1, . . . , n − 1} is to
write down the value it takes on every single element of U.

In the remainder of this section, we will show the surprising fact that
there exist classes H that satisfy both of these properties. Before we do this,
we first make precise the basic property we need from a universal class of hash
functions. We argue that if a function h is selected at random from a universal
class of hash functions, then in any set S ⊂ U of size at most n, and any u ∈ U,
the expected number of items in S that collide with u is a constant.

(13.23) Let H be a universal class of hash functions mapping a universe U
to the set {0, 1, . . . , n − 1}, let S be an arbitrary subset of U of size at most n,
and let u be any element in U. We define X to be a random variable equal to the
number of elements s ∈ S for which h(s) = h(u), for a random choice of hash
function h ∈ H. (Here S and u are fixed, and the randomness is in the choice
of h ∈ H.) Then E [X]≤ 1.

Proof. For an element s ∈ S, we define a random variable Xs that is equal to 1
if h(s) = h(u), and equal to 0 otherwise. We have E

[
Xs

]
= Pr

[
Xs = 1

]
≤ 1/n,

since the class of functions is universal.

Now X = ∑
s∈S Xs, and so, by linearity of expectation, we have

E [X]=
∑

s∈S

E
[
Xs

]
≤ |S| · 1

n
≤ 1.

Designing a Universal Class of Hash Functions Next we will design a
universal class of hash functions. We will use a prime number p ≈ n as the
size of the hash table H. To be able to use integer arithmetic in designing
our hash functions, we will identify the universe with vectors of the form
x = (x1, x2, . . . xr) for some integer r, where 0 ≤ xi < p for each i. For example,
we can first identify U with integers in the range [0, N − 1] for some N, and
then use consecutive blocks of ⌊log p⌋ bits of u to define the corresponding
coordinates xi. If U ⊆ [0, N − 1], then we will need a number of coordinates
r ≈ log N/ log n.

Let A be the set of all vectors of the form a = (a1, . . . , ar), where ai is an
integer in the range [0, p − 1] for each i = 1, . . . , r. For each a ∈ A, we define
the linear function

ha(x) =
( r∑

i=1

aixi

)

mod p.
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This now completes our random implementation of dictionaries. We define
the family of hash functions to be H = {ha : a ∈ A}. To execute MakeDic-
tionary, we choose a random hash function from H; in other words, we
choose a random vector from A (by choosing each coordinate uniformly at
random), and form the function ha. Note that in order to define A, we need
to find a prime number p ≥ n. There are methods for generating prime num-
bers quickly, which we will not go into here. (In practice, this can also be
accomplished using a table of known prime numbers, even for relatively large
n.)

We then use this as the hash function with which to implement Insert,
Delete, and Lookup. The family H = {ha : a ∈ A} satisfies a formal version of
the second property we were seeking: It has a compact representation, since
by simply choosing and remembering a random a ∈ A, we can compute ha(u)

for all elements u ∈ U. Thus, to show that H leads to an efficient, hashing-
based implementation of dictionaries, we just need to establish that H is a
universal family of hash functions.

Analyzing the Data Structure
If we are using a hash function ha from the class H that we’ve defined, then a
collision ha(x) = ha(y) defines a linear equation modulo the prime number p. In
order to analyze such equations, it’s useful to have the following “cancellation
law.”

(13.24) For any prime p and any integer z ̸= 0 mod p, and any two integers
α, β, if αz = βz mod p, then α = β mod p.

Proof. Suppose αz = βz mod p. Then, by rearranging terms, we get z(α − β) =
0 mod p, and hence z(α − β) is divisible by p. But z ̸= 0 mod p, so z is not
divisible by p. Since p is prime, it follows that α − β must be divisible by p;
that is, α = β mod p as claimed.

We now use this to prove the main result in our analysis.

(13.25) The class of linear functions H defined above is universal.

Proof. Let x = (x1, x2, . . . xr) and y = (y1, y2, . . . yr) be two distinct elements
of U. We need to show that the probability of ha(x) = ha(y), for a randomly
chosen a ∈ A, is at most 1/p.

Since x ̸= y, then there must be an index j such that xj ̸= yj. We now
consider the following way of choosing the random vector a ∈ A. We first
choose all the coordinates ai where i ̸= j. Then, finally, we choose coordinate
aj. We will show that regardless of how all the other coordinates ai were



13.7 Finding the Closest Pair of Points: A Randomized Approach 741

chosen, the probability of ha(x) = ha(y), taken over the final choice of aj, is
exactly 1/p. It will follow that the probability of ha(x) = ha(y) over the random
choice of the full vector a must be 1/p as well.

This conclusion is intuitively clear: If the probability is 1/p regardless of
how we choose all other ai, then it is 1/p overall. There is also a direct proof
of this using conditional probabilities. Let E be the event that ha(x) = ha(y),
and let Fb be the event that all coordinates ai (for i ̸= j) receive a sequence of
values b. We will show, below, that Pr

[
E | Fb

]
= 1/p for all b. It then follows

that Pr [E]= ∑
b Pr

[
E | Fb

]
· Pr

[
Fb

]
= (1/p)

∑
b Pr

[
Fb

]
= 1/p.

So, to conclude the proof, we assume that values have been chosen
arbitrarily for all other coordinates ai, and we consider the probability of
selecting aj so that ha(x) = ha(y). By rearranging terms, we see that ha(x) =
ha(y) if and only if

aj(yj − xj) =
∑

i ̸=j

ai(xi − yi) mod p.

Since the choices for all ai (i ̸= j) have been fixed, we can view the right-hand
side as some fixed quantity m. Also, let us define z = yj − xj.

Now it is enough to show that there is exactly one value 0 ≤ aj < p that
satisfies ajz = m mod p; indeed, if this is the case, then there is a probability
of exactly 1/p of choosing this value for aj. So suppose there were two such
values, aj and a′

j. Then we would have ajz = a′
jz mod p, and so by (13.24) we

would have aj = a′
j mod p. But we assumed that aj , a′

j < p, and so in fact aj
and a′

j would be the same. It follows that there is only one aj in this range that
satisfies ajz = m mod p.

Tracing back through the implications, this means that the probability of
choosing aj so that ha(x) = ha(y) is 1/p, however we set the other coordinates
ai in a; thus the probability that x and y collide is 1/p. Thus we have shown
that H is a universal class of hash functions.

13.7 Finding the Closest Pair of Points:
A Randomized Approach

In Chapter 5, we used the divide-and-conquer technique to develop an
O(n log n) time algorithm for the problem of finding the closest pair of points in
the plane. Here we will show how to use randomization to develop a different
algorithm for this problem, using an underlying dictionary data structure. We
will show that this algorithm runs in O(n) expected time, plus O(n) expected
dictionary operations.

There are several related reasons why it is useful to express the running
time of our algorithm in this way, accounting for the dictionary operations
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separately. We have seen in Section 13.6 that dictionaries have a very efficient
implementation using hashing, so abstracting out the dictionary operations
allows us to treat the hashing as a “black box” and have the algorithm inherit
an overall running time from whatever performance guarantee is satisfied by
this hashing procedure. A concrete payoff of this is the following. It has been
shown that with the right choice of hashing procedure (more powerful, and
more complicated, than what we described in Section 13.6), one can make the
underlying dictionary operations run in linear expected time as well, yielding
an overall expected running time of O(n). Thus the randomized approach we
describe here leads to an improvement over the running time of the divide-
and-conquer algorithm that we saw earlier. We will talk about the ideas that
lead to this O(n) bound at the end of the section.

It is worth remarking at the outset that randomization shows up for two
independent reasons in this algorithm: the way in which the algorithm pro-
cesses the input points will have a random component, regardless of how the
dictionary data structure is implemented; and when the dictionary is imple-
mented using hashing, this introduces an additional source of randomness as
part of the hash-table operations. Expressing the running time via the num-
ber of dictionary operations allows us to cleanly separate the two uses of
randomness.

The Problem
Let us start by recalling the problem’s (very simple) statement. We are given
n points in the plane, and we wish to find the pair that is closest together.
As discussed in Chapter 5, this is one of the most basic geometric proximity
problems, a topic with a wide range of applications.

We will use the same notation as in our earlier discussion of the closest-
pair problem. We will denote the set of points by P = {p1, . . . , pn}, where pi
has coordinates (xi, yi); and for two points pi, pj ∈ P, we use d(pi, pj) to denote
the standard Euclidean distance between them. Our goal is to find the pair of
points pi, pj that minimizes d(pi, pj).

To simplify the discussion, we will assume that the points are all in the
unit square: 0 ≤ xi, yi < 1 for all i = 1, . . . , n. This is no loss of generality: in
linear time, we can rescale all the x- and y-coordinates of the points so that
they lie in a unit square, and then we can translate them so that this unit
square has its lower left corner at the origin.

Designing the Algorithm
The basic idea of the algorithm is very simple. We’ll consider the points in
random order, and maintain a current value δ for the closest pair as we process
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the points in this order. When we get to a new point p, we look “in the vicinity”
of p to see if any of the previously considered points are at a distance less than
δ from p. If not, then the closest pair hasn’t changed, and we move on to the
next point in the random order. If there is a point within a distance less than
δ from p, then the closest pair has changed, and we will need to update it.

The challenge in turning this into an efficient algorithm is to figure out
how to implement the task of looking for points in the vicinity of p. It is here
that the dictionary data structure will come into play.

We now begin making this more concrete. Let us assume for simplicity that
the points in our random order are labeled p1, . . . , pn. The algorithm proceeds
in stages; during each stage, the closest pair remains constant. The first stage
starts by setting δ = d(p1, p2), the distance of the first two points. The goal of
a stage is to either verify that δ is indeed the distance of the closest pair of
points, or to find a pair of points pi, pj with d(pi, pj) < δ. During a stage, we’ll
gradually add points in the order p1, p2, . . . , pn. The stage terminates when
we reach a point pi so that for some j < i, we have d(pi, pj) < δ. We then let δ

for the next stage be the closest distance found so far: δ = minj:j<i d(pi, pj).

The number of stages used will depend on the random order. If we get
lucky, and p1, p2 are the closest pair of points, then a single stage will do. It
is also possible to have as many as n − 2 stages, if adding a new point always
decreases the minimum distance. We’ll show that the expected running time
of the algorithm is within a constant factor of the time needed in the first,
lucky case, when the original value of δ is the smallest distance.

Testing a Proposed Distance The main subroutine of the algorithm is a
method to test whether the current pair of points with distance δ remains
the closest pair when a new point is added and, if not, to find the new closest
pair.

The idea of the verification is to subdivide the unit square (the area where
the points lie) into subsquares whose sides have length δ/2, as shown in
Figure 13.2. Formally, there will be N2 subsquares, where N = ⌈1/(2δ)⌉: for
0 ≤ s ≤ N − 1 and 1≤ t ≤ N − 1, we define the subsquare Sst as

Sst = {(x, y) : sδ/2 ≤ x < (s + 1)δ/2; tδ/2 ≤ y < (t + 1)δ/2}.

We claim that this collection of subsquares has two nice properties for our
purposes. First, any two points that lie in the same subsquare have distance
less than δ. Second, and a partial converse to this, any two points that are less
than δ away from each other must fall in either the same subsquare or in very
close subsquares.

(13.26) If two points p and q belong to the same subsquare Sst, then
d(p, q) < δ.
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δ/2

δ/2p
If p is involved in the closest
pair, then the other point
lies in a close subsquare.

sδ—2

—tδ2

Figu re 13.2 D i v i d i n g t h e sq u a r e i n t o si z e δ/2 s u bsq u a r es. T h e p o i n t p l ies i n t h e
s u bsq u a r e Sst .

Proof. If points p and q are in the same subsquare, then both coordinates of
the two points differ by at most δ/2, and hence d(p, q) ≤

√
(δ/2)2 + (δ/2)2) =

δ/
√

2 < δ, as required.

Next we say that subsquares Sst and Ss′t′ are close if |s − s′| ≤ 2 and
|t − t′| ≤ 2. (Note that a subsquare is close to itself.)

(13.27) If for two points p, q ∈ P we have d(p, q) < δ, then the subsquares
containing them are close.

Proof. Consider two points p, q ∈ P belonging to subsquares that are not close;
assume p ∈ Sst and q ∈ Ss′t′, where one of s, s′ or t , t′ differs by more than 2. It
follows that in one of their respective x- or y-coordinates, p and q differ by at
least δ, and so we cannot have d(p, q) < δ.

Note that for any subsquare Sst, the set of subsquares close to it form a
5 × 5 grid around it. Thus we conclude that there are at most 25 subsquares
close to Sst, counting Sst itself. (There will be fewer than 25 if Sst is at the edge
of the unit square containing the input points.)

Statements (13.26) and (13.27) suggest the basic outline of our algorithm.
Suppose that, at some point in the algorithm, we have proceeded partway
through the random order of the points and seen P′ ⊆ P, and suppose that we
know the minimum distance among points in P′ to be δ. For each of the points
in P′, we keep track of the subsquare containing it.
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Now, when the next point p is considered, we determine which of the
subsquares Sst it belongs to. If p is going to cause the minimum distance to
change, there must be some earlier point p′ ∈ P′ at distance less than δ from
it; and hence, by (13.27), the point p′ must be in one of the 25 squares around
the square Sst containing p. So we will simply check each of these 25 squares
one by one to see if it contains a point in P′; for each point in P′ that we find
this way, we compute its distance to p. By (13.26), each of these subsquares
contains at most one point of P′, so this is at most a constant number of distance
computations. (Note that we used a similar idea, via (5.10), at a crucial point
in the divide-and-conquer algorithm for this problem in Chapter 5.)

A Data Structure for Maintaining the Subsquares The high-level description
of the algorithm relies on being able to name a subsquare Sst and quickly
determine which points of P, if any, are contained in it. A dictionary is a
natural data structure for implementing such operations. The universe U of
possible elements is the set of all subsquares, and the set S maintained by the
data structure will be the subsquares that contain points from among the set
P′ that we’ve seen so far. Specifically, for each point p′ ∈ P′ that we have seen
so far, we keep the subsquare containing it in the dictionary, tagged with the
index of p′. We note that N2 = ⌈1/(2δ)⌉2 will, in general, be much larger than
n, the number of points. Thus we are in the type of situation considered in
Section 13.6 on hashing, where the universe of possible elements (the set of all
subsquares) is much larger than the number of elements being indexed (the
subsquares containing an input point seen thus far).

Now, when we consider the next point p in the random order, we determine
the subsquare Sst containing it and perform a Lookup operation for each of
the 25 subsquares close to Sst. For any points discovered by these Lookup
operations, we compute the distance to p. If none of these distances are less
than δ, then the closest distance hasn’t changed; we insert Sst (tagged with p)
into the dictionary and proceed to the next point.

However, if we find a point p′ such that δ′ = d(p, p′) < δ, then we need
to update our closest pair. This updating is a rather dramatic activity: Since
the value of the closest pair has dropped from δ to δ′, our entire collection of
subsquares, and the dictionary supporting it, has become useless—it was,
after all, designed only to be useful if the minimum distance was δ. We
therefore invoke MakeDictionary to create a new, empty dictionary that will
hold subsquares whose side lengths are δ′/2. For each point seen thus far, we
determine the subsquare containing it (in this new collection of subsquares),
and we insert this subsquare into the dictionary. Having done all this, we are
again ready to handle the next point in the random order.
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Summary of the Algorithm We have now actually described the algorithm
in full. To recap:

Order the points in a random sequence p1, p2, . . . , pn

Let δ denote the minimum distance found so far

Initialize δ = d(p1, p2)

Invoke MakeDictionary for storing subsquares of side length δ/2

For i = 1, 2, . . . , n:

Determine the subsquare Sst containing pi

Look up the 25 subsquares close to pi

Compute the distance from pi to any points found in these subsquares

If there is a point pj (j < i) such that δ′ = d(pj , pi) < δ then

Delete the current dictionary

Invoke MakeDictionary for storing subsquares of side length δ′/2

For each of the points p1, p2, . . . , pi:

Determine the subsquare of side length δ′/2 that contains it

Insert this subsquare into the new dictionary

Endfor

Else

Insert pi into the current dictionary

Endif

Endfor

Analyzing the Algorithm
There are already some things we can say about the overall running time
of the algorithm. To consider a new point pi, we need to perform only a
constant number of Lookup operations and a constant number of distance
computations. Moreover, even if we had to update the closest pair in every
iteration, we’d only do n MakeDictionary operations.

The missing ingredient is the total expected cost, over the course of the
algorithm’s execution, due to reinsertions into new dictionaries when the
closest pair is updated. We will consider this next. For now, we can at least
summarize the current state of our knowledge as follows.

(13.28) The algorithm correctly maintains the closest pair at all times, and
it performs at most O(n) distance computations, O(n) Lookup operations, and
O(n) MakeDictionary operations.

We now conclude the analysis by bounding the expected number of
Insert operations. Trying to find a good bound on the total expected number
of Insert operations seems a bit problematic at first: An update to the closest
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pair in iteration i will result in i insertions, and so each update comes at a high
cost once i gets large. Despite this, we will show the surprising fact that the
expected number of insertions is only O(n). The intuition here is that, even as
the cost of updates becomes steeper as the iterations proceed, these updates
become correspondingly less likely.

Let X be a random variable specifying the number of Insert operations
performed; the value of this random variable is determined by the random
order chosen at the outset. We are interested in bounding E [X], and as usual
in this type of situation, it is helpful to break X down into a sum of simpler
random variables. Thus let Xi be a random variable equal to 1 if the ith point
in the random order causes the minimum distance to change, and equal to 0
otherwise.

Using these random variables Xi, we can write a simple formula for the
total number of Insert operations. Each point is inserted once when it is
first encountered; and i points need to be reinserted if the minimum distance
changes in iteration i. Thus we have the following claim.

(13.29) The total number of Insert operations performed by the algorithm
is n + ∑

i iXi.

Now we bound the probability Pr
[
Xi = 1

]
that considering the ith point

causes the minimum distance to change.

(13.30) Pr
[
Xi = 1

]
≤ 2/i.

Proof. Consider the first i points p1, p2, . . . , pi in the random order. Assume
that the minimum distance among these points is achieved by p and q. Now
the point pi can only cause the minimum distance to decrease if pi = p or
pi = q. Since the first i points are in a random order, any of them is equally
likely to be last, so the probability that p or q is last is 2/i.

Note that 2/i is only an upper bound in (13.30) because there could be
multiple pairs among the first i points that define the same smallest distance.

By (13.29) and (13.30), we can bound the total number of Insert oper-
ations as

E [X]= n +
∑

i

i · E
[
Xi

]
≤ n + 2n = 3n.

Combining this with (13.28), we obtain the following bound on the running
time of the algorithm.

(13.31) In expectation, the randomized closest-pair algorithm requires O(n)

time plus O(n) dictionary operations.
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Achieving Linear Expected Running Time
Up to this point, we have treated the dictionary data structure as a black box,
and in (13.31) we bounded the running time of the algorithm in terms of
computational time plus dictionary operations. We now want to give a bound
on the actual expected running time, and so we need to analyze the work
involved in performing these dictionary operations.

To implement the dictionary, we’ll use a universal hashing scheme, like the
one discussed in Section 13.6. Once the algorithm employs a hashing scheme,
it is making use of randomness in two distinct ways: First, we randomly order
the points to be added; and second, for each new minimum distance δ, we
apply randomization to set up a new hash table using a universal hashing
scheme.

When inserting a new point pi, the algorithm uses the hash-table Lookup
operation to find all nodes in the 25 subsquares close to pi. However, if
the hash table has collisions, then these 25 Lookup operations can involve
inspecting many more than 25 nodes. Statement (13.23) from Section 13.6
shows that each such Lookup operation involves considering O(1) previously
inserted points, in expectation. It seems intuitively clear that performing O(n)

hash-table operations in expectation, each of which involves considering O(1)
elements in expectation, will result in an expected running time of O(n) overall.
To make this intuition precise, we need to be careful with how these two
sources of randomness interact.

(13.32) Assume we implement the randomized closest-pair algorithm using a
universal hashing scheme. In expectation, the total number of points considered
during the Lookup operations is bounded by O(n).

Proof. From (13.31) we know that the expected number of Lookup operations
is O(n), and from (13.23) we know that each of these Lookup operations
involves considering only O(1) points in expectation. In order to conclude
that this implies the expected number of points considered is O(n), we now
consider the relationship between these two sources of randomness.

Let X be a random variable denoting the number of Lookup operations
performed by the algorithm. Now the random order σ that the algorithm
chooses for the points completely determines the sequence of minimum-
distance values the algorithm will consider and the sequence of dictionary
operations it will perform. As a result, the choice of σ determines the value
of X; we let X(σ ) denote this value, and we let Eσ denote the event the
algorithm chooses the random order σ . Note that the conditional expectation
E

[
X | Eσ

]
is equal to X(σ ). Also, by (13.31), we know that E [X]≤ c0n, for

some constant c0.
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Now consider this sequence of Lookup operations for a fixed order σ . For
i = 1, . . . , X(σ ), let Yi be the number of points that need to be inspected during
the ith Lookup operations—namely, the number of previously inserted points
that collide with the dictionary entry involved in this Lookup operation. We
would like to bound the expected value of

∑X(σ )
i=1 Yi, where expectation is over

both the random choice of σ and the random choice of hash function.

By (13.23), we know that E
[
Yi | Eσ

]
= O(1) for all σ and all values of i.

It is useful to be able to refer to the constant in the expression O(1) here, so
we will say that E

[
Yi | Eσ

]
≤ c1 for all σ and all values of i. Summing over all

i, and using linearity of expectation, we get E
[∑

i Yi | Eσ

]
≤ c1X(σ ). Now we

have

E

[X(σ )∑

i=1

Yi

]

=
∑

σ

Pr
[
Eσ

]
E

[
∑

i

Yi | Eσ

]

≤
∑

σ

Pr
[
Eσ

]
· c1X(σ )

= c1

∑

σ

E
[
X | Eσ

]
· Pr

[
Eσ

]
= c1E [X] .

Since we know that E [X] is at most c0n, the total expected number of points
considered is at most c0c1n = O(n), which proves the claim.

Armed with this claim, we can use the universal hash functions from
Section 13.6 in our closest-pair algorithm. In expectation, the algorithm will
consider O(n) points during the Lookup operations. We have to set up multiple
hash tables—a new one each time the minimum distance changes—and we
have to compute O(n) hash-function values. All hash tables are set up for
the same size, a prime p ≥ n. We can select one prime and use the same
table throughout the algorithm. Using this, we get the following bound on the
running time.

(13.33) In expectation, the algorithm uses O(n) hash-function computations
and O(n) additional time for finding the closest pair of points.

Note the distinction between this statement and (13.31). There we counted
each dictionary operation as a single, atomic step; here, on the other hand,
we’ve conceptually opened up the dictionary operations so as to account for
the time incurred due to hash-table collisions and hash-function computations.

Finally, consider the time needed for the O(n) hash-function computations.
How fast is it to compute the value of a universal hash function h? The class
of universal hash functions developed in Section 13.6 breaks numbers in our
universe U into r ≈ log N/ log n smaller numbers of size O(log n) each, and
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then uses O(r) arithmetic operations on these smaller numbers to compute the
hash-function value. So computing the hash value of a single point involves
O(log N/ log n) multiplications, on numbers of size log n. This is a total of
O(n log N/ log n) arithmetic operations over the course of the algorithm, more
than the O(n) we were hoping for.

In fact, it is possible to decrease the number of arithmetic operations to
O(n) by using a more sophisticated class of hash functions. There are other
classes of universal hash functions where computing the hash-function value
can be done by only O(1) arithmetic operations (though these operations will
have to be done on larger numbers, integers of size roughly log N). This
class of improved hash functions also comes with one extra difficulty for
this application: the hashing scheme needs a prime that is bigger than the
size of the universe (rather than just the size of the set of points). Now the
universe in this application grows inversely with the minimum distance δ, and
so, in particular, it increases every time we discover a new, smaller minimum
distance. At such points, we will have to find a new prime and set up a new
hash table. Although we will not go into the details of this here, it is possible
to deal with these difficulties and make the algorithm achieve an expected
running time of O(n).

13.8 Randomized Caching
We now discuss the use of randomization for the caching problem, which we
first encountered in Chapter 4. We begin by developing a class of algorithms,
the marking algorithms, that include both deterministic and randomized ap-
proaches. After deriving a general performance guarantee that applies to all
marking algorithms, we show how a stronger guarantee can be obtained for a
particular marking algorithm that exploits randomization.

The Problem
We begin by recalling the Cache Maintenance Problem from Chapter 4. In the
most basic setup, we consider a processor whose full memory has n addresses;
it is also equipped with a cache containing k slots of memory that can be
accessed very quickly. We can keep copies of k items from the full memory in
the cache slots, and when a memory location is accessed, the processor will
first check the cache to see if it can be quickly retrieved. We say the request
is a cache hit if the cache contains the requested item; in this case, the access
is very quick. We say the request is a cache miss if the requested item is not
in the cache; in this case, the access takes much longer, and moreover, one
of the items currently in the cache must be evicted to make room for the new
item. (We will assume that the cache is kept full at all times.)
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The goal of a Cache Maintenance Algorithm is to minimize the number of
cache misses, which are the truly expensive part of the process. The sequence
of memory references is not under the control of the algorithm—this is simply
dictated by the application that is running—and so the job of the algorithms
we consider is simply to decide on an eviction policy: Which item currently in
the cache should be evicted on each cache miss?

In Chapter 4, we saw a greedy algorithm that is optimal for the problem:
Always evict the item that will be needed the farthest in the future. While this
algorithm is useful to have as an absolute benchmark on caching performance,
it clearly cannot be implemented under real operating conditions, since we
don’t know ahead of time when each item will be needed next. Rather, we need
to think about eviction policies that operate online, using only information
about past requests without knowledge of the future.

The eviction policy that is typically used in practice is to evict the item that
was used the least recently (i.e., whose most recent access was the longest ago
in the past); this is referred to as the Least-Recently-Used, or LRU, policy. The
empirical justification for LRU is that algorithms tend to have a certain locality
in accessing data, generally using the same set of data frequently for a while.
If a data item has not been accessed for a long time, this is a sign that it may
not be accessed again for a long time.

Here we will evaluate the performance of different eviction policies with-
out making any assumptions (such as locality) on the sequence of requests.
To do this, we will compare the number of misses made by an eviction policy
on a sequence σ with the minimum number of misses it is possible to make
on σ . We will use f (σ ) to denote this latter quantity; it is the number of misses
achieved by the optimal Farthest-in-Future policy. Comparing eviction policies
to the optimum is very much in the spirit of providing performance guaran-
tees for approximation algorithms, as we did in Chapter 11. Note, however, the
following interesting difference: the reason the optimum was not attainable in
our approximation analyses from that chapter (assuming P ̸= NP) is that the
algorithms were constrained to run in polynomial time; here, on the other
hand, the eviction policies are constrained in their pursuit of the optimum by
the fact that they do not know the requests that are coming in the future.

For eviction policies operating under this online constraint, it initially
seems hopeless to say something interesting about their performance: Why
couldn’t we just design a request sequence that completely confounds any
online eviction policy? The surprising point here is that it is in fact possible to
give absolute guarantees on the performance of various online policies relative
to the optimum.
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We first show that the number of misses incurred by LRU, on any request
sequence, can be bounded by roughly k times the optimum. We then use
randomization to develop a variation on LRU that has an exponentially stronger
bound on its performance: Its number of misses is never more than O(log k)

times the optimum.

Designing the Class of Marking Algorithms
The bounds for both LRU and its randomized variant will follow from a
general template for designing online eviction policies—a class of policies
called marking algorithms. They are motivated by the following intuition.
To do well against the benchmark of f (σ ), we need an eviction policy that
is sensitive to the difference between the following two possibilities: (a) in
the recent past, the request sequence has contained more than k distinct
items; or (b) in the recent past, the request sequence has come exclusively
from a set of at most k items. In the first case, we know that f (σ ) must be
increasing, since no algorithm can handle more than k distinct items without
incurring a cache miss. But, in the second case, it’s possible that σ is passing
through a long stretch in which an optimal algorithm need not incur any
misses at all. It is here that our policy must make sure that it incurs very
few misses.

Guided by these considerations, we now describe the basic outline of a
marking algorithm, which prefers evicting items that don’t seem to have been
used in a long time. Such an algorithm operates in phases; the description of
one phase is as follows.

Each memory item can be either marked or unmarked

At the beginning of the phase, all items are unmarked

On a request to item s:

Mark s

If s is in the cache, then evict nothing

Else s is not in the cache:

If all items currently in the cache are marked then

Declare the phase over

Processing of s is deferred to start of next phase

Else evict an unmarked item from the cache

Endif

Endif

Note that this describes a class of algorithms, rather than a single spe-
cific algorithm, because the key step—evict an unmarked item from the
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cache—does not specify which unmarked item should be selected. We will
see that eviction policies with different properties and performance guarantees
arise depending on how we resolve this ambiguity.

We first observe that, since a phase starts with all items unmarked, and
items become marked only when accessed, the unmarked items have all been
accessed less recently than the marked items. This is the sense in which
a marking algorithm is trying to evict items that have not been requested
recently. Also, at any point in a phase, if there are any unmarked items in the
cache, then the least recently used item must be unmarked. It follows that the
LRU policy evicts an unmarked item whenever one is available, and so we
have the following fact.

(13.34) The LRU policy is a marking algorithm.

Analyzing Marking Algorithms
We now describe a method for analyzing marking algorithms, ending with a
bound on performance that applies to all marking algorithms. After this, when
we add randomization, we will need to strengthen this analysis.

Consider an arbitrary marking algorithm operating on a request sequence
σ . For the analysis, we picture an optimal caching algorithm operating on σ

alongside this marking algorithm, incurring an overall cost of f (σ ). Suppose
that there are r phases in this sequence σ , as defined by the marking algorithm.

To make the analysis easier to discuss, we are going to “pad” the sequence
σ both at the beginning and the end with some extra requests; these will not
add any extra misses to the optimal algorithm—that is, they will not cause f (σ )

to increase—and so any bound we show on the performance of the marking
algorithm relative to the optimum for this padded sequence will also apply to
σ . Specifically, we imagine a “phase 0” that takes place before the first phase,
in which all the items initially in the cache are requested once. This does not
affect the cost of either the marking algorithm or the optimal algorithm. We
also imagine that the final phase r ends with an epilogue in which every item
currently in the cache of the optimal algorithm is requested twice in round-
robin fashion. This does not increase f (σ ); and by the end of the second pass
through these items, the marking algorithm will contain each of them in its
cache, and each will be marked.

For the performance bound, we need two things: an upper bound on the
number of misses incurred by the marking algorithm, and a lower bound saying
that the optimum must incur at least a certain number of misses.

The division of the request sequence σ into phases turns out to be the
key to doing this. First of all, here is how we can picture the history of a
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phase, from the marking algorithm’s point of view. At the beginning of the
phase, all items are unmarked. Any item that is accessed during the phase is
marked, and it then remains in the cache for the remainder of the phase. Over
the course of the phase, the number of marked items grows from 0 to k, and
the next phase begins with a request to a (k + 1)st item, different from all of
these marked items. We summarize some conclusions from this picture in the
following claim.

(13.35) In each phase, σ contains accesses to exactly k distinct items. The
subsequent phase begins with an access to a different (k + 1)st item.

Since an item, once marked, remains in the cache until the end of the
phase, the marking algorithm cannot incur a miss for an item more than once in
a phase. Combined with (13.35), this gives us an upper bound on the number
of misses incurred by the marking algorithm.

(13.36) The marking algorithm incurs at most k misses per phase, for a total
of at most kr misses over all r phases.

As a lower bound on the optimum, we have the following fact.

(13.37) The optimum incurs at least r − 1 misses. In other words, f (σ ) ≥
r − 1.

Proof. Consider any phase but the last one, and look at the situation just
after the first access (to an item s) in this phase. Currently s is in the cache
maintained by the optimal algorithm, and (13.35) tells us that the remainder
of the phase will involve accesses to k − 1 other distinct items, and the first
access of the next phase will involve a kth other item as well. Let S be this
set of k items other than s. We note that at least one of the members of S is
not currently in the cache maintained by the optimal algorithm (since, with s
there, it only has room for k − 1 other items), and the optimal algorithm will
incur a miss the first time this item is accessed.

What we’ve shown, therefore, is that for every phase j < r, the sequence
from the second access in phase j through the first access in phase j + 1involves
at least one miss by the optimum. This makes for a total of at least r − 1misses.

Combining (13.36) and (13.37), we have the following performance guar-
antee.

(13.38) For any marking algorithm, the number of misses it incurs on any
sequence σ is at most k · f (σ ) + k.
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Proof. The number of misses incurred by the marking algorithm is at most

kr = k(r − 1) + k ≤ k · f (σ ) + k,

where the final inequality is just (13.37).

Note that the “+k” in the bound of (13.38) is just an additive constant,
independent of the length of the request sequence σ , and so the key aspect
of the bound is the factor of k relative to the optimum. To see that this factor
of k is the best bound possible for some marking algorithms, and for LRU in
particular, consider the behavior of LRU on a request sequence in which k + 1
items are repeatedly requested in a round-robin fashion. LRU will each time
evict the item that will be needed just in the next step, and hence it will incur
a cache miss on each access. (It’s possible to get this kind of terrible caching
performance in practice for precisely such a reason: the program is executing a
loop that is just slightly too big for the cache.) On the other hand, the optimal
policy, evicting the page that will be requested farthest in the future, incurs
a miss only every k steps, so LRU incurs a factor of k more misses than the
optimal policy.

Designing a Randomized Marking Algorithm
The bad example for LRU that we just saw implies that, if we want to obtain
a better bound for an online caching algorithm, we will not be able to reason
about fully general marking algorithms. Rather, we will define a simple Ran-
domized Marking Algorithm and show that it never incurs more than O(log k)

times the number of misses of the optimal algorithm—an exponentially better
bound.

Randomization is a natural choice in trying to avoid the unfortunate
sequence of “wrong” choices in the bad example for LRU. To get this bad
sequence, we needed to define a sequence that always evicted precisely the
wrong item. By randomizing, a policy can make sure that, “on average,” it is
throwing out an unmarked item that will at least not be needed right away.

Specifically, where the general description of a marking contained the line

Else evict an unmarked item from the cache

without specifying how this unmarked item is to be chosen, our Randomized
Marking Algorithm uses the following rule:

Else evict an unmarked item chosen uniformly at random

from the cache
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This is arguably the simplest way to incorporate randomization into the
marking framework.1

Analyzing the Randomized Marking Algorithm
Now we’d like to get a bound for the Randomized Marking Algorithm that is
stronger than (13.38); but in order to do this, we need to extend the analysis
in (13.36) and (13.37) to something more subtle. This is because there are
sequences σ , with r phases, where the Randomized Marking Algorithm can
really be made to incur kr misses—just consider a sequence that never repeats
an item. But the point is that, on such sequences, the optimum will incur many
more than r − 1 misses. We need a way to bring the upper and lower bounds
closer together, based on the structure of the sequence.

This picture of a “runaway sequence” that never repeats an item is an
extreme instance of the distinction we’d like to draw: It is useful to classify
the unmarked items in the middle of a phase into two further categories. We
call an unmarked item fresh if it was not marked in the previous phase either,
and we call it stale if it was marked in the previous phase.

Recall the picture of a single phase that led to (13.35): The phase begins
with all items unmarked, and it contains accesses to k distinct items, each
of which goes from unmarked to marked the first time it is accessed. Among
these k accesses to unmarked items in phase j, let cj denote the number of
these that are to fresh items.

To strengthen the result from (13.37), which essentially said that the
optimum incurs at least one miss per phase, we provide a bound in terms
of the number of fresh items in a phase.

(13.39) f (σ ) ≥ 1
2

∑r
j=1 cj.

Proof. Let fj(σ ) denote the number of misses incurred by the optimal algorithm
in phase j, so that f (σ ) = ∑r

j=1 fj(σ ). From (13.35), we know that in any phase
j, there are requests to k distinct items. Moreover, by our definition of fresh,
there are requests to cj+1 further items in phase j + 1; so between phases j and
j + 1, there are at least k + cj+1 distinct items requested. It follows that the
optimal algorithm must incur at least cj+1 misses over the course of phases j

1 It is not, however, the simplest way to incorporate randomization into a caching algorithm. We could

have considered the Purely Random Algorithm that dispenses with the whole notion of marking, and

on each cache miss selects one of its k current items for eviction uniformly at random. (Note the

difference: The Randomized Marking Algorithm randomizes only over the unmarked items.) Although

we won’t prove this here, the Purely Random Algorithm can incur at least c times more misses than

the optimum, for any constant c < k, and so it does not lead to an improvement over LRU.
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and j + 1, so fj(σ ) + fj+1(σ ) ≥ cj+1. This holds even for j = 0, since the optimal
algorithm incurs c1 misses in phase 1. Thus we have

r−1∑

j=0

(fj(σ ) + fj+1(σ )) ≥
r−1∑

j=0

cj+1.

But the left-hand side is at most 2
∑r

j=1 fj(σ ) = 2f (σ ), and the right-hand side
is

∑r
j=1 cj.

We now give an upper bound on the expected number of misses incurred
by the Randomized Marking Algorithm, also quantified in terms of the number
of fresh items in each phase. Combining these upper and lower bounds will
yield the performance guarantee we’re seeking. In the following statement, let
Mσ denote the random variable equal to the number of cache misses incurred
by the Randomized Marking Algorithm on the request sequence σ .

(13.40) For every request sequence σ , we have E
[
Mσ

]
≤ H(k)

∑r
j=1 cj.

Proof. Recall that we used cj to denote the number of requests in phase j
to fresh items. There are k requests to unmarked items in a phase, and each
unmarked item is either fresh or stale, so there must be k − cj requests in phase
j to unmarked stale items.

Let Xj denote the number of misses incurred by the Randomized Marking
Algorithm in phase j. Each request to a fresh item results in a guaranteed miss
for the Randomized Marking Algorithm; since the fresh item was not marked
in the previous phase, it cannot possibly be in the cache when it is requested
in phase j. Thus the Randomized Marking Algorithm incurs at least cj misses
in phase j because of requests to fresh items.

Stale items, by contrast, are a more subtle matter. The phase starts with
k stale items in the cache; these are the items that were unmarked en masse
at the beginning of the phase. On a request to a stale item s, the concern is
whether the Randomized Marking Algorithm evicted it earlier in the phase and
now incurs a miss as it has to bring it back in. What is the probability that the
ith request to a stale item, say s, results in a miss? Suppose that there have been
c ≤ cj requests to fresh items thus far in the phase. Then the cache contains
the c formerly fresh items that are now marked, i − 1 formerly stale items that
are now marked, and k − c − i + 1 items that are stale and not yet marked in
this phase. But there are k − i + 1 items overall that are still stale; and since
exactly k − c − i + 1 of them are in the cache, the remaining c of them are not.
Each of the k − i + 1 stale items is equally likely to be no longer in the cache,
and so s is not in the cache at this moment with probability c

k−i+1 ≤ cj
k−i+1.
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This is the probability of a miss on the request to s. Summing over all requests
to unmarked items, we have

E
[
Xj

]
≤ cj +

k−cj∑

i=1

cj

k − i + 1
≤ cj

⎡

⎣1+
k∑

ℓ=cj+1

1
ℓ

⎤

⎦ = cj(1+ H(k) − H(cj)) ≤ cjH(k).

Thus the total expected number of misses incurred by the Randomized
Marking Algorithm is

E
[
Mσ

]
=

r∑

j=1

E
[
Xj

]
≤ H(k)

r∑

j=1

cj.

Combining (13.39) and (13.40), we immediately get the following perfor-
mance guarantee.

(13.41) The expected number of misses incurred by the Randomized Marking
Algorithm is at most 2H(k) · f (σ ) = O(log k) · f (σ ).

13.9 Chernoff Bounds
In Section 13.3, we defined the expectation of a random variable formally and
have worked with this definition and its consequences ever since. Intuitively,
we have a sense that the value of a random variable ought to be “near” its
expectation with reasonably high probability, but we have not yet explored
the extent to which this is true. We now turn to some results that allow us to
reach conclusions like this, and see a sampling of the applications that follow.

We say that two random variables X and Y are independent if, for any
values i and j, the events Pr [X = i] and Pr [Y = j] are independent. This
definition extends naturally to larger sets of random variables. Now consider
a random variable X that is a sum of several independent 0-1-valued random
variables: X = X1 + X2 + . . . + Xn, where Xi takes the value 1 with probability
pi, and the value 0 otherwise. By linearity of expectation, we have E [X]=∑n

i=1 pi. Intuitively, the independence of the random variables X1, X2, . . . , Xn
suggests that their fluctuations are likely to “cancel out,” and so their sum
X will have a value close to its expectation with high probability. This is in
fact true, and we state two concrete versions of this result: one bounding the
probability that X deviates above E[X], the other bounding the probability that
X deviates below E[X]. We call these results Chernoff bounds, after one of the
probabilists who first established bounds of this form.
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(13.42) Let X , X1, X2, . . . , Xn be defined as above, and assume that µ ≥
E [X]. Then, for any δ > 0, we have

Pr [X > (1+ δ)µ]<
[

eδ

(1+ δ)(1+δ)

]µ

.

Proof. To bound the probability that X exceeds (1+ δ)µ, we go through a
sequence of simple transformations. First note that, for any t > 0, we have
Pr [X > (1+ δ)µ]= Pr

[
etX > et(1+δ)µ

]
, as the function f (x) = etx is monotone

in x. We will use this observation with a t that we’ll select later.

Next we use some simple properties of the expectation. For a random
variable Y, we have γ Pr [Y > γ ]≤ E [Y], by the definition of the expectation.
This allows us to bound the probability that Y exceeds γ in terms of E [Y].
Combining these two ideas, we get the following inequalities.

Pr [X > (1+ δ)µ]= Pr
[
etX > et(1+δ)µ

]
≤ e−t(1+δ)µE

[
etX

]
.

Next we need to bound the expectation E
[
etX]

. Writing X as X = ∑
i Xi, the

expectation is E
[
etX]

= E
[
et

∑
i Xi

]
= E

[∏
i etXi

]
. For independent variables Y

and Z, the expectation of the product YZ is E [YZ]= E [Y]E [Z]. The variables
Xi are independent, so we get E

[∏
i etXi

]
= ∏

i E
[
etXi

]
.

Now, etXi is et with probability pi and e0 = 1 otherwise, so its expectation
can be bounded as

E
[
etXi

]
= pie

t + (1− pi) = 1+ pi(e
t − 1) ≤ epi(et−1),

where the last inequality follows from the fact that 1+ α ≤ eα for any α ≥ 0.
Combining the inequalities, we get the following bound.

Pr [X > (1+ δ)µ] ≤ e−t(1+δ)µE
[
etX

]
= e−t(1+δ)µ

∏

i

E
[
etXi

]

≤ e−t(1+δ)µ
∏

i

epi(et−1) ≤ e−t(1+δ)µeµ(et−1).

To obtained the bound claimed by the statement, we substitute t = ln(1+ δ).

Where (13.42) provided an upper bound, showing that X is not likely to
deviate far above its expectation, the next statement, (13.43), provides a lower
bound, showing that X is not likely to deviate far below its expectation. Note
that the statements of the results are not symmetric, and this makes sense: For
the upper bound, it is interesting to consider values of δ much larger than 1,
while this would not make sense for the lower bound.
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(13.43) Let X , X1, X2, . . . , Xn and µ be defined as above. Then for any
1> δ > 0, we have

Pr [X < (1− δ)µ]< e− 1
2µδ2

.

The proof of (13.43) is similar to the proof of (13.42), and we do not give
it here. For the applications that follow, the statements of (13.42) and (13.43),
rather than the internals of their proofs, are the key things to keep in mind.

13.10 Load Balancing
In Section 13.1, we considered a distributed system in which communication
among processes was difficult, and randomization to some extent replaced
explicit coordination and synchronization. We now revisit this theme through
another stylized example of randomization in a distributed setting.

The Problem
Suppose we have a system in which m jobs arrive in a stream and need to be
processed immediately. We have a collection of n identical processors that are
capable of performing the jobs; so the goal is to assign each job to a processor
in a way that balances the workload evenly across the processors. If we had
a central controller for the system that could receive each job and hand it
off to the processors in round-robin fashion, it would be trivial to make sure
that each processor received at most ⌈m/n⌉ jobs—the most even balancing
possible.

But suppose the system lacks the coordination or centralization to imple-
ment this. A much more lightweight approach would be to simply assign each
job to one of the processors uniformly at random. Intuitively, this should also
balance the jobs evenly, since each processor is equally likely to get each job.
At the same time, since the assignment is completely random, one doesn’t
expect everything to end up perfectly balanced. So we ask: How well does this
simple randomized approach work?

Although we will stick to the motivation in terms of jobs and processors
here, it is worth noting that comparable issues come up in the analysis of
hash functions, as we saw in Section 13.6. There, instead of assigning jobs to
processors, we’re assigning elements to entries in a hash table. The concern
about producing an even balancing in the case of hash tables is based on
wanting to keep the number of collisions at any particular entry relatively
small. As a result, the analysis in this section is also relevant to the study of
hashing schemes.
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Analyzing a Random Allocation
We will see that the analysis of our random load balancing process depends on
the relative sizes of m, the number of jobs, and n, the number of processors.
We start with a particularly clean case: when m = n. Here it is possible for
each processor to end up with exactly one job, though this is not very likely.
Rather, we expect that some processors will receive no jobs and others will
receive more than one. As a way of assessing the quality of this randomized
load balancing heuristic, we study how heavily loaded with jobs a processor
can become.

Let Xi be the random variable equal to the number of jobs assigned to
processor i, for i = 1, 2, . . . , n. It is easy to determine the expected value
of Xi: We let Yij be the random variable equal to 1 if job j is assigned
to processor i, and 0 otherwise; then Xi = ∑n

i=1 Yij and E
[
Yij

]
= 1/n, so

E
[
Xi

]
= ∑n

j=1 E
[
Yij

]
= 1. But our concern is with how far Xi can deviate

above its expectation: What is the probability that Xi > c? To give an upper
bound on this, we can directly apply (13.42): Xi is a sum of independent 0-1-
valued random variables {Yij}; we have µ = 1and 1+ δ = c. Thus the following
statement holds.

(13.44)

Pr
[
Xi > c

]
<

(
ec−1

cc

)
.

In order for there to be a small probability of any Xi exceeding c, we will take
the Union Bound over i = 1, 2, . . . , n; and so we need to choose c large enough
to drive Pr

[
Xi > c

]
down well below 1/n for each i. This requires looking at

the denominator cc in (13.44). To make this denominator large enough, we
need to understand how this quantity grows with c, and we explore this by
first asking the question: What is the x such that xx = n?

Suppose we write γ (n) to denote this number x. There is no closed-form
expression for γ (n), but we can determine its asymptotic value as follows.
If xx = n, then taking logarithms gives x log x = log n; and taking logarithms
again gives log x + log log x = log log n. Thus we have

2 log x > log x + log log x = log log n > 766 log x,

and, using this to divide through the equation x log x = log n, we get

1
2

x ≤ log n
log log n

≤ x = γ (n).

Thus γ (n) = !

(
log n

log log n

)
.
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Now, if we set c = eγ (n), then by (13.44) we have

Pr
[
Xi > c

]
<

(
ec−1

cc

)
<

(
e
c

)c

=
(

1
γ (n)

)eγ (n)

<

(
1

γ (n)

)2γ (n)

= 1
n2

.

Thus, applying the Union Bound over this upper bound for X1, X2, . . . , Xn, we
have the following.

(13.45) With probability at least 1− n−1, no processor receives more than
eγ (n) = !

(
log n

log log n

)
jobs.

With a more involved analysis, one can also show that this bound is
asymptotically tight: with high probability, some processor actually receives
"

(
log n

log log n

)
jobs.

So, although the load on some processors will likely exceed the expecta-
tion, this deviation is only logarithmic in the number of processors.

Increasing the Number of Jobs We now use Chernoff bounds to argue that,
as more jobs are introduced into the system, the loads “smooth out” rapidly,
so that the number of jobs on each processor quickly become the same to
within constant factors.

Specifically, if we have m = 16n ln n jobs, then the expected load per
processor is µ = 16 ln n. Using (13.42), we see that the probability of any
processor’s load exceeding 32 ln n is at most

Pr
[
Xi > 2µ

]
<

(
e
4

)16 ln n

<

(
1
e2

)ln n

= 1
n2

.

Also, the probability that any processor’s load is below 8 ln n is at most

Pr
[
Xi <

1
2
µ

]
< e− 1

2 ( 1
2 )2(16 ln n) = e−2 ln n = 1

n2
.

Thus, applying the Union Bound, we have the following.

(13.46) When there are n processors and "(n log n) jobs, then with high
probability, every processor will have a load between half and twice the average.

13.11 Packet Routing
We now consider a more complex example of how randomization can alleviate
contention in a distributed system—namely, in the context of packet routing.
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e

Packet 1

Packet 3

Packet 2

Only one packet can
cross e per time step.

Figu re 13.3 T h r ee p ac k e ts w h ose p a t h s i n v o l ve a s h a r e d e d ge e.

The Problem
Packet routing is a mechanism to support communication among nodes of a
large network, which we can model as a directed graph G = (V , E). If a node
s wants to send data to a node t, this data is discretized into one or more
packets, each of which is then sent over an s-t path P in the network. At any
point in time, there may be many packets in the network, associated with
different sources and destinations and following different paths. However, the
key constraint is that a single edge e can only transmit a single packet per time
step. Thus, when a packet p arrives at an edge e on its path, it may find there
are several other packets already waiting to traverse e; in this case, p joins a
queue associated with e to wait until e is ready to transmit it. In Figure 13.3,
for example, three packets with different sources and destinations all want to
traverse edge e; so, if they all arrive at e at the same time, some of them will
be forced to wait in a queue for this edge.

Suppose we are given a network G with a set of packets that need to be sent
across specified paths. We’d like to understand how many steps are necessary
in order for all packets to reach their destinations. Although the paths for
the packets are all specified, we face the algorithmic question of timing the
movements of the packets across the edges. In particular, we must decide when
to release each packet from its source, as well as a queue management policy
for each edge e—that is, how to select the next packet for transmission from
e’s queue in each time step.

It’s important to realize that these packet scheduling decisions can have
a significant effect on the amount of time it takes for all the packets to reach
their destinations. For example, let’s consider the tree network in Figure 13.4,
where there are nine packets that want to traverse the respective dotted paths
up the tree. Suppose all packets are released from their sources immediately,
and each edge e manages its queue by always transmitting the packet that is



764 Chapter 13 Randomized Algorithms

2 31 5 64 8 97

Packet 1 may need to wait
for packets 2, 3, 6, and 9,
depending on the schedule.

Figu re 13.4 A case i n w h ic h t h e sc h e d u li n g o f p ac k e ts m a t t e rs.

closest to its destination. In this case, packet 1 will have to wait for packets
2 and 3 at the second level of the tree; and then later it will have to wait for
packets 6 and 9 at the fourth level of the tree. Thus it will take nine steps
for this packet to reach its destination. On the other hand, suppose that each
edge e manages its queue by always transmitting the packet that is farthest
from its destination. Then packet 1 will never have to wait, and it will reach
its destination in five steps; moreover, one can check that every packet will
reach its destination within six steps.

There is a natural generalization of the tree network in Figure 13.4, in
which the tree has height h and the nodes at every other level have k children.
In this case, the queue management policy that always transmits the packet
nearest its destination results in some packet requiring "(hk) steps to reach its
destination (since the packet traveling farthest is delayed by "(k) steps at each
of "(h) levels), while the policy that always transmits the packet farthest from



13.11 Packet Routing 765

its destination results in all packets reaching their destinations within O(h + k)

steps. This can become quite a large difference as h and k grow large.

Schedules and Their Durations Let’s now move from these examples to the
question of scheduling packets and managing queues in an arbitrary network
G. Given packets labeled 1, 2, . . . , N and associated paths P1, P2, . . . , PN , a
packet schedule specifies, for each edge e and each time step t, which packet
will cross edge e in step t. Of course, the schedule must satisfy some basic
consistency properties: at most one packet can cross any edge e in any one
step; and if packet i is scheduled to cross e at step t, then e should be on
the path Pi, and the earlier portions of the schedule should cause i to have
already reached e. We will say that the duration of the schedule is the number
of steps that elapse until every packet reaches its destination; the goal is to
find a schedule of minimum duration.

What are the obstacles to having a schedule of low duration? One obstacle
would be a very long path that some packet must traverse; clearly, the duration
will be at least the length of this path. Another obstacle would be a single edge
e that many packets must cross; since each of these packets must cross e in a
distinct step, this also gives a lower bound on the duration. So, if we define the
dilation d of the set of paths {P1, P2, . . . , PN} to be the maximum length of any
Pi, and the congestion c of the set of paths to be the maximum number that have
any single edge in common, then the duration is at least max(c, d) = "(c + d).

In 1988, Leighton, Maggs, and Rao proved the following striking result:
Congestion and dilation are the only obstacles to finding fast schedules, in the
sense that there is always a schedule of duration O(c + d). While the statement
of this result is very simple, it turns out to be extremely difficult to prove; and
it yields only a very complicated method to actually construct such a schedule.
So, instead of trying to prove this result, we’ll analyze a simple algorithm (also
proposed by Leighton, Maggs, and Rao) that can be easily implemented in a
distributed setting and yields a duration that is only worse by a logarithmic
factor: O(c + d log(mN)), where m is the number of edges and N is the number
of packets.

Designing the Algorithm
A Simple Randomized Schedule If each edge simply transmits an arbitrary
waiting packet in each step, it is easy to see that the resulting schedule has
duration O(cd): at worst, a packet can be blocked by c − 1 other packets on
each of the d edges in its path. To reduce this bound, we need to set things up
so that each packet only waits for a much smaller number of steps over the
whole trip to its destination.
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The reason a bound as large as O(cd) can arise is that the packets are
very badly timed with respect to one another: Blocks of c of them all meet
at an edge at the same time, and once this congestion has cleared, the same
thing happens at the next edge. This sounds pathological, but one should
remember that a very natural queue management policy caused it to happen
in Figure 13.4. However, it is the case that such bad behavior relies on very
unfortunate synchronization in the motion of the packets; so it is believable
that, if we introduce some randomization in the timing of the packets, then
this kind of behavior is unlikely to happen. The simplest idea would be just to
randomly shift the times at which the packets are released from their sources.
Then if there are many packets all aimed at the same edge, they are unlikely
to hit it all at the same time, as the contention for edges has been “smoothed
out.” We now show that this kind of randomization, properly implemented, in
fact works quite well.

Consider first the following algorithm, which will not quite work. It
involves a parameter r whose value will be determined later.

Each packet i behaves as follows:

i chooses a random delay s between 1 and r

i waits at its source for s time steps

i then moves full speed ahead, one edge per time step

until it reaches its destination

If the set of random delays were really chosen so that no two packets ever
“collided”—reaching the same edge at the same time—then this schedule
would work just as advertised; its duration would be at most r (the maximum
initial delay) plus d (the maximum number of edges on any path). However,
unless r is chosen to be very large, it is likely that a collision will occur
somewhere in the network, and so the algorithm will probably fail: Two packets
will show up at the same edge e in the same time step t, and both will be
required to cross e in the next step.

Grouping Time into Blocks To get around this problem, we consider the
following generalization of this strategy: rather than implementing the “full
speed ahead” plan at the level of individual time steps, we implement it at the
level of contiguous blocks of time steps.

For a parameter b, group intervals of b consecutive time steps

into single blocks of time

Each packet i behaves as follows:

i chooses a random delay s between 1 and r

i waits at its source for s blocks
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i then moves forward one edge per block,

until it reaches its destination

This schedule will work provided that we avoid a more extreme type of
collision: It should not be the case that more than b packets are supposed to
show up at the same edge e at the start of the same block. If this happens, then
at least one of them will not be able to cross e in the next block. However, if the
initial delays smooth things out enough so that no more than b packets arrive
at any edge in the same block, then the schedule will work just as intended.
In this case, the duration will be at most b(r + d)—the maximum number of
blocks, r + d, times the length of each block, b.

(13.47) Let E denote the event that more than b packets are required to be
at the same edge e at the start of the same block. If E does not occur, then the
duration of the schedule is at most b(r + d).

Our goal is now to choose values of r and b so that both the probability Pr [E]
and the duration b(r + d) are small quantities. This is the crux of the analysis
since, if we can show this, then (13.47) gives a bound on the duration.

Analyzing the Algorithm
To give a bound on Pr [E], it’s useful to decompose it into a union of simpler
bad events, so that we can apply the Union Bound. A natural set of bad events
arises from considering each edge and each time block separately; if e is an
edge, and t is a block between 1and r + d, we let Fet denote the event that more
than b packets are required to be at e at the start of block t. Clearly, E = ∪e ,tFet.
Moreover, if Net is a random variable equal to the number of packets scheduled
to be at e at the start of block t, then Fet is equivalent to the event [Net > b].

The next step in the analysis is to decompose the random variable Net
into a sum of independent 0-1-valued random variables so that we can apply a
Chernoff bound. This is naturally done by defining Xeti to be equal to 1 if packet
i is required to be at edge e at the start of block t, and equal to 0 otherwise.
Then Net = ∑

i Xeti; and for different values of i, the random variables Xeti
are independent, since the packets are choosing independent delays. (Note
that Xeti and Xe′t′i, where the value of i is the same, would certainly not be
independent; but our analysis does not require us to add random variables
of this form together.) Notice that, of the r possible delays that packet i can
choose, at most one will require it to be at e at block t; thus E

[
Xeti

]
≤ 1/r.

Moreover, at most c packets have paths that include e; and if i is not one of
these packets, then clearly E

[
Xeti

]
= 0. Thus we have

E
[
Net

]
=

∑

i

E
[
Xeti

]
≤ c

r
.
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We now have the setup for applying the Chernoff bound (13.42), since
Net is a sum of the independent 0-1-valued random variables Xeti. Indeed, the
quantities are sort of like what they were when we analyzed the problem of
throwing m jobs at random onto n processors: in that case, each constituent
random variable had expectation 1/n, the total expectation was m/n, and we
needed m to be "(n log n) in order for each processor load to be close to its
expectation with high probability. The appropriate analogy in the case at hand
is for r to play the role of n, and c to play the role of m: This makes sense
symbolically, in terms of the parameters; it also accords with the picture that
the packets are like the jobs, and the different time blocks of a single edge are
like the different processors that can receive the jobs. This suggests that if we
want the number of packets destined for a particular edge in a particular block
to be close to its expectation, we should have c = "(r log r).

This will work, except that we have to increase the logarithmic term a
little to make sure that the Union Bound over all e and all t works out in the
end. So let’s set

r = c
q log(mN)

,

where q is a constant that will be determined later.

Let’s fix a choice of e and t and try to bound the probability that Net
exceeds a constant times c

r . We define µ = c
r , and observe that E

[
Net

]
≤ µ, so

we are in a position to apply the Chernoff bound (13.42). We choose δ = 2,
so that (1+ δ)µ = 3c

r = 3q log(mN), and we use this as the upper bound in

the expression Pr
[
Net > 3c

r

]
= Pr

[
Net > (1+ δ)µ

]
. Now, applying (13.42), we

have

Pr
[
Net >

3c
r

]
<

[
eδ

(1+ δ)(1+δ)

]µ

<

[
e1+δ

(1+ δ)(1+δ)

]µ

=
(

e
1+ δ

)(1+δ)µ

=
(

e
3

)(1+δ)µ

=
(

e
3

)3c/r

=
(

e
3

)3q log(mN)

= 1
(mN)z

,

where z is a constant that can be made as large as we want by choosing the
constant q appropriately.

We can see from this calculation that it’s safe to set b = 3c/r; for, in this
case, the event Fet that Net > b will have very small probability for each choice
of e and t. There are m different choices for e, and d + r different choice for
t, where we observe that d + r ≤ d + c − 1≤ N. Thus we have

Pr [E]= Pr

[
⋃

e ,t

Fet

]

≤
∑

e ,t

Pr
[
Fet

]
≤ mN · 1

(mN)z
= 1

(mN)z−1
,

which can be made as small as we want by choosing z large enough.
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Our choice of the parameters b and r, combined with (13.44), now implies
the following.

(13.48) With high probability, the duration of the schedule for the packets is
O(c + d log (mN)).

Proof. We have just argued that the probability of the bad event E is very
small, at most (mN)−(z−1) for an arbitrarily large constant z. And provided
that E does not happen, (13.47) tells us that the duration of the schedule is
bounded by

b(r + d) = 3c
r

(
r + d

)
= 3c + d · 3c

r
= 3c + d(3q log(mN)) = O(c + d log(mN)).

13.12 Background: Some Basic Probability
Definitions

For many, though certainly not all, applications of randomized algorithms, it is
enough to work with probabilities defined over finite sets only; and this turns
out to be much easier to think about than probabilities over arbitrary sets. So
we begin by considering just this special case. We’ll then end the section by
revisiting all these notions in greater generality.

Finite Probability Spaces
We have an intuitive understanding of sentences like, “If a fair coin is flipped,
the probability of ‘heads’ is 1/2.” Or, “If a fair die is rolled, the probability of a
‘6’ is 1/6.” What we want to do first is to describe a mathematical framework
in which we can discuss such statements precisely. The framework will work
well for carefully circumscribed systems such as coin flips and rolls of dice;
at the same time, we will avoid the lengthy and substantial philosophical
issues raised in trying to model statements like, “The probability of rain
tomorrow is 20 percent.” Fortunately, most algorithmic settings are as carefully
circumscribed as those of coins and dice, if perhaps somewhat larger and more
complex.

To be able to compute probabilities, we introduce the notion of a finite
probability space. (Recall that we’re dealing with just the case of finite sets for
now.) A finite probability space is defined by an underlying sample space ",
which consists of the possible outcomes of the process under consideration.
Each point i in the sample space also has a nonnegative probability mass
p(i) ≥ 0; these probability masses need only satisfy the constraint that their
total sum is 1; that is,

∑
i∈" p(i) = 1. We define an event E to be any subset of
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"—an event is defined simply by the set of outcomes that constitute it—and
we define the probability of the event to be the sum of the probability masses
of all the points in E. That is,

Pr [E]=
∑

i∈E

p(i).

In many situations that we’ll consider, all points in the sample space have the
same probability mass, and then the probability of an event E is simply its size
relative to the size of "; that is, in this special case, Pr [E]= |E|/|"|. We use
E to denote the complementary event "−E; note that Pr

[
E
]

= 1− Pr [E].

Thus the points in the sample space and their respective probability
masses form a complete description of the system under consideration; it
is the events—the subsets of the sample space—whose probabilities we are
interested in computing. So to represent a single flip of a “fair” coin, we
can define the sample space to be " = {heads, tails} and set p(heads) =
p(tails) = 1/2. If we want to consider a biased coin in which “heads” is twice
as likely as “tails,” we can define the probability masses to be p(heads) = 2/3
and p(tails) = 1/3. A key thing to notice even in this simple example is that
defining the probability masses is a part of defining the underlying problem;
in setting up the problem, we are specifying whether the coin is fair or biased,
not deriving this from some more basic data.

Here’s a slightly more complex example, which we could call the Process
Naming, or Identifier Selection Problem. Suppose we have n processes in a dis-
tributed system, denoted p1, p2, . . . , pn, and each of them chooses an identifier
for itself uniformly at random from the space of all k-bit strings. Moreover, each
process’s choice happens concurrently with those of all the other processes,
and so the outcomes of these choices are unaffected by one another. If we view
each identifier as being chosen from the set {0, 1, 2, . . . , 2k − 1} (by consider-
ing the numerical value of the identifier as a number in binary notation), then
the sample space " could be represented by the set of all n-tuples of integers,
with each integer between 0 and 2k − 1. The sample space would thus have
(2k)n = 2kn points, each with probability mass 2−kn.

Now suppose we are interested in the probability that processes p1 and
p2 each choose the same name. This is an event E, represented by the subset
consisting of all n-tuples from " whose first two coordinates are the same.
There are 2k(n−1) such n-tuples: we can choose any value for coordinates 3
through n, then any value for coordinate 2, and then we have no freedom of
choice in coordinate 1. Thus we have

Pr [E]=
∑

i∈E

p(i) = 2k(n−1) · 2−kn = 2−k.
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This, of course, corresponds to the intuitive way one might work out the
probability, which is to say that we can choose any identifier we want for
process p2, after which there is only 1 choice out of 2k for process p1 that will
cause the names to agree. It’s worth checking that this intuition is really just
a compact description of the calculation above.

Conditional Probability and Independence
If we view the probability of an event E, roughly, as the likelihood that E

is going to occur, then we may also want to ask about its probability given
additional information. Thus, given another event F of positive probability,
we define the conditional probability of E given F as

Pr [E | F]= Pr [E ∩ F]
Pr [F]

.

This is the “right” definition intuitively, since it’s performing the following
calculation: Of the portion of the sample space that consists of F (the event
we “know” to have occurred), what fraction is occupied by E?

One often uses conditional probabilities to analyze Pr [E] for some com-
plicated event E, as follows. Suppose that the events F1, F2, . . . , Fk each have
positive probability, and they partition the sample space; in other words, each
outcome in the sample space belongs to exactly one of them, so

∑k
j=1 Pr

[
Fj

]
=

1. Now suppose we know these values Pr
[
Fj

]
, and we are also able to deter-

mine Pr
[
E | Fj

]
for each j = 1, 2, . . . , k. That is, we know what the probability

of E is if we assume that any one of the events Fj has occurred. Then we can
compute Pr [E] by the following simple formula:

Pr [E]=
k∑

j=1

Pr
[
E | Fj

]
· Pr

[
Fj

]
.

To justify this formula, we can unwind the right-hand side as follows:

k∑

j=1

Pr
[
E | Fj

]
· Pr

[
Fj

]
=

k∑

j=1

Pr
[
E ∩ Fj

]

Pr
[
Fj

] · Pr
[
Fj

]
=

k∑

j=1

Pr
[
E ∩ Fj

]
= Pr [E] .

Independent Events Intuitively, we say that two events are independent if
information about the outcome of one does not affect our estimate of the
likelihood of the other. One way to make this concrete would be to declare
events E and F independent if Pr [E | F]= Pr [E], and Pr [F | E]= Pr [F]. (We’ll
assume here that both have positive probability; otherwise the notion of
independence is not very interesting in any case.) Actually, if one of these
two equalities holds, then the other must hold, for the following reason: If
Pr [E | F]= Pr [E], then
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Pr [E ∩ F]
Pr [F]

= Pr [E] ,

and hence Pr [E ∩ F]= Pr [E] · Pr [F], from which the other equality holds as
well.

It turns out to be a little cleaner to adopt this equivalent formulation as
our working definition of independence. Formally, we’ll say that events E and
F are independent if Pr [E ∩ F]= Pr [E] · Pr [F].

This product formulation leads to the following natural generalization. We
say that a collection of events E1, E2, . . . , En is independent if, for every set of
indices I ⊆ {1, 2, . . . , n}, we have

Pr

[
⋂

i∈I

Ei

]

=
∏

i∈I

Pr
[
Ei

]
.

It’s important to notice the following: To check if a large set of events
is independent, it’s not enough to check whether every pair of them is
independent. For example, suppose we flip three independent fair coins: If Ei
denotes the event that the ith coin comes up heads, then the events E1, E2, E3
are independent and each has probability 1/2. Now let A denote the event that
coins 1and 2 have the same value; let B denote the event that coins 2 and 3have
the same value; and let C denote the event that coins 1 and 3 have different
values. It’s easy to check that each of these events has probability 1/2, and the
intersection of any two has probability 1/4. Thus every pair drawn from A, B, C
is independent. But the set of all three events A, B, C is not independent, since
Pr [A ∩ B ∩ C]= 0.

The Union Bound
Suppose we are given a set of events E1, E2, . . . , En, and we are interested
in the probability that any of them happens; that is, we are interested in the
probability Pr

[
∪n

i=1Ei
]
. If the events are all pairwise disjoint from one another,

then the probability mass of their union is comprised simply of the separate
contributions from each event. In other words, we have the following fact.

(13.49) Suppose we have events E1, E2, . . . , En such that Ei ∩ Ej = φ for each
pair. Then

Pr

[ n⋃

i=1

Ei

]

=
n∑

i=1

Pr
[
Ei

]
.

In general, a set of events E1, E2, . . . , En may overlap in complex ways. In
this case, the equality in (13.49) no longer holds; due to the overlaps among
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Ω

Figu re 13.5 T h e U n i o n Bo u n d : T h e p r o b a b il i t y o f a u n i o n is m a x i m i z e d w h e n t h e eve n ts
h a ve n o o ve r l a p .

events, the probability mass of a point that is counted once on the left-hand
side will be counted one or more times on the right-hand side. (See Figure 13.5.)
This means that for a general set of events, the equality in (13.49) is relaxed to
an inequality; and this is the content of the Union Bound. We have stated the
Union Bound as (13.2), but we state it here again for comparison with (13.49).

(13.50) (The Union Bound) Given events E1, E2, . . . , En, we have

Pr

[ n⋃

i=1

Ei

]

≤
n∑

i=1

Pr
[
Ei

]
.

Given its innocuous appearance, the Union Bound is a surprisingly pow-
erful tool in the analysis of randomized algorithms. It draws its power mainly
from the following ubiquitous style of analyzing randomized algorithms. Given
a randomized algorithm designed to produce a correct result with high proba-
bility, we first tabulate a set of “bad events” E1, E2, . . . , En with the following
property: if none of these bad events occurs, then the algorithm will indeed
produce the correct answer. In other words, if F denotes the event that the
algorithm fails, then we have

Pr [F]≤ Pr

[ n⋃

i=1

Ei

]

.

But it’s hard to compute the probability of this union, so we apply the Union
Bound to conclude that

Pr [F]≤ Pr

[ n⋃

i=1

Ei

]

≤
n∑

i=1

Pr
[
Ei

]
.
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Now, if in fact we have an algorithm that succeeds with very high probabil-
ity, and if we’ve chosen our bad events carefully, then each of the probabilities
Pr

[
Ei

]
will be so small that even their sum—and hence our overestimate of

the failure probability—will be small. This is the key: decomposing a highly
complicated event, the failure of the algorithm, into a horde of simple events
whose probabilities can be easily computed.

Here is a simple example to make the strategy discussed above more
concrete. Recall the Process Naming Problem we discussed earlier in this
section, in which each of a set of processes chooses a random identifier.
Suppose that we have 1,000 processes, each choosing a 32-bit identifier, and
we are concerned that two of them will end up choosing the same identifier.
Can we argue that it is unlikely this will happen? To begin with, let’s denote
this event by F. While it would not be overwhelmingly difficult to compute
Pr [F] exactly, it is much simpler to bound it as follows. The event F is really a
union of

(1000
2

)
“atomic” events; these are the events Eij that processes pi and

pj choose the same identifier. It is easy to verify that indeed, F = ∪i<jEij. Now,
for any i ̸= j, we have Pr

[
Eij

]
= 2−32, by the argument in one of our earlier

examples. Applying the Union Bound, we have

Pr [F]≤
∑

i, j

Pr
[
Eij

]
=

(
1000

2

)
· 2−32.

Now,
(1000

2

)
is at most half a million, and 232 is (a little bit) more than 4 billion,

so this probability is at most .5
4000 = .000125.

Infinite Sample Spaces
So far we’ve gotten by with finite probability spaces only. Several of the
sections in this chapter, however, consider situations in which a random
process can run for arbitrarily long, and so cannot be well described by a
sample space of finite size. As a result, we pause here to develop the notion
of a probability space more generally. This will be somewhat technical, and in
part we are providing it simply for the sake of completeness: Although some of
our applications require infinite sample spaces, none of them really exercises
the full power of the formalism we describe here.

Once we move to infinite sample spaces, more care is needed in defining a
probability function. We cannot simply give each point in the sample space "

a probability mass and then compute the probability of every set by summing.
Indeed, for reasons that we will not go into here, it is easy to get into trouble
if one even allows every subset of " to be an event whose probability can be
computed. Thus a general probability space has three components:
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(i) The sample space ".

(ii) A collection S of subsets of "; these are the only events on which we are
allowed to compute probabilities.

(iii) A probability function Pr, which maps events in S to real numbers in
[0, 1].

The collection S of allowable events can be any family of sets that satisfies
the following basic closure properties: the empty set and the full sample space
" both belong to S; if E ∈ S, then E ∈ S (closure under complement); and
if E1, E2, E3, . . . ∈ S, then ∪∞

i=1Ei ∈ S (closure under countable union). The
probability function Pr can be any function from S to [0, 1] that satisfies
the following basic consistency properties: Pr [φ]= 0, Pr ["]= 1, Pr [E]=
1− Pr

[
E
]
, and the Union Bound for disjoint events (13.49) should hold even

for countable unions—if E1, E2, E3, . . . ∈ S are all pairwise disjoint, then

Pr

[ ∞⋃

i=1

Ei

]

=
∞∑

i=1

Pr
[
Ei

]
.

Notice how, since we are not building up Pr from the more basic notion of a
probability mass anymore, (13.49) moves from being a theorem to simply a
required property of Pr.

When an infinite sample space arises in our context, it’s typically for the
following reason: we have an algorithm that makes a sequence of random
decisions, each one from a fixed finite set of possibilities; and since it may run
for arbitrarily long, it may make an arbitrarily large number of decisions. Thus
we consider sample spaces " constructed as follows. We start with a finite set
of symbols X = {1, 2, . . . , n}, and assign a weight w(i) to each symbol i ∈ X.
We then define " to be the set of all infinite sequences of symbols from X (with
repetitions allowed). So a typical element of " will look like ⟨x1, x2, x3, . . .⟩
with each entry xi ∈ X.

The simplest type of event we will be concerned with is as follows: it is the
event that a point ω ∈ " begins with a particular finite sequence of symbols.
Thus, for a finite sequence σ = x1x2 . . . xs of length s, we define the prefix
event associated with σ to be the set of all sample points of " whose first s
entries form the sequence σ . We denote this event by Eσ , and we define its
probability to be Pr

[
Eσ

]
= w(x1)w(x2) . . . w(xs).

The following fact is in no sense easy to prove.
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(13.51) There is a probability space (", S, Pr), satisfying the required closure
and consistency properties, such that " is the sample space defined above,
Eσ ∈ S for each finite sequence σ , and Pr

[
Eσ

]
= w(x1)w(x2) . . . w(xs).

Once we have this fact, the closure of S under complement and countable
union, and the consistency of Pr with respect to these operations, allow us to
compute probabilities of essentially any “reasonable” subset of ".

In our infinite sample space ", with events and probabilities defined as
above, we encounter a phenomenon that does not naturally arise with finite
sample spaces. Suppose the set X used to generate " is equal to {0, 1}, and
w(0) = w(1) = 1/2. Let E denote the set consisting of all sequences that contain
at least one entry equal to 1. (Note that E omits the “all-0” sequence.) We
observe that E is an event in S, since we can define σi to be the sequence of
i − 1 0s followed by a 1, and observe that E = ∪∞

i=1Eσi
. Moreover, all the events

Eσi
are pairwise disjoint, and so

Pr [E]=
∞∑

i=1

Pr
[
Eσi

]
=

∞∑

i=1

2−i = 1.

Here, then, is the phenomenon: It’s possible for an event to have probability
1 even when it’s not equal to the whole sample space ". Similarly, Pr

[
E
]

=
1− Pr [E]= 0, and so we see that it’s possible for an event to have probability
0 even when it’s not the empty set. There is nothing wrong with any of these
results; in a sense, it’s a necessary step if we want probabilities defined over
infinite sets to make sense. It’s simply that in such cases, we should be careful
to distinguish between the notion that an event has probability 0 and the
intuitive idea that the event “can’t happen.”

Solved Exercises

Solved Exercise 1
Suppose we have a collection of small, low-powered devices scattered around
a building. The devices can exchange data over short distances by wireless
communication, and we suppose for simplicity that each device has enough
range to communicate with d other devices. Thus we can model the wireless
connections among these devices as an undirected graph G = (V , E) in which
each node is incident to exactly d edges.

Now we’d like to give some of the nodes a stronger uplink transmitter that
they can use to send data back to a base station. Giving such a transmitter to
every node would ensure that they can all send data like this, but we can
achieve this while handing out fewer transmitters. Suppose that we find a
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subset S of the nodes with the property that every node in V − S is adjacent
to a node in S. We call such a set S a dominating set, since it “dominates” all
other nodes in the graph. If we give uplink transmitters only to the nodes in a
dominating set S, we can still extract data from all nodes: Any node u ̸∈ S can
choose a neighbor v ∈ S, send its data to v, and have v relay the data back to
the base station.

The issue is now to find a dominating set S of minimum possible size,
since this will minimize the number of uplink transmitters we need. This is an
NP-hard problem; in fact, proving this is the crux of Exercise 29 in Chapter 8.
(It’s also worth noting here the difference between dominating sets and vertex
covers: in a dominating set, it is fine to have an edge (u, v) with neither u nor
v in the set S as long as both u and v have neighbors in S. So, for example, a
graph consisting of three nodes all connected by edges has a dominating set
of size 1, but no vertex cover of size 1.)

Despite the NP-hardness, it’s important in applications like this to find as
small a dominating set as one can, even if it is not optimal. We will see here
that a simple randomized strategy can be quite effective. Recall that in our
graph G, each node is incident to exactly d edges. So clearly any dominating
set will need to have size at least n

d+1, since each node we place in a dominating
set can take care only of itself and its d neighbors. We want to show that a
random selection of nodes will, in fact, get us quite close to this simple lower
bound.

Specifically, show that for some constant c, a set of cn log n
d+1 nodes chosen

uniformly at random from G will be a dominating set with high probability.
(In other words, this completely random set is likely to form a dominating set
that is only O(log n) times larger than our simple lower bound of n

d+1.)

Solution Let k = cn log n
d , where we will choose the constant c later, once we

have a better idea of what’s going on. Let E be the event that a random choice
of k nodes is a dominating set for G. To make the analysis simpler, we will
consider a model in which the nodes are selected one at a time, and the same
node may be selected twice (if it happens to be picked twice by our sequence
of random choices).

Now we want to show that if c (and hence k) is large enough, then Pr [E] is
close to 1. But E is a very complicated-looking event, so we begin by breaking
it down into much simpler events whose probabilities we can analyze more
easily.

To start with, we say that a node w dominates a node v if w is a neighbor
of v, or w = v. We say that a set S dominates a node v if some element of S
dominates v. (These definitions let us say that a dominating set is simply a
set of nodes that dominates every node in the graph.) Let D[v, t] denote the
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event that the tth random node we choose dominates node v. The probability
of this event can be determined quite easily: of the n nodes in the graph, we
must choose v or one of its d neighbors, and so

Pr
[
D[v, t]

]
= d + 1

n
.

Let Dv denote the event that the random set consisting of all k selected
nodes dominates v. Thus

Dv =
k⋃

t=1

D[v, t].

For independent events, we’ve seen in the text that it’s easier to work with
intersections—where we can simply multiply out the probabilities—than with
unions. So rather than thinking about Dv, we’ll consider the complementary
“failure event” Dv, that no node in the random set dominates v. In order for
no node to dominate v, each of our choices has to fail to do so, and hence we
have

Dv =
k⋂

t=1

D[v, t].

Since the events D[v, t] are independent, we can compute the probability on
the right-hand side by multiplying all the individual probabilities; thus

Pr
[
Dv

]
=

k∏

t=1

Pr
[
D[v, t]

]
=

(
1− d + 1

n

)k

.

Now, k = cn log n
d+1 , so we can write this last expression as

(
1− d + 1

n

)k

=
[(

1− d + 1
n

)n/(d+1)
]c log n

≤
(

1
e

)c log n

,

where the inequality follows from (13.1) that we stated earlier in the chapter.

We have not yet specified the base of the logarithm we use to define k,
but it’s starting to look like base e is a good choice. Using this, we can further
simplify the last expression to

Pr
[
Dv

]
≤

(
1
e

)c ln n

= 1
nc

.

We are now very close to done. We have shown that for each node v, the
probability that our random set fails to dominate it is at most n−c, which we
can drive down to a very small quantity by making c moderately large. Now
recall the original event E, that our random set is a dominating set. This fails
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to occur if and only if one of the events Dv fails to occur, so E = ∪vDv. Thus,
by the Union Bound (13.2), we have

Pr
[
E
]

≤
∑

v∈V

Pr
[
Dv

]
≤ n · 1

nc
= 1

nc−1
.

Simply choosing c = 2 makes this probability 1
n , which is much less than 1.

Thus, with high probability, the event E holds and our random choice of nodes
is indeed a dominating set.

It’s interesting to note that the probability of success, as a function of k,
exhibits behavior very similar to what we saw in the contention-resolution
example in Section 13.1. Setting k = !(n/d) is enough to guarantee that each
individual node is dominated with constant probability. This, however, is not
enough to get anything useful out of the Union Bound. Then, raising k by
another logarithmic factor is enough to drive up the probability of dominating
each node to something very close to 1, at which point the Union Bound can
come into play.

Solved Exercise 2
Suppose we are given a set of n variables x1, x2, . . . , xn, each of which can
take one of the values in the set {0, 1}. We are also given a set of k equations;
the r th equation has the form

(xi + xj) mod 2 = br

for some choice of two distinct variables xi, xj, and for some value br that is
either 0 or 1. Thus each equation specifies whether the sum of two variables
is even or odd.

Consider the problem of finding an assignment of values to variables that
maximizes the number of equations that are satisfied (i.e., in which equality
actually holds). This problem is NP-hard, though you don’t have to prove this.

For example, suppose we are given the equations

(x1 + x2) mod 2 = 0

(x1 + x3) mod 2 = 0

(x2 + x4) mod 2 = 1

(x3 + x4) mod 2 = 0

over the four variables x1, . . . , x4. Then it’s possible to show that no assign-
ment of values to variables will satisfy all equations simultaneously, but setting
all variables equal to 0 satisfies three of the four equations.
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(a) Let c∗ denote the maximum possible number of equations that can be
satisfied by an assignment of values to variables. Give a polynomial-time
algorithm that produces an assignment satisfying at least 1

2c∗ equations.
If you want, your algorithm can be randomized; in this case, the expected
number of equations it satisfies should be at least 1

2c∗. In either case, you
should prove that your algorithm has the desired performance guarantee.

(b) Suppose we drop the condition that each equation must have exactly two
variables; in other words, now each equation simply specifies that the
sum of an arbitrary subset of the variables, mod 2, is equal to a particular
value br.

Again let c∗ denote the maximum possible number of equations
that can be satisfied by an assignment of values to variables, and give
a polynomial-time algorithm that produces an assignment satisfying at
least 1

2c∗ equations. (As before, your algorithm can be randomized.) If
you believe that your algorithm from part (a) achieves this guarantee here
as well, you can state this and justify it with a proof of the performance
guarantee for this more general case.

Solution Let’s recall the punch line of the simple randomized algorithm for
MAX 3-SAT that we saw earlier in the chapter: If you’re given a constraint
satisfaction problem, assigning variables at random can be a surprisingly
effective way to satisfy a constant fraction of all constraints.

We now try applying this principle to the problem here, beginning with
part (a). Consider the algorithm that sets each variable independently and uni-
formly at random. How well does this random assignment do, in expectation?
As usual, we will approach this question using linearity of expectation: If X is
a random variable denoting the number of satisfied equations, we’ll break X
up into a sum of simpler random variables.

For some r between 1 and k, let the r th equation be

(xi + xj) mod 2 = br .

Let Xr be a random variable equal to 1 if this equation is satisfied, and 0
otherwise. E

[
Xr

]
is the probability that equation r is satisfied. Of the four

possible assignments to equation i, there are two that cause it to evaluate to 0
mod 2 (xi = xj = 0 and xi = xj = 1) and two that cause it to evaluate to 1 mod
2 (xi = 0; xj = 1 and xi = i; xj = 0). Thus E

[
Xr

]
= 2/4 = 1/2.

Now, by linearity of expectation, we have E [X]= ∑
r E

[
Xr

]
= k/2. Since

the maximum number of satisfiable equations c∗ must be at most k, we satisfy
at least c∗/2 in expectation. Thus, as in the case of MAX 3-SAT, a simple random
assignment to the variables satisfies a constant fraction of all constraints.
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For part (b), let’s press our luck by trying the same algorithm. Again let Xr
be a random variable equal to 1 if the r th equation is satisfied, and 0 otherwise;
let X be the total number of satisfied equations; and let c∗ be the optimum.

We want to claim that E
[
Xr

]
= 1/2 as before, even when there can be

an arbitrary number of variables in the r th equation; in other words, the
probability that the equation takes the correct value mod 2 is exactly 1/2.
We can’t just write down all the cases the way we did for two variables per
equation, so we will use an alternate argument.

In fact, there are two natural ways to prove that E
[
Xr

]
= 1/2. The first

uses a trick that appeared in the proof of (13.25) in Section 13.6 on hashing:
We consider assigning values arbitrarily to all variables but the last one in
the equation, and then we randomly assign a value to the last variable x.
Now, regardless of how we assign values to all other variables, there are two
ways to assign a value to x, and it is easy to check that one of these ways will
satisfy the equation and the other will not. Thus, regardless of the assignments
to all variables other than x, the probability of setting x so as to satisfy the
equation is exactly 1/2. Thus the probability the equation is satisfied by a
random assignment is 1/2.

(As in the proof of (13.25), we can write this argument in terms of
conditional probabilities. If E is the event that the equation is satisfied, and Fb
is the event that the variables other than x receive a sequence of values b, then
we have argued that Pr

[
E | Fb

]
= 1/2 for all b, and so Pr [E]= ∑

b Pr
[
E | Fb

]
·

Pr
[
Fb

]
= (1/2)

∑
b Pr

[
Fb

]
= 1/2.)

An alternate proof simply counts the number of ways for the r th equation
to have an even sum, and the number of ways for it to have an odd sum. If
we can show that these two numbers are equal, then the probability that a
random assignment satisfies the r th equation is the probability it gives it a sum
with the right even/odd parity, which is 1/2.

In fact, at a high level, this proof is essentially the same as the previous
one, with the difference that we make the underlying counting problem
explicit. Suppose that the r th equation has t terms; then there are 2t possible
assignments to the variables in this equation. We want to claim that 2t−1

assignments produce an even sum, and 2t−1 produce an odd sum, which will
show that E

[
Xr

]
= 1/2. We prove this by induction on t. For t = 1, there are

just two assignments, one of each parity; and for t = 2, we already proved this
earlier by considering all 22 = 4 possible assignments. Now suppose the claim
holds for an arbitrary value of t − 1. Then there are exactly 2t−1 ways to get
an even sum with t variables, as follows:

. 2t−2 ways to get an even sum on the first t − 1 variables (by induction),
followed by an assignment of 0 to the tth, plus
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. 2t−2 ways to get an odd sum on the first t − 1 variables (by induction),
followed by an assignment of 1 to the tth.

The remaining 2t−1 assignments give an odd sum, and this completes the
induction step.

Once we have E
[
Xr

]
= 1/2, we conclude as in part (a): Linearity of

expectation gives us E [X]= ∑
r E

[
Xr

]
= k/2 ≥ c∗/2.

Exercises

1. 3-C olo r i n g is a yes / n o q u est i o n , b u t w e ca n p h r ase i t as a n o p t i m i z a t i o n
p r o b le m as f o l l o ws.

Su p p ose w e a r e gi ve n a gr a p h G = (V , E), a n d w e w a n t t o co l o r eac h
n o d e w i t h o n e o f t h r ee co l o rs, eve n i f w e a r e n ’t n ecessa r il y a b le t o gi ve
d i f f e r e n t co l o rs t o eve r y p ai r o f a d j ace n t n o d es. Ra t h e r , w e sa y t h a t a n
e d ge (u, v) is sa tisfied i f t h e co l o rs assig n e d t o u a n d v a r e d i f f e r e n t .

C o n si d e r a 3-co l o r i n g t h a t m a x i m i z es t h e n u m b e r o f sa t is f ie d e d ges,
a n d le t c∗ d e n o t e t h is n u m b e r . G i ve a p o l y n o m ia l-t i m e a lgo r i t h m t h a t
p r o d u ces a 3-co l o r i n g t h a t sa t is f ies a t least 2

3c∗ e d ges. If y o u w a n t , y o u r
a lgo r i t h m ca n b e r a n d o m i z e d ; i n t h is case, t h e expected n u m b e r o f e d ges
i t sa t is f ies s h o u l d b e a t least 2

3c∗.

2. C o n si d e r a co u n t y i n w h ic h 1 0 0 ,0 0 0 p eo p le v o t e i n a n elect i o n . T h e r e
a r e o n l y t w o ca n d i d a t es o n t h e b a l l o t: a D e m ocr a t ic ca n d i d a t e (d e n o t e d
D) a n d a Re p u b lica n ca n d i d a t e (d e n o t e d R). A s i t h a p p e n s, t h is co u n t y is
h ea v il y D e m ocr a t ic, so 8 0 ,0 0 0 p eo p le go t o t h e p o l ls w i t h t h e i n t e n t i o n
o f v o t i n g f o r D, a n d 2 0 ,0 0 0 go t o t h e p o l ls w i t h t h e i n t e n t i o n o f v o t i n g
f o r R.

H o w eve r , t h e la y o u t o f t h e b a l l o t is a li t t le co n f u si n g, so eac h v o t e r ,
i n d e p e n d e n t l y a n d w i t h p r o b a b il i t y 1

100 , v o t es f o r t h e w r o n g ca n d i d a t e—
t h a t is, t h e o n e t h a t h e o r s h e did n ’t i n t e n d t o v o t e f o r . (Re m e m b e r t h a t
i n t h is elect i o n , t h e r e a r e o n l y t w o ca n d i d a t es o n t h e b a l l o t .)

Le t X d e n o t e t h e r a n d o m v a r ia b le e q u a l t o t h e n u m b e r o f v o t es
r ecei ve d b y t h e D e m ocr a t ic ca n d i d a t e D, w h e n t h e v o t i n g is co n d u ct e d
w i t h t h is p r ocess o f e r r o r . D e t e r m i n e t h e e x p ect e d v a l u e o f X , a n d gi ve
a n e x p l a n a t i o n o f y o u r d e r i v a t i o n o f t h is v a l u e.

3. In Sect i o n 1 3 .1 , w e sa w a si m p le d ist r i b u t e d p r o t oco l t o so l ve a p a r t ic u-
l a r co n t e n t i o n-r eso l u t i o n p r o b le m . H e r e is a n o t h e r se t t i n g i n w h ic h r a n-
d o m i z a t i o n ca n h el p w i t h co n t e n t i o n r eso l u t i o n , t h r o u g h t h e d ist r i b u t e d
co n st r u ct i o n o f a n i n d e p e n d e n t se t .
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Su p p ose w e h a ve a syst e m w i t h n p r ocesses. C e r t ai n p ai rs o f p r o-
cesses a r e i n co n flict , m ea n i n g t h a t t h e y b o t h r e q u i r e access t o a s h a r e d
r eso u rce. In a gi ve n t i m e i n t e r v a l, t h e go a l is t o sc h e d u le a la rge s u bse t
S o f t h e p r ocesses t o r u n—t h e r est w il l r e m ai n i d le—so t h a t n o t w o co n-
f l ict i n g p r ocesses a r e b o t h i n t h e sc h e d u le d se t S. We’l l ca l l s u c h a se t S
co n flict-f r ee .

O n e ca n p ict u r e t h is p r ocess i n t e r m s o f a gr a p h G = (V , E) w i t h a
n o d e r e p r ese n t i n g eac h p r ocess a n d a n e d ge j o i n i n g p ai rs o f p r ocesses
t h a t a r e i n co n f l ict . It is easy t o c h ec k t h a t a se t o f p r ocesses S is co n f l ict-
f r ee i f a n d o n l y i f i t f o r m s a n i n d e p e n d e n t se t i n G. T h is s u ggests t h a t
f i n d i n g a m a x i m u m-si z e co n f l ict-f r ee se t S, f o r a n a r b i t r a r y co n f l ict G,
w il l b e d i f f ic u l t (si n ce t h e ge n e r a l In d e p e n d e n t Se t Pr o b le m is r e d u ci b le
t o t h is p r o b le m). N eve r t h eless, w e ca n st i l l l o o k f o r h e u r ist ics t h a t f i n d
a r easo n a b l y la rge co n f l ict-f r ee se t . Mo r eo ve r , w e’ d li k e a si m p le m e t h o d
f o r ac h iev i n g t h is w i t h o u t ce n t r a li z e d co n t r o l: Eac h p r ocess s h o u l d co m-
m u n ica t e w i t h o n l y a s m a l l n u m b e r o f o t h e r p r ocesses a n d t h e n d eci d e
w h e t h e r o r n o t i t s h o u l d b el o n g t o t h e se t S.

We w il l s u p p ose f o r p u r p oses o f t h is q u est i o n t h a t eac h n o d e h as
e x act l y d n eig h b o rs i n t h e gr a p h G. (T h a t is, eac h p r ocess is i n co n f l ict
w i t h e x act l y d o t h e r p r ocesses.)

(a) C o n si d e r t h e f o l l o w i n g si m p le p r o t oco l.

Each process Pi independently picks a random value xi; it sets xi to 1 with
probability 1

2 and sets xi to 0 with probability 1
2 . It then decides to enter

the set S if and only if it chooses the value 1, and each of the processes
with which it is in conflict chooses the value 0.

Pr o ve t h a t t h e se t S r es u l t i n g f r o m t h e e x ec u t i o n o f t h is p r o t oco l is
co n f l ict-f r ee. A lso , gi ve a f o r m u l a f o r t h e e x p ect e d si z e o f S i n t e r m s
o f n (t h e n u m b e r o f p r ocesses) a n d d (t h e n u m b e r o f co n f l icts p e r
p r ocess).

(b) T h e c h o ice o f t h e p r o b a b il i t y 1
2 i n t h e p r o t oco l a b o ve w as f ai r l y a r-

b i t r a r y , a n d i t ’s n o t clea r t h a t i t s h o u l d gi ve t h e b est syst e m p e r f o r-
m a n ce. A m o r e ge n e r a l s p eci f ica t i o n o f t h e p r o t oco l w o u l d r e p l ace
t h e p r o b a b il i t y 1

2 b y a p a r a m e t e r p b e t w ee n 0 a n d 1, as f o l l o ws.

Each process Pi independently picks a random value xi; it sets xi to 1
with probability p and sets xi to 0 with probability 1− p. It then decides
to enter the set S if and only if it chooses the value 1, and each of the
processes with which it is in conflict chooses the value 0.
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In t e r m s o f t h e p a r a m e t e rs o f t h e gr a p h G, gi ve a v a l u e o f p so t h a t
t h e e x p ect e d si z e o f t h e r es u l t i n g se t S is as l a rge as p ossi b le. G i ve a
f o r m u l a f o r t h e e x p ect e d si z e o f S w h e n p is se t t o t h is o p t i m a l v a l u e.

4. A n u m b e r o f pee r-to-pee r syste ms o n t h e In t e r n e t a r e b ase d o n ove r l a y
n et w o r ks . Ra t h e r t h a n u si n g t h e p h ysica l In t e r n e t t o p o l ogy as t h e n e t-
w o r k o n w h ic h t o p e r f o r m co m p u t a t i o n , t h ese syst e m s r u n p r o t oco ls b y
w h ic h n o d es c h o ose co l lect i o n s o f v i r t u a l “ n eig h b o rs” so as t o d e f i n e a
h ig h e r-level gr a p h w h ose st r u ct u r e m a y b ea r li t t le o r n o r el a t i o n t o t h e
u n d e r l y i n g p h ysica l n e t w o r k . Su c h a n o ve r l a y n e t w o r k is t h e n u se d f o r
s h a r i n g d a t a a n d se r v ices, a n d i t ca n b e e x t r e m el y f le x i b le co m p a r e d w i t h
a p h ysica l n e t w o r k , w h ic h is h a r d t o m o d i f y i n r ea l t i m e t o a d a p t t o c h a n g-
i n g co n d i t i o n s.

Pee r-t o-p ee r n e t w o r k s t e n d t o gr o w t h r o u g h t h e a r r i v a l o f n e w p a r t ici-
p a n ts, w h o j o i n b y li n k i n g i n t o t h e e x ist i n g st r u ct u r e. T h is gr o w t h p r ocess
h as a n i n t r i n sic e f f ect o n t h e c h a r act e r ist ics o f t h e o ve r a l l n e t w o r k . Re-
ce n t l y , p eo p le h a ve i n vest iga t e d si m p le a bst r act m o d els f o r n e t w o r k
gr o w t h t h a t m ig h t p r o v i d e i n sig h t i n t o t h e w a y s u c h p r ocesses b e h a ve,
a t a q u a li t a t i ve level, i n r ea l n e t w o r k s.

H e r e’s a si m p le e x a m p le o f s u c h a m o d el. T h e syst e m b egi n s w i t h
a si n gle n o d e v1. N o d es t h e n j o i n o n e a t a t i m e; as eac h n o d e j o i n s, i t
e x ec u t es a p r o t oco l w h e r e b y i t f o r m s a d i r ect e d li n k t o a si n gle o t h e r
n o d e c h ose n u n i f o r m l y a t r a n d o m f r o m t h ose a l r ea d y i n t h e syst e m . Mo r e
co n cr e t el y , i f t h e syst e m a l r ea d y co n t ai n s n o d es v1, v2, . . . , vk−1 a n d n o d e
vk w is h es t o j o i n , i t r a n d o m l y selects o n e o f v1, v2, . . . , vk−1 a n d li n k s t o
t h is n o d e.

Su p p ose w e r u n t h is p r ocess u n t il w e h a ve a syst e m co n sist i n g o f
n o d es v1, v2, . . . , vn; t h e r a n d o m p r ocess d escr i b e d a b o ve w il l p r o d u ce
a d i r ect e d n e t w o r k i n w h ic h eac h n o d e o t h e r t h a n v1 h as e x act l y o n e
o u tgo i n g e d ge. O n t h e o t h e r h a n d , a n o d e m a y h a ve m u l t i p le i n co m i n g
li n k s, o r n o n e a t a l l. T h e i n co m i n g li n k s t o a n o d e vj r e f lect a l l t h e
o t h e r n o d es w h ose access i n t o t h e syst e m is v ia vj; so i f vj h as m a n y
i n co m i n g li n k s, t h is ca n p l ace a l a rge l o a d o n i t . T o k ee p t h e syst e m l o a d-
b a l a n ce d , t h e n , w e’ d li k e a l l n o d es t o h a ve a r o u g h l y co m p a r a b le n u m b e r
o f i n co m i n g li n k s. T h a t ’s u n li k el y t o h a p p e n h e r e, h o w eve r , si n ce n o d es
t h a t j o i n ea r lie r i n t h e p r ocess a r e li k el y t o h a ve m o r e i n co m i n g li n k s t h a n
n o d es t h a t j o i n la t e r . Le t ’s t r y t o q u a n t i f y t h is i m b a l a n ce as f o l l o ws.

(a) G i ve n t h e r a n d o m p r ocess d escr i b e d a b o ve, w h a t is t h e e x p ect e d
n u m b e r o f i n co m i n g li n k s t o n o d e vj i n t h e r es u l t i n g n e t w o r k? G i ve a n
e x act f o r m u l a i n t e r m s o f n a n d j, a n d a lso t r y t o e x p r ess t h is q u a n t i t y



Exercises 785

TnT2

Switching
hub

T1 T3

Figu re 13.6 T o w n s T1, T2 . . . , Tn n ee d t o d eci d e h o w t o s h a r e t h e cost o f t h e ca b le.

asy m p t o t ica l l y (v ia a n e x p r essi o n w i t h o u t l a rge s u m m a t i o n s) u si n g
!(·) n o t a t i o n .

(b) Pa r t (a) m a k es p r ecise a se n se i n w h ic h t h e n o d es t h a t a r r i ve ea r l y
ca r r y a n “ u n f ai r ” s h a r e o f t h e co n n ect i o n s i n t h e n e t w o r k . A n o t h e r
w a y t o q u a n t i f y t h e i m b a l a n ce is t o o bse r ve t h a t , i n a r u n o f t h is
r a n d o m p r ocess, w e e x p ect m a n y n o d es t o e n d u p w i t h n o i n co m i n g
li n k s.

G i ve a f o r m u l a f o r t h e e x p ect e d n u m b e r o f n o d es w i t h n o i n co m i n g
li n k s i n a n e t w o r k gr o w n r a n d o m l y acco r d i n g t o t h is m o d el.

5. O u t i n a r u r a l p a r t o f t h e co u n t y so m e w h e r e, n s m a l l t o w n s h a ve d eci d e d
t o ge t co n n ect e d t o a la rge In t e r n e t sw i tc h i n g h u b v ia a h ig h-v o l u m e f i b e r-
o p t ic ca b le. T h e t o w n s a r e l a b ele d T1, T2, . . . , Tn, a n d t h e y a r e a l l a r r a n ge d
o n a si n gle l o n g h ig h w a y , so t h a t t o w n Ti is i m iles f r o m t h e sw i tc h i n g
h u b (See F ig u r e 1 3 .6).

N o w t h is ca b le is q u i t e e x p e n si ve; i t costs k d o l l a rs p e r m ile, r es u l t i n g
i n a n o ve r a l l cost o f kn d o l l a rs f o r t h e w h o le ca b le. T h e t o w n s ge t t oge t h e r
a n d d isc u ss h o w t o d i v i d e u p t h e cost o f t h e ca b le.

F i rst , o n e o f t h e t o w n s w a y o u t a t t h e f a r e n d o f t h e h ig h w a y m a k es
t h e f o l l o w i n g p r o p osa l.

Proposal A. Divide the cost evenly among all towns, so each pays k dollars.

T h e r e’s so m e se n se i n w h ic h Pr o p osa l A is f ai r , si n ce i t ’s as i f eac h t o w n
is p a y i n g f o r t h e m ile o f ca b le d i r ect l y lea d i n g u p t o i t .

Bu t o n e o f t h e t o w n s ve r y cl ose t o t h e sw i tc h i n g h u b o b j ects, p o i n t i n g
o u t t h a t t h e f a r a w a y t o w n s a r e act u a l l y b e n e f i t i n g f r o m a l a rge sect i o n o f
t h e ca b le, w h e r eas t h e cl ose-i n t o w n s o n l y b e n e f i t f r o m a s h o r t sect i o n
o f i t . So t h e y m a k e t h e f o l l o w i n g co u n t e r p r o p osa l.

Proposal B. Divide the cost so that the contribution of town Ti is proportional
to i, its distance from the switching hub.

O n e o f t h e o t h e r t o w n s ve r y cl ose t o t h e sw i tc h i n g h u b p o i n ts o u t
t h a t t h e r e’s a n o t h e r w a y t o d o a n o n p r o p o r t i o n a l d i v isi o n t h a t is a lso
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n a t u r a l. T h is is b ase d o n co n ce p t u a l l y d i v i d i n g t h e ca b le i n t o n e q u a l-
le n gt h “e d ges” e1, . . . , en, w h e r e t h e f i rst e d ge e1 r u n s f r o m t h e sw i tc h i n g
h u b t o T1, a n d t h e ith e d ge ei (i > 1) r u n s f r o m Ti−1 t o Ti. N o w w e o bse r ve
t h a t , w h ile a l l t h e t o w n s b e n e f i t f r o m e1, o n l y t h e l ast t o w n b e n e f i ts f r o m
en. So t h e y s u ggest

Proposal C. Divide the cost separately for each edge ei. The cost of ei should
be shared equally by the towns Ti, Ti+1, . . . , Tn, since these are the towns
“downstream” of ei.

So n o w t h e t o w n s h a ve m a n y d i f f e r e n t o p t i o n s; w h ic h is t h e f ai r est?
T o r eso l ve t h is, t h e y t u r n t o t h e w o r k o f Ll o y d Sh a p le y , o n e o f t h e m ost
f a m o u s m a t h e m a t ica l eco n o m ists o f t h e 2 0 t h ce n t u r y . H e p r o p ose d w h a t
is n o w ca l le d t h e Sh a pley v a l u e as a ge n e r a l m ec h a n is m f o r s h a r i n g costs
o r b e n e f i ts a m o n g seve r a l p a r t ies. It ca n b e v ie w e d as d e t e r m i n i n g t h e
“ m a rgi n a l co n t r i b u t i o n ” o f eac h p a r t y , assu m i n g t h e p a r ties a r r ive i n a
r a n do m o r de r .

H e r e’s h o w i t w o u l d w o r k co n cr e t el y i n o u r se t t i n g. C o n si d e r a n
o r d e r i n g O o f t h e t o w n s, a n d s u p p ose t h a t t h e t o w n s “a r r i ve” i n t h is o r d e r .
T h e m a r gi n a l cost of to w n Ti i n o r de r O is d e t e r m i n e d as f o l l o ws. If Ti is
f i rst i n t h e o r d e r O, t h e n Ti p a ys ki, t h e cost o f r u n n i n g t h e ca b le a l l t h e
w a y f r o m t h e sw i tc h i n g h u b t o Ti. O t h e r w ise, l o o k a t t h e se t o f t o w n s t h a t
co m e b e f o r e Ti i n t h e o r d e r O, a n d le t Tj b e t h e f a r t h est a m o n g t h ese t o w n s
f r o m t h e sw i tc h i n g h u b . W h e n Ti a r r i ves, w e ass u m e t h e ca b le a l r ea d y
r eac h es o u t t o Tj b u t n o f a r t h e r . So i f j > i (Tj is f a r t h e r o u t t h a n Ti), t h e n
t h e m a rgi n a l cost o f Ti is 0, si n ce t h e ca b le a l r ea d y r u n s p ast Ti o n i ts w a y
o u t t o Tj . O n t h e o t h e r h a n d , i f j < i, t h e n t h e m a rgi n a l cost o f Ti is k(i − j):
t h e cost o f e x t e n d i n g t h e ca b le f r o m Tj o u t t o Ti.

(F o r e x a m p le, s u p p ose n = 3 a n d t h e t o w n s a r r i ve i n t h e o r d e r
T1, T3, T2. F i rst T1 p a ys k w h e n i t a r r i ves. T h e n , w h e n T3 a r r i ves, i t o n l y h as
t o p a y 2k t o e x t e n d t h e ca b le f r o m T1. F i n a l l y , w h e n T2 a r r i ves, i t d oes n ’t
h a ve t o p a y a n y t h i n g si n ce t h e ca b le a l r ea d y r u n s p ast i t o u t t o T3.)

N o w , le t Xi b e t h e r a n d o m v a r ia b le e q u a l t o t h e m a rgi n a l cost o f
t o w n Ti w h e n t h e o r d e r O is select e d u n i f o r m l y a t r a n d o m f r o m a l l
p e r m u t a t i o n s o f t h e t o w n s. U n d e r t h e r u les o f t h e Sh a p le y v a l u e, t h e
a m o u n t t h a t Ti s h o u l d co n t r i b u t e t o t h e o ve r a l l cost o f t h e ca b le is t h e
e x p ect e d v a l u e o f Xi.

T h e q u est i o n is: W h ic h o f t h e t h r ee p r o p osa ls a b o ve, i f a n y , gi ves t h e
sa m e d i v isi o n o f costs as t h e Sh a p le y v a l u e cost-s h a r i n g m ec h a n is m? G i ve
a p r o o f f o r y o u r a n sw e r .
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6. O n e o f t h e (m a n y) h a r d p r o b le m s t h a t a r ises i n ge n o m e m a p p i n g ca n b e
f o r m u l a t e d i n t h e f o l l o w i n g a bst r act w a y . We a r e gi ve n a se t o f n m a r ke rs
{µ1, . . . , µn}—t h ese a r e p osi t i o n s o n a c h r o m oso m e t h a t w e a r e t r y i n g t o
m a p—a n d o u r go a l is t o o u t p u t a li n ea r o r d e r i n g o f t h ese m a r k e rs. T h e
o u t p u t s h o u l d b e co n sist e n t w i t h a se t o f k co nst r a i n ts , eac h s p eci f ie d b y
a t r i p le (µi, µj , µk), r e q u i r i n g t h a t µj l ie bet w ee n µi a n d µk i n t h e t o t a l
o r d e r i n g t h a t w e p r o d u ce. (N o t e t h a t t h is co n st r ai n t d oes n o t s p eci f y
w h ic h o f µi o r µk s h o u l d co m e f i rst i n t h e o r d e r i n g, o n l y t h a t µj s h o u l d
co m e b e t w ee n t h e m .)

N o w i t is n o t a l w a ys p ossi b le t o sa t is f y a l l co n st r ai n ts si m u l t a n eo u sl y ,
so w e w is h t o p r o d u ce a n o r d e r i n g t h a t sa t is f ies as m a n y as p ossi b le.
U n f o r t u n a t el y , d eci d i n g w h e t h e r t h e r e is a n o r d e r i n g t h a t sa t is f ies a t least
k′ o f t h e k co n st r ai n ts is a n NP-co m p le t e p r o b le m (y o u d o n ’t h a ve t o p r o ve
t h is.)

G i ve a co n st a n t α > 0 (i n d e p e n d e n t o f n) a n d a n a lgo r i t h m w i t h t h e
f o l l o w i n g p r o p e r t y . If i t is p ossi b le t o sa t is f y k∗ o f t h e co n st r ai n ts, t h e n
t h e a lgo r i t h m p r o d u ces a n o r d e r i n g o f m a r k e rs sa t is f y i n g a t least αk∗

o f t h e co n st r ai n ts. Y o u r a lgo r i t h m m a y b e r a n d o m i z e d ; i n t h is case i t
s h o u l d p r o d u ce a n o r d e r i n g f o r w h ic h t h e expected n u m b e r o f sa t is f ie d
co n st r ai n ts is a t least αk∗.

7. In Sect i o n 1 3 .4 , w e d esig n e d a n a p p r o x i m a t i o n a lgo r i t h m t o w i t h i n a f ac-
t o r o f 7/8 f o r t h e M A X 3-S A T Pr o b le m , w h e r e w e ass u m e d t h a t eac h cl a u se
h as t e r m s associa t e d w i t h t h r ee d i f f e r e n t v a r ia b les. In t h is p r o b le m , w e
w il l co n si d e r t h e a n a l ogo u s M A X S A T Pr o b le m : G i ve n a se t o f cl a u ses
C1, . . . , Ck o ve r a se t o f v a r ia b les X = {x1, . . . , xn}, f i n d a t r u t h assig n m e n t
sa t is f y i n g as m a n y o f t h e cl a u ses as p ossi b le. Eac h cl a u se h as a t least
o n e t e r m i n i t , a n d a l l t h e v a r ia b les i n a si n gle cl a u se a r e d ist i n ct , b u t
o t h e r w ise w e d o n o t m a k e a n y ass u m p t i o n s o n t h e le n gt h o f t h e cl a u ses:
T h e r e m a y b e cl a u ses t h a t h a ve a l o t o f v a r ia b les, a n d o t h e rs m a y h a ve
j u st a si n gle v a r ia b le.

(a) F i rst co n si d e r t h e r a n d o m i z e d a p p r o x i m a t i o n a lgo r i t h m w e u se d f o r
M A X 3-S A T , se t t i n g eac h v a r ia b le i n d e p e n d e n t l y t o t r u e o r f a lse w i t h
p r o b a b il i t y 1 / 2 eac h . Sh o w t h a t t h e e x p ect e d n u m b e r o f cl a u ses
sa t is f ie d b y t h is r a n d o m assig n m e n t is a t least k/2, t h a t is, a t least h a l f
o f t h e cl a u ses a r e sa t is f ie d i n e x p ect a t i o n . G i ve a n e x a m p le t o s h o w
t h a t t h e r e a r e M A X S A T i n st a n ces s u c h t h a t n o assig n m e n t sa t is f ies
m o r e t h a n h a l f o f t h e cl a u ses.

(b) If w e h a ve a cl a u se t h a t co n sists o n l y o f a si n gle t e r m (e.g., a cl a u se
co n sist i n g j u st o f x1, o r j u st o f x2), t h e n t h e r e is o n l y a si n gle w a y t o sa t-
is f y i t: We n ee d t o se t t h e co r r es p o n d i n g v a r ia b le i n t h e a p p r o p r ia t e
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w a y . If w e h a ve t w o cl a u ses s u c h t h a t o n e co n sists o f j u st t h e t e r m
xi, a n d t h e o t h e r co n sists o f j u st t h e n ega t e d t e r m xi, t h e n t h is is a
p r e t t y d i r ect co n t r a d ict i o n .

A ss u m e t h a t o u r i n st a n ce h as n o s u c h p ai r o f “co n f l ict i n g
cl a u ses”; t h a t is, f o r n o v a r ia b le xi d o w e h a ve b o t h a cl a u se C = {xi}
a n d a cl a u se C ′ = {xi}. Mo d i f y t h e r a n d o m i z e d p r oce d u r e a b o ve t o i m-
p r o ve t h e a p p r o x i m a t i o n f act o r f r o m 1 / 2 t o a t least .6 . T h a t is, c h a n ge
t h e a lgo r i t h m so t h a t t h e e x p ect e d n u m b e r o f cl a u ses sa t is f ie d b y t h e
p r ocess is a t least .6k.

(c) G i ve a r a n d o m i z e d p o l y n o m ia l-t i m e a lgo r i t h m f o r t h e ge n e r a l M A X
S A T Pr o b le m , so t h a t t h e e x p ect e d n u m b e r o f cl a u ses sa t is f ie d b y t h e
a lgo r i t h m is a t least a .6 f r act i o n o f t h e m a x i m u m p ossi b le.

(N o t e t h a t , b y t h e e x a m p le i n p a r t (a), t h e r e a r e i n st a n ces w h e r e
o n e ca n n o t sa t is f y m o r e t h a n k/2 cl a u ses; t h e p o i n t h e r e is t h a t
w e’ d st i l l l i k e a n e f f icie n t a lgo r i t h m t h a t , i n e x p ect a t i o n , ca n sa t is f y
a .6 f r act i o n of t h e m a xi m u m t h a t c a n be sa tisfied b y a n opti m a l
assig n m e n t .)

8. Le t G = (V , E) b e a n u n d i r ect e d gr a p h w i t h n n o d es a n d m e d ges. F o r a
s u bse t X ⊆ V , w e u se G[X] t o d e n o t e t h e s u bgr a p h i n d uced o n X—t h a t is,
t h e gr a p h w h ose n o d e se t is X a n d w h ose e d ge se t co n sists o f a l l e d ges
o f G f o r w h ic h b o t h e n d s lie i n X .

We a r e gi ve n a n a t u r a l n u m b e r k ≤ n a n d a r e i n t e r est e d i n f i n d i n g a
se t o f k n o d es t h a t i n d u ces a “ d e n se” s u bgr a p h o f G; w e’l l p h r ase t h is
co n cr e t el y as f o l l o ws. G i ve a p o l y n o m ia l-t i m e a lgo r i t h m t h a t p r o d u ces,
f o r a gi ve n n a t u r a l n u m b e r k ≤ n, a se t X ⊆ V o f k n o d es w i t h t h e p r o p e r t y
t h a t t h e i n d u ce d s u bgr a p h G[X] h as a t least mk(k−1)

n(n−1) e d ges.

Y o u m a y gi ve ei t h e r (a) a d e t e r m i n ist ic a lgo r i t h m , o r (b) a r a n d o m i z e d
a lgo r i t h m t h a t h as a n e x p ect e d r u n n i n g t i m e t h a t is p o l y n o m ia l, a n d t h a t
o n l y o u t p u ts co r r ect a n sw e rs.

9. Su p p ose y o u ’r e d esig n i n g st r a t egies f o r sel l i n g i t e m s o n a p o p u l a r a u ct i o n
We b si t e. U n li k e o t h e r a u ct i o n si t es, t h is o n e u ses a o n e-p ass a uctio n ,
i n w h ic h eac h b i d m u st b e i m m e d ia t el y (a n d i r r ev oca b l y) acce p t e d o r
r e f u se d . Sp eci f ica l l y , t h e si t e w o r k s as f o l l o ws.

. F i rst a sel le r p u ts u p a n i t e m f o r sa le.

. T h e n b u y e rs a p p ea r i n se q u e n ce.

. W h e n b u ye r i a p p ea rs, h e o r s h e m a k es a b i d bi > 0.

. T h e sel le r m u st d eci d e i m m e d ia t el y w h e t h e r t o acce p t t h e b i d o r n o t .
If t h e sel le r acce p ts t h e b i d , t h e i t e m is so l d a n d a l l f u t u r e b u y e rs a r e
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t u r n e d a w a y . If t h e sel le r r e j ects t h e b i d , b u y e r i d e p a r ts a n d t h e b i d
is w i t h d r a w n; a n d o n l y t h e n d oes t h e sel le r see a n y f u t u r e b u y e rs.

Su p p ose a n i t e m is o f f e r e d f o r sa le, a n d t h e r e a r e n b u y e rs, eac h w i t h
a d ist i n ct b i d . Su p p ose f u r t h e r t h a t t h e b u y e rs a p p ea r i n a r a n d o m o r d e r ,
a n d t h a t t h e sel le r k n o ws t h e n u m b e r n o f b u y e rs. We’ d li k e t o d esig n
a st r a t egy w h e r e b y t h e sel le r h as a r easo n a b le c h a n ce o f acce p t i n g t h e
h ig h est o f t h e n b i d s. By a st r a teg y , w e m ea n a r u le b y w h ic h t h e sel le r
d eci d es w h e t h e r t o acce p t eac h p r ese n t e d b i d , b ase d o n l y o n t h e v a l u e o f
n a n d t h e se q u e n ce o f b i d s see n so f a r .

F o r e x a m p le, t h e sel le r co u l d a l w a ys acce p t t h e f i rst b i d p r ese n t e d .
T h is r es u l ts i n t h e sel le r acce p t i n g t h e h ig h est o f t h e n b i d s w i t h p r o b a b il-
i t y o n l y 1/n, si n ce i t r e q u i r es t h e h ig h est b i d t o b e t h e f i rst o n e p r ese n t e d .

G i ve a st r a t egy u n d e r w h ic h t h e sel le r acce p ts t h e h ig h est o f t h e n b i d s
w i t h p r o b a b il i t y a t least 1/4, r ega r d less o f t h e v a l u e o f n. (F o r si m p lici t y ,
y o u m a y ass u m e t h a t n is a n eve n n u m b e r .) Pr o ve t h a t y o u r st r a t egy
ac h ieves t h is p r o b a b il ist ic g u a r a n t ee.

10. C o n si d e r a ve r y si m p le o n li n e a u ct i o n syst e m t h a t w o r k s as f o l l o ws. T h e r e
a r e n bid di n g a ge n ts ; age n t i h as a b i d bi, w h ic h is a p osi t i ve n a t u r a l
n u m b e r . We w il l ass u m e t h a t a l l b i d s bi a r e d ist i n ct f r o m o n e a n o t h e r .
T h e b i d d i n g age n ts a p p ea r i n a n o r d e r c h ose n u n i f o r m l y a t r a n d o m , eac h
p r o p oses i ts b i d bi i n t u r n , a n d a t a l l t i m es t h e syst e m m ai n t ai n s a v a r ia b le
b∗ e q u a l t o t h e h ig h est b i d see n so f a r . (In i t ia l l y b∗ is se t t o 0.)

W h a t is t h e e x p ect e d n u m b e r o f t i m es t h a t b∗ is u p d a t e d w h e n t h is
p r ocess is e x ec u t e d , as a f u n ct i o n o f t h e p a r a m e t e rs i n t h e p r o b le m?

Exam ple. Su p p ose b1 = 20, b2 = 25, a n d b3 = 10, a n d t h e b i d d e rs a r r i ve i n
t h e o r d e r 1, 3, 2. T h e n b∗ is u p d a t e d f o r 1 a n d 2, b u t n o t f o r 3.

11. Lo a d b a l a n ci n g a lgo r it h ms f o r p a r a l lel o r d ist r i b u t e d syst e m s see k t o
s p r ea d o u t co l lect i o n s o f co m p u t i n g j o bs o ve r m u l t i p le m ac h i n es. In t h is
w a y , n o o n e m ac h i n e b eco m es a “ h o t s p o t .” If so m e k i n d o f ce n t r a l
co o r d i n a t i o n is p ossi b le, t h e n t h e l o a d ca n p o t e n t ia l l y b e s p r ea d o u t
a l m ost p e r f ect l y . Bu t w h a t i f t h e j o bs a r e co m i n g f r o m d i ve rse so u rces
t h a t ca n ’t co o r d i n a t e? A s w e sa w i n Sect i o n 1 3 .1 0 , o n e o p t i o n is t o assig n
t h e m t o m ac h i n es a t r a n d o m a n d h o p e t h a t t h is r a n d o m i z a t i o n w il l w o r k
t o p r eve n t i m b a l a n ces. C lea r l y , t h is w o n ’t ge n e r a l l y w o r k as w el l as a
p e r f ect l y ce n t r a li z e d so l u t i o n , b u t i t ca n b e q u i t e e f f ect i ve. H e r e w e t r y
a n a l y z i n g so m e v a r ia t i o n s a n d e x t e n si o n s o n t h e si m p le l o a d b a l a n ci n g
h e u r ist ic w e co n si d e r e d i n Sect i o n 1 3 .1 0 .
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Su p p ose y o u h a ve k m ac h i n es, a n d k j o bs s h o w u p f o r p r ocessi n g.
Eac h j o b is assig n e d t o o n e o f t h e k m ac h i n es i n d e p e n d e n t l y a t r a n d o m
(w i t h eac h m ac h i n e e q u a l l y l i k el y).

(a) Le t N(k) b e t h e e x p ect e d n u m b e r o f m ac h i n es t h a t d o n o t r ecei ve a n y
j o bs, so t h a t N(k)/k is t h e e x p ect e d f r act i o n o f m ac h i n es w i t h n o t h i n g
t o d o . W h a t is t h e v a l u e o f t h e li m i t limk→∞ N(k)/k? G i ve a p r o o f o f
y o u r a n sw e r .

(b) Su p p ose t h a t m ac h i n es a r e n o t a b le t o q u e u e u p e xcess j o bs, so i f t h e
r a n d o m assig n m e n t o f j o bs t o m ac h i n es se n d s m o r e t h a n o n e j o b t o
a m ac h i n e M , t h e n M w il l d o t h e f i rst o f t h e j o bs i t r ecei ves a n d r e j ect
t h e r est . Le t R(k) b e t h e e x p ect e d n u m b e r o f r e j ect e d j o bs; so R(k)/k
is t h e e x p ect e d f r act i o n o f r e j ect e d j o bs. W h a t is limk→∞ R(k)/k? G i ve
a p r o o f o f y o u r a n sw e r .

(c) N o w ass u m e t h a t m ac h i n es h a ve slig h t l y la rge r b u f f e rs; eac h m ac h i n e
M w il l d o t h e f i rst t w o j o bs i t r ecei ves, a n d r e j ect a n y a d d i t i o n a l j o bs.
Le t R2(k) d e n o t e t h e e x p ect e d n u m b e r o f r e j ect e d j o bs u n d e r t h is r u le.
W h a t is limk→∞ R2(k)/k? G i ve a p r o o f o f y o u r a n sw e r .

12. C o n si d e r t h e f o l l o w i n g a n a l og u e o f K a rge r ’s a lgo r i t h m f o r f i n d i n g m i n i-
m u m s-t c u ts. We w il l co n t r act e d ges i t e r a t i vel y u si n g t h e f o l l o w i n g r a n-
d o m i z e d p r oce d u r e. In a gi ve n i t e r a t i o n , le t s a n d t d e n o t e t h e p ossi b l y
co n t r act e d n o d es t h a t co n t ai n t h e o r igi n a l n o d es s a n d t, r es p ect i vel y . T o
m a k e s u r e t h a t s a n d t d o n o t ge t co n t r act e d , a t eac h i t e r a t i o n w e d ele t e
a n y e d ges co n n ect i n g s a n d t a n d select a r a n d o m e d ge t o co n t r act a m o n g
t h e r e m ai n i n g e d ges. G i ve a n e x a m p le t o s h o w t h a t t h e p r o b a b il i t y t h a t
t h is m e t h o d f i n d s a m i n i m u m s-t c u t ca n b e e x p o n e n t ia l l y s m a l l.

13. C o n si d e r a b a l ls-a n d-b i n s e x p e r i m e n t w i t h 2n b a l ls b u t o n l y t w o b i n s.
A s u s u a l, eac h b a l l i n d e p e n d e n t l y selects o n e o f t h e t w o b i n s, b o t h b i n s
e q u a l l y l i k el y . T h e e x p ect e d n u m b e r o f b a l ls i n eac h b i n is n. In t h is
p r o b le m , w e e x p l o r e t h e q u est i o n o f h o w b ig t h ei r d i f f e r e n ce is li k el y t o
b e. Le t X1 a n d X2 d e n o t e t h e n u m b e r o f b a l ls i n t h e t w o b i n s, r es p ect i vel y .
(X1 a n d X2 a r e r a n d o m v a r ia b les.) Pr o ve t h a t f o r a n y ε > 0 t h e r e is a
co n st a n t c > 0 s u c h t h a t t h e p r o b a b il i t y Pr

[
X1 − X2 > c

√
n
]
≤ ε.

14. So m e p eo p le d esig n i n g p a r a l lel p h ysica l si m u l a t i o n s co m e t o y o u w i t h
t h e f o l l o w i n g p r o b le m . T h e y h a ve a se t P o f k b asic p r ocesses a n d w a n t t o
assig n eac h p r ocess t o r u n o n o n e o f t w o m ac h i n es, M1 a n d M2. T h e y a r e
t h e n go i n g t o r u n a se q u e n ce o f n jobs , J1, . . . , Jn. Eac h j o b Ji is r e p r ese n t e d
b y a se t Pi ⊆ P o f e x act l y 2n b asic p r ocesses w h ic h m u st b e r u n n i n g
(eac h o n i ts assig n e d m ac h i n e) w h ile t h e j o b is p r ocesse d . A n assig n m e n t
o f b asic p r ocesses t o m ac h i n es w il l b e ca l le d pe r fectly b a l a nced i f , f o r
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eac h j o b Ji, e x act l y n o f t h e b asic p r ocesses associa t e d w i t h Ji h a ve b ee n
assig n e d t o eac h o f t h e t w o m ac h i n es. A n assig n m e n t o f b asic p r ocesses
t o m ac h i n es w il l b e ca l le d n e a r ly b a l a n ced i f , f o r eac h j o b Ji, n o m o r e
t h a n 4

3n o f t h e b asic p r ocesses associa t e d w i t h Ji h a ve b ee n assig n e d t o
t h e sa m e m ac h i n e.

(a) Sh o w t h a t f o r a r b i t r a r i l y la rge v a l u es o f n, t h e r e e x ist se q u e n ces o f
j o bs J1, . . . , Jn f o r w h ic h n o p e r f ect l y b a l a n ce d assig n m e n t e x ists.

(b) Su p p ose t h a t n ≥ 200. G i ve a n a lgo r i t h m t h a t t a k es a n a r b i t r a r y se-
q u e n ce o f j o bs J1, . . . , Jn a n d p r o d u ces a n ea r l y b a l a n ce d assig n m e n t
o f b asic p r ocesses t o m ac h i n es. Y o u r a lgo r i t h m m a y b e r a n d o m i z e d ,
i n w h ic h case i ts e x p ect e d r u n n i n g t i m e s h o u l d b e p o l y n o m ia l, a n d
i t s h o u l d a l w a ys p r o d u ce t h e co r r ect a n sw e r .

15. Su p p ose y o u a r e p r ese n t e d w i t h a ve r y l a rge se t S o f r ea l n u m b e rs, a n d
y o u ’ d li k e t o a p p r o x i m a t e t h e m e d ia n o f t h ese n u m b e rs b y sa m p li n g. Y o u
m a y ass u m e a l l t h e n u m b e rs i n S a r e d ist i n ct . Le t n = |S|; w e w il l sa y t h a t
a n u m b e r x is a n ε-a p p r oxi m a te m edi a n o f S i f a t least ( 1

2 − ε)n n u m b e rs
i n S a r e less t h a n x, a n d a t least ( 1

2 − ε)n n u m b e rs i n S a r e gr ea t e r t h a n x.

C o n si d e r a n a lgo r i t h m t h a t w o r k s as f o l l o ws. Y o u select a s u bse t
S′ ⊆ S u n i f o r m l y a t r a n d o m , co m p u t e t h e m e d ia n o f S′, a n d r e t u r n t h is
as a n a p p r o x i m a t e m e d ia n o f S. Sh o w t h a t t h e r e is a n a bso l u t e co n st a n t
c, i n d e p e n d e n t o f n, so t h a t i f y o u a p p l y t h is a lgo r i t h m w i t h a sa m p le S′

o f si z e c, t h e n w i t h p r o b a b il i t y a t least .99, t h e n u m b e r r e t u r n e d w il l b e
a (.05)-a p p r o x i m a t e m e d ia n o f S. (Y o u m a y co n si d e r ei t h e r t h e ve rsi o n o f
t h e a lgo r i t h m t h a t co n st r u cts S′ b y sa m p li n g w i t h r e p l ace m e n t , so t h a t a n
ele m e n t o f S ca n b e select e d m u l t i p le t i m es, o r o n e w i t h o u t r e p l ace m e n t .)

16. C o n si d e r t h e f o l l o w i n g (p a r t ia l l y s p eci f ie d) m e t h o d f o r t r a n s m i t t i n g a
m essage sec u r el y b e t w ee n a se n d e r a n d a r ecei ve r . T h e m essage w il l b e
r e p r ese n t e d as a st r i n g o f b i ts. Le t , = {0, 1}, a n d le t ,∗ d e n o t e t h e se t o f
a l l st r i n gs o f 0 o r m o r e b i ts (e.g., 0, 00, 1110001∈ ,∗). T h e “e m p t y st r i n g,”
w i t h n o b i ts, w il l b e d e n o t e d λ ∈ ,∗.

T h e se n d e r a n d r ecei ve r s h a r e a secr e t f u n ct i o n f : ,∗ × , → , . T h a t
is, f t a k es a w o r d a n d a b i t , a n d r e t u r n s a b i t . W h e n t h e r ecei ve r ge ts a
se q u e n ce o f b i ts α ∈ ,∗, h e o r s h e r u n s t h e f o l l o w i n g m e t h o d t o d eci p h e r
i t .

Let α = α1α2 . . . αn, where n is the number of bits in α

The goal is to produce an n-bit deciphered message,

β = β1β2 . . . βn

Set β1 = f (λ, α1)
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For i = 2, 3, 4, . . . , n

Set βi = f (β1 β2 . . . βi−1, αi)

Endfor

Output β

O n e co u l d v ie w t h is is as a t y p e o f “st r ea m ci p h e r w i t h f ee d b ac k .” O n e
p r o b le m w i t h t h is a p p r o ac h is t h a t , i f a n y b i t αi ge ts co r r u p t e d i n t r a n s-
m issi o n , i t w il l co r r u p t t h e co m p u t e d v a l u e o f βj f o r a l l j ≥ i.

We co n si d e r t h e f o l l o w i n g p r o b le m . A se n d e r S w a n ts t o t r a n s m i t t h e
sa m e (p l ai n-t e x t) m essage β t o eac h o f k r ecei ve rs R1, . . . , Rk. Wi t h eac h
o n e, h e s h a r es a d i f f e r e n t secr e t f u n ct i o n f ⟨i⟩. T h u s h e se n d s a d i f f e r e n t
e n cr y p t e d m essage α⟨i⟩ t o eac h r ecei ve r , so t h a t α⟨i⟩ d ecr y p ts t o β w h e n
t h e a b o ve a lgo r i t h m is r u n w i t h t h e f u n ct i o n f ⟨i⟩.

U n f o r t u n a t el y , t h e co m m u n ica t i o n c h a n n els a r e ve r y n o isy , so eac h o f
t h e n b i ts i n eac h o f t h e k t r a n s m issi o n s is i n depe n de n tly co r r u p t e d (i.e.,
f l i p p e d t o i ts co m p le m e n t) w i t h p r o b a b il i t y 1/4. T h u s n o si n gle r ecei ve r
o n h is o r h e r o w n is li k el y t o b e a b le t o d ecr y p t t h e m essage co r r ect l y .
Sh o w , h o w eve r , t h a t i f k is l a rge e n o u g h as a f u n ct i o n o f n, t h e n t h e k
r ecei ve rs ca n j o i n t l y r eco n st r u ct t h e p l ai n-t e x t m essage i n t h e f o l l o w i n g
w a y . T h e y ge t t oge t h e r , a n d w i t h o u t r evea li n g a n y o f t h e α⟨i⟩ o r t h e f ⟨i⟩,
t h e y i n t e r act i vel y r u n a n a lgo r i t h m t h a t w il l p r o d u ce t h e co r r ect β w i t h
p r o b a b il i t y a t least 9/10. (H o w la rge d o y o u n ee d k t o b e i n y o u r a lgo r i t h m?)

17. C o n si d e r t h e f o l l o w i n g si m p le m o d el o f ga m b li n g i n t h e p r ese n ce o f b a d
o d d s. A t t h e b egi n n i n g, y o u r n e t p r o f i t is 0. Y o u p l a y f o r a se q u e n ce o f n
r o u n d s; a n d i n eac h r o u n d , y o u r n e t p r o f i t i n cr eases b y 1 w i t h p r o b a b il i t y
1/3, a n d d ecr eases b y 1 w i t h p r o b a b il i t y 2/3.

Sh o w t h a t t h e e x p ect e d n u m b e r o f st e p s i n w h ic h y o u r n e t p r o f i t is
p osi t i ve ca n b e u p p e r-b o u n d e d b y a n a bso l u t e co n st a n t , i n d e p e n d e n t o f
t h e v a l u e o f n.

18. In t h is p r o b le m , w e w il l co n si d e r t h e f o l l o w i n g si m p le r a n d o m i z e d a lgo-
r i t h m f o r t h e V e r t e x C o ve r A lgo r i t h m .

Start with S = ∅
While S is not a vertex cover,

Select an edge e not covered by S

Select one end of e at random (each end equally likely)

Add the selected node to S

Endwhile
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We w il l b e i n t e r est e d i n t h e e x p ect e d cost o f a ve r t e x co ve r select e d b y
t h is a lgo r i t h m .

(a) Is t h is a lgo r i t h m a c-a p p r o x i m a t i o n a lgo r i t h m f o r t h e Mi n i m u m
Weig h t V e r t e x C o ve r Pr o b le m f o r so m e co n st a n t c? Pr o ve y o u r a n-
sw e r .

(b) Is t h is a lgo r i t h m a c-a p p r o x i m a t i o n a lgo r i t h m f o r t h e Mi n i m u m C a r d i-
n a li t y V e r t e x C o ve r Pr o b le m f o r so m e co n st a n t c? Pr o ve y o u r a n sw e r .

(H i n t: F o r a n e d ge, le t pe d e n o t e t h e p r o b a b il i t y t h a t e d ge e is
select e d as a n u n co ve r e d e d ge i n t h is a lgo r i t h m . C a n y o u e x p r ess
t h e e x p ect e d v a l u e o f t h e so l u t i o n i n t e r m s o f t h ese p r o b a b il i t ies? T o
b o u n d t h e v a l u e o f a n o p t i m a l so l u t i o n i n t e r m s o f t h e pe p r o b a b il i t ies,
t r y t o b o u n d t h e s u m o f t h e p r o b a b il i t ies f o r t h e e d ges i n ci d e n t t o a
gi ve n ve r t e x v, n a m el y ,

∑

e incident to v

pe .)

Notes and Further Reading

The use of randomization in algorithms is an active research area; the books
by Motwani and Raghavan (1995) and Mitzenmacher and Upfal (2005) are
devoted to this topic. As the contents of this chapter make clear, the types
of probabilistic arguments used in the study of basic randomized algorithms
often have a discrete, combinatorial flavor; one can get background in this
style of probabilistic analysis from the book by Feller (1957).

The use of randomization for contention resolution is common in many
systems and networking applications. Ethernet-style shared communication
media, for example, use randomized backoff protocols to reduce the number
of collisions among different senders; see the book by Bertsekas and Gallager
(1992) for a discussion of this topic.

The randomized algorithm for the Minimum-Cut Problem described in the
text is due to Karger, and after further optimizations due to Karger and Stein
(1996), it has become one of the most efficient approaches to the minimum
cut problem. A number of further extensions and applications of the algorithm
appear in Karger’s (1995) Ph.D. thesis.

The approximation algorithm for MAX 3-SAT is due to Johnson (1974), in
a paper that contains a number of early approximation algorithms for NP-hard
problems. The surprising punch line to that section—that every instance of 3-
SAT has an assignment satisfying at least 7/8 of the clauses—is an example
of the probabilistic method, whereby a combinatorial structure with a desired
property is shown to exist simply by arguing that a random structure has
the property with positive probability. This has grown into a highly refined
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technique in the area of combinatorics; the book by Alon and Spencer (2000)
covers a wide range of its applications.

Hashing is a topic that remains the subject of extensive study, in both
theoretical and applied settings, and there are many variants of the basic
method. The approach we focus on in Section 13.6 is due to Carter and Wegman
(1979). The use of randomization for finding the closest pair of points in the
plane was originally proposed by Rabin (1976), in an influential early paper
that exposed the power of randomization in many algorithmic settings. The
algorithm we describe in this chapter was developed by Golin et al. (1995).
The technique used there to bound the number of dictionary operations, in
which one sums the expected work over all stages of the random order, is
sometimes referred to as backwards analysis; this was originally proposed
by Chew (1985) for a related geometric problem, and a number of further
applications of backwards analysis are described in the survey by Seidel (1993).

The performance guarantee for the LRU caching algorithm is due to Sleator
and Tarjan (1985), and the bound for the Randomized Marking algorithm is
due to Fiat, Karp, Luby, McGeoch, Sleator, and Young (1991). More generally,
the paper by Sleator and Tarjan highlighted the notion of online algorithms,
which must process input without knowledge of the future; caching is one
of the fundamental applications that call for such algorithms. The book by
Borodin and El-Yaniv (1998) is devoted to the topic of online algorithms and
includes many further results on caching in particular.

There are many ways to formulate bounds of the type in Section 13.9,
showing that a sum of 0-1-valued independent random variables is unlikely to
deviate far from its mean. Results of this flavor are generally called Chernoff
bounds, or Chernoff-Hoeffding bounds, after the work of Chernoff (1952)
and Hoeffding (1963). The books by Alon and Spencer (1992), Motwani and
Raghavan (1995), and Mitzenmacher and Upfal (2005) discuss these kinds of
bounds in more detail and provide further applications.

The results for packet routing in terms of congestion and dilation are
due to Leighton, Maggs, and Rao (1994). Routing is another area in which
randomization can be effective at reducing contention and hot spots; the book
by Leighton (1992) covers many further applications of this principle.

Notes on the Exercises Exercise 6 is based on a result of Benny Chor and
Madhu Sudan; Exercise 9 is a version of the Secretary Problem, whose popu-
larization is often credited to Martin Gardner.


