
MPI� The Complete Reference

Scienti�c and Engineering Computation
Janusz Kowalik� Editor

Data�Parallel Programming on MIMD Computers

by Philip J� Hatcher and Michael J� Quinn� ����

Unstructured Scienti�c Computation on Scalable Multiprocessors

edited by Piyush Mehrotra� Joel Saltz� and Robert Voigt� ����

Parallel Computational Fluid Dynamics� Implementations and Results

edited by Horst D� Simon� ����

Enterprise Integration Modeling� Proceedings of the First International Conference

edited by Charles J� Petrie� Jr�� ����

The High Performance Fortran Handbook

by Charles H� Koelbel� David B� Loveman� Robert S� Schreiber� Guy L� Steele Jr�

and Mary E� Zosel� ����

Using MPI� Portable Parallel Programming with the Message�Passing Interface

by William Gropp� Ewing Lusk� and Anthony Skjellum� ����

PVM� Parallel Virtual Machine�A User�s Guide and Tutorial for Network Parallel

Computing
by Al Geist� Adam Beguelin� Jack Dongarra� Weicheng Jiang� Bob Manchek� and

Vaidy Sunderam� ����

Enabling Technologies for Peta�ops Computing

by Thomas Sterling� Paul Messina� and Paul H� Smith

An Introduction to High�Performance Scienti�c Computing

by Lloyd D� Fosdick� Elizabeth R� Jessup� Carolyn J�C� Schauble� and Gitta Domik

Practical Parallel Programming

by Gregory V� Wilson

MPI� The Complete Reference

by Marc Snir� Steve Otto� Steven Huss�Lederman� David Walker� and Jack Don�

garra

MPI� The Complete Reference

Marc Snir

Steve Otto

Steven Huss�Lederman

David Walker

Jack Dongarra

The MIT Press

Cambridge� Massachusetts

London� England

c� ���� Massachusetts Institute of Technology

All rights reserved� No part of this book may be reproduced in any form by any electronic or
mechanical means �including photocopying� recording� or information storage and retrieval�
without permission in writing from the publisher�

Parts of this book came from� �MPI	 A Message
Passing Interface Standard� by the Message
Passing Interface Forum� That document is c� the University of Tennessee� These sections were
copied by permission of the University of Tennessee�

This book was set in LaTEX by the authors and was printed and bound in the United States of
America�

Library of Congress Catalog Card Number	 ��

����

Contents

Series Foreword ix

Preface xi

� Introduction �

��� The Goals of MPI �

��� Who Should Use This Standard	 �

��� What Platforms are Targets for Implementation	 �

��� What is Included in MPI	

��
 What is Not Included in MPI	

��� Version of MPI �

��� MPI Conventions and Design Choices �

��
 Semantic Terms

��� Language Binding ��

� Point�to�Point Communication �

��� Introduction and Overview �

��� Blocking Send and Receive Operations �

��� Datatype Matching and Data Conversion ��

��� Semantics of Blocking Point�to�point ��

��
 Example � Jacobi iteration ��

��� Send�Receive ��

��� Null Processes ��

��
 Nonblocking Communication ��

��� Multiple Completions ��

���� Probe and Cancel �

���� Persistent Communication Requests
�

���� Communication�Complete Calls with Null Request Handles
�

���� Communication Modes
�

� User�De�ned Datatypes and Packing ���

��� Introduction ���

vi Contents

��� Introduction to User�De�ned Datatypes ���

��� Datatype Constructors ��

��� Use of Derived Datatypes ���

��
 Address Function ��

��� Lower�bound and Upper�bound Markers ���

��� Absolute Addresses ���

��
 Pack and Unpack ��

� Collective Communications ���

��� Introduction and Overview ���

��� Operational Details �
�

��� Communicator Argument �
�

��� Barrier Synchronization �
�

��
 Broadcast �
�

��� Gather �
�

��� Scatter ��

��
 Gather to All ���

��� All to All Scatter�Gather ���

���� Global Reduction Operations ��

���� Scan �

���� User�De�ned Operations for Reduce and Scan �
�

���� The Semantics of Collective Communications ��

� Communicators ���

�� Introduction ���

�� Overview ���

�� Group Management ���

�� Communicator Management ���

�
 Safe Parallel Libraries ���

�� Caching ���

�� Intercommunication ���

Contents vii

� Process Topologies �
�

��� Introduction �
�

��� Virtual Topologies �
�

��� Overlapping Topologies �

��� Embedding in MPI �
�

��
 Cartesian Topology Functions �
�

��� Graph Topology Functions ���

��� Topology Inquiry Functions ���

��
 An Application Example ���

	 Environmental Management �
�

��� Implementation Information �
�

��� Timers and Synchronization ���

��� Initialization and Exit ���

��� Error Handling ���

��
 Interaction with Executing Environment ���

 The MPI Pro�ling Interface ���

�� Requirements ���

�� Discussion ���

�� Logic of the Design ���

�� Examples ���

�
 Multiple Levels of Interception ���

� Conclusions ���

��� Design Issues ���

��� Portable Programming with MPI ���

��� Heterogeneous Computing with MPI ���

��� MPI Implementations ���

��
 Extensions to MPI ���

Bibliography ���

viii Contents

Index ���

Constants Index ���

Function Index ��

Series Foreword

The world of modern computing potentially o�ers many helpful methods and tools

to scientists and engineers� but the fast pace of change in computer hardware� soft�

ware� and algorithms often makes practical use of the newest computing technol�

ogy di�cult� The Scienti�c and Engineering Computation series focuses on rapid

advances in computing technologies and attempts to facilitate transferring these

technologies to applications in science and engineering� It will include books on

theories� methods� and original applications in such areas as parallelism� large�scale

simulations� time�critical computing� computer�aided design and engineering� use

of computers in manufacturing� visualization of scienti�c data� and human�machine

interface technology�

The series will help scientists and engineers to understand the current world of

advanced computation and to anticipate future developments that will impact their

computing environments and open up new capabilities and modes of computation�

This book is about the Message Passing Interface �MPI�� an important and in�

creasingly popular standarized and portable message passing system that brings

us closer to the potential development of practical and cost�e�ective large�scale

parallel applications� It gives a complete speci�cation of the MPI standard and

provides illustrative programming examples� This advanced level book supple�

ments the companion� introductory volume in the Series by William Gropp� Ewing

Lusk and Anthony Skjellum� Using MPI� Portable Parallel Programming with the

Message�Passing Interface�

Janusz S� Kowalik

Preface

MPI� the Message Passing Interface� is a standardized and portable message�

passing system designed by a group of researchers from academia and industry

to function on a wide variety of parallel computers� The standard de�nes the

syntax and semantics of a core of library routines useful to a wide range of users

writing portable message�passing programs in Fortran �� or C� Several well�tested

and e�cient implementations of MPI already exist� including some that are free

and in the public domain� These are beginning to foster the development of a

parallel software industry� and there is excitement among computing researchers

and vendors that the development of portable and scalable� large�scale parallel

applications is now feasible�

The MPI standardization e�ort involved over
� people from �� organizations�

mainly from the United States and Europe� Most of the major vendors of con�

current computers at the time were involved in MPI� along with researchers from

universities� government laboratories� and industry� The standardization process

began with the Workshop on Standards for Message Passing in a Distributed Mem�

ory Environment� sponsored by the Center for Research on Parallel Computing�

held April ������ ����� in Williamsburg� Virginia ����� A preliminary draft pro�

posal� known as MPI�� was put forward by Dongarra� Hempel� Hey� and Walker in

November ����� and a revised version was completed in February ���� �����

In November ����� a meeting of the MPI working group was held in Minneapolis�

at which it was decided to place the standardization process on a more formal

footing� The MPI working group met every � weeks throughout the �rst � months of

����� The draft MPI standard was presented at the Supercomputing ��� conference

in November ����� After a period of public comments� which resulted in some

changes in MPI� version ��� of MPI was released in June �����

These meetings and the email discussion together constituted the MPI Forum�

membership of which has been open to all members of the high performance com�

puting community�

This book serves as an annotated reference manual for MPI� and a complete

speci�cation of the standard is presented� We repeat the material already published

in the MPI speci�cation document ��
�� though an attempt to clarify has been made�

The annotations mainly take the form of explaining why certain design choices were

made� how users are meant to use the interface� and how MPI implementors should

construct a version of MPI� Many detailed� illustrative programming examples are

also given� with an eye toward illuminating the more advanced or subtle features

of MPI�

The complete interface is presented in this book� and we are not hesitant to ex�

xii Preface

plain even the most esoteric features or consequences of the standard� As such� this

volume does not work as a gentle introduction to MPI� nor as a tutorial� For such

purposes� we recommend the companion volume in this series by William Gropp�

Ewing Lusk� and Anthony Skjellum� Using MPI� Portable Parallel Programming

with the Message�Passing Interface� The parallel application developer will want

to have copies of both books handy�

For a �rst reading� and as a good introduction to MPI� the reader should �rst

read� Chapter �� through Section ������ the material on point to point commu�

nications covered in Sections ��� through ��
 and Section ��
� the simpler forms

of collective communications explained in Sections ��� through ���� and the basic

introduction to communicators given in Sections
�� through
��� This will give a

fair understanding of MPI� and will allow the construction of parallel applications

of moderate complexity�

This book is based on the hard work of many people in the MPI Forum� The

authors gratefully recognize the members of the forum� especially the contributions

made by members who served in positions of responsibility� Lyndon Clarke� James

Cownie� Al Geist� William Gropp� Rolf Hempel� Robert Knighten� Richard Little�

�eld� Ewing Lusk� Paul Pierce� and Anthony Skjellum� Other contributors were� Ed

Anderson� Robert Babb� Joe Baron� Eric Barszcz� Scott Berryman� Rob Bjornson�

Nathan Doss� Anne Elster� Jim Feeney� Vince Fernando� Sam Fineberg� Jon Flower�

Daniel Frye� Ian Glendinning� AdamGreenberg� Robert Harrison� Leslie Hart� Tom

Haupt� Don Heller� TomHenderson� Anthony Hey� Alex Ho� C�T� Howard Ho� Gary

Howell� John Kapenga� James Kohl� Susan Krauss� Bob Leary� Arthur Maccabe�

Peter Madams� Alan Mainwaring� Oliver McBryan� Phil McKinley� Charles Mosher�

Dan Nessett� Peter Pacheco� Howard Palmer� Sanjay Ranka� Peter Rigsbee� Arch

Robison� Erich Schikuta� Mark Sears� Ambuj Singh� Alan Sussman� Robert Tom�

linson� Robert G� Voigt� Dennis Weeks� Stephen Wheat� and Steven Zenith� We

especially thank WilliamGropp and Ewing Lusk for help in formatting this volume�

Support for MPI meetings came in part from ARPA and NSF under grant ASC�

�������� NSF Science and Technology Center Cooperative agreement No� CCR�

����
� and the Commission of the European Community through Esprit Project

P����� The University of Tennessee also made �nancial contributions to the MPI

Forum�

MPI� The Complete Reference

xiv Preface

� Introduction

Message passing is a programming paradigm used widely on parallel computers�

especially Scalable Parallel Computers �SPCs� with distributed memory� and on

Networks of Workstations �NOWs�� Although there are many variations� the basic

concept of processes communicating through messages is well understood� Over the

last ten years� substantial progress has been made in casting signi�cant applications

into this paradigm� Each vendor has implemented its own variant� More recently�

several public�domain systems have demonstrated that a message�passing system

can be e�ciently and portably implemented� It is thus an appropriate time to

de�ne both the syntax and semantics of a standard core of library routines that

will be useful to a wide range of users and e�ciently implementable on a wide

range of computers� This e�ort has been undertaken over the last three years by

the Message Passing Interface �MPI� Forum� a group of more than
� people from ��

organizations� representing vendors of parallel systems� industrial users� industrial

and national research laboratories� and universities�

The designers of MPI sought to make use of the most attractive features of a

number of existing message�passing systems� rather than selecting one of them and

adopting it as the standard� Thus� MPI has been strongly in�uenced by work

at the IBM T� J� Watson Research Center ��� ��� Intel�s NX�� ����� Express �����

nCUBE�s Vertex ����� p� ���
�� and PARMACS ��� ��� Other important contribu�

tions have come from Zipcode ��
� ���� Chimp ���� ���� PVM ���� ���� Chameleon

����� and PICL ��
�� The MPI Forum identi�ed some critical shortcomings of exist�

ing message�passing systems� in areas such as complex data layouts or support for

modularity and safe communication� This led to the introduction of new features

in MPI�

The MPI standard de�nes the user interface and functionality for a wide range

of message�passing capabilities� Since its completion in June of ����� MPI has

become widely accepted and used� Implementations are available on a range of

machines from SPCs to NOWs� A growing number of SPCs have an MPI supplied

and supported by the vendor� Because of this� MPI has achieved one of its goals

� adding credibility to parallel computing� Third party vendors� researchers� and

others now have a reliable and portable way to express message�passing� parallel

programs�

The major goal of MPI� as with most standards� is a degree of portability across

di�erent machines� The expectation is for a degree of portability comparable to

that given by programming languages such as Fortran� This means that the same

message�passing source code can be executed on a variety of machines as long as the

MPI library is available� while some tuning might be needed to take best advantage

�

� Chapter �

of the features of each system� Though message passing is often thought of in

the context of distributed�memory parallel computers� the same code can run well

on a shared�memory parallel computer� It can run on a network of workstations�

or� indeed� as a set of processes running on a single workstation� Knowing that

e�cient MPI implementations exist across a wide variety of computers gives a high

degree of �exibility in code development� debugging� and in choosing a platform for

production runs�

Another type of compatibility o�ered by MPI is the ability to run transparently

on heterogeneous systems� that is� collections of processors with distinct archi�

tectures� It is possible for an MPI implementation to span such a heterogeneous

collection� yet provide a virtual computing model that hides many architectural dif�

ferences� The user need not worry whether the code is sending messages between

processors of like or unlike architecture� The MPI implementation will automat�

ically do any necessary data conversion and utilize the correct communications

protocol� However� MPI does not prohibit implementations that are targeted to a

single� homogeneous system� and does not mandate that distinct implementations

be interoperable� Users that wish to run on an heterogeneous system must use an

MPI implementation designed to support heterogeneity�

Portability is central but the standard will not gain wide usage if this was achieved

at the expense of performance� For example� Fortran is commonly used over assem�

bly languages because compilers are almost always available that yield acceptable

performance compared to the non�portable alternative of assembly languages� A

crucial point is that MPI was carefully designed so as to allow e�cient implementa�

tions� The design choices seem to have been made correctly� since MPI implemen�

tations over a wide range of platforms are achieving high performance� comparable

to that of less portable� vendor�speci�c systems�

An important design goal of MPI was to allow e�cient implementations across

machines of di�ering characteristics� For example� MPI carefully avoids specifying

how operations will take place� It only speci�es what an operation does logically�

As a result� MPI can be easily implemented on systems that bu�er messages at the

sender� receiver� or do no bu�ering at all� Implementations can take advantage of

speci�c features of the communication subsystem of various machines� On machines

with intelligent communication coprocessors� much of the message passing protocol

can be o�oaded to this coprocessor� On other systems� most of the communication

code is executed by the main processor� Another example is the use of opaque

objects in MPI� By hiding the details of how MPI�speci�c objects are represented�

each implementation is free to do whatever is best under the circumstances�

Another design choice leading to e�ciency is the avoidance of unnecessary work�

Introduction �

MPI was carefully designed so as to avoid a requirement for large amounts of extra

information with each message� or the need for complex encoding or decoding of

message headers� MPI also avoids extra computation or tests in critical routines

since this can degrade performance� Another way of minimizing work is to en�

courage the reuse of previous computations� MPI provides this capability through

constructs such as persistent communication requests and caching of attributes on

communicators� The design of MPI avoids the need for extra copying and bu�ering

of data� in many cases� data can be moved from the user memory directly to the

wire� and be received directly from the wire to the receiver memory�

MPI was designed to encourage overlap of communication and computation� so as

to take advantage of intelligent communication agents� and to hide communication

latencies� This is achieved by the use of nonblocking communication calls� which

separate the initiation of a communication from its completion�

Scalability is an important goal of parallel processing� MPI allows or supports

scalability through several of its design features� For example� an application can

create subgroups of processes that� in turn� allows collective communication oper�

ations to limit their scope to the processes involved� Another technique used is

to provide functionality without a computation that scales as the number of pro�

cesses� For example� a two�dimensional Cartesian topology can be subdivided into

its one�dimensional rows or columns without explicitly enumerating the processes�

Finally� MPI� as all good standards� is valuable in that it de�nes a known� mini�

mum behavior of message�passing implementations� This relieves the programmer

from having to worry about certain problems that can arise� One example is that

MPI guarantees that the underlying transmission of messages is reliable� The user

need not check if a message is received correctly�

��� The Goals of MPI

The goal of the Message Passing Interface� simply stated� is to develop a widely

used standard for writing message�passing programs� As such the interface should

establish a practical� portable� e�cient� and �exible standard for message passing�

A list of the goals of MPI appears below�

� Design an application programming interface� Although MPI is currently used

as a run�time for parallel compilers and for various libraries� the design of MPI

primarily re�ects the perceived needs of application programmers�

� Allow e�cient communication� Avoidmemory�to�memory copying� allow overlap

� Chapter �

of computation and communication� and o�oad to a communication coprocessor�

processor� where available�

� Allow for implementations that can be used in a heterogeneous environment�

� Allow convenient C and Fortran �� bindings for the interface� Also� the semantics

of the interface should be language independent�

� Provide a reliable communication interface� The user need not cope with com�

munication failures�

� De�ne an interface not too di�erent from current practice� such as PVM� NX�

Express� p�� etc�� and provides extensions that allow greater �exibility�

� De�ne an interface that can be implemented on many vendor�s platforms� with

no signi�cant changes in the underlying communication and system software�

� The interface should be designed to allow for thread�safety�

��� Who Should Use This Standard

The MPI standard is intended for use by all those who want to write portable

message�passing programs in Fortran �� and C� This includes individual application

programmers� developers of software designed to run on parallel machines� and

creators of environments and tools� In order to be attractive to this wide audience�

the standard must provide a simple� easy�to�use interface for the basic user while not

semantically precluding the high�performance message�passing operations available

on advanced machines�

��� What Platforms are Targets for Implementation

The attractiveness of the message�passing paradigm at least partially stems from

its wide portability� Programs expressed this way may run on distributed�memory

multicomputers� shared�memory multiprocessors� networks of workstations� and

combinations of all of these� The paradigm will not be made obsolete by archi�

tectures combining the shared� and distributed�memory views� or by increases in

network speeds� Thus� it should be both possible and useful to implement this

standard on a great variety of machines� including those �machines� consisting

of collections of other machines� parallel or not� connected by a communication

network�

The interface is suitable for use by fully general Multiple Instruction� Multiple

Data �MIMD� programs� or Multiple Program� Multiple Data �MPMD� programs�

where each process follows a distinct execution path through the same code� or even

Introduction �

executes a di�erent code� It is also suitable for those written in the more restricted

style of Single Program� Multiple Data �SPMD�� where all processes follow the

same execution path through the same program� Although no explicit support for

threads is provided� the interface has been designed so as not to prejudice their use�

With this version of MPI no support is provided for dynamic spawning of tasks�

such support is expected in future versions of MPI� see Section ��
�

MPI provides many features intended to improve performance on scalable parallel

computers with specialized interprocessor communication hardware� Thus� we ex�

pect that native� high�performance implementations ofMPIwill be provided on such

machines� At the same time� implementations ofMPI on top of standard Unix inter�

processor communication protocols will provide portability to workstation clusters

and heterogeneous networks of workstations� Several proprietary� native imple�

mentations of MPI� and public domain� portable implementation of MPI are now

available� See Section ��� for more information about MPI implementations�

��� What is Included in MPI

The standard includes�

� Point�to�point communication

� Collective operations

� Process groups

� Communication domains

� Process topologies

� Environmental Management and inquiry

� Pro�ling interface

� Bindings for Fortran �� and C

��� What is Not Included in MPI

MPI does not specify�

� Explicit shared�memory operations

� Operations that require more operating system support than was standard dur�

ing the adoption of MPI� for example� interrupt�driven receives� remote execution�

or active messages

� Program construction tools

� Debugging facilities

� Chapter �

� Explicit support for threads

� Support for task management

� I�O functions

There are many features that were considered and not included in MPI� This

happened for a number of reasons� the time constraint that was self�imposed by

the MPI Forum in �nishing the standard� the feeling that not enough experience

was available on some of these topics� and the concern that additional features

would delay the appearance of implementations�

Features that are not included can always be o�ered as extensions by speci�c

implementations� Future versions of MPI will address some of these issues �see

Section ��
��

��� Version of MPI

The original MPI standard was created by the Message Passing Interface Forum

�MPIF�� The public release of version ��� of MPI was made in June ����� The

MPIF began meeting again in March ���
� One of the �rst tasks undertaken was

to make clari�cations and corrections to the MPI standard� The changes from

version ��� to version ��� of the MPI standard were limited to �corrections� that

were deemed urgent and necessary� This work was completed in June ���
 and

version ��� of the standard was released� This book re�ects the updated version

��� of the MPI standard�

��	 MPI Conventions and Design Choices

This section explains notational terms and conventions used throughout this book�

����� Document Notation

Rationale� Throughout this document� the rationale for design choices made in

the interface speci�cation is set o� in this format� Some readers may wish to skip

these sections� while readers interested in interface design may want to read them

carefully� �End of rationale��

Advice to users� Throughout this document� material that speaks to users and

illustrates usage is set o� in this format� Some readers may wish to skip these

sections� while readers interested in programming in MPI may want to read them

carefully� �End of advice to users��

Introduction �

Advice to implementors� Throughout this document� material that is primarily

commentary to implementors is set o� in this format� Some readers may wish to

skip these sections� while readers interested in MPI implementations may want to

read them carefully� �End of advice to implementors��

����� Procedure Speci�cation

MPI procedures are speci�ed using a language independent notation� The argu�

ments of procedure calls are marked as IN� OUT or INOUT� The meanings of these

are�

� the call uses but does not update an argument marked IN�

� the call may update an argument marked OUT�

� the call both uses and updates an argument marked INOUT�

There is one special case � if an argument is a handle to an opaque object

�de�ned in Section ��
���� and the object is updated by the procedure call� then the

argument is marked OUT� It is marked this way even though the handle itself is not

modi�ed � we use the OUT attribute to denote that what the handle references is

updated�

The de�nition of MPI tries to avoid� to the largest possible extent� the use of

INOUT arguments� because such use is error�prone� especially for scalar arguments�

A common occurrence for MPI functions is an argument that is used as IN by

some processes and OUT by other processes� Such an argument is� syntactically�

an INOUT argument and is marked as such� although� semantically� it is not used

in one call both for input and for output�

Another frequent situation arises when an argument value is needed only by a

subset of the processes� When an argument is not signi�cant at a process then an

arbitrary value can be passed as the argument�

Unless speci�ed otherwise� an argument of type OUT or type INOUT cannot

be aliased with any other argument passed to an MPI procedure� An example of

argument aliasing in C appears below� If we de�ne a C procedure like this�

void copyIntBuffer� int �pin� int �pout� int len �

� int i�

for �i��� i	len�

i� �pout

 � �pin

�

�

then a call to it in the following code fragment has aliased arguments�

int a�
���

� Chapter �

copyIntBuffer� a� a
�� ���

Although the C language allows this� such usage of MPI procedures is forbidden

unless otherwise speci�ed� Note that Fortran prohibits aliasing of arguments�

All MPI functions are �rst speci�ed in the language�independent notation� Im�

mediately below this� the ANSI C version of the function is shown� and below this�

a version of the same function in Fortran ���

��
 Semantic Terms

This section describes semantic terms used in this book�

����� Processes

An MPI program consists of autonomous processes� executing their own �C or For�

tran� code� in an MIMD style� The codes executed by each process need not be

identical� The processes communicate via calls to MPI communication primitives�

Typically� each process executes in its own address space� although shared�memory

implementations of MPI are possible� This document speci�es the behavior of a

parallel program assuming that only MPI calls are used for communication� The

interaction of an MPI program with other possible means of communication �e�g��

shared memory� is not speci�ed�

MPI does not specify the execution model for each process� A process can be

sequential� or can be multi�threaded� with threads possibly executing concurrently�

Care has been taken to make MPI �thread�safe�� by avoiding the use of implicit

state� The desired interaction of MPI with threads is that concurrent threads be

all allowed to execute MPI calls� and calls be reentrant� a blocking MPI call blocks

only the invoking thread� allowing the scheduling of another thread�

MPI does not provide mechanisms to specify the initial allocation of processes to

an MPI computation and their binding to physical processors� It is expected that

vendors will provide mechanisms to do so either at load time or at run time� Such

mechanisms will allow the speci�cation of the initial number of required processes�

the code to be executed by each initial process� and the allocation of processes

to processors� Also� the current standard does not provide for dynamic creation

or deletion of processes during program execution �the total number of processes

is �xed�� however� MPI design is consistent with such extensions� which are now

under consideration �see Section ��
�� Finally� MPI always identi�es processes ac�

cording to their relative rank in a group� that is� consecutive integers in the range

���groupsize�
�

Introduction 	

����� Types of MPI Calls

When discussing MPI procedures the following terms are used�

local If the completion of the procedure depends only on the local executing pro�

cess� Such an operation does not require an explicit communication with another

user process� MPI calls that generate local objects or query the status of local

objects are local�

non�local If completion of the procedure may require the execution of some MPI

procedure on another process� Many MPI communication calls are non�local�

blocking If return from the procedure indicates the user is allowed to re�use re�

sources speci�ed in the call� Any visible change in the state of the calling process

a�ected by a blocking call occurs before the call returns�

nonblocking If the procedure may return before the operation initiated by the

call completes� and before the user is allowed to re�use resources �such as bu�ers�

speci�ed in the call� A nonblocking call may initiate changes in the state of the

calling process that actually take place after the call returned� e�g� a nonblocking

call can initiate a receive operation� but the message is actually received after the

call returned�

collective If all processes in a process group need to invoke the procedure�

����� Opaque Objects

MPI manages system memory that is used for bu�ering messages and for storing

internal representations of various MPI objects such as groups� communicators�

datatypes� etc� This memory is not directly accessible to the user� and objects

stored there are opaque� their size and shape is not visible to the user� Opaque

objects are accessed via handles� which exist in user space� MPI procedures that

operate on opaque objects are passed handle arguments to access these objects�

In addition to their use by MPI calls for object access� handles can participate in

assignments and comparisons�

In Fortran� all handles have type INTEGER� In C� a di�erent handle type is de�

�ned for each category of objects� Implementations should use types that support

assignment and equality operators�

In Fortran� the handle can be an index in a table of opaque objects� while in C

it can be such an index or a pointer to the object� More bizarre possibilities exist�

Opaque objects are allocated and deallocated by calls that are speci�c to each

object type� These are listed in the sections where the objects are described� The

�
 Chapter �

calls accept a handle argument of matching type� In an allocate call this is an OUT

argument that returns a valid reference to the object� In a call to deallocate this

is an INOUT argument which returns with a �null handle� value� MPI provides a

�null handle� constant for each object type� Comparisons to this constant are used

to test for validity of the handle� MPI calls do not change the value of handles�

with the exception of calls that allocate and deallocate objects� and of the call

MPI TYPE COMMIT� de�ned in Section ����

A null handle argument is an erroneous IN argument in MPI calls� unless an

exception is explicitly stated in the text that de�nes the function� Such exceptions

are allowed for handles to request objects in Wait and Test calls �Section �����

Otherwise� a null handle can only be passed to a function that allocates a new

object and returns a reference to it in the handle�

A call to deallocate invalidates the handle and marks the object for deallocation�

The object is not accessible to the user after the call� However� MPI need not

deallocate the object immediately� Any operation pending �at the time of the

deallocate� that involves this object will complete normally� the object will be

deallocated afterwards�

An opaque object and its handle are signi�cant only at the process where the

object was created� and cannot be transferred to another process�

MPI provides certain prede�ned opaque objects and prede�ned� static handles to

these objects� Such objects may not be destroyed�

Rationale� This design hides the internal representation used for MPI data struc�

tures� thus allowing similar calls in C and Fortran� It also avoids con�icts with the

typing rules in these languages� and easily allows future extensions of functionality�

The mechanism for opaque objects used here loosely follows the POSIX Fortran

binding standard�

The explicit separation of user space handles and �MPI space� objects allows deal�

location calls to be made at appropriate points in the user program� If the opaque

objects were in user space� one would have to be very careful not to go out of scope

before any pending operation requiring that object completed� The speci�ed design

allows an object to be marked for deallocation� the user program can then go out

of scope� and the object itself persists until any pending operations are complete�

The requirement that handles support assignment�comparison is made since such

operations are common� This restricts the domain of possible implementations� The

alternative would have been to allow handles to have been an arbitrary� opaque type�

This would force the introduction of routines to do assignment and comparison�

adding complexity� and was therefore ruled out� �End of rationale��

Introduction ��

Advice to users� A user may accidently create a dangling reference by assigning to a

handle the value of another handle� and then deallocating the object associated with

these handles� Conversely� if a handle variable is deallocated before the associated

object is freed� then the object becomes inaccessible �this may occur� for example�

if the handle is a local variable within a subroutine� and the subroutine is exited

before the associated object is deallocated�� It is the user�s responsibility to manage

correctly such references� �End of advice to users��

Advice to implementors� The intended semantics of opaque objects is that each

opaque object is separate from each other� each call to allocate such an object copies

all the information required for the object� Implementations may avoid excessive

copying by substituting referencing for copying� For example� a derived datatype

may contain references to its components� rather then copies of its components� a

call to MPI COMM GROUPmay return a reference to the group associated with the

communicator� rather than a copy of this group� In such cases� the implementation

must maintain reference counts� and allocate and deallocate objects such that the

visible e�ect is as if the objects were copied� �End of advice to implementors��

����	 Named Constants

MPI procedures sometimes assign a special meaning to a special value of an argu�

ment� For example� tag is an integer�valued argument of point�to�point commu�

nication operations� that can take a special wild�card value� MPI ANY TAG� Such

arguments will have a range of regular values� which is a proper subrange of the

range of values of the corresponding type of the variable� Special values �such as

MPI ANY TAG� will be outside the regular range� The range of regular values can

be queried using environmental inquiry functions �Chapter ���

MPI also provides prede�ned named constant handles� such asMPI COMM WORLD�

which is a handle to an object that represents all processes available at start�up

time and allowed to communicate with any of them�

All named constants� with the exception of MPI BOTTOM in Fortran� can be used

in initialization expressions or assignments� These constants do not change values

during execution� Opaque objects accessed by constant handles are de�ned and do

not change value between MPI initialization �MPI INIT�� call� and MPI completion

�MPI FINALIZE�� call��

����
 Choice Arguments

MPI functions sometimes use arguments with a choice �or union� data type� Distinct

calls to the same routine may pass by reference actual arguments of di�erent types�

�� Chapter �

The mechanism for providing such arguments will di�er from language to language�

For Fortran� we use �type� to represent a choice variable� for C� we use �void ���

��� Language Binding

This section de�nes the rules for MPI language binding in Fortran �� and ANSI C�

De�ned here are various object representations� as well as the naming conventions

used for expressing this standard�

It is expected that any Fortran �� and C�� implementations use the Fortran ��

and ANSI C bindings� respectively� Although we consider it premature to de�ne

other bindings to Fortran �� and C��� the current bindings are designed to en�

courage� rather than discourage� experimentation with better bindings that might

be adopted later�

Since the word PARAMETER is a keyword in the Fortran language� we use the

word �argument� to denote the arguments to a subroutine� These are normally

referred to as parameters in C� however� we expect that C programmers will un�

derstand the word �argument� �which has no speci�c meaning in C�� thus allowing

us to avoid unnecessary confusion for Fortran programmers�

There are several important language binding issues not addressed by this stan�

dard� This standard does not discuss the interoperability of message passing be�

tween languages� It is fully expected that good quality implementations will provide

such interoperability�

����� Fortran �� Binding Issues

All MPI names have an MPI pre�x� and all characters are upper case� Programs

should not declare variables or functions with names with the pre�x� MPI or PMPI �

to avoid possible name collisions�

All MPI Fortran subroutines have a return code in the last argument� A few

MPI operations are functions� which do not have the return code argument� The

return code value for successful completion is MPI SUCCESS� Other error codes are

implementation dependent� see Chapter ��

Handles are represented in Fortran as INTEGERs� Binary�valued variables are of

type LOGICAL�

Array arguments are indexed from one�

Unless explicitly stated� the MPI F�� binding is consistent with ANSI standard

Fortran ��� There are several points where the MPI standard diverges from the

ANSI Fortran �� standard� These exceptions are consistent with common practice

Introduction ��

double precision a

integer b

���

call MPI�send�a�����

call MPI�send�b�����

Figure ���
An example of calling a routine with mismatched formal and actual arguments�

in the Fortran community� In particular�

� MPI identi�ers are limited to thirty� not six� signi�cant characters�

� MPI identi�ers may contain underscores after the �rst character�

� AnMPI subroutine with a choice argument may be called with di�erent argument

types� An example is shown in Figure ���� This violates the letter of the Fortran

standard� but such a violation is common practice� An alternative would be to have

a separate version of MPI SEND for each data type�

Advice to implementors� Although not required� it is strongly suggested that

named MPI constants �PARAMETERs� be provided in an include �le� called mpif�h�

On systems that do not support include �les� the implementation should specify

the values of named constants�

Vendors are encouraged to provide type declarations and interface blocks for MPI

functions in the mpif�h �le on Fortran systems that support those� Such decla�

rations can be used to avoid some of the limitations of the Fortran �� binding of

MPI� For example� the C binding speci�es that �addresses� are of type MPI Aint�

this type can be de�ned to be a �� bit integer� on systems with �� bit addresses�

This feature is not available in the Fortran �� binding� where �addresses� are of

type INTEGER� By providing an interface block where �address� parameters are de�

�ned to be of type INTEGER���� the implementor can provide support for �� bit

addresses� while maintaining compatibility with the MPI standard� �End of advice

to implementors��

All MPI named constants can be used wherever an entity declared with the

PARAMETER attribute can be used in Fortran� There is one exception to this rule�

the MPI constant MPI BOTTOM �section ���� can only be used as a bu�er argument�

�� Chapter �

����� C Binding Issues

We use the ANSI C declaration format� AllMPI names have an MPI pre�x� de�ned

constants are in all capital letters� and de�ned types and functions have one capital

letter after the pre�x� Programs must not declare variables or functions with names

beginning with the pre�x MPI or PMPI � This is mandated to avoid possible name

collisions�

The de�nition of named constants� function prototypes� and type de�nitions must

be supplied in an include �le mpi�h�

Almost all C functions return an error code� The successful return code will

be MPI SUCCESS� but failure return codes are implementation dependent� A few C

functions do not return error codes� so that they can be implemented as macros�

Type declarations are provided for handles to each category of opaque objects�

Either a pointer or an integer type is used�

Array arguments are indexed from zero�

Logical �ags are integers with value � meaning �false� and a non�zero value

meaning �true��

Choice arguments are pointers of type void��

Address arguments are of MPI de�ned type MPI Aint� This is de�ned to be an int

of the size needed to hold any valid address on the target architecture�

All namedMPI constants can be used in initialization expressions or assignments

like C constants�

� Point�to�Point Communication

��� Introduction and Overview

The basic communication mechanism of MPI is the transmittal of data between a

pair of processes� one side sending� the other� receiving� We call this �point to point

communication�� Almost all the constructs of MPI are built around the point to

point operations and so this chapter is fundamental� It is also quite a long chapter

since� there are many variants to the point to point operations� there is much to say

in terms of the semantics of the operations� and related topics� such as probing for

messages� are explained here because they are used in conjunction with the point

to point operations�

MPI provides a set of send and receive functions that allow the communication

of typed data with an associated tag� Typing of the message contents is necessary

for heterogeneous support � the type information is needed so that correct data

representation conversions can be performed as data is sent from one architecture

to another� The tag allows selectivity of messages at the receiving end� one can

receive on a particular tag� or one can wild�card this quantity� allowing reception

of messages with any tag� Message selectivity on the source process of the message

is also provided�

A fragment of C code appears in Example ��� for the example of process � send�

ing a message to process �� The code executes on both process � and process ��

Process � sends a character string using MPI Send��� The �rst three parameters of

the send call specify the data to be sent� the outgoing data is to be taken from msg�

it consists of strlen�msg�

 entries� each of type MPI CHAR �The string �Hello

there� contains strlen�msg��

 signi�cant characters� In addition� we are also

sending the ���� string terminator character�� The fourth parameter speci�es the

message destination� which is process �� The �fth parameter speci�es the message

tag� Finally� the last parameter is a communicator that speci�es a communi�

cation domain for this communication� Among other things� a communicator

serves to de�ne a set of processes that can be contacted� Each such process is la�

beled by a process rank� Process ranks are integers and are discovered by inquiry

to a communicator �see the call to MPI Comm rank���� MPI COMM WORLD is a default

communicator provided upon start�up that de�nes an initial communication do�

main for all the processes that participate in the computation� Much more will be

said about communicators in Chapter
�

The receiving process speci�ed that the incoming data was to be placed in msg and

�

�� Chapter �

that it had a maximum size of �� entries� of type MPI CHAR� The variable status�

set by MPI Recv��� gives information on the source and tag of the message and how

many elements were actually received� For example� the receiver can examine this

variable to �nd out the actual length of the character string received� Datatype

matching �between sender and receiver� and data conversion on heterogeneous

systems are discussed in more detail in Section ����

Example ��� C code� Process � sends a message to process ��

char msg�����

int myrank� tag � ���

MPI�Status status�

���

MPI�Comm�rank� MPI�COMM�WORLD� �myrank �� �� find my rank ��

if �myrank �� �� �

strcpy� msg� �Hello there���

MPI�Send� msg� strlen�msg�

� MPI�CHAR�
� tag� MPI�COMM�WORLD��

� else if �myrank ��
� �

MPI�Recv� msg� ��� MPI�CHAR� �� tag� MPI�COMM�WORLD� �status��

�

The Fortran version of this code is shown in Example ���� In order to make our

Fortran examples more readable� we use Fortran �� syntax� here and in many other

places in this book� The examples can be easily rewritten in standard Fortran

��� The Fortran code is essentially identical to the C code� All MPI calls are

procedures� and an additional parameter is used to return the value returned by

the corresponding C function� Note that Fortran strings have �xed size and are

not null�terminated� The receive operation stores �Hello there� in the �rst ��

positions of msg�

Example ��� Fortran code�

CHARACTER��� msg

INTEGER myrank� ierr� status�MPI�STATUS�SIZE�

INTEGER tag � ��

���

CALL MPI�COMM�RANK� MPI�COMM�WORLD� myrank� ierr�

IF �myrank �EQ� �� THEN

msg � �Hello there�

CALL MPI�SEND� msg�

� MPI�CHARACTER�
�

tag� MPI�COMM�WORLD� ierr�

Point�to�Point Communication ��

ELSE IF �myrank �EQ�
� THEN

CALL MPI�RECV� msg� ��� MPI�CHARACTER� ��

tag� MPI�COMM�WORLD� status� ierr�

END IF

These examples employed blocking send and receive functions� The send call

blocks until the send bu�er can be reclaimed �i�e�� after the send� process � can

safely over�write the contents of msg�� Similarly� the receive function blocks until

the receive bu�er actually contains the contents of the message� MPI also provides

nonblocking send and receive functions that allow the possible overlap of message

transmittal with computation� or the overlap of multiple message transmittals with

one�another� Non�blocking functions always come in two parts� the posting func�

tions� which begin the requested operation� and the test�for�completion functions�

which allow the application program to discover whether the requested operation

has completed� Our chapter begins by explaining blocking functions in detail� in

Section ��� ���� while nonblocking functions are covered later� in Sections ��
 �����

We have already said rather a lot about a simple transmittal of data from one

process to another� but there is even more� To understand why� we examine two

aspects of the communication� the semantics of the communication primitives� and

the underlying protocols that implement them� Consider the previous example� on

process �� after the blocking send has completed� The question arises� if the send

has completed� does this tell us anything about the receiving process	 Can we know

that the receive has �nished� or even� that it has begun	

Such questions of semantics are related to the nature of the underlying protocol

implementing the operations� If one wishes to implement a protocol minimizing

the copying and bu�ering of data� the most natural semantics might be the �ren�

dezvous� version� where completion of the send implies the receive has been initiated

�at least�� On the other hand� a protocol that attempts to block processes for the

minimal amount of time will necessarily end up doing more bu�ering and copying

of data and will have �bu�ering� semantics�

The trouble is� one choice of semantics is not best for all applications� nor is it

best for all architectures� Because the primary goal of MPI is to standardize the

operations� yet not sacri�ce performance� the decision was made to include all the

major choices for point to point semantics in the standard�

The above complexities are manifested in MPI by the existence of modes for

point to point communication� Both blocking and nonblocking communications

have modes� The mode allows one to choose the semantics of the send operation

and� in e�ect� to in�uence the underlying protocol of the transfer of data�

�� Chapter �

In standardmode the completion of the send does not necessarily mean that the

matching receive has started� and no assumption should be made in the application

program about whether the out�going data is bu�ered by MPI� In bu�ered mode

the user can guarantee that a certain amount of bu�ering space is available� The

catch is that the space must be explicitly provided by the application program� In

synchronous mode a rendezvous semantics between sender and receiver is used�

Finally� there is ready mode� This allows the user to exploit extra knowledge to

simplify the protocol and potentially achieve higher performance� In a ready�mode

send� the user asserts that the matching receive already has been posted� Modes

are covered in Section �����

��� Blocking Send and Receive Operations

This section describes standard�mode� blocking sends and receives�

����� Blocking Send

MPI SEND�buf� count� datatype� dest� tag� comm�

IN buf initial address of send bu�er

IN count number of entries to send

IN datatype datatype of each entry

IN dest rank of destination

IN tag message tag

IN comm communicator

int MPI Send�void� buf� int count� MPI Datatype datatype� int dest�

int tag� MPI Comm comm�

MPI SEND�BUF� COUNT� DATATYPE� DEST� TAG� COMM� IERROR�

	type� BUF���

INTEGER COUNT� DATATYPE� DEST� TAG� COMM� IERROR

MPI SEND performs a standard�mode� blocking send� The semantics of this

function are described in Section ���� The arguments to MPI SEND are described

in the following subsections�

Point�to�Point Communication �	

����� Send Bu�er and Message Data

The send bu�er speci�ed by MPI SEND consists of count successive entries of the

type indicated by datatype� starting with the entry at address buf� Note that we

specify the message length in terms of number of entries� not number of bytes�

The former is machine independent and facilitates portable programming� The

count may be zero� in which case the data part of the message is empty� The basic

datatypes correspond to the basic datatypes of the host language� Possible values

of this argument for Fortran and the corresponding Fortran types are listed below�

MPI datatype Fortran datatype

MPI INTEGER INTEGER

MPI REAL REAL

MPI DOUBLE PRECISION DOUBLE PRECISION

MPI COMPLEX COMPLEX

MPI LOGICAL LOGICAL

MPI CHARACTER CHARACTER�
�

MPI BYTE

MPI PACKED

Possible values for this argument for C and the corresponding C types are listed

below�

MPI datatype C datatype

MPI CHAR signed char

MPI SHORT signed short int

MPI INT signed int

MPI LONG signed long int

MPI UNSIGNED CHAR unsigned char

MPI UNSIGNED SHORT unsigned short int

MPI UNSIGNED unsigned int

MPI UNSIGNED LONG unsigned long int

MPI FLOAT float

MPI DOUBLE double

MPI LONG DOUBLE long double

MPI BYTE

MPI PACKED

The datatypes MPI BYTE and MPI PACKED do not correspond to a Fortran or

C datatype� A value of type MPI BYTE consists of a byte �
 binary digits�� A

�
 Chapter �

byte is uninterpreted and is di�erent from a character� Di�erent machines may

have di�erent representations for characters� or may use more than one byte to

represent characters� On the other hand� a byte has the same binary value on all

machines� The use of MPI PACKED is explained in Section ��
�

MPI requires support of the datatypes listed above� which match the basic data�

types of Fortran �� and ANSI C� Additional MPI datatypes should be provided if

the host language has additional data types� Some examples are� MPI LONG LONG�

for C integers declared to be of type longlong� MPI DOUBLE COMPLEX for double

precision complex in Fortran declared to be of type DOUBLE COMPLEX�MPI REAL��

MPI REAL� andMPI REAL� for Fortran reals� declared to be of type REAL��� REAL��

and REAL��� respectively� MPI INTEGER� MPI INTEGER� andMPI INTEGER� for For�

tran integers� declared to be of type INTEGER��� INTEGER�� and INTEGER��� re�

spectively� In addition� MPI provides a mechanism for users to de�ne new� derived�

datatypes� This is explained in Chapter ��

����� Message Envelope

In addition to data� messages carry information that is used to distinguish and

selectively receive them� This information consists of a �xed number of �elds�

which we collectively call the message envelope� These �elds are

source� destination� tag� and communicator�

The message source is implicitly determined by the identity of the message sender�

The other �elds are speci�ed by arguments in the send operation�

The comm argument speci�es the communicator used for the send operation�

The communicator is a local object that represents a communication domain�

A communication domain is a global� distributed structure that allows processes in

a group to communicate with each other� or to communicate with processes in

another group� A communication domain of the �rst type �communication within

a group� is represented by an intracommunicator� whereas a communication do�

main of the second type �communication between groups� is represented by an

intercommunicator� Processes in a group are ordered� and are identi�ed by their

integer rank� Processes may participate in several communication domains� dis�

tinct communication domains may have partially or even completely overlapping

groups of processes� Each communication domain supports a disjoint stream of

communications� Thus� a process may be able to communicate with another pro�

cess via two distinct communication domains� using two distinct communicators�

The same process may be identi�ed by a di�erent rank in the two domains� and

communications in the two domains do not interfere� MPI applications begin with a

Point�to�Point Communication ��

default communication domain that includes all processes �of this parallel job�� the

default communicator MPI COMM WORLD represents this communication domain�

Communicators are explained further in Chapter
�

The message destination is speci�ed by the dest argument� The range of valid

values for dest is ������n��� where n is the number of processes in the group� This

range includes the rank of the sender� if comm is an intracommunicator� then a

process may send a message to itself� If the communicator is an intercommunicator�

then destinations are identi�ed by their rank in the remote group�

The integer�valued message tag is speci�ed by the tag argument� This integer

can be used by the application to distinguish messages� The range of valid tag

values is ������UB� where the value of UB is implementation dependent� It is found

by querying the value of the attribute MPI TAG UB� as described in Chapter �� MPI

requires that UB be no less than ������

����	 Comments on Send

Advice to users� Communicators provide an important encapsulation mechanism

for libraries and modules� They allow modules to have their own communication

space and their own process numbering scheme� Chapter
 discusses functions for

de�ning new communicators and use of communicators for library design�

Users that are comfortable with the notion of a �at name space for processes and a

single communication domain� as o�ered by most existing communication libraries�

need only use the prede�ned variable MPI COMM WORLD as the comm argument�

This will allow communicationwith all the processes available at initialization time�

�End of advice to users��

Advice to implementors� The message envelope is often encoded by a �xed�

length message header� This header carries a communication domain id �sometimes

referred to as the context id� This id need not be system wide unique� nor does

it need to be identical at all processes within a group� It is su�cient that each

ordered pair of communicating processes agree to associate a particular id value

with each communication domain they use� In addition� the header will usually

carry message source and tag� source can be represented as rank within group or

as an absolute task id�

The context id can be viewed as an additional tag �eld� It di�ers from the regular

message tag in that wild card matching is not allowed on this �eld� and that value

setting for this �eld is controlled by communicator manipulation functions� �End

of advice to implementors��

�� Chapter �

����
 Blocking Receive

MPI RECV �buf� count� datatype� source� tag� comm� status�

OUT buf initial address of receive bu�er

IN count max number of entries to receive

IN datatype datatype of each entry

IN source rank of source

IN tag message tag

IN comm communicator

OUT status return status

int MPI Recv�void� buf� int count� MPI Datatype datatype� int source�

int tag� MPI Comm comm� MPI Status �status�

MPI RECV�BUF� COUNT� DATATYPE� SOURCE� TAG� COMM� STATUS� IERROR�

	type� BUF���

INTEGER COUNT� DATATYPE� SOURCE� TAG� COMM�

STATUS�MPI STATUS SIZE�� IERROR

MPI RECV performs a standard�mode� blocking receive� The semantics of this

function are described in Section ���� The arguments to MPI RECV are described

in the following subsections�

����
 Receive Bu�er

The receive bu�er consists of storage su�cient to contain count consecutive entries

of the type speci�ed by datatype� starting at address buf� The length of the received

message must be less than or equal to the length of the receive bu�er� An over�ow

error occurs if all incoming data does not �t� without truncation� into the receive

bu�er� We explain in Chapter � how to check for errors� If a message that is shorter

than the receive bu�er arrives� then the incoming message is stored in the initial

locations of the receive bu�er� and the remaining locations are not modi�ed�

����� Message Selection

The selection of a message by a receive operation is governed by the value of its

message envelope� A message can be received if its envelope matches the source�

tag and comm values speci�ed by the receive operation� The receiver may specify

a wildcard value for source �MPI ANY SOURCE�� and�or a wildcard value for tag

Point�to�Point Communication ��

�MPI ANY TAG�� indicating that any source and�or tag are acceptable� One cannot

specify a wildcard value for comm�

The argument source� if di�erent from MPI ANY SOURCE� is speci�ed as a rank

within the process group associated with the communicator �remote process group�

for intercommunicators�� The range of valid values for the source argument is

f������n��g�fMPI ANY SOURCEg� where n is the number of processes in this group�

This range includes the receiver�s rank� if comm is an intracommunicator� then a

process may receive a message from itself� The range of valid values for the tag

argument is f������UBg�fMPI ANY TAGg�

����� Return Status

The receive call does not specify the size of an incoming message� but only an upper

bound� The source or tag of a received message may not be known if wildcard

values were used in a receive operation� Also� if multiple requests are completed by

a single MPI function �see Section ����� a distinct error code may be returned for

each request� �Usually� the error code is returned as the value of the function in C�

and as the value of the IERROR argument in Fortran��

This information is returned by the status argument of MPI RECV� The type of

status is de�ned by MPI� Status variables need to be explicitly allocated by the user�

that is� they are not system objects�

In C� status is a structure of type MPI Status that contains three �elds named

MPI SOURCE�MPI TAG� andMPI ERROR� the structure may contain additional �elds�

Thus� status�MPI SOURCE� status�MPI TAG and status�MPI ERROR contain the source�

tag and error code� respectively� of the received message�

In Fortran� status is an array of INTEGERs of length MPI STATUS SIZE� The three

constants MPI SOURCE� MPI TAG andMPI ERROR are the indices of the entries that

store the source� tag and error �elds� Thus status�MPI SOURCE�� status�MPI TAG�

and status�MPI ERROR� contain� respectively� the source� the tag and the error code

of the received message�

The status argument also returns information on the length of the message re�

ceived� However� this information is not directly available as a �eld of the status

variable and a call to MPI GET COUNT is required to �decode� this information�

�� Chapter �

MPI GET COUNT�status� datatype� count�

IN status return status of receive operation

IN datatype datatype of each receive bu�er entry

OUT count number of received entries

int MPI Get count�MPI Status �status� MPI Datatype datatype�

int �count�

MPI GET COUNT�STATUS� DATATYPE� COUNT� IERROR�

INTEGER STATUS�MPI STATUS SIZE�� DATATYPE� COUNT� IERROR

MPI GET COUNT takes as input the status set by MPI RECV and computes the

number of entries received� The number of entries is returned in count� The datatype

argument should match the argument provided to the receive call that set status�

�Section ��� explains that MPI GET COUNT may return� in certain situations� the

value MPI UNDEFINED��

����� Comments on Receive

Note the asymmetry between send and receive operations� A receive operation

may accept messages from an arbitrary sender� but a send operation must specify

a unique receiver� This matches a �push� communication mechanism� where data

transfer is e�ected by the sender� rather than a �pull� mechanism� where data

transfer is e�ected by the receiver�

Source equal to destination is allowed� that is� a process can send a message to

itself� However� for such a communication to succeed� it is required that the message

be bu�ered by the system between the completion of the send call and the start

of the receive call� The amount of bu�er space available and the bu�er allocation

policy are implementation dependent� Therefore� it is unsafe and non�portable to

send self�messages with the standard�mode� blocking send and receive operations

described so far� since this may lead to deadlock� More discussions of this appear

in Section ����

Advice to users� A receive operation must specify the type of the entries of the

incoming message� and an upper bound on the number of entries� In some cases� a

process may expect several messages of di�erent lengths or types� The process will

post a receive for each message it expects and use message tags to disambiguate

incoming messages�

In other cases� a process may expect only one message� but this message is of

Point�to�Point Communication ��

unknown type or length� If there are only few possible kinds of incoming mes�

sages� then each such kind can be identi�ed by a di�erent tag value� The function

MPI PROBE described in Section ���� can be used to check for incoming messages

without actually receiving them� The receiving process can �rst test the tag value

of the incoming message and then receive it with an appropriate receive operation�

In the most general case� it may not be possible to represent each message kind by

a di�erent tag value� A two�phase protocol may be used� the sender �rst sends a

message containing a description of the data� then the data itself� The two messages

are guaranteed to arrive in the correct order at the destination� as discussed in

Section ���� An alternative approach is to use the packing and unpacking functions

described in Section ��
� These allow the sender to pack in one message a description

of the data� followed by the data itself� thus creating a �self�typed� message� The

receiver can �rst extract the data description and next use it to extract the data

itself�

Super�cially� tags and communicators ful�ll a similar function� Both allow one to

partition communications into distinct classes� with sends matching only receives

from the same class� Tags o�er imperfect protection since wildcard receives cir�

cumvent the protection provided by tags� while communicators are allocated and

managed using special� safer operations� It is preferable to use communicators to

provide protected communication domains across modules or libraries� Tags are

used to discriminate between di�erent kinds of messages within one module or

library�

MPI o�ers a variety of mechanisms for matching incoming messages to receive oper�

ations� Oftentimes� matching by sender or by tag will be su�cient to match sends

and receives correctly� Nevertheless� it is preferable to avoid the use of wildcard

receives whenever possible� Narrower matching criteria result in safer code� with

less opportunities for message mismatch or nondeterministic behavior� Narrower

matching criteria may also lead to improved performance� �End of advice to users��

Rationale� Why is status information returned via a special status variable	

Some libraries return this information via INOUT count� tag and source arguments�

thus using them both to specify the selection criteria for incoming messages and to

return the actual envelope values of the received message� The use of a separate

argument prevents errors associated with INOUT arguments �for example� using the

MPI ANY TAG constant as the tag argument in a send�� Another potential source of

errors� for nonblocking communications� is that status information may be updated

after the call that passed in count� tag and source� In �old�style� designs� an error

�� Chapter �

could occur if the receiver accesses or deallocates these variables before the commu�

nication completed� Instead� in the MPI design for nonblocking communications�

the status argument is passed to the call that completes the communication� and is

updated by this call�

Other libraries return status by calls that refer implicitly to the �last message

received�� This is not thread safe�

Why isn�t count a �eld of the status variable	

On some systems� it may be faster to receive data without counting the number

of entries received� Incoming messages do not carry an entry count� Indeed� when

user�de�ned datatypes are used �see Chapter ��� it may not be possible to compute

such a count at the sender� Instead� incoming messages carry a byte count� The

translation of a byte count into an entry count may be time consuming� especially

for user�de�ned datatypes� and may not be needed by the receiver� The current

design avoids the need for computing an entry count in those situations where the

count is not needed�

Note that the current design allows implementations that compute a count during

receives and store the count in a �eld of the status variable� �End of rationale��

Advice to implementors� Even though no speci�c behavior is mandated by MPI for

erroneous programs� the recommended handling of over�ow situations is to return�

in status� information about the source� tag and size of the incoming message� The

receive operation will return an error code� A quality implementation will also

ensure that memory that is outside the receive bu�er will not be overwritten�

In the case of a message shorter than the receive bu�er� MPI is quite strict in

that it allows no modi�cation of the other locations in the bu�er� A more lenient

statement would allow for some optimizations but this is not allowed� The imple�

mentation must be ready to end a copy into the receiver memory exactly at the

end of the received data� even if it is at a non�word�aligned address� �End of advice

to implementors��

��� Datatype Matching and Data Conversion

����� Type Matching Rules

One can think of message transfer as consisting of the following three phases�

�� Data is copied out of the send bu�er and a message is assembled�

Point�to�Point Communication ��

�� A message is transferred from sender to receiver�

�� Data is copied from the incoming message and disassembled into the receive

bu�er�

Type matching must be observed at each of these phases� The type of each

variable in the sender bu�er must match the type speci�ed for that entry by the

send operation� The type speci�ed by the send operation must match the type

speci�ed by the receive operation� Finally� the type of each variable in the receive

bu�er must match the type speci�ed for that entry by the receive operation� A

program that fails to observe these rules is erroneous�

To de�ne type matching precisely� we need to deal with two issues� matching

of types of variables of the host language with types speci�ed in communication

operations� and matching of types between sender and receiver�

The types between a send and receive match if both operations specify identi�

cal type names� That is� MPI INTEGER matches MPI INTEGER� MPI REAL matches

MPI REAL� and so on� The one exception to this rule is that the type MPI PACKED

can match any other type �Section ��
��

The type of a variable matches the type speci�ed in the communication opera�

tion if the datatype name used by that operation corresponds to the basic type of

the host program variable� For example� an entry with type name MPI INTEGER

matches a Fortran variable of type INTEGER� Tables showing this correspondence

for Fortran and C appear in Section ������ There are two exceptions to this rule�

an entry with type name MPI BYTE or MPI PACKED can be used to match any byte

of storage �on a byte�addressable machine�� irrespective of the datatype of the

variable that contains this byte� The type MPI BYTE allows one to transfer the

binary value of a byte in memory unchanged� The type MPI PACKED is used to

send data that has been explicitly packed with calls to MPI PACK� or receive data

that will be explicitly unpacked with calls to MPI UNPACK �Section ��
��

The following examples illustrate type matching�

Example ��� Sender and receiver specify matching types�

CALL MPI�COMM�RANK�comm� rank� ierr�

IF �rank�EQ��� THEN

CALL MPI�SEND�a�
��
�� MPI�REAL�
� tag� comm� ierr�

ELSE IF �rank�EQ�
� THEN

CALL MPI�RECV�b�
��
�� MPI�REAL� �� tag� comm� status� ierr�

END IF

�� Chapter �

This code is correct if both a and b are real arrays of size � ��� �In Fortran� it

might be correct to use this code even if a or b have size � ��� e�g�� a��� might be

be equivalenced to an array with ten reals��

Example ��	 Sender and receiver do not specify matching types�

CALL MPI�COMM�RANK�comm� rank� ierr�

IF �rank�EQ��� THEN

CALL MPI�SEND�a�
��
�� MPI�REAL�
� tag� comm� ierr�

ELSE IF �rank�EQ�
� THEN

CALL MPI�RECV�b�
�� ��� MPI�BYTE� �� tag� comm� status� ierr�

END IF

This code is erroneous� since sender and receiver do not provide matching datatype

arguments�

Example ��
 Sender and receiver specify communication of untyped values�

CALL MPI�COMM�RANK�comm� rank� ierr�

IF �rank�EQ��� THEN

CALL MPI�SEND�a�
�� ��� MPI�BYTE�
� tag� comm� ierr�

ELSE IF �rank�EQ�
� THEN

CALL MPI�RECV�b�
�� ��� MPI�BYTE� �� tag� comm� status� ierr�

END IF

This code is correct� irrespective of the type and size of a and b �unless this results

in an out of bound memory access��

Type MPI CHARACTER The type MPI CHARACTER matches one character of a

Fortran variable of type CHARACTER� rather then the entire character string stored

in the variable� Fortran variables of type CHARACTER or substrings are transferred

as if they were arrays of characters� This is illustrated in the example below�

Example ��
 Transfer of Fortran CHARACTERs�

CHARACTER�
� a

CHARACTER�
� b

CALL MPI�COMM�RANK�comm� rank� ierr�

IF �rank�EQ��� THEN

CALL MPI�SEND�a� �� MPI�CHARACTER�
� tag� comm� ierr�

ELSE IF �rank�EQ�
� THEN

Point�to�Point Communication �	

CALL MPI�RECV�b��
�����MPI�CHARACTER���tag�comm�status�ierr�

END IF

The last �ve characters of string b at process � are replaced by the �rst �ve char�

acters of string a at process ��

Advice to users� If a bu�er of type MPI BYTE is passed as an argument to

MPI SEND� then MPI will send the data stored at contiguous locations� starting

from the address indicated by the buf argument� This may have unexpected results

when the data layout is not as a casual user would expect it to be� For example�

some Fortran compilers implement variables of type CHARACTER as a structure that

contains the character length and a pointer to the actual string� In such an envi�

ronment� sending and receiving a Fortran CHARACTER variable using the MPI BYTE

type will not have the anticipated result of transferring the character string� For

this reason� the user is advised to use typed communications whenever possible�

�End of advice to users��

Rationale� Why does MPI force the user to specify datatypes	 After all� type

information is available in the source program�

MPI is meant to be implemented as a library� with no need for additional prepro�

cessing or compilation� Thus� one cannot assume that a communication call has

information on the datatype of variables in the communication bu�er� This infor�

mation must be supplied at calling time� either by calling a di�erent function for

each datatype� or by passing the datatype information as an explicit parameter�

Datatype information is needed for heterogeneous support and is further discussed

in Section ������

Futures extensions of MPI might take advantage of polymorphism in C�� or For�

tran �� in order to pass the datatype information implicitly� �End of rationale��

Advice to implementors� Some compilers pass Fortran CHARACTER arguments as a

structure with a length and a pointer to the actual string� In such an environment�

MPI send or receive calls need to dereference the pointer in order to reach the string�

�End of advice to implementors��

����� Data Conversion

One of the goals of MPI is to support parallel computations across heterogeneous

environments� Communication in a heterogeneous environment may require data

conversions� We use the following terminology�

�
 Chapter �

Type conversion changes the datatype of a value� for example� by rounding a

REAL to an INTEGER�

Representation conversion changes the binary representation of a value� for

example� changing byte ordering� or changing ���bit �oating point to ���bit �oating

point�

The type matching rules imply that MPI communications never do type con�

version� On the other hand� MPI requires that a representation conversion be

performed when a typed value is transferred across environments that use di�erent

representations for such a value� MPI does not specify the detailed rules for repre�

sentation conversion� Such a conversion is expected to preserve integer� logical or

character values� and to convert a �oating point value to the nearest value that can

be represented on the target system�

Over�ow and under�ow exceptions may occur during �oating point conversions�

Conversion of integers or characters may also lead to exceptions when a value that

can be represented in one system cannot be represented in the other system� An

exception occurring during representation conversion results in a failure of the com�

munication� An error occurs either in the send operation� or the receive operation�

or both�

If a value sent in a message is untyped �i�e�� of type MPI BYTE�� then the bi�

nary representation of the byte stored at the receiver is identical to the binary

representation of the byte loaded at the sender� This holds true� whether sender

and receiver run in the same or in distinct environments� No representation con�

version is done� Note that representation conversion may occur when values of

type MPI CHARACTER or MPI CHAR are transferred� for example� from an EBCDIC

encoding to an ASCII encoding�

No representation conversion need occur when an MPI program executes in a

homogeneous system� where all processes run in the same environment�

Consider the three examples� ��� ��
� The �rst program is correct� assuming that

a and b are REAL arrays of size � ��� If the sender and receiver execute in di�erent

environments� then the ten real values that are fetched from the send bu�er will be

converted to the representation for reals on the receiver site before they are stored

in the receive bu�er� While the number of real elements fetched from the send

bu�er equal the number of real elements stored in the receive bu�er� the number of

bytes stored need not equal the number of bytes loaded� For example� the sender

may use a four byte representation and the receiver an eight byte representation

for reals�

The second program is erroneous� and its behavior is unde�ned�

Point�to�Point Communication ��

The third program is correct� The exact same sequence of forty bytes that were

loaded from the send bu�er will be stored in the receive bu�er� even if sender and

receiver run in a di�erent environment� The message sent has exactly the same

length �in bytes� and the same binary representation as the message received� If

a and b are of di�erent types� or if they are of the same type but di�erent data

representations are used� then the bits stored in the receive bu�er may encode

values that are di�erent from the values they encoded in the send bu�er�

Representation conversion also applies to the envelope of a message� The source�

destination and tag are all integers that may need to be converted�

MPI does not require support for inter�language communication� The behavior

of a program is unde�ned if messages are sent by a C process and received by a

Fortran process� or vice�versa�

����� Comments on Data Conversion

Rationale� MPI does not handle inter�language communication because there are

no agreed�upon standards for the correspondence between C types and Fortran

types� Therefore� MPI applications that mix languages would not be portable�

Vendors are expected to provide inter�language communication consistent with their

support for inter�language procedure invocation� �End of rationale��

Advice to implementors� The datatype matching rules do not require messages

to carry data type information� Both sender and receiver provide complete data

type information� In a heterogeneous environment� one can either use a machine

independent encoding such as XDR� or have the receiver convert from the sender

representation to its own� or even have the sender do the conversion�

Additional type information might be added to messages in order to allow the

system to detect mismatches between datatype at sender and receiver� This might

be particularly useful in a slower but safer debug mode for MPI�

Although MPI does not specify interfaces between C and Fortran� vendors are ex�

pected to provide such interfaces� so as to allow Fortran programs to invoke parallel

libraries written in C� or communicate with servers running C codes �and vice�

versa�� Initialization for Fortran and C should be compatible� mechanisms should

be provided for passing MPI objects as parameters in interlanguage procedural in�

vocations� and inter�language communication should be supported� For example�

consider a system where a Fortran caller can pass an INTEGER actual parameter

to a C routine with an int formal parameter� In such a system a Fortran routine

should be able to send a message with datatype MPI INTEGER to be received by a

�� Chapter �

C routine with datatype MPI INT� �End of advice to implementors��

��� Semantics of Blocking Point�to�point

This section describes the main properties of the send and receive calls introduced

in Section ���� Interested readers can �nd a more formal treatment of the issues in

this section in �����

��	�� Bu�ering and Safety

The receive described in Section ����
 can be started whether or not a matching

send has been posted� That version of receive is blocking� It returns only after

the receive bu�er contains the newly received message� A receive could complete

before the matching send has completed �of course� it can complete only after the

matching send has started��

The send operation described in Section ����� can be started whether or not a

matching receive has been posted� That version of send is blocking� It does not

return until the message data and envelope have been safely stored away so that

the sender is free to access and overwrite the send bu�er� The send call is also

potentially non�local� The message might be copied directly into the matching

receive bu�er� or it might be copied into a temporary system bu�er� In the �rst

case� the send call will not complete until a matching receive call occurs� and so� if

the sending process is single�threaded� then it will be blocked until this time� In the

second case� the send call may return ahead of the matching receive call� allowing a

single�threaded process to continue with its computation� The MPI implementation

may make either of these choices� It might block the sender or it might bu�er the

data�

Message bu�ering decouples the send and receive operations� A blocking send

might complete as soon as the message was bu�ered� even if no matching receive

has been executed by the receiver� On the other hand� message bu�ering can be

expensive� as it entails additional memory�to�memory copying� and it requires the

allocation of memory for bu�ering� The choice of the right amount of bu�er space

to allocate for communication and of the bu�ering policy to use is application and

implementation dependent� Therefore� MPI o�ers the choice of several communi�

cation modes that allow one to control the choice of the communication protocol�

Modes are described in Section ����� The choice of a bu�ering policy for the stan�

dard mode send described in Section ����� is left to the implementation� In any

case� lack of bu�er space will not cause a standard send call to fail� but will merely

Point�to�Point Communication ��

cause it to block� In well�constructed programs� this results in a useful throttle

e�ect� Consider a situation where a producer repeatedly produces new values and

sends them to a consumer� Assume that the producer produces new values faster

than the consumer can consume them� If standard sends are used� then the pro�

ducer will be automatically throttled� as its send operations will block when bu�er

space is unavailable�

In ill�constructed programs� blocking may lead to a deadlock situation� where all

processes are blocked� and no progress occurs� Such programs may complete when

su�cient bu�er space is available� but will fail on systems that do less bu�ering�

or when data sets �and message sizes� are increased� Since any system will run

out of bu�er resources as message sizes are increased� and some implementations

may want to provide little bu�ering� MPI takes the position that safe programs do

not rely on system bu�ering� and will complete correctly irrespective of the bu�er

allocation policy used by MPI� Bu�ering may change the performance of a safe

program� but it doesn�t a�ect the result of the program�

MPI does not enforce a safe programming style� Users are free to take advantage

of knowledge of the bu�ering policy of an implementation in order to relax the

safety requirements� though doing so will lessen the portability of the program�

The following examples illustrate safe programming issues�

Example ��� An exchange of messages�

CALL MPI�COMM�RANK�comm� rank� ierr�

IF �rank�EQ��� THEN

CALL MPI�SEND�sendbuf� count� MPI�REAL�
� tag� comm� ierr�

CALL MPI�RECV�recvbuf� count� MPI�REAL�
� tag� comm� status� ierr�

ELSE IF �rank�EQ�
� THEN

CALL MPI�RECV�recvbuf� count� MPI�REAL� �� tag� comm� status� ierr�

CALL MPI�SEND�sendbuf� count� MPI�REAL� �� tag� comm� ierr�

END IF

This program succeeds even if no bu�er space for data is available� The program

is safe and will always complete correctly�

Example ��� An attempt to exchange messages�

CALL MPI�COMM�RANK�comm� rank� ierr�

IF �rank�EQ��� THEN

CALL MPI�RECV�recvbuf� count� MPI�REAL�
� tag� comm� status� ierr�

CALL MPI�SEND�sendbuf� count� MPI�REAL�
� tag� comm� ierr�

�� Chapter �

ELSE IF �rank�EQ�
� THEN

CALL MPI�RECV�recvbuf� count� MPI�REAL� �� tag� comm� status� ierr�

CALL MPI�SEND�sendbuf� count� MPI�REAL� �� tag� comm� ierr�

END IF

The receive operation of the �rst process must complete before its send� and can

complete only if the matching send of the second processor is executed� The receive

operation of the second process must complete before its send and can complete

only if the matching send of the �rst process is executed� This program will always

deadlock�

Example ��� An exchange that relies on bu�ering�

CALL MPI�COMM�RANK�comm� rank� ierr�

IF �rank�EQ��� THEN

CALL MPI�SEND�sendbuf� count� MPI�REAL�
� tag� comm� ierr�

CALL MPI�RECV�recvbuf� count� MPI�REAL�
� tag� comm� status� ierr�

ELSE IF �rank�EQ�
� THEN

CALL MPI�SEND�sendbuf� count� MPI�REAL� �� tag� comm� ierr�

CALL MPI�RECV�recvbuf� count� MPI�REAL� �� tag� comm� status� ierr�

END IF

The message sent by each process must be copied somewhere before the send oper�

ation returns and the receive operation starts� For the program to complete� it is

necessary that at least one of the two messages be bu�ered� Thus� this program will

succeed only if the communication system will bu�er at least count words of data�

Otherwise� the program will deadlock� The success of this program will depend on

the amount of bu�er space available in a particular implementation� on the bu�er

allocation policy used� and on other concurrent communication occurring in the

system� This program is unsafe�

Advice to users� Safety is a very important issue in the design of message passing

programs� MPI o�ers many features that help in writing safe programs� in ad�

dition to the techniques that were outlined above� Nonblocking message passing

operations� as described in Section ��
� can be used to avoid the need for bu�er�

ing outgoing messages� This eliminates deadlocks due to lack of bu�er space� and

potentially improves performance� by avoiding the overheads of allocating bu�ers

and copying messages into bu�ers� Use of other communication modes� described

in Section ����� can also avoid deadlock situations due to lack of bu�er space�

Point�to�Point Communication ��

QualityMPI implementations attempt to be lenient to the user� by providing bu�er�

ing for standard blocking sends whenever feasible� Programs that require bu�ering

in order to progress will not typically break� unless they move large amounts of

data� The caveat� of course� is that �large� is a relative term�

Safety is further discussed in Section ���� �End of advice to users��

Advice to implementors� The challenge facing implementors is to be as lenient

as possible to applications that require bu�ering� without hampering performance

of applications that do not require bu�ering� Applications should not deadlock if

memory is available to allow progress in the communication� But copying should

be avoided when it is not necessary� �End of advice to implementors��

��	�� Multithreading

MPI does not specify the interaction of blocking communication calls with the

thread scheduler in a multi�threaded implementation of MPI� The desired behav�

ior is that a blocking communication call blocks only the issuing thread� allowing

another thread to be scheduled� The blocked thread will be rescheduled when the

blocked call is satis�ed� That is� when data has been copied out of the send bu�er�

for a send operation� or copied into the receive bu�er� for a receive operation� When

a thread executes concurrently with a blocked communication operation� it is the

user�s responsibility not to access or modify a communication bu�er until the com�

munication completes� Otherwise� the outcome of the computation is unde�ned�

��	�� Order

Messages are non�overtaking� Conceptually� one may think of successive messages

sent by a process to another process as ordered in a sequence� Receive operations

posted by a process are also ordered in a sequence� Each incomingmessage matches

the �rst matching receive in the sequence� This is illustrated in Figure ���� Process

zero sends two messages to process one and process two sends three messages to

process one� Process one posts �ve receives� All communications occur in the

same communication domain� The �rst message sent by process zero and the �rst

message sent by process two can be received in either order� since the �rst two

posted receives match either� The second message of process two will be received

before the third message� even though the third and fourth receives match either�

Thus� if a sender sends two messages in succession to the same destination� and

both match the same receive� then the receive cannot get the second message if the

�rst message is still pending� If a receiver posts two receives in succession� and both

�� Chapter �

Time
tag = 1 tag = 1 tag = *

src = * src = *

tag = * tag = *

src = *src = 2 src = 2

tag = 1process 2

(send)

(recv)

(send)

process 0

process 1

dest = 1
tag = 1

dest = 1
tag = 4

dest = 1
tag = 3

dest = 1
tag = 2

dest = 1

Figure ���
Messages are matched in order�

match the same message� then the second receive operation cannot be satis�ed by

this message� if the �rst receive is still pending�

These requirements further de�ne message matching� They guarantee that

message�passing code is deterministic� if processes are single�threaded and the wild�

card MPI ANY SOURCE is not used in receives� Some other MPI functions� such as

MPI CANCEL or MPI WAITANY� are additional sources of nondeterminism�

In a single�threaded process all communication operations are ordered accord�

ing to program execution order� The situation is di�erent when processes are

multi�threaded� The semantics of thread execution may not de�ne a relative order

between two communication operations executed by two distinct threads� The op�

erations are logically concurrent� even if one physically precedes the other� In this

case� no order constraints apply� Two messages sent by concurrent threads can be

received in any order� Similarly� if two receive operations that are logically concur�

rent receive two successively sent messages� then the two messages can match the

receives in either order�

It is important to understand what is guaranteed by the ordering property and

what is not� Between any pair of communicating processes� messages �ow in or�

der� This does not imply a consistent� total order on communication events in the

system� Consider the following example�

Point�to�Point Communication ��

Example ���� Order preserving is not transitive�

CALL MPI�COMM�RANK�comm� rank� ierr�

IF �rank�EQ��� THEN

CALL MPI�SEND�buf
� count� MPI�REAL� �� tag� comm� ierr�

CALL MPI�SEND�buf�� count� MPI�REAL�
� tag� comm� ierr�

ELSE IF �rank�EQ�
� THEN

CALL MPI�RECV�buf�� count� MPI�REAL� �� tag� comm� status� ierr�

CALL MPI�SEND�buf�� count� MPI�REAL� �� tag� comm� ierr�

ELSE IF �rank�EQ���

CALL MPI�RECV�buf
� count� MPI�REAL� MPI�ANY�SOURCE� tag�

comm� status� ierr�

CALL MPI�RECV�buf�� count� MPI�REAL� MPI�ANY�SOURCE� tag�

comm� status� ierr�

END IF

Process zero sends a message to process two and next sends a message to process

one� Process one receives the message from process zero� then sends a message to

process two� Process two receives two messages� with source � dontcare� The

two incoming messages can be received by process two in any order� even though

process one sent its message after it received the second message sent by process

zero� The reason is that communication delays can be arbitrary and MPI does not

enforce global serialization of communications� Thus� the somewhat paradoxical

outcome illustrated in Figure ��� can occur� If process zero had sent directly two

messages to process two then these two messages would have been received in order�

Since it relayed the second message via process one� then the messages may now

arrive out of order� In practice� such an occurrence is unlikely�

��	�	 Progress

If a pair of matching send and receives have been initiated on two processes� then

at least one of these two operations will complete� independently of other actions

in the system� The send operation will complete� unless the receive is satis�ed by

another message� The receive operation will complete� unless the message sent is

consumed by another matching receive posted at the same destination process�

Advice to implementors� This requirement imposes constraints on implementation

strategies� Suppose� for example� that a process executes two successive blocking

send calls� The message sent by the �rst call is bu�ered� and the second call starts�

Then� if a receive is posted that matches this second send� the second message

should be able to overtake the �rst bu�ered one� �End of advice to implementors��

�� Chapter �

Process 0

Process 1

recv

recv

send Process 2

send

send

recv

Figure ���
Order preserving is not transitive�

��	�
 Fairness

MPI makes no guarantee of fairness in the handling of communication� Suppose

that a send is posted� Then it is possible that the destination process repeatedly

posts a receive that matches this send� yet the message is never received� because

it is repeatedly overtaken by other messages� sent from other sources� The sce�

nario requires that the receive used the wildcard MPI ANY SOURCE as its source

argument�

Similarly� suppose that a receive is posted by a multi�threaded process� Then it

is possible that messages that match this receive are repeatedly consumed� yet the

receive is never satis�ed� because it is overtaken by other receives posted at this

node by other threads� It is the programmer�s responsibility to prevent starvation

in such situations�

Point�to�Point Communication �	

��� Example � Jacobi iteration

We shall use the following example to illustrate the material introduced so far� and

to motivate new functions�

Example ���� Jacobi iteration sequential code

REAL A�� n

�� n

�� B�
 n�
 n�

���

! Main Loop

DO WHILE��NOT�converged�

! perform � point stencil

DO j�
� n

DO i�
� n

B�i�j� �������A�i�
�j�
A�i

�j�
A�i�j�
�
A�i�j

��

END DO

END DO

! copy result back into array A

DO j�
�n

DO i�
�n

A�i�j� � B�i�j�

END DO

END DO

���

! Convergence test omitted

END DO

The code fragment describes the main loop of an iterative solver where� at each

iteration� the value at a point is replaced by the average of the North� South�

East and West neighbors �a four point stencil is used to keep the example simple��

Boundary values do not change� We focus on the inner loop� where most of the

computation is done� and use Fortran �� syntax� for clarity�

Since this code has a simple structure� a data�parallel approach can be used to

derive an equivalent parallel code� The array is distributed across processes� and

each process is assigned the task of updating the entries on the part of the array it

owns�

A parallel algorithm is derived from a choice of data distribution� The distribu�

tion should be balanced� allocating �roughly� the same number of entries to each

�
 Chapter �

processor� and it should minimize communication� Figure ��� illustrates two possi�

ble distributions� a �D �block� distribution� where the matrix is partitioned in one

dimension� and a �D �block�block� distribution� where the matrix is partitioned in

two dimensions�

2D partition1D partition

Figure ���
Block partitioning of a matrix�

Since the communication occurs at block boundaries� communication volume is

minimized by the �D partition which has a better area to perimeter ratio� How�

ever� in this partition� each processor communicates with four neighbors� rather

than two neighbors in the �D partition� When the ratio of n�P �P number of pro�

cessors� is small� communication time will be dominated by the �xed overhead per

message� and the �rst partition will lead to better performance� When the ratio

is large� the second partition will result in better performance� In order to keep

the example simple� we shall use the �rst partition� a realistic code would use a

�polyalgorithm� that selects one of the two partitions� according to problem size�

number of processors� and communication performance parameters�

The value of each point in the array B is computed from the value of the four

neighbors in array A� Communications are needed at block boundaries in order to

receive values of neighbor points which are owned by another processor� Commu�

nications are simpli�ed if an overlap area is allocated at each processor for storing

the values to be received from the neighbor processor� Essentially� storage is allo�

cated for each entry both at the producer and at the consumer of that entry� If

an entry is produced by one processor and consumed by another� then storage is

allocated for this entry at both processors� With such scheme there is no need for

dynamic allocation of communication bu�ers� and the location of each variable is

�xed� Such scheme works whenever the data dependencies in the computation are

�xed and simple� In our case� they are described by a four point stencil� Therefore�

a one�column overlap is needed� for a �D partition�

Point�to�Point Communication ��

We shall partition array A with one column overlap� No such overlap is required

for array B� Figure ��� shows the extra columns in A and how data is transfered for

each iteration�

We shall use an algorithm where all values needed from a neighbor are brought

in one message� Coalescing of communications in this manner reduces the number

of messages and generally improves performance�

Process 0 Process 1 Process 2

n

1
1 o o m

o o o o o o o o o

n+1 n+1 n+1

o

o

o

o

o

o

o

o

o

o

o

1 o o m 1 o o m
1 1

n n

o

o
o

o
B

A

0 m+1 0 m+1 0 m+1
0 0 0

Figure ���
�D block partitioning with overlap and communication pattern for jacobi iteration�

The resulting parallel algorithm is shown below�

Example ���� Jacobi iteration �rst version of parallel code

���

REAL� ALLOCATABLE A� � �� B� � �

���

! Compute number of processes and myrank

CALL MPI�COMM�SIZE�comm� p� ierr�

CALL MPI�COMM�RANK�comm� myrank� ierr�

�� Chapter �

! Compute size of local block

m � n�p

IF �myrank�LT��n�p�m�� THEN

m � m

END IF

! Allocate local arrays

ALLOCATE �A�� n

�� m

�� B�n�m��

���

! Main loop

DO WHILE ��NOT� converged�

! Compute

DO j�
�m

DO i�
�n

B�i�j� � ������A�i�
�j�
A�i

�j�
A�i�j�
�
A�i�j

��

END DO

END DO

DO j�
�m

DO i�
�n

A�i�j� � B�i�j�

END DO

END DO

! Communicate

IF �myrank�GT��� THEN

CALL MPI�SEND�B�
�
�� n� MPI�REAL� myrank�
� tag� comm� ierr�

CALL MPI�RECV�A�
���� n� MPI�REAL� myrank�
� tag� comm�

status� ierr�

END IF

IF �myrank�LT�p�
� THEN

CALL MPI�SEND�B�
�m�� n� MPI�REAL� myrank

� tag� comm� ierr�

CALL MPI�RECV�A�
�m

�� n� MPI�REAL� myrank

� tag� comm�

status� ierr�

END IF

���

END DO

This code has a communication pattern similar to the code in Example ���� It is

unsafe� since each processor �rst sends messages to its two neighbors� next receives

Point�to�Point Communication ��

the messages they have sent�

One way to get a safe version of this code is to alternate the order of sends and

receives� odd rank processes will �rst send� next receive� and even rank processes

will �rst receive� next send� Thus� one achieves the communication pattern of

Example ����

The modi�ed main loop is shown below� We shall later see simpler ways of

dealing with this problem�

Example ���� Main loop of Jacobi iteration safe version of parallel code

���

! Main loop

DO WHILE��NOT� converged�

! Compute

DO j�
�m

DO i�
�n

B�i�j� � ������A�i�
�j�
A�i

�j�
A�i�j�
�
A�i�j

��

END DO

END DO

DO j�
�m

DO i�
�n

A�i�j� � B�i�j�

END DO

END DO

! Communicate

IF �MOD�myrank����EQ�
� THEN

CALL MPI�SEND�B�
�
�� n� MPI�REAL� myrank�
� tag�

comm� ierr�

CALL MPI�RECV�A�
���� n� MPI�REAL� myrank�
� tag�

comm� status� ierr�

IF �myrank�LT�p�
� THEN

CALL MPI�SEND�B�
�m�� n� MPI�REAL� myrank

� tag�

comm� ierr�

CALL MPI�RECV�A�
�m

�� n� MPI�REAL� myrank

� tag�

comm� status� ierr�

END IF

ELSE ! myrank is even

IF �myrank�GT��� THEN

�� Chapter �

CALL MPI�RECV�A�
���� n� MPI�REAL� myrank�
� tag�

comm� status� ierr�

CALL MPI�SEND�B�
�
�� n� MPI�REAL� myrank�
� tag�

comm� ierr�

END IF

IF �myrank�LT�p�
� THEN

CALL MPI�RECV�A�
�m

�� n� MPI�REAL� myrank

� tag�

comm� status� ierr�

CALL MPI�SEND�B�
�m�� n� MPI�REAL� myrank

� tag�

comm� ierr�

END IF

END IF

���

END DO

��� Send�Receive

The exchange communication pattern exhibited by the last example is su�ciently

frequent to justify special support� The send�receive operation combines� in one

call� the sending of one message to a destination and the receiving of another mes�

sage from a source� The source and destination are possibly the same� Send�receive

is useful for communications patterns where each node both sends and receives

messages� One example is an exchange of data between two processes� Another

example is a shift operation across a chain of processes� A safe program that imple�

ments such shift will need to use an odd�even ordering of communications� similar

to the one used in Example ����� When send�receive is used� data �ows simul�

taneously in both directions �logically� at least� and cycles in the communication

pattern do not lead to deadlock�

Send�receive can be used in conjunction with the functions described in Chap�

ter � to perform shifts on logical topologies� Also� send�receive can be used for

implementing remote procedure calls� one blocking send�receive call can be used

for sending the input parameters to the callee and receiving back the output pa�

rameters�

There is compatibility between send�receive and normal sends and receives� A

message sent by a send�receive can be received by a regular receive or probed by a

regular probe� and a send�receive can receive a message sent by a regular send�

Point�to�Point Communication ��

MPI SENDRECV�sendbuf� sendcount� sendtype� dest� sendtag� recvbuf� recvcount�

recvtype� source� recvtag� comm� status�

IN sendbuf initial address of send bu�er

IN sendcount number of entries to send

IN sendtype type of entries in send bu�er

IN dest rank of destination

IN sendtag send tag

OUT recvbuf initial address of receive bu�er

IN recvcount max number of entries to receive

IN recvtype type of entries in receive bu�er

IN source rank of source

IN recvtag receive tag

IN comm communicator

OUT status return status

int MPI Sendrecv�void �sendbuf� int sendcount� MPI Datatype sendtype�

int dest� int sendtag� void �recvbuf� int recvcount�

MPI Datatype recvtype� int source�

MPI Datatype recvtag� MPI Comm comm� MPI Status �status�

MPI SENDRECV�SENDBUF� SENDCOUNT� SENDTYPE� DEST� SENDTAG� RECVBUF�

RECVCOUNT� RECVTYPE� SOURCE� RECVTAG� COMM� STATUS�

IERROR�

	type� SENDBUF���� RECVBUF���

INTEGER SENDCOUNT� SENDTYPE� DEST� SENDTAG� RECVCOUNT� RECVTYPE�

SOURCE� RECV TAG� COMM� STATUS�MPI STATUS SIZE�� IERROR

MPI SENDRECV executes a blocking send and receive operation� Both the send

and receive use the same communicator� but have distinct tag arguments� The

send bu�er and receive bu�ers must be disjoint� and may have di�erent lengths and

datatypes� The next function handles the case where the bu�ers are not disjoint�

The semantics of a send�receive operation is what would be obtained if the caller

forked two concurrent threads� one to execute the send� and one to execute the

receive� followed by a join of these two threads�

�� Chapter �

MPI SENDRECV REPLACE�buf� count� datatype� dest� sendtag� source� recvtag� comm�

status�

INOUT buf initial address of send and receive bu�er

IN count number of entries in send and receive

bu�er

IN datatype type of entries in send and receive bu�er

IN dest rank of destination

IN sendtag send message tag

IN source rank of source

IN recvtag receive message tag

IN comm communicator

OUT status status object

int MPI Sendrecv replace�void� buf� int count� MPI Datatype datatype�

int dest� int sendtag� int source� int recvtag�

MPI Comm comm� MPI Status �status�

MPI SENDRECV REPLACE�BUF� COUNT� DATATYPE� DEST� SENDTAG� SOURCE�

RECVTAG� COMM� STATUS� IERROR�

	type� BUF���

INTEGER COUNT� DATATYPE� DEST� SENDTAG� SOURCE� RECVTAG� COMM�

STATUS�MPI STATUS SIZE�� IERROR

MPI SENDRECV REPLACE executes a blocking send and receive� The same

bu�er is used both for the send and for the receive� so that the message sent is

replaced by the message received�

The example below shows the main loop of the parallel Jacobi code� reimple�

mented using send�receive�

Example ���	 Main loop of Jacobi code version using send�receive�

���

! Main loop

DO WHILE��NOT�converged�

! Compute

DO j�
�m

DO i�
�n

B�i�j� � ������A�i�
�j�
A�i

�j�
A�i�j�
�
A�i�j

��

END DO

END DO

Point�to�Point Communication ��

DO j�
�m

DO i�
�n

A�i�j� � B�i�j�

END DO

END DO

! Communicate

IF �myrank�GT��� THEN

CALL MPI�SENDRECV�B�
�
�� n� MPI�REAL� myrank�
� tag�

A�
���� n� MPI�REAL� myrank�
� tag� comm� status� ierr�

END IF

IF �myrank�LT�p�
� THEN

CALL MPI�SENDRECV�B�
�m�� n� MPI�REAL� myrank

� tag�

A�
�m

�� n� MPI�REAL� myrank

� tag� comm� status� ierr�

END IF

���

END DO

This code is safe� notwithstanding the cyclic communication pattern�

Advice to implementors� Additional� intermediate bu�ering is needed for the

replace variant� Only a �xed amount of bu�er space should be used� otherwise

send�receive will not be more robust then the equivalent pair of blocking send and

receive calls� �End of advice to implementors��

��	 Null Processes

In many instances� it is convenient to specify a �dummy� source or destination for

communication�

In the Jacobi example� this will avoid special handling of boundary processes�

This also simpli�es handling of boundaries in the case of a non�circular shift� when

used in conjunction with the functions described in Chapter ��

The special value MPI PROC NULL can be used instead of a rank wherever a

source or a destination argument is required in a communication function� A com�

munication with process MPI PROC NULL has no e�ect� A send to MPI PROC NULL

succeeds and returns as soon as possible� A receive from MPI PROC NULL succeeds

and returns as soon as possible with no modi�cations to the receive bu�er� When

a receive with source ! MPI PROC NULL is executed then the status object returns

source ! MPI PROC NULL� tag ! MPI ANY TAG and count 	 ��

�� Chapter �

We take advantage of null processes to further simplify the parallel Jacobi code�

Example ���
 Jacobi code version of parallel code using sendrecv and null pro�

cesses�

���

REAL� ALLOCATABLE A� � �� B� � �

���

! Compute number of processes and myrank

CALL MPI�COMM�SIZE�comm� p� ierr�

CALL MPI�COMM�RANK�comm� myrank� ierr�

! Compute size of local block

m � n�p

IF �myrank�LT��n�p�m�� THEN

m � m

END IF

! Compute neighbors

IF �myrank�EQ��� THEN

left � MPI�PROC�NULL

ELSE

left � myrank �

END IF

IF �myrank�EQ�p�
� THEN

right � MPI�PROC�NULL

ELSE

right � myrank

END IF

! Allocate local arrays

ALLOCATE �A�� n

�� m

�� B�n�m��

���

! Main loop

DO WHILE��NOT� converged�

! Compute

DO j�
�m

DO i�
�n

Point�to�Point Communication �	

B�i�j� � ������A�i�
�j�
A�i

�j�
A�i�j�
�
A�i�j

��

END DO

END DO

DO j�
�m

DO i�
�n

A�i�j� � B�i�j�

END DO

END DO

! Communicate

CALL MPI�SENDRECV�B�
�
�� n� MPI�REAL� left� tag�

A�
���� n� MPI�REAL� left� tag� comm� status� ierr�

CALL MPI�SENDRECV�B�
�m�� n� MPI�REAL� right� tag�

A�
�m

�� n� MPI�REAL� right� tag� comm� status� ierr�

���

END DO

The boundary test that was previously executed inside the loop has been e�ectively

moved outside the loop� Although this is not expected to change performance

signi�cantly� the code is simpli�ed�

��
 Nonblocking Communication

One can improve performance on many systems by overlapping communication and

computation� This is especially true on systems where communication can be exe�

cuted autonomously by an intelligent communication controller� Multi�threading is

one mechanism for achieving such overlap� While one thread is blocked� waiting for

a communication to complete� another thread may execute on the same processor�

This mechanism is e�cient if the system supports light�weight threads that are in�

tegrated with the communication subsystem� An alternative mechanism that often

gives better performance is to use nonblocking communication� A nonblocking

post�send initiates a send operation� but does not complete it� The post�send will

return before the message is copied out of the send bu�er� A separate complete�

send call is needed to complete the communication� that is� to verify that the data

has been copied out of the send bu�er� With suitable hardware� the transfer of

data out of the sender memory may proceed concurrently with computations done

at the sender after the send was initiated and before it completed� Similarly� a

nonblocking post�receive initiates a receive operation� but does not complete it�

�
 Chapter �

The call will return before a message is stored into the receive bu�er� A separate

complete�receive is needed to complete the receive operation and verify that the

data has been received into the receive bu�er�

A nonblocking send can be posted whether a matching receive has been posted

or not� The post�send call has local completion semantics� it returns immediately�

irrespective of the status of other processes� If the call causes some system resource

to be exhausted� then it will fail and return an error code� Quality implementations

ofMPI should ensure that this happens only in �pathological� cases� That is� anMPI

implementation should be able to support a large number of pending nonblocking

operations�

The complete�send returns when data has been copied out of the send bu�er�

The complete�send has non�local completion semantics� The call may return before

a matching receive is posted� if the message is bu�ered� On the other hand� the

complete�send may not return until a matching receive is posted�

There is compatibility between blocking and nonblocking communication func�

tions� Nonblocking sends can be matched with blocking receives� and vice�versa�

Advice to users� The use of nonblocking sends allows the sender to proceed ahead

of the receiver� so that the computation is more tolerant of �uctuations in the

speeds of the two processes�

The MPI message�passing model �ts a �push� model� where communication is ini�

tiated by the sender� The communication will generally have lower overhead if a

receive bu�er is already posted when the sender initiates the communication� The

use of nonblocking receives allows one to post receives �early� and so achieve lower

communication overheads without blocking the receiver while it waits for the send�

�End of advice to users��

����� Request Objects

Nonblocking communications use request objects to identify communication op�

erations and link the posting operation with the completion operation� Request

objects are allocated by MPI and reside in MPI �system� memory� The request

object is opaque in the sense that the type and structure of the object is not visible

to users� The application program can only manipulate handles to request objects�

not the objects themselves� The system may use the request object to identify

various properties of a communication operation� such as the communication bu�er

that is associated with it� or to store information about the status of the pending

communication operation� The user may access request objects through various

MPI calls to inquire about the status of pending communication operations�

Point�to�Point Communication ��

The special value MPI REQUEST NULL is used to indicate an invalid request handle�

Operations that deallocate request objects set the request handle to this value�

����� Posting Operations

Calls that post send or receive operations have the same names as the corresponding

blocking calls� except that an additional pre�x of I �for immediate� indicates that

the call is nonblocking�

MPI ISEND�buf� count� datatype� dest� tag� comm� request�

IN buf initial address of send bu�er

IN count number of entries in send bu�er

IN datatype datatype of each send bu�er entry

IN dest rank of destination

IN tag message tag

IN comm communicator

OUT request request handle

int MPI Isend�void� buf� int count� MPI Datatype datatype� int dest�

int tag� MPI Comm comm� MPI Request �request�

MPI ISEND�BUF� COUNT� DATATYPE� DEST� TAG� COMM� REQUEST� IERROR�

	type� BUF���

INTEGER COUNT� DATATYPE� DEST� TAG� COMM� REQUEST� IERROR

MPI ISEND posts a standard�mode� nonblocking send�

MPI IRECV �buf� count� datatype� source� tag� comm� request�

OUT buf initial address of receive bu�er

IN count number of entries in receive bu�er

IN datatype datatype of each receive bu�er entry

IN source rank of source

IN tag message tag

IN comm communicator

OUT request request handle

int MPI Irecv�void� buf� int count� MPI Datatype datatype�

int source� int tag� MPI Comm comm�

MPI Request �request�

�� Chapter �

MPI IRECV�BUF� COUNT� DATATYPE� SOURCE� TAG� COMM� REQUEST� IERROR�

	type� BUF���

INTEGER COUNT� DATATYPE� SOURCE� TAG� COMM� REQUEST� IERROR

MPI IRECV posts a nonblocking receive�

These calls allocate a request object and return a handle to it in request� The

request is used to query the status of the communication or wait for its completion�

A nonblocking post�send call indicates that the system may start copying data

out of the send bu�er� The sender must not access any part of the send bu�er

�neither for loads nor for stores� after a nonblocking send operation is posted� until

the complete�send returns�

A nonblocking post�receive indicates that the system may start writing data into

the receive bu�er� The receiver must not access any part of the receive bu�er after

a nonblocking receive operation is posted� until the complete�receive returns�

Rationale� We prohibit read accesses to a send bu�er while it is being used� even

though the send operation is not supposed to alter the content of this bu�er� This

may seem more stringent than necessary� but the additional restriction causes little

loss of functionality and allows better performance on some systems � consider

the case where data transfer is done by a DMA engine that is not cache�coherent

with the main processor� �End of rationale��

����� Completion Operations

The functions MPI WAIT and MPI TEST are used to complete nonblocking sends

and receives� The completion of a send indicates that the sender is now free to

access the send bu�er� The completion of a receive indicates that the receive bu�er

contains the message� the receiver is free to access it� and that the status object is

set�

MPI WAIT�request� status�

INOUT request request handle

OUT status status object

int MPI Wait�MPI Request �request� MPI Status �status�

MPI WAIT�REQUEST� STATUS� IERROR�

INTEGER REQUEST� STATUS�MPI STATUS SIZE�� IERROR

Point�to�Point Communication ��

A call to MPI WAIT returns when the operation identi�ed by request is complete�

If the system object pointed to by request was originally created by a nonblocking

send or receive� then the object is deallocated by MPI WAIT and request is set

to MPI REQUEST NULL� The status object is set to contain information on the

completed operation� MPI WAIT has non�local completion semantics�

MPI TEST�request�
ag� status�

INOUT request request handle

OUT
ag true if operation completed

OUT status status object

int MPI Test�MPI Request �request� int �flag� MPI Status �status�

MPI TEST�REQUEST� FLAG� STATUS� IERROR�

LOGICAL FLAG

INTEGER REQUEST� STATUS�MPI STATUS SIZE�� IERROR

A call to MPI TEST returns
ag 	 true if the operation identi�ed by request is

complete� In this case� the status object is set to contain information on the com�

pleted operation� If the system object pointed to by request was originally created

by a nonblocking send or receive� then the object is deallocated by MPI TEST and

request is set toMPI REQUEST NULL� The call returns
ag 	 false� otherwise� In this

case� the value of the status object is unde�ned� MPI TEST has local completion

semantics�

For both MPI WAIT and MPI TEST� information on the completed operation

is returned in status� The content of the status object for a receive operation is

accessed as described in Section ����
� The contents of a status object for a send

operation is unde�ned� except that the query function MPI TEST CANCELLED

�Section ����� can be applied to it�

Advice to users� The use of MPI TEST allows one to schedule alternative activities

within a single thread of execution� �End of advice to users��

Advice to implementors� In a multi�threaded environment� a call to MPI WAIT

should block only the calling thread� allowing another thread to be scheduled for

execution� �End of advice to implementors��

Rationale� MPI WAIT and MPI TEST are de�ned so that MPI TEST returns

successfully �with
ag 	 true� exactly in those situation where MPI WAIT returns�

�� Chapter �

In those cases� both return the same information in status� This allows one to

replace a blocking call to MPI WAIT with a nonblocking call to MPI TEST with

few changes in the program� The same design logic will be followed for the multi�

completion operations of Section ���� �End of rationale��

����	 Examples

We illustrate the use of nonblocking communication for the same Jacobi computa�

tion used in previous examples �Example ���� ���
�� To achieve maximum overlap

between computation and communication� communications should be started as

soon as possible and completed as late as possible� That is� sends should be posted

as soon as the data to be sent is available� receives should be posted as soon as

the receive bu�er can be reused� sends should be completed just before the send

bu�er is to be reused� and receives should be completed just before the data in the

receive bu�er is to be used� Sometimes� the overlap can be increased by reordering

computations�

Example ���
 Use of nonblocking communications in Jacobi computation�

���

REAL� ALLOCATABLE A� � �� B� � �

INTEGER req���

INTEGER status�MPI�STATUS�SIZE���

���

! Compute number of processes and myrank

CALL MPI�COMM�SIZE�comm� p� ierr�

CALL MPI�COMM�RANK�comm� myrank� ierr�

! Compute size of local block

m � n�p

IF �myrank�LT��n�p�m�� THEN

m � m

END IF

! Compute neighbors

IF �myrank�EQ��� THEN

left � MPI�PROC�NULL

ELSE

left � myrank �

END IF

Point�to�Point Communication ��

IF �myrank�EQ�p�
� THEN

right � MPI�PROC�NULL

ELSE

right � myrank

ENDIF

! Allocate local arrays

ALLOCATE �A�� n

�� m

�� B�n�m��

���

! Main loop

DO WHILE��NOT�converged�

! Compute boundary columns

DO i�
�n

B�i�
� � ������A�i�
�
�
A�i

�
�
A�i���
A�i����

B�i�m� � ������A�i�
�m�
A�i

�m�
A�i�m�
�
A�i�m

��

END DO

! Start communication

CALL MPI�ISEND�B�
�
�� n� MPI�REAL� left� tag� comm� req�
�� ierr�

CALL MPI�ISEND�B�
�m�� n� MPI�REAL� right� tag� comm� req���� ierr�

CALL MPI�IRECV�A�
���� n� MPI�REAL� left� tag� comm� req���� ierr�

CALL MPI�IRECV�A�
�m

�� n� MPI�REAL� right� tag� comm� req���� ierr�

! Compute interior

DO j���m�

DO i�
�n

B�i�j� � ������A�i�
�j�
A�i

�j�
A�i�j�
�
A�i�j

��

END DO

END DO

DO j�
�m

DO i�
�n

A�i�j� � B�i�j�

END DO

END DO

! Complete communication

DO i�
��

�� Chapter �

CALL MPI�WAIT�req�i�� status�
�i�� ierr�

END DO

���

END DO

The communication calls use the leftmost and rightmost columns of local array

B and set the leftmost and rightmost columns of local array A� The send bu�ers

are made available early by separating the update of the leftmost and rightmost

columns of B from the update of the interior of B� Since this is also where the

leftmost and rightmost columns of A are used� the communication can be started

immediately after these columns are updated and can be completed just before the

next iteration�

The next example shows a multiple�producer� single�consumer code� The last

process in the group consumes messages sent by the other processes�

Example ���� Multiple�producer� single�consumer code using nonblocking com�

munication

���

typedef struct �

char data�MAXSIZE��

int datasize�

MPI�Request req�

� Buffer�

Buffer buffer���

MPI�Status status�

���

MPI�Comm�rank�comm� �rank��

MPI�Comm�size�comm� �size��

if�rank !� size�
� � �� producer code ��

�� initialization � producer allocates one buffer ��

buffer � �Buffer ��malloc�sizeof�Buffer���

while�
� � �� main loop ��

�� producer fills data buffer and returns

number of bytes stored in buffer ��

produce� buffer��data� �buffer��datasize��

�� send data ��

MPI�Send�buffer��data� buffer��datasize� MPI�CHAR�

size�
� tag� comm��

Point�to�Point Communication ��

�

�

else � �� rank �� size�
� consumer code ��

�� initialization � consumer allocates one buffer

per producer ��

buffer � �Buffer ��malloc�sizeof�Buffer���size�
���

for�i��� i	 size�
� i

�

�� post a receive from each producer ��

MPI�Irecv�buffer�i��data� MAXSIZE� MPI�CHAR� i� tag�

comm� ��buffer�i��req���

for�i��� � i��i

�"�size�
�� � �� main loop ��

MPI�Wait���buffer�i��req�� �status��

�� find number of bytes actually received ��

MPI�Get�count��status� MPI�CHAR� ��buffer�i��datasize���

�� consume empties data buffer ��

consume�buffer�i��data� buffer�i��datasize��

�� post new receive ��

MPI�Irecv�buffer�i��data� MAXSIZE� MPI�CHAR� i� tag�

comm� ��buffer�i��req���

�

�

�

Each producer runs an in�nite loop where it repeatedly produces one message and

sends it� The consumer serves each producer in turn� by receiving its message and

consuming it�

The example imposes a strict round�robin discipline� since the consumer receives

one message from each producer� in turn� In some cases it is preferable to use

a ��rst�come��rst�served� discipline� This is achieved by using MPI TEST� rather

than MPI WAIT� as shown below� Note that MPI can only o�er an approximation

to �rst�come��rst�served� since messages do not necessarily arrive in the order they

were sent�

Example ���� Multiple�producer� single�consumer code� modi�ed to use test calls�

���

typedef struct �

char data�MAXSIZE��

int datasize�

�� Chapter �

MPI�Request req�

� Buffer�

Buffer buffer���

MPI�Status status�

���

MPI�Comm�rank�comm� �rank��

MPI�Comm�size�comm� �size��

if�rank !� size�
� � �� producer code ��

buffer � �Buffer ��malloc�sizeof�Buffer���

while�
� � �� main loop ��

produce� buffer��data� �buffer��datasize��

MPI�Send�buffer��data� buffer��datasize� MPI�CHAR�

size�
� tag� comm��

�

�

else � �� rank �� size�
� consumer code ��

buffer � �Buffer ��malloc�sizeof�Buffer���size�
���

for�i��� i	 size�
� i

�

MPI�Irecv�buffer�i��data� MAXSIZE� MPI�CHAR� i� tag�

comm� �buffer�i��req��

i � ��

while�
� � �� main loop ��

for �flag��� !flag� i� �i

�"�size�
��

�� busy�wait for completed receive ��

MPI�Test���buffer�i��req�� �flag� �status��

MPI�Get�count��status� MPI�CHAR� �buffer�i��datasize��

consume�buffer�i��data� buffer�i��datasize��

MPI�Irecv�buffer�i��data� MAXSIZE� MPI�CHAR� i� tag�

comm� �buffer�i��req��

�

�

If there is no message pending from a producer� then the consumer process skips to

the next producer� A more e�cient implementation that does not require multiple

test calls and busy�waiting will be presented in Section ����

����
 Freeing Requests

A request object is deallocated automatically by a successful call to MPI WAIT or

MPI TEST� In addition� a request object can be explicitly deallocated by using the

Point�to�Point Communication �	

following operation�

MPI REQUEST FREE�request�

INOUT request request handle

int MPI Request free�MPI Request �request�

MPI REQUEST FREE�REQUEST� IERROR�

INTEGER REQUEST� IERROR

MPI REQUEST FREE marks the request object for deallocation and sets request

toMPI REQUEST NULL� An ongoing communication associated with the request will

be allowed to complete� The request becomes unavailable after it is deallocated� as

the handle is reset to MPI REQUEST NULL� However� the request object itself need

not be deallocated immediately� If the communication associated with this object

is still ongoing� and the object is required for its correct completion� then MPI will

not deallocate the object until after its completion�

MPI REQUEST FREE cannot be used for cancelling an ongoing communication�

For that purpose� one should use MPI CANCEL� described in Section ����� One

should use MPI REQUEST FREE when the logic of the program is such that a

nonblocking communication is known to have terminated and� therefore� a call to

MPI WAIT or MPI TEST is super�uous� For example� the program could be such

that a send command generates a reply from the receiver� If the reply has been

successfully received� then the send is known to be complete�

Example ���� An example using MPI REQUEST FREE�

CALL MPI�COMM�RANK�MPI�COMM�WORLD� rank� ierr�

IF�rank�EQ��� THEN

DO i�
� n

CALL MPI�ISEND�outval�
� MPI�REAL�
� �� comm� req� ierr�

CALL MPI�REQUEST�FREE�req� ierr�

CALL MPI�IRECV�inval�
� MPI�REAL�
� �� comm� req� ierr�

CALL MPI�WAIT�req� status� ierr�

END DO

ELSE IF �rank�EQ�
� THEN

CALL MPI�IRECV�inval�
� MPI�REAL� �� �� comm� req� ierr�

CALL MPI�WAIT�req� status� ierr�

DO i�
� n�

�
 Chapter �

CALL MPI�ISEND�outval�
� MPI�REAL� �� �� comm� req� ierr�

CALL MPI�REQUEST�FREE�req� ierr�

CALL MPI�IRECV�inval�
� MPI�REAL� �� �� comm� req� ierr�

CALL MPI�WAIT�req� status� ierr�

END DO

CALL MPI�ISEND�outval�
� MPI�REAL� �� �� comm� req� ierr�

CALL MPI�WAIT�req� status�

END IF

Advice to users� Requests should not be freed explicitly unless the communication

is known to complete� Receive requests should never be freed without a call to

MPI WAIT or MPI TEST� since only such a call can guarantee that a nonblocking

receive operation has completed� This is explained in Section ��
��� If an error

occurs during a communication after the request object has been freed� then an error

code cannot be returned to the user �the error code would normally be returned to

the MPI TEST or MPI WAIT request�� Therefore� such an error will be treated by

MPI as fatal� �End of advice to users��

����
 Semantics of Nonblocking Communications

The semantics of nonblocking communication is de�ned by suitably extending the

de�nitions in Section ����

Order Nonblocking communication operations are ordered according to the exe�

cution order of the posting calls� The non�overtaking requirement of Section ��� is

extended to nonblocking communication�

Example ���� Message ordering for nonblocking operations�

CALL MPI�COMM�RANK�comm� rank� ierr�

IF �rank�EQ��� THEN

CALL MPI�ISEND�a�
� MPI�REAL�
� �� comm� r
� ierr�

CALL MPI�ISEND�b�
� MPI�REAL�
� �� comm� r�� ierr�

ELSE IF �rank�EQ�
� THEN

CALL MPI�IRECV�a�
� MPI�REAL� �� �� comm� r
� ierr�

CALL MPI�IRECV�b�
� MPI�REAL� �� �� comm� r�� ierr�

END IF

CALL MPI�WAIT�r��status�

CALL MPI�WAIT�r
�status�

Point�to�Point Communication ��

The �rst send of process zero will match the �rst receive of process one� even if

both messages are sent before process one executes either receive�

The order requirement speci�es how post�send calls are matched to post�receive

calls� There are no restrictions on the order in which operations complete� Consider

the code in Example �����

Example ���� Order of completion for nonblocking communications�

CALL MPI�COMM�RANK�comm� rank� ierr�

flag
 � �FALSE�

flag� � �FALSE�

IF �rank�EQ��� THEN

CALL MPI�ISEND�a� n� MPI�REAL�
� �� comm� r
� ierr�

CALL MPI�ISEND�b�
� MPI�REAL�
� �� comm� r�� ierr�

DO WHILE ��NOT��flag
�AND�flag���

IF ��NOT�flag
� CALL MPI�TEST�r
� flag
� s� ierr�

IF ��NOT�flag�� CALL MPI�TEST�r�� flag�� s� ierr�

END DO

ELSE IF �rank�EQ�
� THEN

CALL MPI�IRECV�a� n� MPI�REAL� �� �� comm� r
� ierr�

CALL MPI�IRECV�b�
� MPI�REAL� �� �� comm� r�� ierr�

DO WHILE ��NOT��flag
�AND�flag���

IF ��NOT�flag
� CALL MPI�TEST�r
� flag
� s� ierr�

IF ��NOT�flag�� CALL MPI�TEST�r�� flag�� s� ierr�

END DO

END IF

As in Example ����� the �rst send of process zero will match the �rst receive of

process one� However� the second receive may complete ahead of the �rst receive�

and the second send may complete ahead of the �rst send� especially if the �rst

communication involves more data than the second�

Since the completion of a receive can take an arbitrary amount of time� there is

no way to infer that the receive operation completed� short of executing a complete�

receive call� On the other hand� the completion of a send operation can be inferred

indirectly from the completion of a matching receive�

�� Chapter �

Progress A communication is enabled once a send and a matching receive have

been posted by two processes� The progress rule requires that once a communication

is enabled� then either the send or the receive will proceed to completion �they might

not both complete as the send might be matched by another receive or the receive

might be matched by another send�� Thus� a call to MPI WAIT that completes a

receive will eventually return if a matching send has been started� unless the send

is satis�ed by another receive� In particular� if the matching send is nonblocking�

then the receive completes even if no complete�send call is made on the sender side�

Similarly� a call toMPI WAIT that completes a send eventually returns if a match�

ing receive has been started� unless the receive is satis�ed by another send� and even

if no complete�receive call is made on the receiving side�

Example ���� An illustration of progress semantics�

CALL MPI�COMM�RANK�comm� rank� ierr�

IF �rank�EQ��� THEN

CALL MPI�SEND�a� count� MPI�REAL�
� �� comm� ierr�

CALL MPI�SEND�b� count� MPI�REAL�
�
� comm� ierr�

ELSE IF �rank�EQ�
� THEN

CALL MPI�IRECV�a� count� MPI�REAL� �� �� comm� r� ierr�

CALL MPI�RECV�b� count� MPI�REAL� ��
� comm� status� ierr�

CALL MPI�WAIT�r� status� ierr�

END IF

This program is safe and should not deadlock� The �rst send of process zero must

complete after process one posts the matching �nonblocking� receive even if process

one has not yet reached the call to MPI WAIT� Thus� process zero will continue and

execute the second send� allowing process one to complete execution�

If a call to MPI TEST that completes a receive is repeatedly made with the same

arguments� and a matching send has been started� then the call will eventually

return
ag 	 true� unless the send is satis�ed by another receive� If a call to

MPI TEST that completes a send is repeatedly made with the same arguments�

and a matching receive has been started� then the call will eventually return
ag 	

true� unless the receive is satis�ed by another send�

Fairness The statement made in Section ��� concerning fairness applies to non�

blocking communications� Namely� MPI does not guarantee fairness�

Point�to�Point Communication ��

Bu�ering and resource limitations The use of nonblocking communication

alleviates the need for bu�ering� since a sending process may progress after it has

posted a send� Therefore� the constraints of safe programming can be relaxed�

However� some amount of storage is consumed by a pending communication� At a

minimum� the communication subsystem needs to copy the parameters of a posted

send or receive before the call returns� If this storage is exhausted� then a call

that posts a new communication will fail� since post�send or post�receive calls are

not allowed to block� A high quality implementation will consume only a �xed

amount of storage per posted� nonblocking communication� thus supporting a large

number of pending communications� The failure of a parallel program that exceeds

the bounds on the number of pending nonblocking communications� like the failure

of a sequential program that exceeds the bound on stack size� should be seen as

a pathological case� due either to a pathological program or a pathological MPI

implementation�

Example ���� An illustration of bu�ering for nonblocking messages�

CALL MPI�COMM�RANK�comm� rank� ierr�

IF �rank�EQ��� THEN

CALL MPI�ISEND�sendbuf� count� MPI�REAL�
� tag� comm� req� ierr�

CALL MPI�RECV�recvbuf� count� MPI�REAL�
� tag� comm� status� ierr�

CALL MPI�WAIT�req� status� ierr�

ELSE ! rank�EQ�

CALL MPI�ISEND�sendbuf� count� MPI�REAL� �� tag� comm� req� ierr�

CALL MPI�RECV�recvbuf� count� MPI�REAL� �� tag� comm� status� ierr�

CALL MPI�WAIT�req� status� ierr�

END IF

This program is similar to the program shown in Example ���� page ��� two pro�

cesses exchange messages� by �rst executing a send� next a receive� However� unlike

Example ���� a nonblocking send is used� This program is safe� since it is not nec�

essary to bu�er any of the messages data�

Example ���	 Out of order communication with nonblocking messages�

CALL MPI�COMM�RANK�comm� rank� ierr�

IF �rank�EQ��� THEN

CALL MPI�SEND�sendbuf
� count� MPI�REAL�
�
� comm� ierr�

CALL MPI�SEND�sendbuf�� count� MPI�REAL�
� �� comm� ierr�

ELSE ! rank�EQ�

CALL MPI�IRECV�recvbuf�� count� MPI�REAL� �� �� comm� req
� ierr�

�� Chapter �

CALL MPI�IRECV�recvbuf
� count� MPI�REAL� ��
� comm� req�� ierr�

CALL MPI�WAIT�req
� status� ierr�

CALL MPI�WAIT�req�� status� ierr�

END IF

In this program process zero sends two messages to process one� while process one

receives these two messages in the reverse order� If blocking send and receive oper�

ations were used� the program would be unsafe� the �rst message has to be copied

and bu�ered before the second send can proceed� the �rst receive can complete

only after the second send executes� However� since we used nonblocking receive

operations� the program is safe� The MPI implementation will store a small� �xed

amount of information about the �rst receive call before it proceeds to the second

receive call� Once the second post�receive call occurred at process one and the �rst

�blocking� send occurred at process zero then the transfer of bu�er sendbuf
 is

enabled and is guaranteed to complete� At that point� the second send at process

zero is started� and is also guaranteed to complete�

The approach illustrated in the last two examples can be used� in general� to

transform unsafe programs into safe ones� Assume that the program consists of

successive communication phases� where processes exchange data� followed by com�

putation phases� The communication phase should be rewritten as two sub�phases�

the �rst where each process posts all its communication� and the second where the

process waits for the completion of all its communications� The order in which

the communications are posted is not important� as long as the total number of

messages sent or received at any node is moderate� This is further discussed in

Section ����

����� Comments on Semantics of Nonblocking Communications

Advice to users� Typically� a posted send will consume storage both at the sending

and at the receiving process� The sending process has to keep track of the posted

send� and the receiving process needs the message envelope� so as to be able to match

it to posted receives� Thus� storage for pending communications can be exhausted

not only when any one node executes a large number of post�send or post�receive

calls� but also when any one node is the destination of a large number of messages�

In a large system� such a �hot�spot� may occur even if each individual process has

only a small number of pending posted sends or receives� if the communication

pattern is very unbalanced� �End of advice to users��

Point�to�Point Communication ��

Advice to implementors� In most MPI implementations� sends and receives are

matched at the receiving process node� This is because the receive may specify a

wildcard source parameter� When a post�send returns� the MPI implementation

must guarantee not only that it has stored the parameters of the call� but also that

it can forward the envelope of the posted message to the destination� Otherwise�

no progress might occur on the posted send� even though a matching receive was

posted� This imposes restrictions on implementations strategies for MPI�

Assume� for example� that each pair of communicatingprocesses is connected by one

ordered� �ow�controlled channel� A na"ive MPI implementation may eagerly send

down the channel any posted send message� the back pressure from the �ow�control

mechanism will prevent loss of data and will throttle the sender if the receiver is not

ready to receive the incoming data� Unfortunately� with this short protocol� a long

message sent by a nonblocking send operation may �ll the channel� and prevent

moving to the receiver any information on subsequently posted sends� This might

occur� for example� with the program in Example ����� page ��� The data sent by

the �rst send call might clog the channel� and prevent process zero from informing

process one that the second send was posted�

The problem can be remedied by using a long protocol� when a send is posted� it

is only the message envelope that is sent to the receiving process� The receiving

process bu�ers the �xed�size envelope� When a matching receive is posted� it sends

back a �ready�to�receive� message to the sender� The sender can now transmit the

message data� without clogging the communication channel� The two protocols are

illustrated in Figure ��
�

While safer� this protocol requires two additional transactions� as compared to

the simpler� eager protocol� A possible compromise is to use the short protocol

for short messages� and the long protocol for long messages� An early�arriving

short message is bu�ered at the destination� The amount of storage consumed

per pending communication is still bounded by a �reasonably small� constant and

the hand�shaking overhead can be amortized over the transfer of larger amounts of

data�

�End of advice to implementors��

Rationale� When a process runs out of space and cannot handle a new post�send

operation� would it not be better to block the sender� rather than declare failure	 If

one merely blocks the post�send� then it is possible that the messages that clog the

communication subsystem will be consumed� allowing the computation to proceed�

Thus� blocking would allow more programs to run successfully�

�� Chapter �

Short Protocol

SEND

SEND

RECV

Long Protocol

RECV

ack

message

req-to-send

data

ack

ready

Figure ���
Message passing protocols�

The counterargument is that� in a well�designed system� the large majority of pro�

grams that exceed the system bounds on the number of pending communications

do so because of program errors� Rather then arti�cially prolonging the life of a

program that is doomed to fail� and then have it fail in an obscure deadlock mode�

it may be better to cleanly terminate it� and have the programmer correct the

program� Also� when programs run close to the system limits� they �thrash� and

waste resources� as processes repeatedly block� Finally� the claim of a more lenient

behavior should not be used as an excuse for a de�cient implementation that cannot

support a large number of pending communications�

A di�erent line of argument against the current design is that MPI should not force

implementors to use more complex communication protocols� in order to support

out�of�order receives with a large number of pending communications� Rather�

users should be encouraged to order their communications so that� for each pair

of communicating processes� receives are posted in the same order as the matching

sends�

This argument is made by implementors� not users� Many users perceive this or�

dering restriction as too constraining� The design of MPI encourages virtualization

of communication� as one process can communicate through several� separate com�

Point�to�Point Communication ��

munication spaces� One can expect that users will increasingly take advantage of

this feature� especially on multi�threaded systems� A process may support multiple

threads� each with its own separate communication domain� The communication

subsystem should provide robust multiplexing of these communications� and min�

imize the chances that one thread is blocked because of communications initiated

by another thread� in another communication domain�

Users should be aware that di�erent MPI implementations di�er not only in their

bandwidth or latency� but also in their ability to support out�of�order delivery of

messages� �End of rationale��

��� Multiple Completions

It is convenient and e�cient to complete in one call a list of multiple pending

communication operations� rather than completing only one� MPI WAITANY or

MPI TESTANY are used to complete one out of several operations� MPI WAITALL

or MPI TESTALL are used to complete all operations in a list� MPI WAITSOME or

MPI TESTSOME are used to complete all enabled operations in a list� The behavior

of these functions is described in this section and in Section �����

MPI WAITANY �count� array of requests� index� status�

IN count list length

INOUT array of requests array of request handles

OUT index index of request handle that completed

OUT status status object

int MPI Waitany�int count� MPI Request �array of requests�

int �index� MPI Status �status�

MPI WAITANY�COUNT� ARRAY OF REQUESTS� INDEX� STATUS� IERROR�

INTEGER COUNT� ARRAY OF REQUESTS���� INDEX�

STATUS�MPI STATUS SIZE�� IERROR

MPI WAITANY blocks until one of the communication operations associated with

requests in the array has completed� If more then one operation can be completed�

MPI WAITANY arbitrarily picks one and completes it� MPI WAITANY returns in

index the array location of the completed request and returns in status the status of

the completed communication� The request object is deallocated and the request

�� Chapter �

handle is set to MPI REQUEST NULL� MPI WAITANY has non�local completion se�

mantics�

MPI TESTANY�count� array of requests� index�
ag� status�

IN count list length

INOUT array of requests array of request handles

OUT index index of request handle that completed

OUT
ag true if one has completed

OUT status status object

int MPI Testany�int count� MPI Request �array of requests�

int �index� int �flag� MPI Status �status�

MPI TESTANY�COUNT� ARRAY OF REQUESTS� INDEX� FLAG� STATUS� IERROR�

LOGICAL FLAG

INTEGER COUNT� ARRAY OF REQUESTS���� INDEX�

STATUS�MPI STATUS SIZE�� IERROR

MPI TESTANY tests for completion of the communication operations associated

with requests in the array� MPI TESTANY has local completion semantics�

If an operation has completed� it returns
ag 	 true� returns in index the ar�

ray location of the completed request� and returns in status the status of the

completed communication� The request is deallocated and the handle is set to

MPI REQUEST NULL�

If no operation has completed� it returns
ag 	 false� returns MPI UNDEFINED in

index and status is unde�ned�

The execution of MPI Testany�count� array of requests� �index� �
ag� �status�

has the same e�ect as the execution of MPI Test� �array of requests�i
� �
ag� �sta�

tus�� for i	�� � ����� count��� in some arbitrary order� until one call returns
ag 	

true� or all fail� In the former case� index is set to the last value of i� and in the

latter case� it is set to MPI UNDEFINED�

Point�to�Point Communication �	

Example ���
 Producer�consumer code using waitany�

���

typedef struct �

char data�MAXSIZE��

int datasize�

� Buffer�

Buffer buffer���

MPI�Request req���

MPI�Status status�

���

MPI�Comm�rank�comm� �rank��

MPI�Comm�size�comm� �size��

if�rank !� size�
� � �� producer code ��

buffer � �Buffer ��malloc�sizeof�Buffer���

while�
� � �� main loop ��

produce� buffer��data� �buffer��datasize��

MPI�Send�buffer��data� buffer��datasize� MPI�CHAR�

size�
� tag� comm��

�

�

else � �� rank �� size�
� consumer code ��

buffer � �Buffer ��malloc�sizeof�Buffer���size�
���

req � �MPI�Request ��malloc�sizeof�MPI�Request���size�
���

for�i��� i	 size�
� i

�

MPI�Irecv�buffer�i��data� MAXSIZE� MPI�CHAR� i� tag�

comm� �req�i���

while�
� � �� main loop ��

MPI�Waitany�size�
� req� �i� �status��

MPI�Get�count��status� MPI�CHAR� �buffer�i��datasize��

consume�buffer�i��data� buffer�i��datasize��

MPI�Irecv�buffer�i��data� MAXSIZE� MPI�CHAR� i� tag�

comm� �req�i���

�

�

This program implements the same producer�consumer protocol as the program

in Example ���
� page
�� The use of MPI WAIT ANY avoids the execution of

multiple tests to �nd a communication that completed� resulting in more compact

�
 Chapter �

and more e�cient code� However� this code� unlike the code in Example ���
� does

not prevent starvation of producers� It is possible that the consumer repeatedly

consumes messages sent from process zero� while ignoring messages sent by the

other processes� Example ���� below shows how to implement a fair server� using

MPI WAITSOME�

MPI WAITALL� count� array of requests� array of statuses�

IN count list length

INOUT array of requests array of request handles

OUT array of statuses array of status objects

int MPI Waitall�int count� MPI Request �array of requests�

MPI Status �array of statuses�

MPI WAITALL�COUNT� ARRAY OF REQUESTS� ARRAY OF STATUSES� IERROR�

INTEGER COUNT� ARRAY OF REQUESTS���

INTEGER ARRAY OF STATUSES�MPI STATUS SIZE���� IERROR

MPI WAITALL blocks until all communications� associated with requests in the

array� complete� The i�th entry in array of statuses is set to the return status of the

i�th operation� All request objects are deallocated and the corresponding handles in

the array are set to MPI REQUEST NULL� MPI WAITALL has non�local completion

semantics�

The execution of MPI Waitall�count� array of requests� array of statuses� has the

same e�ect as the execution of MPI Wait��array of requests�i
��array of statuses�i
��

for i	� ����� count��� in some arbitrary order�

When one or more of the communications completed by a call to MPI WAITALL

fail� MPI WAITALL will return the error code MPI ERR IN STATUS and will set the

error �eld of each status to a speci�c error code� This code will be MPI SUCCESS�

if the speci�c communication completed� it will be another speci�c error code�

if it failed� or it will be MPI PENDING if it has not failed nor completed� The

functionMPI WAITALL will return MPI SUCCESS if it completed successfully� or will

return another error code if it failed for other reasons �such as invalid arguments��

MPI WAITALL updates the error �elds of the status objects only when it returns

MPI ERR IN STATUS�

Rationale� This design streamlines error handling in the application� The appli�

cation code need only test the �single� function result to determine if an error has

Point�to�Point Communication ��

occurred� It needs to check individual statuses only when an error occurred� �End

of rationale��

MPI TESTALL�count� array of requests�
ag� array of statuses�

IN count list length

INOUT array of requests array of request handles

OUT
ag true if all have completed

OUT array of statuses array of status objects

int MPI Testall�int count� MPI Request �array of requests� int �flag�

MPI Status �array of statuses�

MPI TESTALL�COUNT� ARRAY OF REQUESTS� FLAG� ARRAY OF STATUSES�

IERROR�

LOGICAL FLAG

INTEGER COUNT� ARRAY OF REQUESTS����

ARRAY OF STATUSES�MPI STATUS SIZE���� IERROR

MPI TESTALL tests for completion of all communications associated with re�

quests in the array� MPI TESTALL has local completion semantics�

If all operations have completed� it returns
ag 	 true� sets the corresponding

entries in status� deallocates all requests and sets all request handles to MPI RE�

QUEST NULL�

If all operations have not completed�
ag 	 false is returned� no request is mod�

i�ed and the values of the status entries are unde�ned�

Errors that occurred during the execution of MPI TEST ALL are handled in the

same way as errors in MPI WAIT ALL�

Example ���
 Main loop of Jacobi computation using waitall�

���

! Main loop

DO WHILE��NOT� converged�

! Compute boundary columns

DO i�
�n

B�i�
� � ������A�i�
�
�
A�i

�
�
A�i���
A�i����

B�i�m� � ������A�i�
�m�
A�i

�m�
A�i�m�
�
A�i�m

��

END DO

�� Chapter �

! Start communication

CALL MPI�ISEND�B�
�
�� n� MPI�REAL� left� tag� comm� req�
�� ierr�

CALL MPI�ISEND�B�
�m�� n� MPI�REAL� right� tag� comm� req���� ierr�

CALL MPI�IRECV�A�
���� n� MPI�REAL� left� tag� comm� req���� ierr�

CALL MPI�IRECV�A�
�m

�� n� MPI�REAL� right� tag� comm� req���� ierr�

! Compute interior

DO j���m�

DO i�
�n

B�i�j� � ������A�i�
�j�
A�i

�j�
A�i�j�
�
A�i�j

��

END DO

END DO

DO j�
�m

DO i�
�n

A�i�j� � B�i�j�

END DO

END DO

! Complete communication

CALL MPI�WAITALL��� req� status� ierr�

���

This code solves the same problem as the code in Example ����� page
�� We

replaced four calls to MPI WAIT by one call to MPI WAITALL� This saves function

calls and context switches�

MPI WAITSOME�incount� array of requests� outcount� array of indices� array of statuses�

IN incount length of array of requests

INOUT array of requests array of request handles

OUT outcount number of completed requests

OUT array of indices array of indices of completed operations

OUT array of statuses array of status objects for completed op�

erations

int MPI Waitsome�int incount� MPI Request �array of requests�

int �outcount� int �array of indices�

MPI Status �array of statuses�

Point�to�Point Communication ��

MPI WAITSOME�INCOUNT� ARRAY OF REQUESTS� OUTCOUNT� ARRAY OF INDICES�

ARRAY OF STATUSES� IERROR�

INTEGER INCOUNT� ARRAY OF REQUESTS���� OUTCOUNT�

ARRAY OF INDICES���� ARRAY OF STATUSES�MPI STATUS SIZE���� IERROR

MPI WAITSOME waits until at least one of the communications� associated with

requests in the array� completes� MPI WAITSOME returns in outcount the num�

ber of completed requests� The �rst outcount locations of the array array of�

indices are set to the indices of these operations� The �rst outcount locations

of the array array of statuses are set to the status for these completed operations�

Each request that completed is deallocated� and the associated handle is set to

MPI REQUEST NULL� MPI WAITSOME has non�local completion semantics�

If one or more of the communications completed by MPI WAITSOME fail then

the arguments outcount� array of indices and array of statuses will be adjusted to in�

dicate completion of all communications that have succeeded or failed� The call will

return the error code MPI ERR IN STATUS and the error �eld of each status returned

will be set to indicate success or to indicate the speci�c error that occurred� The

call will return MPI SUCCESS if it succeeded� and will return another error code if it

failed for for other reasons �such as invalid arguments�� MPI WAITSOME updates

the status �elds of the request objects only when it returns MPI ERR IN STATUS�

MPI TESTSOME�incount� array of requests� outcount� array of indices� array of statuses�

IN incount length of array of requests

INOUT array of requests array of request handles

OUT outcount number of completed requests

OUT array of indices array of indices of completed operations

OUT array of statuses array of status objects for completed op�

erations

int MPI Testsome�int incount� MPI Request �array of requests�

int �outcount� int �array of indices�

MPI Status �array of statuses�

MPI TESTSOME�INCOUNT� ARRAY OF REQUESTS� OUTCOUNT� ARRAY OF INDICES�

ARRAY OF STATUSES� IERROR�

INTEGER INCOUNT� ARRAY OF REQUESTS���� OUTCOUNT�

ARRAY OF INDICES���� ARRAY OF STATUSES�MPI STATUS SIZE���� IERROR

�� Chapter �

MPI TESTSOME behaves like MPI WAITSOME� except that it returns immedi�

ately� If no operation has completed it returns outcount 	 �� MPI TESTSOME has

local completion semantics�

Errors that occur during the execution of MPI TESTSOME are handled as for

MPI WAIT SOME�

BothMPI WAITSOME andMPI TESTSOME ful�ll a fairness requirement� if a re�

quest for a receive repeatedly appears in a list of requests passed toMPI WAITSOME

or MPI TESTSOME� and a matching send has been posted� then the receive will

eventually complete� unless the send is satis�ed by another receive� A similar fair�

ness requirement holds for send requests�

Example ���� A client�server code where starvation is prevented�

���

typedef struct �

char data�MAXSIZE��

int datasize�

� Buffer�

Buffer buffer���

MPI�Request req���

MPI�Status status���

int index���

���

MPI�Comm�rank�comm� �rank��

MPI�Comm�size�comm� �size��

if�rank !� size�
� � �� producer code ��

buffer � �Buffer ��malloc�sizeof�Buffer���

while�
� � �� main loop ��

produce� buffer��data� �buffer��datasize��

MPI�Send�buffer��data� buffer��datasize� MPI�CHAR�

size�
� tag� comm��

�

�

else � �� rank �� size�
� consumer code ��

buffer � �Buffer ��malloc�sizeof�Buffer���size�
���

req � �MPI�Request ��malloc�sizeof�MPI�Request���size�
���

status � �MPI�Status ��malloc�sizeof�MPI�Status���size�
���

index � �int ��malloc�sizeof�int���size�
���

Point�to�Point Communication ��

for�i��� i	 size�
� i

�

MPI�Irecv�buffer�i��data� MAXSIZE� MPI�CHAR� i� tag�

comm� �req�i���

while�
� � �� main loop ��

MPI�Waitsome�size�
� req� �count� index� status��

for�i��� i 	 count� i

� �

j � index�i��

MPI�Get�count��status�i�� MPI�CHAR� ��buffer�j��datasize���

consume�buffer�j��data� buffer�j��datasize��

MPI�Irecv�buffer�j��data� MAXSIZE� MPI�CHAR� j� tag�

comm� �req�j���

�

�

�

This code solves the starvation problem of the code in Example ���
� page ��� We

replaced the consumer call to MPI WAITANY by a call to MPI WAITSOME� This

achieves two goals� The number of communication calls is reduced� since one call

now can complete multiple communications� Secondly� the consumer will not starve

any of the consumers� since it will receive any posted send�

Advice to implementors� MPI WAITSOME and MPI TESTSOME should complete

as many pending communications as possible� It is expected that both will complete

all receive operations for which information on matching sends has reached the

receiver node� This will ensure that they satisfy their fairness requirement� �End

of advice to implementors��

���� Probe and Cancel

MPI PROBE and MPI IPROBE allow polling of incoming messages without actually

receiving them� The application can then decide how to receive them� based on

the information returned by the probe �in a status variable�� For example� the

application might allocate memory for the receive bu�er according to the length of

the probed message�

MPI CANCEL allows pending communications to be canceled� This is required for

cleanup in some situations� Suppose an application has posted nonblocking sends

or receives and then determines that these operations will not complete� Posting

a send or a receive ties up application resources �send or receive bu�ers�� and a

�� Chapter �

cancel allows these resources to be freed�

MPI IPROBE�source� tag� comm�
ag� status�

IN source rank of source

IN tag message tag

IN comm communicator

OUT
ag true if there is a message

OUT status status object

int MPI Iprobe�int source� int tag� MPI Comm comm� int �flag�

MPI Status �status�

MPI IPROBE�SOURCE� TAG� COMM� FLAG� STATUS� IERROR�

LOGICAL FLAG

INTEGER SOURCE� TAG� COMM� STATUS�MPI STATUS SIZE�� IERROR

MPI IPROBE is a nonblocking operation that returns
ag 	 true if there is a

message that can be received and that matches the message envelope speci�ed by

source� tag� and comm� The call matches the same message that would have been

received by a call to MPI RECV �with these arguments� executed at the same point

in the program� and returns in status the same value� Otherwise� the call returns
ag

	 false� and leaves status unde�ned� MPI IPROBE has local completion semantics�

If MPI IPROBE�source� tag� comm�
ag� status� returns
ag 	 true� then the �rst�

subsequent receive executed with the communicator comm� and with the source

and tag returned in status� will receive the message that was matched by the probe�

The argument source can be MPI ANY SOURCE� and tag can be MPI ANY TAG� so

that one can probe for messages from an arbitrary source and�or with an arbitrary

tag� However� a speci�c communicator must be provided in comm�

It is not necessary to receive a message immediately after it has been probed for�

and the same message may be probed for several times before it is received�

MPI PROBE�source� tag� comm� status�

IN source rank of source

IN tag message tag

IN comm communicator

OUT status status object

int MPI Probe�int source� int tag� MPI Comm comm� MPI Status �status�

Point�to�Point Communication ��

MPI PROBE�SOURCE� TAG� COMM� STATUS� IERROR�

INTEGER SOURCE� TAG� COMM� STATUS�MPI STATUS SIZE�� IERROR

MPI PROBE behaves like MPI IPROBE except that it blocks and returns only

after a matching message has been found� MPI PROBE has non�local completion

semantics�

The semantics of MPI PROBE and MPI IPROBE guarantee progress� in the same

way as a corresponding receive executed at the same point in the program� If a call

to MPI PROBE has been issued by a process� and a send that matches the probe has

been initiated by some process� then the call to MPI PROBE will return� unless the

message is received by another� concurrent receive operation� irrespective of other

activities in the system� Similarly� if a process busy waits with MPI IPROBE and

a matching message has been issued� then the call to MPI IPROBE will eventually

return
ag 	 true unless the message is received by another concurrent receive

operation� irrespective of other activities in the system�

Example ���� Use a blocking probe to wait for an incoming message�

CALL MPI�COMM�RANK�comm� rank� ierr�

IF �rank�EQ��� THEN

CALL MPI�SEND�i�
� MPI�INTEGER� �� �� comm� ierr�

ELSE IF �rank�EQ�
� THEN

CALL MPI�SEND�x�
� MPI�REAL� �� �� comm� ierr�

ELSE IF �rank�EQ��� THEN

DO i�
� �

CALL MPI�PROBE�MPI�ANY�SOURCE� ��

comm� status� ierr�

IF �status�MPI�SOURCE� � �� THEN

�� CALL MPI�RECV�i�
� MPI�INTEGER� �� �� comm�

status� ierr�

ELSE

��� CALL MPI�RECV�x�
� MPI�REAL�
� �� comm�

status� ierr�

END IF

END DO

END IF

Each message is received with the right type�

�� Chapter �

Example ���� A similar program to the previous example� but with a problem�

CALL MPI�COMM�RANK�comm� rank� ierr�

IF �rank�EQ��� THEN

CALL MPI�SEND�i�
� MPI�INTEGER� �� �� comm� ierr�

ELSE IF �rank�EQ�
� THEN

CALL MPI�SEND�x�
� MPI�REAL� �� �� comm� ierr�

ELSE IF �rank�EQ��� THEN

DO i�
� �

CALL MPI�PROBE�MPI�ANY�SOURCE� ��

comm� status� ierr�

IF �status�MPI�SOURCE� � �� THEN

�� CALL MPI�RECV�i�
� MPI�INTEGER� MPI�ANY�SOURCE�

�� comm� status� ierr�

ELSE

��� CALL MPI�RECV�x�
� MPI�REAL� MPI�ANY�SOURCE�

�� comm� status� ierr�

END IF

END DO

END IF

We slightly modi�ed example ���
� using MPI ANY SOURCE as the source argument

in the two receive calls in statements labeled ��� and ���� The program now has

di�erent behavior� the receive operation may receive a message that is distinct from

the message probed�

Advice to implementors� A call to MPI PROBE�source� tag� comm� status� will

match the message that would have been received by a call to MPI RECV����� source�

tag� comm� status� executed at the same point� Suppose that this message has

source s� tag t and communicator c� If the tag argument in the probe call has value

MPI ANY TAG then the message probed will be the earliest pending message from

source s with communicator c and any tag� in any case� the message probed will

be the earliest pending message from source s with tag t and communicator c �this

is the message that would have been received� so as to preserve message order��

This message continues as the earliest pending message from source s with tag t

and communicator c� until it is received� The �rst receive operation subsequent

to the probe that uses the same communicator as the probe and uses the tag and

source values returned by the probe� must receive this message� �End of advice to

implementors��

Point�to�Point Communication �	

MPI CANCEL�request�

IN request request handle

int MPI Cancel�MPI Request �request�

MPI CANCEL�REQUEST� IERROR�

INTEGER REQUEST� IERROR

MPI CANCEL marks for cancelation a pending� nonblocking communication op�

eration �send or receive�� MPI CANCEL has local completion semantics� It returns

immediately� possibly before the communication is actually canceled� After this�

it is still necessary to complete a communication that has been marked for cance�

lation� using a call to MPI REQUEST FREE� MPI WAIT� MPI TEST or one of the

functions in Section ���� If the communication was not cancelled �that is� if the

communication happened to start before the cancelation could take e�ect�� then the

completion call will complete the communication� as usual� If the communication

was successfully cancelled� then the completion call will deallocate the request ob�

ject and will return in status the information that the communication was canceled�

The application should then call MPI TEST CANCELLED� using status as input� to

test whether the communication was actually canceled�

Either the cancelation succeeds� and no communication occurs� or the commu�

nication completes� and the cancelation fails� If a send is marked for cancelation�

then it must be the case that either the send completes normally� and the message

sent is received at the destination process� or that the send is successfully canceled�

and no part of the message is received at the destination� If a receive is marked for

cancelation� then it must be the case that either the receive completes normally� or

that the receive is successfully canceled� and no part of the receive bu�er is altered�

If a communication is marked for cancelation� then a completion call for that

communication is guaranteed to return� irrespective of the activities of other pro�

cesses� In this case� MPI WAIT behaves as a local function� Similarly� if MPI TEST

is repeatedly called in a busy wait loop for a canceled communication� then MPI�

TEST will eventually succeed�

�
 Chapter �

MPI TEST CANCELLED�status�
ag�

IN status status object

OUT
ag true if canceled

int MPI Test cancelled�MPI Status �status� int �flag�

MPI TEST CANCELLED�STATUS� FLAG� IERROR�

LOGICAL FLAG

INTEGER STATUS�MPI STATUS SIZE�� IERROR

MPI TEST CANCELLED is used to test whether the communication operation

was actually canceled by MPI CANCEL� It returns
ag 	 true if the communication

associated with the status object was canceled successfully� In this case� all other

�elds of status are unde�ned� It returns
ag 	 false� otherwise�

Example ���� Code using MPI CANCEL

MPI�Comm�rank�comm� �rank��

if �rank �� ��

MPI�Send�a�
� MPI�CHAR�
� tag� comm��

else if �rank��
� �

MPI�Irecv�a�
� MPI�CHAR� �� tag� comm� �req��

MPI�Cancel��req��

MPI�Wait��req� �status��

MPI�Test�cancelled��status� �flag��

if �flag� �� cancel succeeded �� need to post new receive ��

MPI�Recv�a�
� MPI�CHAR� �� tag� comm� �req��

�

Advice to users� MPI CANCEL can be an expensive operation that should be used

only exceptionally� �End of advice to users��

Advice to implementors� A communication operation cannot be cancelled once the

receive bu�er has been partly overwritten� In this situation� the communication

should be allowed to complete� In general� a communication may be allowed to

complete� if send and receive have already been matched� The implementation

should take care of the possible race between cancelation and matching�

The cancelation of a send operation will internally require communication with the

intended receiver� if information on the send operation has already been forwarded

to the destination� Note that� while communication may be needed to implement

Point�to�Point Communication ��

MPI CANCEL� this is still a local operation� since its completion does not depend on

the application code executed by other processes� �End of advice to implementors��

���� Persistent Communication Requests

Often a communication with the same argument list is repeatedly executed within

the inner loop of a parallel computation� In such a situation� it may be possible

to optimize the communication by binding the list of communication arguments to

a persistent communication request once and then� repeatedly� using the request

to initiate and complete messages� A persistent request can be thought of as a

communication port or a �half�channel�� It does not provide the full functionality of

a conventional channel� since there is no binding of the send port to the receive port�

This construct allows reduction of the overhead for communication between the

process and communication controller� but not of the overhead for communication

between one communication controller and another�

It is not necessary that messages sent with a persistent request be received by a

receive operation using a persistent request� or vice�versa� Persistent communica�

tion requests are associated with nonblocking send and receive operations�

A persistent communication request is created using the following functions�

They involve no communication and thus have local completion semantics�

MPI SEND INIT�buf� count� datatype� dest� tag� comm� request�

IN buf initial address of send bu�er

IN count number of entries to send

IN datatype datatype of each entry

IN dest rank of destination

IN tag message tag

IN comm communicator

OUT request request handle

int MPI Send init�void� buf� int count� MPI Datatype datatype�

int dest� int tag� MPI Comm comm� MPI Request �request�

MPI SEND INIT�BUF� COUNT� DATATYPE� DEST� TAG� COMM� REQUEST� IERROR�

	type� BUF���

INTEGER REQUEST� COUNT� DATATYPE� DEST� TAG� COMM� REQUEST�

IERROR

�� Chapter �

MPI SEND INIT creates a persistent communication request for a standard�mode�

nonblocking send operation� and binds to it all the arguments of a send operation�

MPI RECV INIT�buf� count� datatype� source� tag� comm� request�

OUT buf initial address of receive bu�er

IN count max number of entries to receive

IN datatype datatype of each entry

IN source rank of source

IN tag message tag

IN comm communicator

OUT request request handle

int MPI Recv init�void� buf� int count� MPI Datatype datatype�

int source� int tag� MPI Comm comm�

MPI Request �request�

MPI RECV INIT�BUF� COUNT� DATATYPE� SOURCE� TAG� COMM� REQUEST�

IERROR�

	type� BUF���

INTEGER COUNT� DATATYPE� SOURCE� TAG� COMM� REQUEST� IERROR

MPI RECV INIT creates a persistent communication request for a nonblocking

receive operation� The argument buf is marked as OUT because the application

gives permission to write on the receive bu�er�

Persistent communication requests are created by the preceding functions� but

they are� so far� inactive� They are activated� and the associated communication

operations started� by MPI START or MPI STARTALL�

MPI START�request�

INOUT request request handle

int MPI Start�MPI Request �request�

MPI START�REQUEST� IERROR�

INTEGER REQUEST� IERROR

MPI START activates request and initiates the associated communication� Since

all persistent requests are associated with nonblocking communications�MPI START

Point�to�Point Communication ��

has local completion semantics� The semantics of communications done with per�

sistent requests are identical to the corresponding operations without persistent

requests� That is� a call to MPI START with a request created by MPI SEND INIT

starts a communication in the same manner as a call to MPI ISEND� a call to

MPI START with a request created by MPI RECV INIT starts a communication in

the same manner as a call to MPI IRECV�

A send operation initiated with MPI START can be matched with any receive op�

eration �including MPI PROBE� and a receive operation initiated with MPI START

can receive messages generated by any send operation�

MPI STARTALL�count� array of requests�

IN count list length

INOUT array of requests array of request handles

int MPI Startall�int count� MPI Request �array of requests�

MPI STARTALL�COUNT� ARRAY OF REQUESTS� IERROR�

INTEGER COUNT� ARRAY OF REQUESTS���� IERROR

MPI STARTALL starts all communications associated with persistent requests in

array of requests� A call to MPI STARTALL�count� array of requests� has the same

e�ect as calls to MPI START�array of requests�i
�� executed for i	� ����� count��� in

some arbitrary order�

A communication started with a call to MPI START or MPI STARTALL is com�

pleted by a call to MPI WAIT� MPI TEST� or one of the other completion functions

described in Section ���� The persistent request becomes inactive after the comple�

tion of such a call� but it is not deallocated and it can be re�activated by another

MPI START or MPI STARTALL�

Persistent requests are explicitly deallocated by a call to MPI REQUEST FREE

�Section ��
�
�� The call to MPI REQUEST FREE can occur at any point in the

program after the persistent request was created� However� the request will be

deallocated only after it becomes inactive� Active receive requests should not be

freed� Otherwise� it will not be possible to check that the receive has completed� It

is preferable to free requests when they are inactive� If this rule is followed� then

the functions described in this section will be invoked in a sequence of the form�

Create �Start Complete�� Free �

where � indicates zero or more repetitions� If the same communication request is

�� Chapter �

used in several concurrent threads� it is the user�s responsibility to coordinate calls

so that the correct sequence is obeyed�

MPI CANCEL can be used to cancel a communication that uses a persistent re�

quest� in the same way it is used for nonpersistent requests� A successful cancelation

cancels the active communication� but does not deallocate the request� After the

call to MPI CANCEL and the subsequent call to MPI WAIT or MPI TEST �or other

completion function�� the request becomes inactive and can be activated for a new

communication�

Example ���� Jacobi computation� using persistent requests�

���

REAL� ALLOCATABLE A� � �� B� � �

INTEGER req���

INTEGER status�MPI�STATUS�SIZE���

���

! Compute number of processes and myrank

CALL MPI�COMM�SIZE�comm� p� ierr�

CALL MPI�COMM�RANK�comm� myrank� ierr�

! Compute size of local block

m � n�p

IF �myrank�LT��n�p�m�� THEN

m � m

END IF

! Compute neighbors

IF �myrank�EQ��� THEN

left � MPI�PROC�NULL

ELSE

left � myrank �

END IF

IF �myrank�EQ�p�
� THEN

right � MPI�PROC�NULL

ELSE

right � myrank

ENDIF

! Allocate local arrays

Point�to�Point Communication ��

ALLOCATE �A�n�� m

�� B�n�m��

���

! Create persistent requests

CALL MPI�SEND�INIT�B�
�
�� n� MPI�REAL� left� tag� comm� req�
�� ierr�

CALL MPI�SEND�INIT�B�
�m�� n� MPI�REAL� right� tag� comm� req���� ierr�

CALL MPI�RECV�INIT�A�
���� n� MPI�REAL� left� tag� comm� req���� ierr�

CALL MPI�RECV�INIT�A�
�m

�� n� MPI�REAL� right� tag� comm� req���� ierr�

����

! Main loop

DO WHILE��NOT�converged�

! Compute boundary columns

DO i�
�n

B�i�
� � ������A�i�
�
�
A�i

�
�
A�i���
A�i����

B�i�m� � ������A�i�
�m�
A�i

�m�
A�i�m�
�
A�i�m

��

END DO

! Start communication

CALL MPI�STARTALL��� req� ierr�

! Compute interior

DO j���m�

DO i�
�n

B�i�j� � ������A�i�
�j�
A�i

�j�
A�i�j�
�
A�i�j

��

END DO

END DO

DO j�
�m

DO i�
�n

A�i�j� � B�i�j�

END DO

END DO

! Complete communication

CALL MPI�WAITALL��� req� status� ierr�

���

END DO

We come back �for a last time#� to our Jacobi example �Example ����� page ����

�� Chapter �

The communication calls in the main loop are reduced to two� one to start all four

communications and one to complete all four communications�

���� Communication�Complete Calls with Null Request Handles

Normally� an invalid handle to an MPI object is not a valid argument for a call that

expects an object� There is one exception to this rule� communication�complete

calls can be passed request handles with value MPI REQUEST NULL� A communica�

tion complete call with such an argument is a �no�op�� the null handles are ignored�

The same rule applies to persistent handles that are not associated with an active

communication operation�

We shall use the following terminology� A null request handle is a handle with

value MPI REQUEST NULL� A handle to a persistent request is inactive if the re�

quest is not currently associated with an ongoing communication� A handle is

active� if it is neither null nor inactive� An empty status is a status that is set to

tag 	 MPI ANY TAG� source 	 MPI ANY SOURCE� and is also internally con�gured

so that calls to MPI GET COUNT and MPI GET ELEMENT return count 	
� We

set a status variable to empty in cases when the value returned is not signi�cant�

Status is set this way to prevent errors due to access of stale information�

A call to MPI WAIT with a null or inactive request argument returns immediately

with an empty status�

A call to MPI TEST with a null or inactive request argument returns immediately

with �ag 	 true and an empty status�

The list of requests passed to MPI WAITANY may contain null or inactive re�

quests� If some of the requests are active� then the call returns when an active

request has completed� If all the requests in the list are null or inactive then the

call returns immediately� with index 	 MPI UNDEFINED and an empty status�

The list of requests passed to MPI TESTANY may contain null or inactive re�

quests� The call returns
ag 	 false if there are active requests in the list� and none

have completed� It returns
ag 	 true if an active request has completed� or if all

the requests in the list are null or inactive� In the later case� it returns index 	

MPI UNDEFINED and an empty status�

The list of requests passed toMPI WAITALLmay contain null or inactive requests�

The call returns as soon as all active requests have completed� The call sets to empty

each status associated with a null or inactive request�

The list of requests passed toMPI TESTALLmay contain null or inactive requests�

The call returns
ag 	 true if all active requests have completed� In this case� the

Point�to�Point Communication ��

call sets to empty each status associated with a null or inactive request� Otherwise�

the call returns �ag 	 false�

The list of requests passed to MPI WAITSOME may contain null or inactive re�

quests� If the list contains active requests� then the call returns when some of the

active requests have completed� If all requests were null or inactive� then the call

returns immediately� with outcount 	 MPI UNDEFINED�

The list of requests passed to MPI TESTSOME may contain null or inactive

requests� If the list contains active requests and some have completed� then the call

returns in outcount the number of completed request� If it contains active requests�

and none have completed� then it returns outcount 	 �� If the list contains no

active requests� then it returns outcount 	 MPI UNDEFINED�

In all these cases� null or inactive request handles are not modi�ed by the call�

Example ���� Starvation�free producer�consumer code

���

typedef struct �

char data�MAXSIZE��

int datasize�

� Buffer�

Buffer buffer���

MPI�Request req���

MPI�Status status�

���

MPI�Comm�rank�comm� �rank��

MPI�Comm�size�comm� �size��

if�rank !� size�
� � �� producer code ��

buffer � �Buffer ��malloc�sizeof�Buffer���

while�
� � �� main loop ��

produce� buffer��data� �buffer��datasize��

MPI�Send�buffer��data� buffer��datasize� MPI�CHAR�

size�
� tag� comm� �status��

�

�

else � �� rank �� size�
� consumer code ��

buffer � �Buffer ��malloc�sizeof�Buffer���size�
���

req � �MPI�Request ��malloc�sizeof�MPI�Request���size�
���

for �i��� i	size�
� i

�

�� Chapter �

req�i� � MPI�REQUEST�NULL�

while �
� � �� main loop ��

MPI�Waitany�size�
� req� �i� �status��

if �i �� MPI�UNDEFINED� � �� no pending receive left ��

for�j��� j	 size�
� j

�

MPI�Irecv�buffer�j��data� MAXSIZE� MPI�CHAR� j� tag�

comm� �req�j���

else �

MPI�Get�count��status� MPI�CHAR� �buffer�i��datasize��

consume�buffer�i��data� buffer�i��datasize��

�

�

�

This is our last remake of the producer�consumer code from Example ����� page
��

As in Example ����� the computation proceeds in phases� where at each phase

the consumer consumes one message from each producer� Unlike Example �����

messages need not be consumed in order within each phase but� rather� can be

consumed as soon as arrived�

Rationale� The acceptance of null or inactive requests in communication�complete

calls facilitate the use of multiple completion calls �Section ����� As in the example

above� the user need not delete each request from the list as soon as it has completed�

but can reuse the same list until all requests in the list have completed� Checking for

null or inactive requests is not expected to add a signi�cant overhead� since quality

implementations will check parameters� anyhow� However� most implementations

will su�er some performance loss if they often traverse mostly empty request lists�

looking for active requests�

The behavior of the multiple completion calls was de�ned with the following struc�

ture�

� Test returns with
ag 	 true whenever Wait would return� both calls return same

information in this case�

� A call to Wait� Waitany� Waitsome or Waitall will return if all requests in the

list are null or inactive� thus avoiding deadlock�

� The information returned by a Test� Testany� Testsome or Testall call distin�

guishes between the case �no operation completed� and the case �there is no

operation to complete��

�End of rationale��

Point�to�Point Communication �	

���� Communication Modes

The send call described in Section ����� used the standard communication mode�

In this mode� it is up to MPI to decide whether outgoing messages will be bu�ered�

MPI may bu�er outgoing messages� In such a case� the send call may complete

before a matching receive is invoked� On the other hand� bu�er space may be

unavailable� or MPI may choose not to bu�er outgoing messages� for performance

reasons� In this case� the send call will not complete until a matching receive

has been posted� and the data has been moved to the receiver� �A blocking send

completes when the call returns� a nonblocking send completes when the matching

Wait or Test call returns successfully��

Thus� a send in standard mode can be started whether or not a matching re�

ceive has been posted� It may complete before a matching receive is posted� The

standard�mode send has non�local completion semantics� since successful comple�

tion of the send operation may depend on the occurrence of a matching receive�

A bu�ered�mode send operation can be started whether or not a matching

receive has been posted� It may complete before a matching receive is posted�

Bu�ered�mode send has local completion semantics� its completion does not depend

on the occurrence of a matching receive� In order to complete the operation� it may

be necessary to bu�er the outgoing message locally� For that purpose� bu�er space

is provided by the application �Section �������� An error will occur if a bu�ered�

mode send is called and there is insu�cient bu�er space� The bu�er space occupied

by the message is freed when the message is transferred to its destination or when

the bu�ered send is cancelled�

A synchronous�mode send can be started whether or not a matching receive

was posted� However� the send will complete successfully only if a matching receive

is posted� and the receive operation has started to receive the message sent by the

synchronous send� Thus� the completion of a synchronous send not only indicates

that the send bu�er can be reused� but also indicates that the receiver has reached

a certain point in its execution� namely that it has started executing the match�

ing receive� Synchronous mode provides synchronous communication semantics� a

communication does not complete at either end before both processes rendezvous at

the communication� A synchronous�mode send has non�local completion semantics�

A ready�mode send may be started only if the matching receive has already

been posted� Otherwise� the operation is erroneous and its outcome is unde�ned�

On some systems� this allows the removal of a hand�shake operation and results in

improved performance� A ready�mode send has the same semantics as a standard�

mode send� In a correct program� therefore� a ready�mode send could be replaced

	
 Chapter �

by a standard�mode send with no e�ect on the behavior of the program other than

performance�

Three additional send functions are provided for the three additional communi�

cation modes� The communication mode is indicated by a one letter pre�x� B for

bu�ered� S for synchronous� and R for ready� There is only one receive mode and

it matches any of the send modes�

All send and receive operations use the buf� count� datatype� source� dest� tag�

comm� status and request arguments in the same way as the standard�mode send

and receive operations�

������ Blocking Calls

MPI BSEND �buf� count� datatype� dest� tag� comm�

IN buf initial address of send bu�er

IN count number of entries in send bu�er

IN datatype datatype of each send bu�er entry

IN dest rank of destination

IN tag message tag

IN comm communicator

int MPI Bsend�void� buf� int count� MPI Datatype datatype� int dest�

int tag� MPI Comm comm�

MPI BSEND�BUF� COUNT� DATATYPE� DEST� TAG� COMM� IERROR�

	type� BUF���

INTEGER COUNT� DATATYPE� DEST� TAG� COMM� IERROR

MPI BSEND performs a bu�ered�mode� blocking send�

MPI SSEND �buf� count� datatype� dest� tag� comm�

IN buf initial address of send bu�er

IN count number of entries in send bu�er

IN datatype datatype of each send bu�er entry

IN dest rank of destination

IN tag message tag

IN comm communicator

int MPI Ssend�void� buf� int count� MPI Datatype datatype� int dest�

Point�to�Point Communication 	�

int tag� MPI Comm comm�

MPI SSEND�BUF� COUNT� DATATYPE� DEST� TAG� COMM� IERROR�

	type� BUF���

INTEGER COUNT� DATATYPE� DEST� TAG� COMM� IERROR

MPI SSEND performs a synchronous�mode� blocking send�

MPI RSEND �buf� count� datatype� dest� tag� comm�

IN buf initial address of send bu�er

IN count number of entries in send bu�er

IN datatype datatype of each send bu�er entry

IN dest rank of destination

IN tag message tag

IN comm communicator

int MPI Rsend�void� buf� int count� MPI Datatype datatype� int dest�

int tag� MPI Comm comm�

MPI RSEND�BUF� COUNT� DATATYPE� DEST� TAG� COMM� IERROR�

	type� BUF���

INTEGER COUNT� DATATYPE� DEST� TAG� COMM� IERROR

MPI RSEND performs a ready�mode� blocking send�

������ Nonblocking Calls

We use the same naming conventions as for blocking communication� a pre�x of B�

S� or R is used for bu�ered� synchronous or ready mode� In addition� a pre�x of I �for

immediate� indicates that the call is nonblocking� There is only one nonblocking

receive call� MPI IRECV� Nonblocking send operations are completed with the same

Wait and Test calls as for standard�mode send�

	� Chapter �

MPI IBSEND�buf� count� datatype� dest� tag� comm� request�

IN buf initial address of send bu�er

IN count number of elements in send bu�er

IN datatype datatype of each send bu�er element

IN dest rank of destination

IN tag message tag

IN comm communicator

OUT request request handle

int MPI Ibsend�void� buf� int count� MPI Datatype datatype� int dest�

int tag� MPI Comm comm� MPI Request �request�

MPI IBSEND�BUF� COUNT� DATATYPE� DEST� TAG� COMM� REQUEST� IERROR�

	type� BUF���

INTEGER COUNT� DATATYPE� DEST� TAG� COMM� REQUEST� IERROR

MPI IBSEND posts a bu�ered�mode� nonblocking send�

MPI ISSEND�buf� count� datatype� dest� tag� comm� request�

IN buf initial address of send bu�er

IN count number of elements in send bu�er

IN datatype datatype of each send bu�er element

IN dest rank of destination

IN tag message tag

IN comm communicator

OUT request request handle

int MPI Issend�void� buf� int count� MPI Datatype datatype� int dest�

int tag� MPI Comm comm� MPI Request �request�

MPI ISSEND�BUF� COUNT� DATATYPE� DEST� TAG� COMM� REQUEST� IERROR�

	type� BUF���

INTEGER COUNT� DATATYPE� DEST� TAG� COMM� REQUEST� IERROR

MPI ISSEND posts a synchronous�mode� nonblocking send�

Point�to�Point Communication 	�

MPI IRSEND�buf� count� datatype� dest� tag� comm� request�

IN buf initial address of send bu�er

IN count number of elements in send bu�er
IN datatype datatype of each send bu�er element

IN dest rank of destination

IN tag message tag

IN comm communicator
OUT request request handle

int MPI Irsend�void� buf� int count� MPI Datatype datatype� int dest�

int tag� MPI Comm comm� MPI Request �request�

MPI IRSEND�BUF� COUNT� DATATYPE� DEST� TAG� COMM� REQUEST� IERROR�

	type� BUF���

INTEGER COUNT� DATATYPE� DEST� TAG� COMM� REQUEST� IERROR

MPI IRSEND posts a ready�mode� nonblocking send�

������ Persistent Requests

MPI BSEND INIT�buf� count� datatype� dest� tag� comm� request�

IN buf initial address of send bu�er

IN count number of entries to send
IN datatype datatype of each entry

IN dest rank of destination

IN tag message tag

IN comm communicator
OUT request request handle

int MPI Bsend init�void� buf� int count� MPI Datatype datatype�

int dest� int tag� MPI Comm comm� MPI Request �request�

MPI BSEND INIT�BUF� COUNT� DATATYPE� DEST� TAG� COMM� REQUEST�

IERROR�

	type� BUF���

INTEGER REQUEST� COUNT� DATATYPE� DEST� TAG� COMM� REQUEST�

IERROR

MPI BSEND INIT creates a persistent communication request for a bu�ered�

mode� nonblocking send� and binds to it all the arguments of a send operation�

	� Chapter �

MPI SSEND INIT�buf� count� datatype� dest� tag� comm� request�

IN buf initial address of send bu�er

IN count number of entries to send

IN datatype datatype of each entry

IN dest rank of destination

IN tag message tag

IN comm communicator

OUT request request handle

int MPI Ssend init�void� buf� int count� MPI Datatype datatype�

int dest� int tag� MPI Comm comm� MPI Request �request�

MPI SSEND INIT�BUF� COUNT� DATATYPE� DEST� TAG� COMM� REQUEST�

IERROR�

	type� BUF���

INTEGER COUNT� DATATYPE� DEST� TAG� COMM� REQUEST� IERROR

MPI SSEND INIT creates a persistent communication object for a synchronous�

mode� nonblocking send� and binds to it all the arguments of a send operation�

MPI RSEND INIT�buf� count� datatype� dest� tag� comm� request�

IN buf initial address of send bu�er

IN count number of entries to send

IN datatype datatype of each entry

IN dest rank of destination

IN tag message tag

IN comm communicator

OUT request request handle

int MPI Rsend init�void� buf� int count� MPI Datatype datatype�

int dest� int tag� MPI Comm comm� MPI Request �request�

MPI RSEND INIT�BUF� COUNT� DATATYPE� DEST� TAG� COMM� REQUEST�

IERROR�

	type� BUF���

INTEGER COUNT� DATATYPE� DEST� TAG� COMM� REQUEST� IERROR

MPI RSEND INIT creates a persistent communication object for a ready�mode�

nonblocking send� and binds to it all the arguments of a send operation�

Point�to�Point Communication 	�

Example ���� Use of ready�mode and synchronous�mode

INTEGER req���� status�MPI�STATUS�SIZE���� comm� ierr

REAL buff�
������

���

CALL MPI�COMM�RANK�comm� rank� ierr�

IF �rank�EQ��� THEN

CALL MPI�IRECV�buff�
�
��
���� MPI�REAL�
�
�

comm� req�
�� ierr�

CALL MPI�IRECV�buff�
����
���� MPI�REAL�
� ��

comm� req���� ierr�

CALL MPI�WAITALL��� req� status� ierr�

ELSE IF �rank�EQ�
� THEN

CALL MPI�SSEND�buff�
����
���� MPI�REAL� �� ��

comm� status�
�
�� ierr�

CALL MPI�RSEND�buff�
�
��
���� MPI�REAL� ��
�

comm� status�
���� ierr�

END IF

The �rst� synchronous�mode send of process one matches the second receive of

process zero� This send operation will complete only after the second receive of

process zero has started� and after the completion of the �rst post�receive of process

zero� Therefore� the second� ready�mode send of process one starts� correctly� after

a matching receive is posted�

�����	 Bu�er Allocation and Usage

An application must specify a bu�er to be used for bu�ering messages sent in

bu�ered mode� Bu�ering is done by the sender�

MPI BUFFER ATTACH� bu�er� size�

IN bu�er initial bu�er address

IN size bu�er size
 in bytes

int MPI Buffer attach� void� buffer� int size�

MPI BUFFER ATTACH� BUFFER� SIZE� IERROR�

	type� BUFFER���

INTEGER SIZE� IERROR

	� Chapter �

MPI BUFFER ATTACH provides to MPI a bu�er in the application�s memory to

be used for bu�ering outgoing messages� The bu�er is used only by messages sent

in bu�ered mode� Only one bu�er can be attached at a time �per process��

MPI BUFFER DETACH� bu�er� size�

OUT bu�er initial bu�er address

OUT size bu�er size
 in bytes

int MPI Buffer detach� void� buffer� int� size�

MPI BUFFER DETACH� BUFFER� SIZE� IERROR�

	type� BUFFER���

INTEGER SIZE� IERROR

MPI BUFFER DETACH detaches the bu�er currently associated with MPI� The

call returns the address and the size of the detached bu�er� This operation will

block until all messages currently in the bu�er have been transmitted� Upon return

of this function� the user may reuse or deallocate the space taken by the bu�er�

Example ���	 Calls to attach and detach bu�ers�

$define BUFFSIZE
����

int size

char �buff�

buff � �char ��malloc�BUFFSIZE��

MPI�Buffer�attach�buff� BUFFSIZE��

�� a buffer of
���� bytes can now be used by MPI�Bsend ��

MPI�Buffer�detach� �buff� �size��

�� Buffer size reduced to zero ��

MPI�Buffer�attach� buff� size��

�� Buffer of
���� bytes available again ��

Advice to users� Even though the C functions MPI Bu�er attach and MPI Bu�er�

detach both have a �rst argument of type void�� these arguments are used dif�

ferently� A pointer to the bu�er is passed to MPI Bu�er attach� the address of the

pointer is passed to MPI Bu�er detach� so that this call can return the pointer value�

�End of advice to users��

Point�to�Point Communication 	�

Rationale� Both arguments are de�ned to be of type void� �rather than void� and

void��� respectively�� so as to avoid complex type casts� E�g�� in the last example�

�bu�� which is of type char��� can be passed as an argument to MPI Bu�er detach

without type casting� If the formal parameter had type void�� then one would need

a type cast before and after the call� �End of rationale��

Now the question arises� how is the attached bu�er to be used	 The answer is

that MPI must behave as if outgoing message data were bu�ered by the sending

process� in the speci�ed bu�er space� using a circular� contiguous�space allocation

policy� We outline below a model implementation that de�nes this policy� MPI

may provide more bu�ering� and may use a better bu�er allocation algorithm than

described below� On the other hand� MPI may signal an error whenever the simple

bu�ering allocator described below would run out of space�

�����
 Model Implementation of Bu�ered Mode

The model implementation uses the packing and unpacking functions described in

Section ��
 and the nonblocking communication functions described in Section ��
�

We assume that a circular queue of pending message entries �PME� is maintained�

Each entry contains a communication request that identi�es a pending nonblocking

send� a pointer to the next entry and the packed message data� The entries are

stored in successive locations in the bu�er� Free space is available between the

queue tail and the queue head�

A bu�ered send call results in the execution of the following algorithm�

� Traverse sequentially the PME queue from head towards the tail� deleting all

entries for communications that have completed� up to the �rst entry with an

uncompleted request� update queue head to point to that entry�

� Compute the number� n� of bytes needed to store entries for the new mes�

sage� An upper bound on n can be computed as follows� A call to the function

MPI PACK SIZE�count� datatype� comm� size�� with the count� datatype and comm

arguments used in the MPI BSEND call� returns an upper bound on the amount

of space needed to bu�er the message data �see Section ��
�� The MPI constant

MPI BSEND OVERHEAD provides an upper bound on the additional space consumed

by the entry �e�g�� for pointers or envelope information��

� Find the next contiguous� empty space of n bytes in bu�er �space following queue

tail� or space at start of bu�er if queue tail is too close to end of bu�er�� If space

is not found then raise bu�er over�ow error�

� Copy request� next pointer and packed message data into empty space� MPI PACK

	� Chapter �

is used to pack data� Set pointers so that this entry is at tail of PME queue�

� Post nonblocking send �standard mode� for packed data�

� Return

�����
 Comments on Communication Modes

Advice to users� When should one use each mode	

Most of the time� it is preferable to use the standard�mode send� implementers are

likely to provide the best and most robust performance for this mode�

Users that do not trust the bu�ering policy of standard�mode may use the bu�ered�

mode� and control bu�er allocation themselves� With this authority comes respon�

sibility� it is the user responsibility to ensure that bu�ers never over�ow�

The synchronous mode is convenient in cases where an acknowledgment would be

otherwise required� e�g�� when communication with rendezvous semantics is desired�

Also� use of the synchronous�mode is a hint to the system that bu�ering should be

avoided� since the sender cannot progress anyhow� even if the data is bu�ered�

The ready�mode is error prone and should be used with care� �End of advice to

users��

Advice to implementors� Since a synchronous�mode send cannot complete before

a matching receive is posted� one will not normally bu�er messages sent by such an

operation�

It is usually preferable to choose bu�ering over blocking the sender� for standard�

mode sends� The programmer can get the non�bu�ered protocol by using syn�

chronous mode�

A possible choice of communication protocols for the various communicationmodes

is outlined below�

standard�mode send� Short protocol is used for short messages� and long protocol is

used for long messages �see Figure ��
� page ����

ready�mode send� The message is sent with the short protocol �that is� ready�mode

messages are always �short���

synchronous�mode send� The long protocol is used �that is� synchronous�mode mes�

sages are always �long���

bu�ered�mode send� The send copies the message into the application�provided

bu�er and then sends it with a standard�mode� nonblocking send�

Point�to�Point Communication 		

Ready�mode send can be implemented as a standard�mode send� In this case there

will be no performance advantage �or disadvantage� for the use of ready�mode send�

A standard�mode send could be implemented as a synchronous�mode send� so that

no data bu�ering is needed� This is consistent with the MPI speci�cation� However�

many users would be surprised by this choice� since standard�mode is the natural

place for system�provided bu�ering� �End of advice to implementors��

�

 Chapter �

� User�De�ned Datatypes and Packing

��� Introduction

The MPI communicationmechanisms introduced in the previous chapter allows one

to send or receive a sequence of identical elements that are contiguous in memory� It

is often desirable to send data that is not homogeneous� such as a structure� or that

is not contiguous in memory� such as an array section� This allows one to amortize

the �xed overhead of sending and receiving a message over the transmittal of many

elements� even in these more general circumstances� MPI provides two mechanisms

to achieve this�

� The user can de�ne derived datatypes� that specify more general data layouts�

User�de�ned datatypes can be used in MPI communication functions� in place of

the basic� prede�ned datatypes�

� A sending process can explicitly pack noncontiguous data into a contiguous bu�er�

and next send it� a receiving process can explicitly unpack data received in a con�

tiguous bu�er and store in noncontiguous locations�

The construction and use of derived datatypes is described in Section �������� The

use of Pack and Unpack functions is described in Section ��
� It is often possible to

achieve the same data transfer using either mechanisms� We discuss the pros and

cons of each approach at the end of this chapter�

��� Introduction to User�De�ned Datatypes

All MPI communication functions take a datatype argument� In the simplest case

this will be a primitive type� such as an integer or �oating�point number� An im�

portant and powerful generalization results by allowing user�de�ned �or �derived��

types wherever the primitive types can occur� These are not �types� as far as the

programming language is concerned� They are only �types� in that MPI is made

aware of them through the use of type�constructor functions� and they describe

the layout� in memory� of sets of primitive types� Through user�de�ned types� MPI

supports the communication of complex data structures such as array sections and

structures containing combinations of primitive datatypes� Example ��� shows how

a user�de�ned datatype is used to send the upper�triangular part of a matrix� and

Figure ��� diagrams the memory layout represented by the user�de�ned datatype�

���

�
� Chapter �

Example ��� MPI code that sends an upper triangular matrix�

double a�
����
���

disp�
����blocklen�
����i�

MPI�Datatype upper�

���

�� compute start and size of each row ��

for �i��� i	
���

i� �

disp�i� �
�� � i
 i�

blocklen�i� �
�� � i�

�

�� create datatype for upper triangular part ��

MPI�Type�indexed�
��� blocklen� disp� MPI�DOUBLE� �upper��

MPI�Type�commit��upper��

�� �� and send it ��

MPI�Send�a�
� upper� dest� tag� MPI�COMM�WORLD��

consecutive address

[0][0] [0][1] [0][2]

[1][1] [1][2]

[2][2]

Figure ���
A diagram of the memory cells represented by the user
de�ned datatype upper� The shaded cells
are the locations of the array that will be sent�

Derived datatypes are constructed from basic datatypes using the constructors

described in Section ���� The constructors can be applied recursively�

A derived datatype is an opaque object that speci�es two things�

� A sequence of primitive datatypes and�

� A sequence of integer �byte� displacements�

User�De�ned Datatypes and Packing �
�

The displacements are not required to be positive� distinct� or in increasing order�

Therefore� the order of items need not coincide with their order in memory� and an

item may appear more than once� We call such a pair of sequences �or sequence of

pairs� a type map� The sequence of primitive datatypes �displacements ignored�

is the type signature of the datatype�

Let

Typemap ! f�type�� disp��� � � � � �typen��� dispn���g�

be such a type map� where typei are primitive types� and dispi are displacements�

Let

Typesig ! ftype�� � � � � typen��g

be the associated type signature� This type map� together with a base address

buf� speci�es a communication bu�er� the communication bu�er that consists of

n entries� where the i�th entry is at address buf � dispi and has type typei� A

message assembled from a single type of this sort will consist of n values� of the

types de�ned by Typesig�

A handle to a derived datatype can appear as an argument in a send or receive

operation� instead of a primitive datatype argument� The operationMPI SEND�buf�

�� datatype�� � � � will use the send bu�er de�ned by the base address buf and the

derived datatype associated with datatype� It will generate a message with the type

signature determined by the datatype argument� MPI RECV�buf� �� datatype�� � � �

will use the receive bu�er de�ned by the base address buf and the derived datatype

associated with datatype�

Derived datatypes can be used in all send and receive operations including col�

lective� We discuss� in Section ������ the case where the second argument count has

value � ��

The primitive datatypes presented in Section ����� are special cases of a derived

datatype� and are prede�ned� Thus� MPI INT is a prede�ned handle to a datatype

with type map f�int� ��g� with one entry of type int and displacement zero� The

other primitive datatypes are similar�

The extent of a datatype is de�ned to be the span from the �rst byte to the

last byte occupied by entries in this datatype� rounded up to satisfy alignment

requirements� That is� if

Typemap ! f�type�� disp��� � � � � �typen��� dispn���g�

then

lb�Typemap� ! min
j

dispj �

ub�Typemap� ! max
j

�dispj � sizeof�typej �� � �� and

�
� Chapter �

extent�Typemap� ! ub�Typemap� � lb�Typemap��

where j ! �� � � � � n� �� lb is the lower bound and ub is the upper bound of the

datatype� If typei requires alignment to a byte address that is a multiple of ki�

then � is the least nonnegative increment needed to round extent�Typemap� to the

next multiple of maxi ki� �The de�nition of extent is expanded in Section �����

Example ��� Assume that Type ! f�double� ��� �char�
�g �a double at displace�

ment zero� followed by a char at displacement eight�� Assume� furthermore� that

doubles have to be strictly aligned at addresses that are multiples of eight� Then�

the extent of this datatype is �� �� rounded to the next multiple of
�� A datatype

that consists of a character immediately followed by a double will also have an

extent of ���

Rationale� The rounding term that appears in the de�nition of upper bound is to

facilitate the de�nition of datatypes that correspond to arrays of structures� The

extent of a datatype de�ned to describe a structure will be the extent of memory a

compiler will normally allocate for this structure entry in an array�

More explicit control of the extent is described in Section ���� Such explicit control

is needed in cases where this assumption does not hold� for example� where the

compiler o�ers di�erent alignment options for structures� �End of rationale��

Advice to implementors� Implementors should provide information on the �de�

fault� alignment option used by the MPI library to de�ne upper bound and extent�

This should match� whenever possible� the �default� alignment option of the com�

piler� �End of advice to implementors��

The following functions return information on datatypes�

MPI TYPE EXTENT�datatype� extent�

IN datatype datatype

OUT extent datatype extent

int MPI Type extent�MPI Datatype datatype� MPI Aint �extent�

MPI TYPE EXTENT�DATATYPE� EXTENT� IERROR�

INTEGER DATATYPE� EXTENT� IERROR

MPI TYPE EXTENT returns the extent of a datatype� In addition to its use with

derived datatypes� it can be used to inquire about the extent of primitive datatypes�

User�De�ned Datatypes and Packing �
�

For example� MPI TYPE EXTENT�MPI INT� extent� will return in extent the size�

in bytes� of an int the same value that would be returned by the C call sizeof�int��

Advice to users� Since datatypes in MPI are opaque handles� it is important to use

the functionMPI TYPE EXTENT to determine the �size� of the datatype� As an ex�

ample� it may be tempting �in C� to use sizeof�datatype�� e�g�� sizeof�MPI DOUBLE��

However� this will return the size of the opaque handle� which is most likely the

size of a pointer� and usually a di�erent value than sizeof�double�� �End of advice

to users��

MPI TYPE SIZE�datatype� size�

IN datatype datatype

OUT size datatype size

int MPI Type size�MPI Datatype datatype� int �size�

MPI TYPE SIZE�DATATYPE� SIZE� IERROR�

INTEGER DATATYPE� SIZE� IERROR

MPI TYPE SIZE returns the total size� in bytes� of the entries in the type sig�

nature associated with datatype� that is� the total size of the data in a message

that would be created with this datatype� Entries that occur multiple times in the

datatype are counted with their multiplicity� For primitive datatypes� this function

returns the same information as MPI TYPE EXTENT�

Example ��� Let datatype have the Type mapType de�ned in Example ���� Then

a call to MPI TYPE EXTENT�datatype� i� will return i �
�� a call to MPI TYPE �

SIZE�datatype� i� will return i � ��

��� Datatype Constructors

This section presents the MPI functions for constructing derived datatypes� The

functions are presented in an order from simplest to most complex�

�
� Chapter �

����� Contiguous

MPI TYPE CONTIGUOUS�count� oldtype� newtype�

IN count replication count

IN oldtype old datatype

OUT newtype new datatype

int MPI Type contiguous�int count� MPI Datatype oldtype�

MPI Datatype �newtype�

MPI TYPE CONTIGUOUS�COUNT� OLDTYPE� NEWTYPE� IERROR�

INTEGER COUNT� OLDTYPE� NEWTYPE� IERROR

MPI TYPE CONTIGUOUS is the simplest datatype constructor� It constructs a

typemap consisting of the replication of a datatype into contiguous locations� The

argument newtype is the datatype obtained by concatenating count copies of oldtype�

Concatenation is de�ned using extent�oldtype	 as the size of the concatenated copies�

The action of the Contiguous constructor is represented schematically in Figure ����

newtype

oldtype

count = 4

Figure ���
E�ect of datatype constructorMPI TYPE CONTIGUOUS�

Example ��	 Let oldtype have type map f�double� ��� �char�
�g� with extent ���

and let count ! �� The type map of the datatype returned by newtype is

f�double� ��� �char�
�� �double� ���� �char� ���� �double� ���� �char� ���g�

that is� alternating double and char elements� with displacements ��
� ��� ���������

User�De�ned Datatypes and Packing �
�

In general� assume that the type map of oldtype is

f�type�� disp��� � � � � �typen��� dispn���g�

with extent ex� Then newtype has a type map with count � n entries de�ned by�

f�type�� disp��� � � � � �typen��� dispn����

�type�� disp� � ex�� � � � � �typen��� dispn�� � ex��

� � � � �type�� disp� � ex � �count � ���� � � � � �typen��� dispn�� � ex � �count � ���g�

����� Vector

MPI TYPE VECTOR�count� blocklength� stride� oldtype� newtype�

IN count number of blocks

IN blocklength number of elements in each block

IN stride spacing between start of each block
 mea�

sured as number of elements

IN oldtype old datatype

OUT newtype new datatype

int MPI Type vector�int count� int blocklength� int stride�

MPI Datatype oldtype� MPI Datatype �newtype�

MPI TYPE VECTOR�COUNT� BLOCKLENGTH� STRIDE� OLDTYPE� NEWTYPE� IERROR�

INTEGER COUNT� BLOCKLENGTH� STRIDE� OLDTYPE� NEWTYPE� IERROR

MPI TYPE VECTOR is a constructor that allows replication of a datatype into

locations that consist of equally spaced blocks� Each block is obtained by concate�

nating the same number of copies of the old datatype� The spacing between blocks

is a multiple of the extent of the old datatype� The action of the Vector constructor

is represented schematically in Figure ����

Example ��
 As before� assume that oldtype has type map f�double� ��� �char�
�g�

with extent ��� A call to MPI TYPE VECTOR� �� �� �� oldtype� newtype� will create

the datatype with type map

�
� Chapter �

newtype

oldtype

count = 3, blocklength = 2, stride = 3

Figure ���
Datatype constructorMPI TYPE VECTOR�

f�double� ��� �char�
�� �double� ���� �char� ���� �double� ���� �char� ����

�double� ���� �char� ���� �double�
��� �char�

�� �double� ���� �char� ����g�

That is� two blocks with three copies each of the old type� with a stride of � elements

��� �� bytes� between the blocks�

Example ��
 A call to MPI TYPE VECTOR��� �� ��� oldtype� newtype� will create

the datatype with type map

f�double� ��� �char�
�� �double������ �char������ �double������ �char��
��g�

In general� assume that oldtype has type map

f�type�� disp��� � � � � �typen��� dispn���g�

with extent ex� Let bl be the blocklength� The new datatype has a type map with

count � bl � n entries�

f�type�� disp��� � � � � �typen��� dispn����

�type�� disp� � ex�� � � � � �typen��� dispn�� � ex�� � � � �

�type�� disp� � �bl � �� � ex�� � � � � �typen��� dispn�� � �bl � �� � ex��

�type�� disp� � stride � ex�� � � � � �typen��� dispn�� � stride � ex�� � � � �

�type�� disp� � �stride � bl� �� � ex�� � � � � �typen��� dispn�� � �stride � bl� �� � ex��

� � � �� �type�� disp� � stride � �count � �� � ex�� � � � �

User�De�ned Datatypes and Packing �
	

�typen��� dispn�� � stride � �count � �� � ex�� � � � �

�type�� disp� � �stride � �count � �� � bl� �� � ex�� � � � �

�typen��� dispn�� � �stride � �count � �� � bl � �� � ex�g�

A call to MPI TYPE CONTIGUOUS�count� oldtype� newtype� is equivalent to a

call to MPI TYPE VECTOR�count� �� �� oldtype� newtype�� or to a call to MPI�

TYPE VECTOR��� count� num� oldtype� newtype�� with num arbitrary�

����� Hvector

The Vector type constructor assumes that the stride between successive blocks

is a multiple of the oldtype extent� This avoids� most of the time� the need for

computing stride in bytes� Sometimes it is useful to relax this assumption and

allow a stride which consists of an arbitrary number of bytes� The Hvector type

constructor below achieves this purpose� The usage of both Vector and Hvector is

illustrated in Examples ��� �����

MPI TYPE HVECTOR�count� blocklength� stride� oldtype� newtype�

IN count number of blocks

IN blocklength number of elements in each block

IN stride spacing between start of each block
 mea�

sured as bytes

IN oldtype old datatype

OUT newtype new datatype

int MPI Type hvector�int count� int blocklength� MPI Aint stride�

MPI Datatype oldtype� MPI Datatype �newtype�

MPI TYPE HVECTOR�COUNT� BLOCKLENGTH� STRIDE� OLDTYPE� NEWTYPE�

IERROR�

INTEGER COUNT� BLOCKLENGTH� STRIDE� OLDTYPE� NEWTYPE� IERROR

MPI TYPE HVECTOR is identical to MPI TYPE VECTOR� except that stride is

given in bytes� rather than in elements� �H stands for �heterogeneous��� The action

of the Hvector constructor is represented schematically in Figure ����

��
 Chapter �

newtype

oldtype

count = 3, blocklength = 2, stride = 7

Figure ���
Datatype constructorMPI TYPE HVECTOR�

Example ��� Consider a call toMPI TYPE HVECTOR� using the same arguments

as in the call toMPI TYPE VECTOR in Example ��
� As before� assume that oldtype

has type map f�double� ��� �char�
�g� with extent ���

A call toMPI TYPE HVECTOR� �� �� �� oldtype� newtype� will create the datatype

with type map

f�double� ��� �char�
�� �double� ���� �char� ���� �double� ���� �char� ����

�double� ��� �char� ���� �double� ���� �char� �
�� �double� ���� �char� ���g�

This derived datatype speci�es overlapping entries� Since a DOUBLE cannot start

both at displacement zero and at displacement four� the use of this datatype in a

send operation will cause a type match error� In order to de�ne the same type map

as in Example ��
� one would use here stride 	 �� �� � ����

In general� assume that oldtype has type map

f�type�� disp��� � � � � �typen��� dispn���g�

with extent ex� Let bl be the blocklength� The new datatype has a type map with

count � bl � n entries�

f�type�� disp��� � � � � �typen��� dispn����

�type�� disp� � ex�� � � � � �typen��� dispn�� � ex�� � � � �

�type�� disp� � �bl � �� � ex�� � � � � �typen��� dispn�� � �bl � �� � ex��

�type�� disp� � stride�� � � � � �typen��� dispn�� � stride�� � � � �

User�De�ned Datatypes and Packing ���

�type�� disp� � stride � �bl� �� � ex�� � � � �

�typen��� dispn�� � stride � �bl � �� � ex�� � � � ��

�type�� disp� � stride � �count � ���� � � � � �typen��� dispn�� � stride � �count � ���� � � � �

�type�� disp� � stride � �count � �� � �bl � �� � ex�� � � � �

�typen��� dispn�� � stride � �count � �� � �bl � �� � ex�g�

Example ��� Send and receive a section of a �D array� The layout of the �D array

section is shown in Fig ��
� The �rst call to MPI TYPE VECTOR de�nes a datatype

that describes one column of the section� the �D array section �
 � �� which

consists of three REAL�s� spaced two apart� The second call toMPI TYPE HVECTOR

de�nes a datatype that describes the �D array section �
 � ��
 � ��� three

copies of the previous �D array section� with a stride of
��sizeofreal� the stride

is not a multiple of the extent of the �D section� which is ��sizeofreal� The usage

of MPI TYPE COMMIT is explained later� in Section ����

REAL a������ e�����

INTEGER oneslice� twoslice� sizeofreal� myrank� ierr

INTEGER status�MPI�STATUS�SIZE�

C extract the section a�
 � ��
 � ��

C and store it in e� � ��

CALL MPI�COMM�RANK�MPI�COMM�WORLD� myrank� ierr�

CALL MPI�TYPE�EXTENT�MPI�REAL� sizeofreal� ierr�

C create datatype for a
D section

CALL MPI�TYPE�VECTOR���
� �� MPI�REAL� oneslice� ierr�

C create datatype for a �D section

CALL MPI�TYPE�HVECTOR���
�
��sizeofreal� oneslice� twoslice� ierr�

��� Chapter �

CALL MPI�TYPE�COMMIT� twoslice� ierr�

C send and recv on same process

CALL MPI�SENDRECV�a�
�
�
��
� twoslice� myrank� �� e� ��

MPI�REAL� myrank� �� MPI�COMM�WORLD� status� ierr�

Figure ���
Memory layout of �D array section for Example ��
� The shaded blocks are sent�

Example ��� Transpose a matrix� To do so� we create a datatype that describes

the matrix layout in row�major order� we send the matrix with this datatype and

receive the matrix in natural� column�major order�

REAL a�
���
���� b�
���
���

INTEGER row� xpose� sizeofreal� myrank� ierr

INTEGER status�MPI�STATUS�SIZE�

C transpose matrix a into b

CALL MPI�COMM�RANK�MPI�COMM�WORLD� myrank� ierr�

CALL MPI�TYPE�EXTENT�MPI�REAL� sizeofreal� ierr�

User�De�ned Datatypes and Packing ���

C create datatype for one row

C �vector with
�� real entries and stride
���

CALL MPI�TYPE�VECTOR�
���
�
��� MPI�REAL� row� ierr�

C create datatype for matrix in row�major order

C �one hundred copies of the row datatype� strided one word

C apart� the successive row datatypes are interleaved�

CALL MPI�TYPE�HVECTOR�
���
� sizeofreal� row� xpose� ierr�

CALL MPI�TYPE�COMMIT�xpose� ierr�

C send matrix in row�major order and receive in column major order

CALL MPI�SENDRECV�a�
� xpose� myrank� �� b�
���
���

MPI�REAL� myrank� �� MPI�COMM�WORLD� status� ierr�

Example ���� Each entry in the array particle is a structure which contains several

�elds� One of this �elds consists of six coordinates �location and velocity�� One

needs to extract the �rst three �location� coordinates of all particles and send them

in one message� The relative displacement between successive triplets of coordinates

may not be a multiple of sizeof�double�� therefore� the Hvector datatype constructor

is used�

struct Partstruct

�

char class� �� particle class ��

double d���� �� particle coordinates ��

char b���� �� some additional information ��

��

struct Partstruct particle�
�����

int i� dest� rank�

MPI�Comm comm�

MPI�Datatype Locationtype� �� datatype for locations ��

MPI�Type�hvector�
���� �� sizeof�Partstruct��

MPI�DOUBLE� �Locationtype��

MPI�Type�commit��Locationtype��

MPI�Send�particle����d�
� Locationtype� dest� tag� comm��

��� Chapter �

����	 Indexed

The Indexed constructor allows one to specify a noncontiguous data layout where

displacements between successive blocks need not be equal� This allows one to

gather arbitrary entries from an array and send them in one message� or receive

one message and scatter the received entries into arbitrary locations in an array�

MPI TYPE INDEXED�count� array of blocklengths� array of displacements� oldtype�

newtype�

IN count number of blocks

IN array of blocklengths number of elements per block

IN array of displacements displacement for each block
 measured

as number of elements

IN oldtype old datatype

OUT newtype new datatype

int MPI Type indexed�int count� int �array of blocklengths�

int �array of displacements� MPI Datatype oldtype�

MPI Datatype �newtype�

MPI TYPE INDEXED�COUNT� ARRAY OF BLOCKLENGTHS� ARRAY OF DISPLACEMENTS�

OLDTYPE� NEWTYPE� IERROR�

INTEGER COUNT� ARRAY OF BLOCKLENGTHS����

ARRAY OF DISPLACEMENTS���� OLDTYPE� NEWTYPE� IERROR

MPI TYPE INDEXED allows replication of an old datatype into a sequence of

blocks �each block is a concatenation of the old datatype�� where each block can

contain a di�erent number of copies of oldtype and have a di�erent displacement�

All block displacements are measured in units of the oldtype extent� The action of

the Indexed constructor is represented schematically in Figure ����

Example ���� Let oldtype have type map

f�double� ��� �char�
�g�

with extent ��� Let B 	 ��� �� and let D 	 ��� ��� A call to MPI TYPE INDEXED���

B� D� oldtype� newtype� returns a datatype with type map

f�double� ���� �char� ���� �double�
��� �char�

�� �double� ���� �char� �����

�double� ��� �char�
�g�

User�De�ned Datatypes and Packing ���

newtype

oldtype

count = 3, blocklength = (2,3,1), displacement = (0,3,8)

Figure ���
Datatype constructorMPI TYPE INDEXED�

That is� three copies of the old type starting at displacement �� �� ! ��� and one

copy starting at displacement ��

In general� assume that oldtype has type map

f�type�� disp��� � � � � �typen��� dispn���g�

with extent ex� Let B be the array of blocklengths argument and D be the array of�

displacements argument� The new datatype has a type map with n �
Pcount��

i�� B�i�

entries�

f�type�� disp� � D��� � ex�� � � � � �typen��� dispn�� � D��� � ex�� � � � �

�type�� disp� � �D��� � B���� �� � ex�� � � � �

�typen��� dispn�� � �D��� � B���� �� � ex�� � � � �

�type�� disp� � D�count � �� � ex�� � � � � �typen��� dispn�� � D�count � �� � ex�� � � � �

�type�� disp� � �D�count � �� � B�count � ��� �� � ex�� � � � �

�typen��� dispn�� � �D�count � �� � B�count � ��� �� � ex�g�

A call to MPI TYPE VECTOR�count� blocklength� stride� oldtype� newtype� is

equivalent to a call to MPI TYPE INDEXED�count� B� D� oldtype� newtype� where

D�j� ! j � stride� j ! �� � � � � count� ��

��� Chapter �

and

B�j� ! blocklength� j ! �� � � � � count � ��

The use of the MPI TYPE INDEXED function was illustrated in Example ���� on

page ���� the function was used to transfer the upper triangular part of a square

matrix�

����
 Hindexed

As with the Vector and Hvector constructors� it is usually convenient to measure

displacements in multiples of the extent of the oldtype� but sometimes necessary

to allow for arbitrary displacements� The Hindexed constructor satis�es the later

need�

MPI TYPE HINDEXED� count� array of blocklengths� array of displacements� oldtype�

newtype�

IN count number of blocks

IN array of blocklengths number of elements per block

IN array of displacements byte displacement for each block

IN oldtype old datatype

OUT newtype new datatype

int MPI Type hindexed�int count� int �array of blocklengths�

MPI Aint �array of displacements� MPI Datatype oldtype�

MPI Datatype �newtype�

MPI TYPE HINDEXED�COUNT� ARRAY OF BLOCKLENGTHS�

ARRAY OF DISPLACEMENTS� OLDTYPE� NEWTYPE� IERROR�

INTEGER COUNT� ARRAY OF BLOCKLENGTHS����

ARRAY OF DISPLACEMENTS���� OLDTYPE� NEWTYPE� IERROR

MPI TYPE HINDEXED is identical to MPI TYPE INDEXED� except that block

displacements in array of displacements are speci�ed in bytes� rather than in multi�

ples of the oldtype extent� The action of the Hindexed constructor is represented

schematically in Figure ����

User�De�ned Datatypes and Packing ���

newtype

oldtype

count = 3, blocklength = (2,3,1), displacement = (0,7,18)

Figure ���
Datatype constructorMPI TYPE HINDEXED�

Example ���� We use the same arguments as for MPI TYPE INDEXED� in Exam�

ple ����� Thus� oldtype has type map� f�double� ��� �char�
�g� with extent ��� B 	

��� ��� and D 	 ��� ��� A call to MPI TYPE HINDEXED��� B� D� oldtype� newtype�

returns a datatype with type map

f�double� ��� �char� ���� �double� ���� �char� �
�� �double� ���� �char� ����

�double� ��� �char�
�g�

The partial overlap between the entries of type DOUBLE implies that a type

matching error will occur if this datatype is used in a send operation� To get the

same datatype as in Example ����� the call would have D 	 ���� ���

In general� assume that oldtype has type map

f�type�� disp��� � � � � �typen��� dispn���g�

with extent ex� Let B be the array of blocklength argument and D be the array of�

displacements argument� The new datatype has a type map with n �
Pcount��

i�� B�i�

entries�

f�type�� disp� � D����� � � � � �typen��� dispn�� � D����� � � � �

�type�� disp� � D��� � �B���� �� � ex�� � � � �

�typen��� dispn�� � D��� � �B���� �� � ex�� � � � �

�type�� disp� � D�count � ���� � � � � �typen��� dispn�� � D�count � ���� � � � �

��� Chapter �

�type�� disp� � D�count � �� � �B�count � ��� �� � ex�� � � � �

�typen��� dispn�� � D�count � �� � �B�count � ��� �� � ex�g�

����
 Struct

MPI TYPE STRUCT�count� array of blocklengths� array of displacements� array of types�

newtype�

IN count number of blocks

IN array of blocklengths number of elements per block

IN array of displacements byte displacement for each block

IN array of types type of elements in each block

OUT newtype new datatype

int MPI Type struct�int count� int �array of blocklengths�

MPI Aint �array of displacements�

MPI Datatype �array of types� MPI Datatype �newtype�

MPI TYPE STRUCT�COUNT� ARRAY OF BLOCKLENGTHS� ARRAY OF DISPLACEMENTS�

ARRAY OF TYPES� NEWTYPE� IERROR�

INTEGER COUNT� ARRAY OF BLOCKLENGTHS����

ARRAY OF DISPLACEMENTS���� ARRAY OF TYPES���� NEWTYPE� IERROR

MPI TYPE STRUCT is the most general type constructor� It further generalizes

MPI TYPE HINDEXED in that it allows each block to consist of replications of

di�erent datatypes� The intent is to allow descriptions of arrays of structures� as a

single datatype� The action of the Struct constructor is represented schematically

in Figure ��
�

User�De�ned Datatypes and Packing ��	

newtype

oldtypes

count = 3, blocklength = (2,3,4), displacement = (0,7,16)

Figure ��	
Datatype constructorMPI TYPE STRUCT�

Example ���� Let type� have type map

f�double� ��� �char�
�g�

with extent ��� Let B 	 ��� �� ��� D 	 ��� ��� ���� and T 	 �MPI FLOAT� type��

MPI CHAR�� Then a call to MPI TYPE STRUCT��� B� D� T� newtype� returns a

datatype with type map

f�
oat� ��� �
oat� ��� �double� ���� �char� ���� �char� ���� �char� ���� �char� �
�g�

That is� two copies of MPI FLOAT starting at �� followed by one copy of type�

starting at ��� followed by three copies of MPI CHAR� starting at ��� �We assume

that a �oat occupies four bytes��

In general� let T be the array of types argument� where T�i
 is a handle to�

typemapi ! f�typei�� disp
i
��� � � � � �type

i
ni��� disp

i
ni���g�

with extent exi� Let B be the array of blocklength argument and D be the ar�

ray of displacements argument� Let c be the count argument� Then the new datatype

has a type map with
Pc��

i�� B�i� � ni entries�

f�type��� disp
�
� � D����� � � � � �type�n� � disp

�
n�

�D����� � � � �

�type��� disp
�
� � D��� � �B���� �� � ex��� � � � �

�type�n� � disp
�
n�

� D��� � �B���� �� � ex��� � � � �

�typec��
� � dispc��

� � D�c� ���� � � � � �typec��
nc����� disp

c��
nc���� � D�c� ���� � � � �

�typec��
� � dispc��

� � D�c� �� � �B�c� ��� �� � exc���� � � � �

��
 Chapter �

�typec��
nc����� disp

c��
nc���� �D�c� �� � �B�c� ��� �� � exc���g�

A call to MPI TYPE HINDEXED�count� B� D� oldtype� newtype� is equivalent to

a call to MPI TYPE STRUCT�count� B� D� T� newtype�� where each entry of T is

equal to oldtype�

Example ���	 Sending an array of structures�

struct Partstruct

�

char class� �� particle class ��

double d���� �� particle coordinates ��

char b���� �� some additional information ��

��

struct Partstruct particle�
�����

int i� dest� rank�

MPI�Comm comm�

�� build datatype describing structure ��

MPI�Datatype Particletype�

MPI�Datatype type��� � �MPI�CHAR� MPI�DOUBLE� MPI�CHAR��

int blocklen��� � �
� �� ���

MPI�Aint disp��� � ��� sizeof�double�� ��sizeof�double���

MPI�Type�struct��� blocklen� disp� type� �Particletype��

MPI�Type�commit��Particletype��

�� send the array ��

MPI�Send�particle�
���� Particletype� dest� tag� comm��

The array disp was initialized assuming that a double is double�word aligned� If dou�

ble�s are single�word aligned� then disp should be initialized to ��� sizeof�int��

sizeof�int�
��sizeof�double��� We show in Example ���� on page ���� how to

avoid this machine dependence�

User�De�ned Datatypes and Packing ���

Example ���
 A more complex example� using the same array of structures as in

Example ����� process zero sends a message that consists of all particles of class

zero� Process one receives these particles in contiguous locations�

struct Partstruct

�

char class� �� particle class ��

double d���� �� particle coordinates ��

char b���� �� some additional information ��

��

struct Partstruct particle�
�����

int i� j� myrank�

MPI�Status status�

MPI�Datatype Particletype�

MPI�Datatype type��� � �MPI�CHAR� MPI�DOUBLE� MPI�CHAR��

int blocklen��� � �
� �� ���

MPI�Aint disp��� � ��� sizeof�double�� ��sizeof�double��� sizeaint�

int base�

MPI�Datatype Zparticles� �� datatype describing all particles

with class zero �needs to be recomputed

if classes change� ��

MPI�Aint �zdisp�

int �zblocklen�

MPI�Type�struct��� blocklen� disp� type� �Particletype��

MPI�Comm�rank�comm� �myrank��

if�myrank �� �� �

�� send message consisting of all class zero particles ��

�� allocate data structures for datatype creation ��

MPI�Type�extent�MPI�Aint� �sizeaint�

zdisp � �MPI�Aint��malloc�
����sizeaint��

zblocklen � �int��malloc�
����sizeof�int���

�� compute displacements of class zero particles ��

��� Chapter �

j � ��

for�i��� i 	
���� i

�

if �particle�i��class���� �

zdisp�j� � i�

zblocklen�j� �
�

j

�

�

�� create datatype for class zero particles ��

MPI�Type�indexed�j� zblocklen� zdisp� Particletype� �Zparticles��

MPI�Type�commit��Zparticles��

�� send ��

MPI�Send�particle�
� Zparticles�
� �� comm��

�

else if �myrank ��
�

�� receive class zero particles in contiguous locations ��

MPI�recv�particle�
���� Particletype� �� ��

comm� �status��

Example ���
 An optimization for the last example� rather than handling each

class zero particle as a separate block� it is more e�cient to compute largest consecu�

tive blocks of class zero particles and use these blocks in the call toMPI Type indexed�

The modi�ed loop that computes zblock and zdisp is shown below�

���

j���

for �i��� i 	
���� i

�

if �particle�i��class���� �

for �k�i

� �k 	
�������particle�k��class �� ��� k

��

zdisp�j� � i�

zblocklen�j� � k�i�

j

�

User�De�ned Datatypes and Packing ���

i � k�

�

MPI�Type�indexed�j� zblocklen� zdisp� Particletype� �Zparticles��

���

��� Use of Derived Datatypes

��	�� Commit

A derived datatype must be committed before it can be used in a communication�

A committed datatype can continue to be used as an input argument in datatype

constructors �so that other datatypes can be derived from the committed datatype��

There is no need to commit primitive datatypes�

MPI TYPE COMMIT�datatype�

INOUT datatype datatype that is to be committed

int MPI Type commit�MPI Datatype �datatype�

MPI TYPE COMMIT�DATATYPE� IERROR�

INTEGER DATATYPE� IERROR

MPI TYPE COMMIT commits the datatype� Commit should be thought of as a

possible ��attening� or �compilation� of the formal description of a type map into

an e�cient representation� Commit does not imply that the datatype is bound to

the current content of a communication bu�er� After a datatype has been commit�

ted� it can be repeatedly reused to communicate di�erent data�

Advice to implementors� The system may �compile� at commit time an internal

representation for the datatype that facilitates communication� �End of advice to

implementors��

��	�� Deallocation

A datatype object is deallocated by a call to MPI TYPE FREE�

��� Chapter �

MPI TYPE FREE�datatype�

INOUT datatype datatype to be freed

int MPI Type free�MPI Datatype �datatype�

MPI TYPE FREE�DATATYPE� IERROR�

INTEGER DATATYPE� IERROR

MPI TYPE FREE marks the datatype object associated with datatype for deal�

location and sets datatype to MPI DATATYPE NULL� Any communication that is

currently using this datatype will complete normally� Derived datatypes that were

de�ned from the freed datatype are not a�ected�

Advice to implementors� An implementation may keep a reference count of active

communications that use the datatype� in order to decide when to free it� Also�

one may implement constructors of derived datatypes so that they keep pointers

to their datatype arguments� rather then copying them� In this case� one needs to

keep track of active datatype de�nition references in order to know when a datatype

object can be freed� �End of advice to implementors��

Example ���� The following code fragment gives examples of using MPI TYPE�

COMMIT and MPI TYPE FREE�

INTEGER type
� type�

CALL MPI�TYPE�CONTIGUOUS��� MPI�REAL� type
� ierr�

! new type object created

CALL MPI�TYPE�COMMIT�type
� ierr�

! now type
 can be used for communication

type� � type

! type� can be used for communication

! �it is a handle to same object as type
�

CALL MPI�TYPE�VECTOR��� �� �� MPI�REAL� type
� ierr�

! new uncommitted type object created

CALL MPI�TYPE�COMMIT�type
� ierr�

! now type
 can be used anew for communication

CALL MPI�TYPE�FREE�type�� ierr�

! free before overwrite handle

type� � type

! type� can be used for communication

CALL MPI�TYPE�FREE�type�� ierr�

User�De�ned Datatypes and Packing ���

! both type
 and type� are unavailable� type�

! has value MPI�DATATYPE�NULL and type
 is

! undefined

��	�� Relation to count

A call of the form MPI SEND�buf� count� datatype � � � � �� where count � �� is

interpreted as if the call was passed a new datatype which is the concatenation of

count copies of datatype� Thus� MPI SEND�buf� count� datatype� dest� tag� comm�

is equivalent to�

MPI�TYPE�CONTIGUOUS�count� datatype� newtype�

MPI�TYPE�COMMIT�newtype�

MPI�SEND�buf�
� newtype� dest� tag� comm��

Similar statements apply to all other communication functions that have a count

and datatype argument�

��	�	 Type Matching

Suppose that a send operation MPI SEND�buf� count� datatype� dest� tag� comm� is

executed� where datatype has type map

f�type�� disp��� � � � � �typen��� dispn���g�

and extent extent� The send operation sends n�count entries� where entry �i� j� is at

location addri�j ! buf�extent � i�dispj and has type typej � for i ! �� � � � � count��

and j ! �� � � � � n� �� The variable stored at address addri�j in the calling program

should be of a type that matches typej � where type matching is de�ned as in

Section ������

Similarly� suppose that a receive operationMPI RECV�buf� count� datatype� source�

tag� comm� status� is executed� The receive operation receives up to n�count entries�

where entry �i� j� is at location buf � extent � i � dispj and has type typej � Type

matching is de�ned according to the type signature of the corresponding datatypes�

that is� the sequence of primitive type components� Type matching does not de�

pend on other aspects of the datatype de�nition� such as the displacements �layout

in memory� or the intermediate types used to de�ne the datatypes�

For sends� a datatype may specify overlapping entries� This is not true for re�

ceives� If the datatype used in a receive operation speci�es overlapping entries then

the call is erroneous�

Example ���� This example shows that type matching is de�ned only in terms

of the primitive types that constitute a derived type�

��� Chapter �

���

CALL MPI�TYPE�CONTIGUOUS� �� MPI�REAL� type�� ����

CALL MPI�TYPE�CONTIGUOUS� �� MPI�REAL� type�� ����

CALL MPI�TYPE�CONTIGUOUS� �� type�� type��� ����

���

CALL MPI�SEND� a� �� MPI�REAL� ����

CALL MPI�SEND� a� �� type�� ����

CALL MPI�SEND� a�
� type��� ����

CALL MPI�SEND� a�
� type�� ����

���

CALL MPI�RECV� a� �� MPI�REAL� ����

CALL MPI�RECV� a� �� type�� ����

CALL MPI�RECV� a�
� type��� ����

CALL MPI�RECV� a�
� type�� ����

Each of the sends matches any of the receives�

��	�
 Message Length

If a message was received using a user�de�ned datatype� then a subsequent call to

MPI GET COUNT�status� datatype� count� �Section ����
� will return the number

of �copies� of datatype received �count�� That is� if the receive operation was

MPI RECV�bu�� count�datatype�� � � � then MPI GET COUNTmay return any integer

value k� where � � k � count� If MPI GET COUNT returns k� then the number of

primitive elements received is n � k� where n is the number of primitive elements in

the type map of datatype� The received message need not �ll an integral number of

�copies� of datatype� If the number of primitive elements received is not a multiple

of n� that is� if the receive operation has not received an integral number of datatype

�copies�� then MPI GET COUNT returns the value MPI UNDEFINED�

The function MPI GET ELEMENTS below can be used to determine the number

of primitive elements received�

MPI GET ELEMENTS� status� datatype� count�

IN status status of receive

IN datatype datatype used by receive operation

OUT count number of primitive elements received

int MPI Get elements�MPI Status �status� MPI Datatype datatype�

User�De�ned Datatypes and Packing ���

int �count�

MPI GET ELEMENTS�STATUS� DATATYPE� COUNT� IERROR�

INTEGER STATUS�MPI STATUS SIZE�� DATATYPE� COUNT� IERROR

Example ���� Usage of MPI GET COUNT and MPI GET ELEMENT�

���

CALL MPI�TYPE�CONTIGUOUS��� MPI�REAL� Type�� ierr�

CALL MPI�TYPE�COMMIT�Type�� ierr�

���

CALL MPI�COMM�RANK�comm� rank� ierr�

IF�rank�EQ��� THEN

CALL MPI�SEND�a� �� MPI�REAL�
� �� comm� ierr�

CALL MPI�SEND�a� �� MPI�REAL�
�
� comm� ierr�

ELSE

CALL MPI�RECV�a� �� Type�� �� �� comm� stat� ierr�

CALL MPI�GET�COUNT�stat� Type�� i� ierr� ! returns i�

CALL MPI�GET�ELEMENTS�stat� Type�� i� ierr� ! returns i��

CALL MPI�RECV�a� �� Type�� ��
� comm� stat� ierr�

CALL MPI�GET�COUNT�stat� Type�� i� ierr�

! returns i�MPI�UNDEFINED

CALL MPI�GET�ELEMENTS�stat� Type�� i� ierr� ! returns i��

END IF

The function MPI GET ELEMENTS can also be used after a probe to �nd the

number of primitive datatype elements in the probed message� Note that the

two functions MPI GET COUNT and MPI GET ELEMENTS return the same val�

ues when they are used with primitive datatypes�

Rationale� The de�nition of MPI GET COUNT is consistent with the use of the

count argument in the receive call� the function returns the value of the count

argument� when the receive bu�er is �lled� Sometimes datatype represents a basic

unit of data one wants to transfer� One should be able to �nd out how many

components were received without bothering to divide by the number of elements

in each component� The MPI GET COUNT is used in such cases� However� on

other occasions� datatype is used to de�ne a complex layout of data in the receiver

memory� and does not represent a basic unit of data for transfers� In such cases�

one must use MPI GET ELEMENTS� �End of rationale��

��� Chapter �

Advice to implementors� Structures often contain padding space used to align

entries correctly� Assume that data is moved from a send bu�er that describes

a structure into a receive bu�er that describes an identical structure on another

process� In such a case� it is probably advantageous to copy the structure� together

with the padding� as one contiguous block� The user can �force� this optimization

by explicitly including padding as part of the message� The implementation is free

to do this optimization when it does not impact the outcome of the computation�

However� it may be hard to detect when this optimization applies� since data sent

from a structure may be received into a set of disjoint variables� Also� padding will

di�er when data is communicated in a heterogeneous environment� or even on the

same architecture� when di�erent compiling options are used� The MPI�� forum is

considering options to alleviate this problem and support more e�cient transfer of

structures� �End of advice to implementors��

��� Address Function

As shown in Example ����� page ���� one sometimes needs to be able to �nd the

displacement� in bytes� of a structure component relative to the structure start�

In C� one can use the sizeof operator to �nd the size of C objects� and one will

be tempted to use the � operator to compute addresses and then displacements�

However� the C standard does not require that �int��v be the byte address of vari�

able v� the mapping of pointers to integers is implementation dependent� Some

systems may have �word� pointers and �byte� pointers� other systems may have a

segmented� noncontiguous address space� Therefore� a portable mechanism has to

be provided by MPI to compute the �address� of a variable� Such a mechanism is

certainly needed in Fortran� which has no dereferencing operator�

MPI ADDRESS�location� address�

IN location variable representing a memory location

OUT address address of location

int MPI Address�void� location� MPI Aint �address�

MPI ADDRESS�LOCATION� ADDRESS� IERROR�

	type� LOCATION���

INTEGER ADDRESS� IERROR

User�De�ned Datatypes and Packing ��	

MPI ADDRESS is used to �nd the address of a location in memory� It returns

the byte address of location�

Example ���� Using MPI ADDRESS for an array� The value of DIFF is set to

����sizeofreal� while the values of I
 and I� are implementation dependent�

REAL A�
���
���

INTEGER I
� I�� DIFF

CALL MPI�ADDRESS�A�
�
�� I
� IERROR�

CALL MPI�ADDRESS�A�
��
��� I�� IERROR�

DIFF � I� � I

Example ���� We modify the code in Example ����� page ���� so as to avoid

architectural dependencies� Calls to MPI ADDRESS are used to compute the dis�

placements of the structure components�

struct Partstruct

�

char class� �� particle class ��

double d���� �� particle coordinates ��

char b���� �� some additional information ��

��

struct Partstruct particle�
�����

int i� dest� rank�

MPI�Comm comm�

MPI�Datatype Particletype�

MPI�Datatype type��� � �MPI�CHAR� MPI�DOUBLE� MPI�CHAR��

int blocklen��� � �
� �� ���

MPI�Aint disp����

�� compute displacements ��

MPI�Address�particle� �disp�����

MPI�Address�particle����d� �disp�
���

MPI�Address�particle����b� �disp�����

for �i��� i �� �� i���

disp�i� �� disp����

�� build datatype ��

��
 Chapter �

MPI�Type�struct��� blocklen� disp� type� �Particletype��

MPI�Type�commit��Particletype��

���

�� send the entire array ��

MPI�Send�particle�
���� Particletype� dest� tag� comm��

���

Advice to implementors� The absolute value returned by MPI ADDRESS is not sig�

ni�cant� only relative displacements� that is di�erences between addresses of di�er�

ent variables� are signi�cant� Therefore� the implementation may pick an arbitrary

�starting point� as location zero in memory� �End of advice to implementors��

��� Lower�bound and Upper�bound Markers

Sometimes it is necessary to override the de�nition of extent given in Section ����

Consider� for example� the code in Example ���� in the previous section� Assume

that a double occupies
 bytes and must be double�word aligned� There will be �

bytes of padding after the �rst �eld and one byte of padding after the last �eld

of the structure Partstruct� and the structure will occupy �� bytes� If� on the

other hand� a double can be word aligned only� then there will be only � bytes of

padding after the �rst �eld� and Partstruct will occupy �� bytes� The MPI library

will follow the alignment rules used on the target systems so that the extent of

datatype Particletype equals the amount of storage occupied by Partstruct� The

catch is that di�erent alignment rules may be speci�ed� on the same system� using

di�erent compiler options� An even more di�cult problem is that some compilers

allow the use of pragmas in order to specify di�erent alignment rules for di�erent

structures within the same program� �Many architectures can correctly handle

misaligned values� but with lower performance� di�erent alignment rules trade speed

of access for storage density�� The MPI library will assume the default alignment

rules� However� the user should be able to overrule this assumption if structures

are packed otherwise�

To allow this capability� MPI has two additional �pseudo�datatypes�� MPI LB

and MPI UB� that can be used� respectively� to mark the lower bound or the upper

bound of a datatype� These pseudo�datatypes occupy no space �extent�MPI LB� !

extent�MPI UB� ! ��� They do not a�ect the size or count of a datatype� and

do not a�ect the the content of a message created with this datatype� However�

User�De�ned Datatypes and Packing ���

they do change the extent of a datatype and� therefore� a�ect the outcome of a

replication of this datatype by a datatype constructor�

Example ���� Let D 	 ���� �� ��� T 	 �MPI LB� MPI INT� MPI UB�� and B 	

��� �� ��� Then a call to MPI TYPE STRUCT��� B� D� T� type�� creates a new

datatype that has an extent of � �from �� to
�
 included�� and contains an integer

at displacement �� This datatype has type map� f�lb� ���� �int� ��� �ub� ��g � If

this type is replicated twice by a call to MPI TYPE CONTIGUOUS��� type�� type��

then type� has type map� f�lb� ���� �int� ��� �int���� �ub� ���g � �An entry of type lb

can be deleted if there is another entry of type lb at a lower address� and an entry

of type ub can be deleted if there is another entry of type ub at a higher address��

In general� if

Typemap ! f�type�� disp��� � � � � �typen��� dispn���g�

then the lower bound of Typemap is de�ned to be

lb�Typemap� !

�
minj dispj if no entry has basic type lb

minjfdispj such that typej ! lbg otherwise
Similarly� the upper bound of Typemap is de�ned to be

ub�Typemap� !

�
maxj dispj � sizeof�typej � � � if no entry has basic type ub

maxjfdispj such that typej ! ubg otherwise
And

extent�Typemap� ! ub�Typemap� � lb�Typemap�

If typei requires alignment to a byte address that is a multiple of ki� then � is the

least nonnegative increment needed to round extent�Typemap� to the next multiple

of maxi ki� The formal de�nitions given for the various datatype constructors con�

tinue to apply� with the amended de�nition of extent� Also� MPI TYPE EXTENT

returns the above as its value for extent�

Example ���� Wemodify Example ����� so that the code explicitly sets the extent

of Particletype to the right value� rather than trusting MPI to compute �lls correctly�

struct Partstruct

�

char class� �� particle class ��

double d���� �� particle coordinates ��

char b���� �� some additional information ��

��

struct Partstruct particle�
�����

int i� dest� rank�

��� Chapter �

MPI�Comm comm�

MPI�Datatype Particletype�

MPI�Datatype type��� � �MPI�CHAR� MPI�DOUBLE� MPI�CHAR� MPI�UB��

int blocklen��� � �
� �� ��
��

MPI�Aint disp����

�� compute displacements of structure components ��

MPI�Address�particle� �disp�����

MPI�Address�particle����d� �disp�
���

MPI�Address�particle����b� �disp�����

MPI�Address�particle�
�� �disp�����

for �i��� i �� �� i��� disp�i� �� disp����

�� build datatype for structure ��

MPI�Type�struct��� blocklen� disp� type� �Particletype��

MPI�Type�commit��Particletype��

�� send the entire array ��

MPI�Send�particle�
���� Particletype� dest� tag� comm��

The two functions below can be used for �nding the lower bound and the upper

bound of a datatype�

MPI TYPE LB�datatype� displacement�

IN datatype datatype

OUT displacement displacement of lower bound

int MPI Type lb�MPI Datatype datatype� MPI Aint� displacement�

MPI TYPE LB�DATATYPE� DISPLACEMENT� IERROR�

INTEGER DATATYPE� DISPLACEMENT� IERROR

MPI TYPE LB returns the lower bound of a datatype� in bytes� relative to the

datatype origin�

User�De�ned Datatypes and Packing ���

MPI TYPE UB�datatype� displacement�

IN datatype datatype

OUT displacement displacement of upper bound

int MPI Type ub�MPI Datatype datatype� MPI Aint� displacement�

MPI TYPE UB�DATATYPE� DISPLACEMENT� IERROR�

INTEGER DATATYPE� DISPLACEMENT� IERROR

MPI TYPE UB returns the upper bound of a datatype� in bytes� relative to the

datatype origin�

��	 Absolute Addresses

Consider Example ���� on page ���� One computes the �absolute address� of the

structure components� using calls to MPI ADDRESS� then subtracts the starting

address of the array to compute relative displacements� When the send operation

is executed� the starting address of the array is added back� in order to compute the

send bu�er location� These super�uous arithmetics could be avoided if �absolute�

addresses were used in the derived datatype� and �address zero� was passed as the

bu�er argument in the send call�

MPI supports the use of such �absolute� addresses in derived datatypes� The dis�

placement arguments used in datatype constructors can be �absolute addresses��

i�e�� addresses returned by calls to MPI ADDRESS� Address zero is indicated to

communication functions by passing the constant MPI BOTTOM as the bu�er argu�

ment� Unlike derived datatypes with relative displacements� the use of �absolute�

addresses restricts the use to the speci�c structure for which it was created�

Example ���	 The code in Example ���� on page ��� is modi�ed to use absolute

addresses� rather than relative displacements�

struct Partstruct

�

char class� �� particle class ��

double d���� �� particle coordinates ��

char b���� �� some additional information ��

��

struct Partstruct particle�
�����

int i� dest� rank�

��� Chapter �

MPI�Comm comm�

�� build datatype describing structure ��

MPI�Datatype Particletype�

MPI�Datatype type��� � �MPI�CHAR� MPI�DOUBLE� MPI�CHAR��

int blocklen��� � �
� �� ���

MPI�Aint disp����

�� compute addresses of components in
st structure��

MPI�Address�particle� disp��

MPI�Address�particle����d� disp

��

MPI�Address�particle����b� disp
���

�� build datatype for
st structure ��

MPI�Type�struct��� blocklen� disp� type� �Particletype��

MPI�Type�commit��Particletype��

�� send the entire array ��

MPI�Send�MPI�BOTTOM�
���� Particletype� dest� tag� comm��

Advice to implementors� On systems with a �at address space� the implemen�

tation may pick an arbitrary address as the value of MPI BOTTOM in C �or the

address of the variable MPI BOTTOM in Fortran�� All that is needed is that calls

to MPI ADDRESS�location� address� return the displacement of location� relative to

MPI BOTTOM� �End of advice to implementors��

The use of addresses and displacements in MPI is best understood in the context

of a �at address space� Then� the �address� of a location� as computed by calls to

MPI ADDRESS can be the regular address of that location �or a shift of it�� and

integer arithmetic on MPI �addresses� yields the expected result� However� the use

of a �at address space is not mandated by C or Fortran� Another potential source

of problems is that Fortran INTEGER�s may be too short to store full addresses�

Variables belong to the same sequential storage if they belong to the same

array� to the same COMMON block in Fortran� or to the same structure in C�

Implementations may restrict the use of addresses so that arithmetic on addresses

User�De�ned Datatypes and Packing ���

is con�ned within sequential storage� Namely� in a communication call� either

� The communication bu�er speci�ed by the bu�� count and datatype arguments is all

within the same sequential storage�

� The initial bu�er address argument bu� is equal to MPI BOTTOM� count	� and all

addresses in the type map of datatype are absolute addresses of the form v�i� where

v is an absolute address computed by MPI ADDR� i is an integer displacement� and

v�i is in the same sequential storage as v�

Advice to users� Current MPI implementations impose no restrictions on the use of

addresses� If Fortran INTEGER�s have �� bits� then the the use of absolute addresses

in Fortran programs may be restricted to � GB memory� This may require� in the

future� to move from INTEGER addresses to INTEGER�� addresses� �End of advice

to users��

��
 Pack and Unpack

Some existing communication libraries� such as PVM and Parmacs� provide pack

and unpack functions for sending noncontiguous data� In these� the application

explicitly packs data into a contiguous bu�er before sending it� and unpacks it from

a contiguous bu�er after receiving it� Derived datatypes� described in the previous

sections of this chapter� allow one� in most cases� to avoid explicit packing and

unpacking� The application speci�es the layout of the data to be sent or received�

and MPI directly accesses a noncontiguous bu�er when derived datatypes are used�

The pack�unpack routines are provided for compatibility with previous libraries�

Also� they provide some functionality that is not otherwise available in MPI� For

instance� a message can be received in several parts� where the receive operation

done on a later part may depend on the content of a former part� Another use is

that the availability of pack and unpack operations facilitates the development of

additional communication libraries layered on top of MPI�

��� Chapter �

MPI PACK�inbuf� incount� datatype� outbuf� outsize� position� comm�

IN inbuf input bu�er

IN incount number of input components

IN datatype datatype of each input component

OUT outbuf output bu�er

IN outsize output bu�er size
 in bytes

INOUT position current position in bu�er
 in bytes

IN comm communicator for packed message

int MPI Pack�void� inbuf� int incount� MPI Datatype datatype�

void �outbuf� int outsize� int �position�

MPI Comm comm�

MPI PACK�INBUF� INCOUNT� DATATYPE� OUTBUF� OUTSIZE� POSITION� COMM�

IERROR�

	type� INBUF���� OUTBUF���

INTEGER INCOUNT� DATATYPE� OUTSIZE� POSITION� COMM� IERROR

MPI PACK packs a message speci�ed by inbuf� incount� datatype� comm into the

bu�er space speci�ed by outbuf and outsize� The input bu�er can be any communi�

cation bu�er allowed in MPI SEND� The output bu�er is a contiguous storage area

containing outsize bytes� starting at the address outbuf�

The input value of position is the �rst position in the output bu�er to be used for

packing� The argument position is incremented by the size of the packed message so

that it can be used as input to a subsequent call to MPI PACK� The comm argument

is the communicator that will be subsequently used for sending the packed message�

MPI UNPACK�inbuf� insize� position� outbuf� outcount� datatype� comm�

IN inbuf input bu�er

IN insize size of input bu�er
 in bytes

INOUT position current position in bytes

OUT outbuf output bu�er

IN outcount number of components to be unpacked

IN datatype datatype of each output component

IN comm communicator for packed message

int MPI Unpack�void� inbuf� int insize� int �position� void �outbuf�

int outcount� MPI Datatype datatype� MPI Comm comm�

User�De�ned Datatypes and Packing ���

MPI UNPACK�INBUF� INSIZE� POSITION� OUTBUF� OUTCOUNT� DATATYPE�

COMM� IERROR�

	type� INBUF���� OUTBUF���

INTEGER INSIZE� POSITION� OUTCOUNT� DATATYPE� COMM� IERROR

MPI UNPACK unpacks a message into the receive bu�er speci�ed by outbuf� out�

count� datatype from the bu�er space speci�ed by inbuf and insize� The output bu�er

can be any communication bu�er allowed in MPI RECV� The input bu�er is a con�

tiguous storage area containing insize bytes� starting at address inbuf� The input

value of position is the position in the input bu�er where one wishes the unpacking

to begin� The output value of position is incremented by the size of the packed

message� so that it can be used as input to a subsequent call to MPI UNPACK� The

argument comm was the communicator used to receive the packed message�

Rationale� The Pack and Unpack calls have a communicator argument in order

to facilitate data conversion at the source in a heterogeneous environment� E�g��

this will allow for an implementation that uses the XDR format for packed data

in a heterogeneous communication domain� and performs no data conversion if

the communication domain is homogeneous� If no communicator was provided� the

implementationwould always use XDR� If the destination was provided� in addition

to the communicator� then one would be able to format the pack bu�er speci�cally

for that destination� But� then� one loses the ability to pack a bu�er once and send

it to multiple destinations� �End of rationale��

Advice to users� Note the di�erence between MPI RECV and MPI UNPACK� in

MPI RECV� the count argument speci�es the maximumnumber of components that

can be received� In MPI UNPACK� the count argument speci�es the actual number

of components that are unpacked� The reason for that change is that� for a regular

receive� the incoming message size determines the number of components that will

be received� With MPI UNPACK� it is up to the user to specify how many compo�

nents he or she wants to unpack� since one may want to unpack only part of the

message� �End of advice to users��

TheMPI PACK�MPI UNPACK calls relate to message passing as the sprintf�sscanf

calls in C relate to �le I�O� or internal Fortran �les relate to external units� Basi�

cally� the MPI PACK function allows one to �send� a message into a memory bu�er�

the MPI UNPACK function allows one to �receive� a message from a memory bu�er�

Several communication bu�ers can be successively packed into one packing unit�

This is e�ected by several� successive related calls to MPI PACK� where the �rst

��� Chapter �

call provides position 	 �� and each successive call inputs the value of position that

was output by the previous call� and the same values for outbuf� outcount and comm�

This packing unit now contains the equivalent information that would have been

stored in a message by one send call with a send bu�er that is the �concatenation�

of the individual send bu�ers�

A packing unit must be sent using type MPI PACKED� Any point�to�point or

collective communication function can be used� The message sent is identical to

the message that would be sent by a send operation with a datatype argument

describing the concatenation of the send bu�er�s� used in the Pack calls� The

message can be received with any datatype that matches this send datatype�

Example ���
 The following two programs generate identical messages�

Derived datatype is used�

int i�

char c�
����

int disp����

int blocklen��� � �
�
���

MPI�Datatype type��� � �MPI�INT� MPI�CHAR��

MPI�Datatype Type�

�� create datatype ��

MPI�Address��i� �disp�����

MPI�Address�c� �disp�
���

MPI�Type�struct��� blocklen� disp� type� �Type��

MPI�Type�commit��Type��

�� send ��

MPI�Send�MPI�BOTTOM�
� Type�
� �� MPI�COMM�WORLD��

Packing is used�

int i�

char c�
����

char buffer�

���

int position � ��

�� pack ��

MPI�Pack��i�
� MPI�INT� buffer�

���position� MPI�COMM�WORLD��

User�De�ned Datatypes and Packing ��	

MPI�Pack�c�
��� MPI�CHAR� buffer�

�� �position� MPI�COMM�WORLD��

�� send ��

MPI�Send�buffer� position� MPI�PACKED�
� �� MPI�COMM�WORLD��

Any message can be received in a point�to�point or collective communication

using the type MPI PACKED� Such a message can then be unpacked by calls to

MPI UNPACK� The message can be unpacked by several� successive calls to MPI�

UNPACK� where the �rst call provides position 	 �� and each successive call inputs

the value of position that was output by the previous call� and the same values for

inbuf� insize and comm�

Example ���
 Any of the following two programs can be used to receive the

message sent in Example ���
� The outcome will be identical�

Derived datatype is used�

int i�

char c�
����

MPI�status status�

int disp����

int blocklen��� � �
�
���

MPI�Datatype type��� � �MPI�INT� MPI�CHAR��

MPI�Datatype Type�

�� create datatype ��

MPI�Address��i� �disp�����

MPI�Address�c� �disp�
���

MPI�Type�struct��� blocklen� disp� type� �Type��

MPI�Type�commit��Type��

�� receive ��

MPI�Recv�MPI�BOTTOM�
� Type� �� �� MPI�COMM�WORLD� �status��

Unpacking is used�

int i�

char c�
����

��
 Chapter �

MPI�Status status�

char buffer�

���

int position � ��

�� receive ��

MPI�Recv�buffer�

�� MPI�PACKED�
� �� MPI�COMM�WORLD� �status��

�� unpack ��

MPI�Unpack�buffer�

�� �position� �i�
� MPI�INT� MPI�COMM�WORLD��

MPI�Unpack�buffer�

�� �position� c�
��� MPI�CHAR� MPI�COMM�WORLD��

Advice to users� A packing unit may contain� in addition to data� metadata� For

example� it may contain in a header� information on the encoding used to represent

data� or information on the size of the unit for error checking� Therefore� such a

packing unit has to treated as an �atomic� entity which can only be sent using type

MPI PACKED� One cannot concatenate two such packing units and send the result

in one send operation �however� a collective communication operation can be used

to send multiple packing units in one operations� to the same extent it can be used

to send multiple regular messages�� Also� one cannot split a packing unit and then

unpack the two halves separately �however� a collective communication operation

can be used to receive multiple packing units� to the same extent it can be used to

receive multiple regular messages�� �End of advice to users��

MPI PACK SIZE�incount� datatype� comm� size�

IN incount count argument to packing call

IN datatype datatype argument to packing call

IN comm communicator argument to packing call

OUT size upper bound on size of packed message

in bytes

int MPI Pack size�int incount� MPI Datatype datatype� MPI Comm comm�

int �size�

MPI PACK SIZE�INCOUNT� DATATYPE� COMM� SIZE� IERROR�

INTEGER INCOUNT� DATATYPE� COMM� SIZE� IERROR

User�De�ned Datatypes and Packing ���

MPI PACK SIZE allows the application to �nd out how much space is needed

to pack a message and� thus� manage space allocation for bu�ers� The function

returns� in size� an upper bound on the increment in position that would occur in a

call to MPI PACK with the same values for incount� datatype� and comm�

Rationale� The MPI PACK SIZE call returns an upper bound� rather than an exact

bound� since the exact amount of space needed to pack the message may depend on

the communication domain �see Chapter
� �for example� the �rst message packed

in a packing unit may contain additional metadata�� �End of rationale��

Example ���� We return to the problem of Example ���
 on page ���� Process

zero sends to process one a message containing all class zero particles� Process

one receives and stores these structures in contiguous locations� Process zero uses

calls to MPI PACK to gather class zero particles� whereas process one uses a regular

receive�

struct Partstruct

�

char class� �� particle class ��

double d���� �� particle coordinates ��

char b���� �� some additional information ��

��

struct Partstruct particle�
�����

int i� size� position� myrank�

int count� �� number of class zero particles ��

char �buffer� �� pack buffer ��

MPI�Status status�

�� variables used to create datatype for particle ��

MPI�Datatype Particletype�

MPI�Datatype type��� � �MPI�CHAR� MPI�DOUBLE� MPI�CHAR��

int blocklen��� � �
� �� ���

MPI�Aint disp��� � ��� sizeof�double�� ��sizeof�double���

�� define datatype for one particle ��

MPI�Type�struct� �� blocklen� disp� type� �Particletype��

MPI�Type�commit� �Particletype��

MPI�Comm�rank�comm� �myrank��

��� Chapter �

if �myrank �� �� �

�� send message that consists of class zero particles ��

�� allocate pack buffer ��

MPI�Pack�size�
���� Particletype� comm� �size��

buffer � �char��malloc�size��

�� pack class zero particles ��

position � ��

for�i��� i 	
���� i

�

if �particle�i��class �� ��

MPI�Pack��particle�i��
� Particletype� buffer�

size� �position� comm��

�� send ��

MPI�Send�buffer� position� MPI�PACKED�
� �� comm��

�

else if �myrank ��
� �

�� receive class zero particles in contiguous locations in

array particle ��

MPI�Recv�particle�
���� Particletype� �� �� comm� �status��

�

Example ���� This is a variant on the previous example� where the class zero

particles have to be received by process one in array particle at the same locations

where they are in the array of process zero� Process zero packs the entry index with

each entry it sends� Process one uses this information to move incoming data to the

right locations� As a further optimization� we avoid the transfer of the class �eld�

which is known to be zero� �We have ignored in this example the computation of a

tight bound on the size of the pack�unpack bu�er� One could be rigorous and de�ne

an additional derived datatype for the purpose of computing such an estimate� Or

User�De�ned Datatypes and Packing ���

one can use an approximate estimate��

struct Partstruct

�

char class� �� particle class ��

double d���� �� particle coordinates ��

char b���� �� some additional information ��

��

struct Partstruct particle�
�����

int i� size� myrank�

int position � ��

MPI�Status status�

char buffer�BUFSIZE�� �� pack�unpack buffer ��

�� variables used to create datatype for particle�

not including class field ��

MPI�Datatype Particletype�

MPI�Datatype type��� � �MPI�DOUBLE� MPI�CHAR��

int blocklen��� � ��� ���

MPI�Aint disp��� � ��� ��sizeof�double���

�� define datatype ��

MPI�Type�struct��� blocklen� disp� type� �Particletype��

MPI�Type�commit��Particletype��

MPI�Comm�rank�MPI�COMM�WORLD� �myrank��

if �myrank �� �� �

�� send message that consists of class zero particles ��

�� pack class zero particles and their index ��

for�i��� i 	
���� i

�

if �particle�i��class �� �� �

MPI�Pack��i�
� MPI�INT� buffer� BUFSIZE�

�position� MPI�COMM�WORLD�� �� pack index ��

��� Chapter �

MPI�Pack�particle�i��d�
� Particletype� buffer�

BUFSIZE� �position� MPI�COMM�WORLD�� �� pack struct ��

�

�� pack negative index as end of list marker ��

i � �
�

MPI�Pack��i�
� MPI�INT� buffer� BUFSIZE�

�position� MPI�COMM�WORLD��

�� send ��

MPI�Send�buffer� position� MPI�PACKED�
� �� MPI�COMM�WORLD��

�

else if �myrank ��
� �

�� receive class zero particles at original locations ��

�� receive ��

MPI�Recv�buffer� BUFSIZE� MPI�PACKED� �� �� MPI�COMM�WORLD� �status��

�� unpack ��

while ��MPI�Unpack�buffer� BUFSIZE� �position� �i�
�

MPI�INT� MPI�COMM�WORLD�� i� �� �� � �� unpack index ��

MPI�Unpack�buffer� BUFSIZE� �position� particle�i��d�

� Particletype� MPI�COMM�WORLD�� �� unpack struct ��

particle�i��class � ��

�

�

����� Derived Datatypes vs Pack�Unpack

A comparison between Example ���
 on page ��� and Example ���� in the previous

section is instructive�

First� programming convenience� It is somewhat less tedious to pack the class

zero particles in the loop that locates them� rather then de�ning in this loop the

datatype that will later collect them� On the other hand� it would be very tedious

�and ine�cient� to pack separately the components of each structure entry in the

array� De�ning a datatype is more convenient when this de�nition depends only

on declarations� packing may be more convenient when the communication bu�er

User�De�ned Datatypes and Packing ���

layout is data dependent�

Second� storage use� The packing code uses at least
����� bytes for the pack

bu�er� e�g�� up to ���� copies of the structure �� char� � doubles� and � char

is � �
 � � � � !
� bytes�� The derived datatype code uses ������ bytes for

the three� ����� long� integer arrays used to de�ne the derived datatype� It also

probably uses a similar amount of storage for the internal datatype representation�

The di�erence is likely to be larger in realistic codes� The use of packing requires

additional storage for a copy of the data� whereas the use of derived datatypes

requires additional storage for a description of the data layout�

Finally� compute time� The packing code executes a function call for each packed

item whereas the derived datatype code executes only a �xed number of function

calls� The packing code is likely to require one additional memory to memory copy

of the data� as compared to the derived�datatype code� One may expect� on most

implementations� to achieve better performance with the derived datatype code�

Both codes send the same size message� so that there is no di�erence in com�

munication time� However� if the bu�er described by the derived datatype is not

contiguous in memory� it may take longer to access�

Example ���
 above illustrates another advantage of pack�unpack� namely the

receiving process may use information in part of an incoming message in order to

decide how to handle subsequent data in the message� In order to achieve the same

outcome without pack�unpack� one would have to send two messages� the �rst with

the list of indices� to be used to construct a derived datatype that is then used to

receive the particle entries sent in a second message�

The use of derived datatypes will often lead to improved performance� data

copying can be avoided� and information on data layout can be reused� when the

same communication bu�er is reused� On the other hand� the de�nition of derived

datatypes for complex layouts can be more tedious than explicit packing� Derived

datatypes should be used whenever data layout is de�ned by program declarations

�e�g�� structures�� or is regular �e�g�� array sections�� Packing might be considered

for complex� dynamic� data�dependent layouts� Packing may result in more e�cient

code in situations where the sender has to communicate to the receiver information

that a�ects the layout of the receive bu�er�

��� Chapter �

� Collective Communications

��� Introduction and Overview

Collective communications transmit data among all processes in a group speci�ed

by an intracommunicator object� One function� the barrier� serves to synchronize

processes without passing data� MPI provides the following collective communica�

tion functions�

� Barrier synchronization across all group members �Section �����

� Global communication functions� which are illustrated in Figure ���� They in�

clude�

�Broadcast from one member to all members of a group �Section ��
��

�Gather data from all group members to one member �Section �����

�Scatter data from one member to all members of a group �Section �����

�A variation on Gather where all members of the group receive the result �Sec�

tion ��
�� This is shown as �allgather� in Figure ����

�Scatter�Gather data from all members to all members of a group �also called

complete exchange or all�to�all� �Section ����� This is shown as �alltoall� in

Figure ����

� Global reduction operations such as sum� max� min� or user�de�ned functions�

This includes

�Reduction where the result is returned to all group members and a variation

where the result is returned to only one member �Section ������

�A combined reduction and scatter operation �Section �����
��

�Scan across all members of a group �also called pre�x� �Section ������

Figure ��� gives a pictorial representation of the global communication functions�

All these functions �broadcast excepted� come in two variants� the simple variant�

where all communicated items are messages of the same size� and the �vector�

variant� where each item can be of a di�erent size� In addition� in the simple

variant� multiple items originating from the same process or received at the same

process� are contiguous in memory� the vector variant allows to pick the distinct

items from non�contiguous locations�

Some of these functions� such as broadcast or gather� have a single origin or a

single receiving process� Such a process is called the root� Global communication

functions basically comes in three patterns�

���

��� Chapter �

A0 A1 A2 A3 A4 A5 scatter

gather

A0

A1

A2

A3

A4

A5

A0 A1 A2 A3 A4 A5

B0 B1 B2 B3 B4 B5

C0 C1 C2 C3 C4 C5

D0 D1 D2 D3 D4 D5

E0 E1 E2 E3 E4 E5

F0 F1 F2 F3 F4 F5

A0 B0 C0 D0 E0 F0

A1 B1 C1 D1 E1 F1

A2 B2 C2 D2 E2 F2

A3 B3 C3 D3 E3 F3

A4 B4 C4 D4 E4 F4

A5 B5 C5 D5 E5 F5

alltoall

A0

B0

C0

D0

E0

F0

allgather

A0 B0 C0 D0 E0 F0

A0 B0 C0 D0 E0 F0

A0 B0 C0 D0 E0 F0

A0 B0 C0 D0 E0 F0

A0 B0 C0 D0 E0 F0

A0 B0 C0 D0 E0 F0

A0

data

broadcast

pr
oc

es
se

s

A0

A0

A0

A0

A0

A0

Figure ���
Collective move functions illustrated for a group of six processes� In each case� each row of boxes
represents data locations in one process� Thus� in the broadcast� initially just the �rst process
contains the item A�� but after the broadcast all processes contain it�

Collective Communications ��	

� Root sends data to all processes �itself included�� broadcast and scatter�

� Root receives data from all processes �itself included�� gather�

� Each process communicates with each process �itself included�� allgather and all�

toall�

The syntax and semantics of the MPI collective functions was designed to be

consistent with point�to�point communications� However� to keep the number of

functions and their argument lists to a reasonable level of complexity� the MPI com�

mittee made collective functions more restrictive than the point�to�point functions�

in several ways� One restriction is that� in contrast to point�to�point communica�

tion� the amount of data sent must exactly match the amount of data speci�ed by

the receiver�

A major simpli�cation is that collective functions come in blocking versions only�

Though a standing joke at committee meetings concerned the �non�blocking bar�

rier�� such functions can be quite useful� and may be included in a future version

of MPI�

Collective functions do not use a tag argument� Thus� within each intragroup

communication domain� collective calls are matched strictly according to the order

of execution�

A �nal simpli�cation of collective functions concerns modes� Collective functions

come in only one mode� and this modemay be regarded as analogous to the standard

mode of point�to�point� Speci�cally� the semantics are as follows� A collective

function �on a given process� can return as soon as its participation in the overall

communication is complete� As usual� the completion indicates that the caller is

now free to access and modify locations in the communication bu�er�s�� It does

not indicate that other processes have completed� or even started� the operation�

Thus� a collective communication may� or may not� have the e�ect of synchronizing

all calling processes� The barrier� of course� is the exception to this statement�

This choice of semantics was made so as to allow a variety of implementations�

The user of MPI must keep these issues in mind� For example� even though a

particular implementation of MPI may provide a broadcast with the side�e�ect of

synchronization �the standard allows this�� the standard does not require this� and

hence� any program that relies on the synchronization will be non�portable� On

the other hand� a correct and portable program must allow a collective function to

be synchronizing� Though one should not rely on synchronization side�e�ects� one

must program so as to allow for it�

�Of course the non
blocking barrier would block at the test
for
completion call�

��
 Chapter �

Though these issues and statements may seem unusually obscure� they are merely

a consequence of the desire of MPI to�

� allow e�cient implementations on a variety of architectures� and�

� be clear about exactly what is� and what is not� guaranteed by the standard�

��� Operational Details

A collective operation is executed by having all processes in the group call the

communication routine� with matching arguments� The syntax and semantics of

the collective operations are de�ned to be consistent with the syntax and semantics

of the point�to�point operations� Thus� user�de�ned datatypes are allowed and must

match between sending and receiving processes as speci�ed in Chapter �� One of

the key arguments is an intracommunicator that de�nes the group of participating

processes and provides a communication domain for the operation� In calls where a

root process is de�ned� some arguments are speci�ed as �signi�cant only at root��

and are ignored for all participants except the root� The reader is referred to

Chapter � for information concerning communication bu�ers and type matching

rules� to Chapter � for user�de�ned datatypes� and to Chapter
 for information on

how to de�ne groups and create communicators�

The type�matching conditions for the collective operations are more strict than

the corresponding conditions between sender and receiver in point�to�point� Namely�

for collective operations� the amount of data sent must exactly match the amount

of data speci�ed by the receiver� Distinct type maps �the layout in memory� see

Section ���� between sender and receiver are still allowed�

Collective communication calls may use the same communicators as point�to�

point communication�MPI guarantees that messages generated on behalf of collec�

tive communication calls will not be confused with messages generated by point�

to�point communication� A more detailed discussion of correct use of collective

routines is found in Section �����

Rationale� The equal�data restriction �on type matching� was made so as to

avoid the complexity of providing a facility analogous to the status argument of

MPI RECV for discovering the amount of data sent� Some of the collective routines

would require an array of status values� This restriction also simpli�es implemen�

tation� �End of rationale��

Advice to users� As described in Section ���� it is dangerous to rely on synchroniza�

Collective Communications ���

tion side�e�ects of the collective operations for program correctness� These issues

are discussed further in Section ����� �End of advice to users��

Advice to implementors� While vendors may write optimized collective routines

matched to their architectures� a complete library of the collective communication

routines can be written entirely using the MPI point�to�point communication func�

tions and a few auxiliary functions� If implementing on top of point�to�point� a

hidden� special communicator must be created for the collective operation so as to

avoid interference with any on�going point�to�point communication at the time of

the collective call� This is discussed further in Section �����

Although collective communications are described in terms of messages sent directly

from sender�s� to receiver�s�� implementations may use a communication pattern

where data is forwarded through intermediate nodes� Thus� one could use a loga�

rithmic depth tree to implement broadcast� rather then sending data directly from

the root to each other process� Messages can be forwarded to intermediate nodes

and split �for scatter� or concatenated �for gather�� An optimal implementation

of collective communication will take advantage of the speci�cs of the underlying

communication network �such as support for multicast� which can be used for MPI

broadcast�� and will use di�erent algorithms� according to the number of partic�

ipating processes and the amounts of data communicated� See� e�g� ���� �End of

advice to implementors��

��� Communicator Argument

The key concept of the collective functions is to have a �group� of participating

processes� The routines do not have a group identi�er as an explicit argument�

Instead� there is a communicator argument� For the purposes of this chapter� a

communicator can be thought of as a group identi�er linked with a communication

domain� An intercommunicator� that is� a communicator that spans two groups� is

not allowed as an argument to a collective function�

��� Chapter �

��� Barrier Synchronization

MPI BARRIER� comm �

IN comm communicator

int MPI Barrier�MPI Comm comm�

MPI BARRIER�COMM� IERROR�

INTEGER COMM� IERROR

MPI BARRIER blocks the caller until all group members have called it� The call

returns at any process only after all group members have entered the call�

��� Broadcast

MPI BCAST� bu�er� count� datatype� root� comm �

INOUT bu�er starting address of bu�er

IN count number of entries in bu�er

IN datatype data type of bu�er

IN root rank of broadcast root

IN comm communicator

int MPI Bcast�void� buffer� int count� MPI Datatype datatype�

int root� MPI Comm comm �

MPI BCAST�BUFFER� COUNT� DATATYPE� ROOT� COMM� IERROR�

	type� BUFFER���

INTEGER COUNT� DATATYPE� ROOT� COMM� IERROR

MPI BCAST broadcasts a message from the process with rank root to all processes

of the group� The argument root must have identical values on all processes� and

comm must represent the same intragroup communication domain� On return� the

contents of root�s communication bu�er has been copied to all processes�

General� derived datatypes are allowed for datatype� The type signature of count

and datatype on any process must be equal to the type signature of count and

datatype at the root� This implies that the amount of data sent must be equal to

Collective Communications ���

the amount received� pairwise between each process and the root� MPI BCAST and

all other data�movement collective routines make this restriction� Distinct type

maps between sender and receiver are still allowed�

	�
�� Example Using MPI BCAST

Example 	�� Broadcast ��� ints from process � to every process in the group�

MPI�Comm comm�

int array�
����

int root���

���

MPI�Bcast� array�
��� MPI�INT� root� comm��

Rationale� MPI does not support a multicast function� where a broadcast executed

by a root can be matched by regular receives at the remaining processes� Such

a function is easy to implement if the root directly sends data to each receiving

process� But� then� there is little to be gained� as compared to executing multiple

send operations� An implementation where processes are used as intermediate

nodes in a broadcast tree is hard� since only the root executes a call that identi�es

the operation as a broadcast� In contrast� in a collective call to MPI BCAST all

processes are aware that they participate in a broadcast� �End of rationale��

��� Chapter �

��� Gather

MPI GATHER� sendbuf� sendcount� sendtype� recvbuf� recvcount� recvtype� root� comm�

IN sendbuf starting address of send bu�er

IN sendcount number of elements in send bu�er

IN sendtype data type of send bu�er elements

OUT recvbuf address of receive bu�er

IN recvcount number of elements for any single re�

ceive

IN recvtype data type of recv bu�er elements

IN root rank of receiving process

IN comm communicator

int MPI Gather�void� sendbuf� int sendcount� MPI Datatype sendtype�

void� recvbuf� int recvcount� MPI Datatype recvtype�

int root� MPI Comm comm�

MPI GATHER�SENDBUF� SENDCOUNT� SENDTYPE� RECVBUF� RECVCOUNT�

RECVTYPE� ROOT� COMM� IERROR�

	type� SENDBUF���� RECVBUF���

INTEGER SENDCOUNT� SENDTYPE� RECVCOUNT� RECVTYPE� ROOT� COMM�

IERROR

Each process �root process included� sends the contents of its send bu�er to

the root process� The root process receives the messages and stores them in rank

order� The outcome is as if each of the n processes in the group �including the root

process� had executed a call to MPI Send�sendbuf� sendcount� sendtype� root� �����

and the root had executed n calls to MPI Recv�recvbuf�i�recvcount�extent�recvtype��

recvcount� recvtype� i ������ where extent�recvtype� is the type extent obtained from

a call to MPI Type extent���

An alternative description is that the n messages sent by the processes in the

group are concatenated in rank order� and the resulting message is received by the

root as if by a call to MPI RECV�recvbuf� recvcount�n� recvtype� �����

The receive bu�er is ignored for all non�root processes�

General� derived datatypes are allowed for both sendtype and recvtype� The type

signature of sendcount and sendtype on process imust be equal to the type signature

of recvcount and recvtype at the root� This implies that the amount of data sent

Collective Communications ���

must be equal to the amount of data received� pairwise between each process and

the root� Distinct type maps between sender and receiver are still allowed�

All arguments to the function are signi�cant on process root� while on other

processes� only arguments sendbuf� sendcount� sendtype� root� and comm are signif�

icant� The argument root must have identical values on all processes and comm

must represent the same intragroup communication domain�

The speci�cation of counts and types should not cause any location on the root

to be written more than once� Such a call is erroneous�

Note that the recvcount argument at the root indicates the number of items it

receives from each process� not the total number of items it receives�

	�
�� Examples Using MPI GATHER

Example 	�� Gather ��� ints from every process in group to root� See Figure ����

MPI�Comm comm�

int gsize�sendarray�
����

int root� �rbuf�

���

MPI�Comm�size� comm� �gsize��

rbuf � �int ��malloc�gsize�
���sizeof�int���

MPI�Gather� sendarray�
��� MPI�INT� rbuf�
��� MPI�INT� root� comm��

Example 	�� Previous example modi�ed only the root allocates memory for the

receive bu�er�

MPI�Comm comm�

int gsize�sendarray�
����

int root� myrank� �rbuf�

���

MPI�Comm�rank� comm� myrank��

if � myrank �� root� �

MPI�Comm�size� comm� �gsize��

rbuf � �int ��malloc�gsize�
���sizeof�int���

�

MPI�Gather� sendarray�
��� MPI�INT� rbuf�
��� MPI�INT� root� comm��

��� Chapter �

100 100 100

100 100

all processes

100

rbuf

at root

Figure ���
The root process gathers ��� ints from each process in the group�

Example 	�	 Do the same as the previous example� but use a derived datatype�

Note that the type cannot be the entire set of gsize�
�� ints since type matching

is de�ned pairwise between the root and each process in the gather�

MPI�Comm comm�

int gsize�sendarray�
����

int root� �rbuf�

MPI�Datatype rtype�

���

MPI�Comm�size� comm� �gsize��

MPI�Type�contiguous�
��� MPI�INT� �rtype ��

MPI�Type�commit� �rtype ��

rbuf � �int ��malloc�gsize�
���sizeof�int���

MPI�Gather� sendarray�
��� MPI�INT� rbuf�
� rtype� root� comm��

Collective Communications ���

	�
�� Gather� Vector Variant

MPI GATHERV� sendbuf� sendcount� sendtype� recvbuf� recvcounts� displs� recvtype�

root� comm�

IN sendbuf starting address of send bu�er

IN sendcount number of elements in send bu�er

IN sendtype data type of send bu�er elements

OUT recvbuf address of receive bu�er

IN recvcounts integer array

IN displs integer array of displacements

IN recvtype data type of recv bu�er elements

IN root rank of receiving process

IN comm communicator

int MPI Gatherv�void� sendbuf� int sendcount� MPI Datatype sendtype�

void� recvbuf� int �recvcounts� int �displs�

MPI Datatype recvtype� int root� MPI Comm comm�

MPI GATHERV�SENDBUF� SENDCOUNT� SENDTYPE� RECVBUF� RECVCOUNTS�

DISPLS� RECVTYPE� ROOT� COMM� IERROR�

	type� SENDBUF���� RECVBUF���

INTEGER SENDCOUNT� SENDTYPE� RECVCOUNTS���� DISPLS���� RECVTYPE�

ROOT� COMM� IERROR

MPI GATHERV extends the functionality of MPI GATHER by allowing a varying

count of data from each process� since recvcounts is now an array� It also allows

more �exibility as to where the data is placed on the root� by providing the new

argument� displs�

The outcome is as if each process� including the root process� sends a message to

the root� MPI Send�sendbuf� sendcount� sendtype� root� ���� and the root executes n

receives� MPI Recv�recvbuf�displs�i
�extent�recvtype�� recvcounts�i
� recvtype� i� �����

The data sent from process j is placed in the jth portion of the receive bu�er

recvbuf on process root� The jth portion of recvbuf begins at o�set displs�j
 elements

�in terms of recvtype� into recvbuf�

The receive bu�er is ignored for all non�root processes�

The type signature implied by sendcount and sendtype on process imust be equal

to the type signature implied by recvcounts�i
 and recvtype at the root� This implies

that the amount of data sent must be equal to the amount of data received� pairwise

��� Chapter �

between each process and the root� Distinct type maps between sender and receiver

are still allowed� as illustrated in Example ����

All arguments to the function are signi�cant on process root� while on other

processes� only arguments sendbuf� sendcount� sendtype� root� and comm are signif�

icant� The argument root must have identical values on all processes� and comm

must represent the same intragroup communication domain�

The speci�cation of counts� types� and displacements should not cause any loca�

tion on the root to be written more than once� Such a call is erroneous� On the

other hand� the successive displacements in the array displs need not be a monotonic

sequence�

	�
�� Examples Using MPI GATHERV

Example 	�
 Have each process send ��� ints to root� but place each set �of ����

stride ints apart at receiving end� Use MPI GATHERV and the displs argument to

achieve this e�ect� Assume stride � ���� See Figure ����

MPI�Comm comm�

int gsize�sendarray�
����

int root� �rbuf� stride�

int �displs�i��rcounts�

���

MPI�Comm�size� comm� �gsize��

rbuf � �int ��malloc�gsize�stride�sizeof�int���

displs � �int ��malloc�gsize�sizeof�int���

rcounts � �int ��malloc�gsize�sizeof�int���

for �i��� i	gsize�

i� �

displs�i� � i�stride�

rcounts�i� �
���

�

MPI�Gatherv� sendarray�
��� MPI�INT� rbuf� rcounts� displs� MPI�INT�

root� comm��

Note that the program is erroneous if ���� � stride � ����

Collective Communications ��	

100 100 100

100 100 100

stride
rbuf

at root

all processes

Figure ���
The root process gathers ��� ints from each process in the group� each set is placed stride ints
apart�

Example 	�
 Same as Example ��
 on the receiving side� but send the ��� ints

from the �th column of a �����
� int array� in C� See Figure ����

MPI�Comm comm�

int gsize�sendarray�
����
����

int root� �rbuf� stride�

MPI�Datatype stype�

int �displs�i��rcounts�

���

MPI�Comm�size� comm� �gsize��

rbuf � �int ��malloc�gsize�stride�sizeof�int���

displs � �int ��malloc�gsize�sizeof�int���

rcounts � �int ��malloc�gsize�sizeof�int���

for �i��� i	gsize�

i� �

displs�i� � i�stride�

rcounts�i� �
���

�

�� Create datatype for
 column of array

��

MPI�Type�vector�
���
�
��� MPI�INT� �stype��

MPI�Type�commit� �stype ��

MPI�Gatherv� sendarray�
� stype� rbuf� rcounts� displs� MPI�INT�

root� comm��

��
 Chapter �

100 100 100

150

rbuf

at root

stride

all processes100

150

100

150

100

Figure ���
The root process gathers column � of a ������� C array� and each set is placed stride ints
apart�

Example 	�� Process i sends �����i� ints from the ith column of a ��� � �
� int

array� in C� It is received into a bu�er with stride� as in the previous two examples�

See Figure ��
�

MPI�Comm comm�

int gsize�sendarray�
����
�����sptr�

int root� �rbuf� stride� myrank�

MPI�Datatype stype�

int �displs�i��rcounts�

���

MPI�Comm�size� comm� �gsize��

MPI�Comm�rank� comm� �myrank ��

rbuf � �int ��malloc�gsize�stride�sizeof�int���

displs � �int ��malloc�gsize�sizeof�int���

rcounts � �int ��malloc�gsize�sizeof�int���

for �i��� i	gsize�

i� �

displs�i� � i�stride�

rcounts�i� �
���i� �� note change from previous example ��

�

�� Create datatype for the column we are sending

��

MPI�Type�vector�
���myrank�
�
��� MPI�INT� �stype��

MPI�Type�commit� �stype ��

�� sptr is the address of start of �myrank� column

Collective Communications ���

100 99

rbuf

at root

stride

all processes100

150

100

150

100

150

98

Figure ���
The root process gathers ���
i ints from column i of a ������� C array� and each set is placed
stride ints apart�

��

sptr � �sendarray����myrank��

MPI�Gatherv� sptr�
� stype� rbuf� rcounts� displs� MPI�INT�

root� comm��

Note that a di�erent amount of data is received from each process�

Example 	�� Same as Example ���� but done in a di�erent way at the sending

end� We create a datatype that causes the correct striding at the sending end so

that that we read a column of a C array�

MPI�Comm comm�

int gsize�sendarray�
����
�����sptr�

int root� �rbuf� stride� myrank� disp���� blocklen����

MPI�Datatype stype�type����

int �displs�i��rcounts�

���

MPI�Comm�size� comm� �gsize��

MPI�Comm�rank� comm� �myrank ��

rbuf � �int ��malloc�gsize�stride�sizeof�int���

displs � �int ��malloc�gsize�sizeof�int���

rcounts � �int ��malloc�gsize�sizeof�int���

for �i��� i	gsize�

i� �

displs�i� � i�stride�

��� Chapter �

rcounts�i� �
���i�

�

�� Create datatype for one int� with extent of entire row

��

disp��� � �� disp�
� �
���sizeof�int��

type��� � MPI�INT� type�
� � MPI�UB�

blocklen��� �
� blocklen�
� �
�

MPI�Type�struct� �� blocklen� disp� type� �stype ��

MPI�Type�commit� �stype ��

sptr � �sendarray����myrank��

MPI�Gatherv� sptr�
���myrank� stype� rbuf� rcounts� displs� MPI�INT�

root� comm��

Example 	�� Same as Example ��� at sending side� but at receiving side we make

the stride between received blocks vary from block to block� See Figure ����

MPI�Comm comm�

int gsize�sendarray�
����
�����sptr�

int root� �rbuf� �stride� myrank� bufsize�

MPI�Datatype stype�

int �displs�i��rcounts�offset�

���

MPI�Comm�size� comm� �gsize��

MPI�Comm�rank� comm� �myrank ��

stride � �int ��malloc�gsize�sizeof�int���

���

�� stride�i� for i � � to gsize�
 is set somehow

��

�� set up displs and rcounts vectors first

��

displs � �int ��malloc�gsize�sizeof�int���

rcounts � �int ��malloc�gsize�sizeof�int���

offset � ��

for �i��� i	gsize�

i� �

Collective Communications ���

100

stride[1]
rbuf

at root

all processes100

150

100

150

100

150

99 98

Figure ���
The root process gathers ���
i ints from column i of a ������� C array� and each set is placed
stride�i� ints apart �a varying stride��

displs�i� � offset�

offset
� stride�i��

rcounts�i� �
���i�

�

�� the required buffer size for rbuf is now easily obtained

��

bufsize � displs�gsize�
�
rcounts�gsize�
��

rbuf � �int ��malloc�bufsize�sizeof�int���

�� Create datatype for the column we are sending

��

MPI�Type�vector�
���myrank�
�
��� MPI�INT� �stype��

MPI�Type�commit� �stype ��

sptr � �sendarray����myrank��

MPI�Gatherv� sptr�
� stype� rbuf� rcounts� displs� MPI�INT�

root� comm��

Example 	��� Process i sends num ints from the ith column of a ��� � �
� int

array� in C� The complicating factor is that the various values of num are not known

to root� so a separate gather must �rst be run to �nd these out� The data is placed

contiguously at the receiving end�

MPI�Comm comm�

int gsize�sendarray�
����
�����sptr�

int root� �rbuf� stride� myrank� disp���� blocklen����

MPI�Datatype stype�types����

��� Chapter �

int �displs�i��rcounts�num�

���

MPI�Comm�size� comm� �gsize��

MPI�Comm�rank� comm� �myrank ��

�� First� gather nums to root

��

rcounts � �int ��malloc�gsize�sizeof�int���

MPI�Gather� �num�
� MPI�INT� rcounts�
� MPI�INT� root� comm��

�� root now has correct rcounts� using these we set displs�� so

� that data is placed contiguously �or concatenated� at receive end

��

displs � �int ��malloc�gsize�sizeof�int���

displs��� � ��

for �i�
� i	gsize�

i� �

displs�i� � displs�i�
�
rcounts�i�
��

�

�� And� create receive buffer

��

rbuf � �int ��malloc�gsize��displs�gsize�
�
rcounts�gsize�
��

�sizeof�int���

�� Create datatype for one int� with extent of entire row

��

disp��� � �� disp�
� �
���sizeof�int��

type��� � MPI�INT� type�
� � MPI�UB�

blocklen��� �
� blocklen�
� �
�

MPI�Type�struct� �� blocklen� disp� type� �stype ��

MPI�Type�commit� �stype ��

sptr � �sendarray����myrank��

MPI�Gatherv� sptr� num� stype� rbuf� rcounts� displs� MPI�INT�

root� comm��

Collective Communications ���

��	 Scatter

MPI SCATTER� sendbuf� sendcount� sendtype� recvbuf� recvcount� recvtype� root� comm�

IN sendbuf address of send bu�er

IN sendcount number of elements sent to each process

IN sendtype data type of send bu�er elements

OUT recvbuf address of receive bu�er

IN recvcount number of elements in receive bu�er

IN recvtype data type of receive bu�er elements

IN root rank of sending process

IN comm communicator

int MPI Scatter�void� sendbuf� int sendcount� MPI Datatype sendtype�

void� recvbuf� int recvcount� MPI Datatype recvtype�

int root� MPI Comm comm�

MPI SCATTER�SENDBUF� SENDCOUNT� SENDTYPE� RECVBUF� RECVCOUNT�

RECVTYPE� ROOT� COMM� IERROR�

	type� SENDBUF���� RECVBUF���

INTEGER SENDCOUNT� SENDTYPE� RECVCOUNT� RECVTYPE� ROOT� COMM�

IERROR

MPI SCATTER is the inverse operation to MPI GATHER�

The outcome is as if the root executed n send operations� MPI Send�sendbuf�i�

sendcount�extent�sendtype�� sendcount� sendtype� i������ i 	 � to n � �� and each

process executed a receive� MPI Recv�recvbuf� recvcount� recvtype� root������

An alternative description is that the root sends a message withMPI Send�sendbuf�

sendcount�n� sendtype� ����� This message is split into n equal segments� the ith seg�

ment is sent to the ith process in the group� and each process receives this message

as above�

The type signature associated with sendcount and sendtype at the root must be

equal to the type signature associated with recvcount and recvtype at all processes�

This implies that the amount of data sent must be equal to the amount of data

received� pairwise between each process and the root� Distinct type maps between

sender and receiver are still allowed�

All arguments to the function are signi�cant on process root� while on other

processes� only arguments recvbuf� recvcount� recvtype� root� comm are signi�cant�

��� Chapter �

100 100 100

100 100

sendbuf

100

at root

all processes

Figure ���
The root process scatters sets of ��� ints to each process in the group�

The argument root must have identical values on all processes and comm must

represent the same intragroup communication domain� The send bu�er is ignored

for all non�root processes�

The speci�cation of counts and types should not cause any location on the root

to be read more than once�

Rationale� Though not essential� the last restriction is imposed so as to achieve

symmetry withMPI GATHER� where the corresponding restriction �a multiple�write

restriction� is necessary� �End of rationale��

	���� An Example Using MPI SCATTER

Example 	��� The reverse of Example ���� page �

� Scatter sets of ��� ints from

the root to each process in the group� See Figure ����

MPI�Comm comm�

int gsize��sendbuf�

int root� rbuf�
����

���

MPI�Comm�size� comm� �gsize��

sendbuf � �int ��malloc�gsize�
���sizeof�int���

���

MPI�Scatter� sendbuf�
��� MPI�INT� rbuf�
��� MPI�INT� root� comm��

Collective Communications ���

	���� Scatter� Vector Variant

MPI SCATTERV� sendbuf� sendcounts� displs� sendtype� recvbuf� recvcount� recvtype�

root� comm�

IN sendbuf address of send bu�er

IN sendcounts integer array

IN displs integer array of displacements

IN sendtype data type of send bu�er elements

OUT recvbuf address of receive bu�er

IN recvcount number of elements in receive bu�er

IN recvtype data type of receive bu�er elements

IN root rank of sending process

IN comm communicator

int MPI Scatterv�void� sendbuf� int �sendcounts� int �displs�

MPI Datatype sendtype� void� recvbuf� int recvcount�

MPI Datatype recvtype� int root� MPI Comm comm�

MPI SCATTERV�SENDBUF� SENDCOUNTS� DISPLS� SENDTYPE� RECVBUF�

RECVCOUNT� RECVTYPE� ROOT� COMM� IERROR�

	type� SENDBUF���� RECVBUF���

INTEGER SENDCOUNTS���� DISPLS���� SENDTYPE� RECVCOUNT� RECVTYPE�

ROOT� COMM� IERROR

MPI SCATTERV is the inverse operation to MPI GATHERV�

MPI SCATTERV extends the functionality of MPI SCATTER by allowing a vary�

ing count of data to be sent to each process� since sendcounts is now an array� It also

allows more �exibility as to where the data is taken from on the root� by providing

the new argument� displs�

The outcome is as if the root executed n send operations�MPI Send�sendbuf�displs

�i
�extent�sendtype�� sendcounts�i
� sendtype� i������ i 	 � to n � �� and each process

executed a receive� MPI Recv�recvbuf� recvcount� recvtype� root������

The type signature implied by sendcount�i
 and sendtype at the root must be

equal to the type signature implied by recvcount and recvtype at process i� This

implies that the amount of data sent must be equal to the amount of data received�

pairwise between each process and the root� Distinct type maps between sender

and receiver are still allowed�

��� Chapter �

All arguments to the function are signi�cant on process root� while on other

processes� only arguments recvbuf� recvcount� recvtype� root� comm are signi�cant�

The arguments root must have identical values on all processes� and comm must

represent the same intragroup communication domain� The send bu�er is ignored

for all non�root processes�

The speci�cation of counts� types� and displacements should not cause any loca�

tion on the root to be read more than once�

	���� Examples Using MPI SCATTERV

Example 	��� The reverse of Example ��
� page �

� The root process scatters

sets of ��� ints to the other processes� but the sets of ��� are stride ints apart in

the sending bu�er� where stride � ���� This requires use of MPI SCATTERV� See

Figure ��
�

MPI�Comm comm�

int gsize��sendbuf�

int root� rbuf�
���� i� �displs� �scounts�

���

MPI�Comm�size� comm� �gsize��

sendbuf � �int ��malloc�gsize�stride�sizeof�int���

���

displs � �int ��malloc�gsize�sizeof�int���

scounts � �int ��malloc�gsize�sizeof�int���

for �i��� i	gsize�

i� �

displs�i� � i�stride�

scounts�i� �
���

�

MPI�Scatterv� sendbuf� scounts� displs� MPI�INT� rbuf�
��� MPI�INT�

root� comm��

Example 	��� The reverse of Example ���� We have a varying stride between

blocks at sending �root� side� at the receiving side we receive ���� i elements into

the ith column of a �����
� C array at process i� See Figure ����

MPI�Comm comm�

int gsize�recvarray�
����
�����rptr�

Collective Communications ��	

100 100 100

100 100 100

sendbuf

at root

all processes

stride

Figure ��	
The root process scatters sets of ��� ints� moving by stride ints from send to send in the
scatter�

int root� �sendbuf� myrank� bufsize� �stride�

MPI�Datatype rtype�

int i� �displs� �scounts� offset�

���

MPI�Comm�size� comm� �gsize��

MPI�Comm�rank� comm� �myrank ��

stride � �int ��malloc�gsize�sizeof�int���

���

�� stride�i� for i � � to gsize�
 is set somehow

� sendbuf comes from elsewhere ��

���

displs � �int ��malloc�gsize�sizeof�int���

scounts � �int ��malloc�gsize�sizeof�int���

offset � ��

for �i��� i	gsize�

i� �

displs�i� � offset�

offset
� stride�i��

scounts�i� �
�� � i�

�

�� Create datatype for the column we are receiving ��

MPI�Type�vector�
���myrank�
�
��� MPI�INT� �rtype��

MPI�Type�commit� �rtype ��

rptr � �recvarray����myrank��

MPI�Scatterv� sendbuf� scounts� displs� MPI�INT� rptr�
� rtype�

root� comm��

��
 Chapter �

100

sendbuf

at root

all processes100

150

100

150

100

150

99 98

stride[1]

Figure ��

The root scatters blocks of ���
i ints into column i of a ������� C array� At the sending side�
the blocks are stride�i� ints apart�

��
 Gather to All

MPI ALLGATHER� sendbuf� sendcount� sendtype� recvbuf� recvcount� recvtype� comm�

IN sendbuf starting address of send bu�er

IN sendcount number of elements in send bu�er

IN sendtype data type of send bu�er elements

OUT recvbuf address of receive bu�er

IN recvcount number of elements received from any

process

IN recvtype data type of receive bu�er elements

IN comm communicator

int MPI Allgather�void� sendbuf� int sendcount�

MPI Datatype sendtype� void� recvbuf� int recvcount�

MPI Datatype recvtype� MPI Comm comm�

MPI ALLGATHER�SENDBUF� SENDCOUNT� SENDTYPE� RECVBUF� RECVCOUNT�

RECVTYPE� COMM� IERROR�

	type� SENDBUF���� RECVBUF���

INTEGER SENDCOUNT� SENDTYPE� RECVCOUNT� RECVTYPE� COMM� IERROR

Collective Communications ���

MPI ALLGATHER can be thought of asMPI GATHER� except all processes receive

the result� instead of just the root� The jth block of data sent from each process is

received by every process and placed in the jth block of the bu�er recvbuf�

The type signature associated with sendcount and sendtype at a process must

be equal to the type signature associated with recvcount and recvtype at any other

process�

The outcome of a call to MPI ALLGATHER����� is as if all processes executed

n calls to MPI GATHER�sendbuf� sendcount� sendtype� recvbuf� recvcount� recvtype�

root� comm�� for root 	 � � ���� n��� The rules for correct usage of MPI ALLGATHER

are easily found from the corresponding rules for MPI GATHER�

	���� An Example Using MPI ALLGATHER

Example 	��	 The all�gather version of Example ���� page �

� Using MPI ALL�

GATHER� we will gather ��� ints from every process in the group to every process�

MPI�Comm comm�

int gsize�sendarray�
����

int �rbuf�

���

MPI�Comm�size� comm� �gsize��

rbuf � �int ��malloc�gsize�
���sizeof�int���

MPI�Allgather� sendarray�
��� MPI�INT� rbuf�
��� MPI�INT� comm��

After the call� every process has the group�wide concatenation of the sets of data�

��� Chapter �

	���� Gather to All� Vector Variant

MPI ALLGATHERV� sendbuf� sendcount� sendtype� recvbuf� recvcounts� displs� recvtype�

comm�

IN sendbuf starting address of send bu�er

IN sendcount number of elements in send bu�er

IN sendtype data type of send bu�er elements

OUT recvbuf address of receive bu�er

IN recvcounts integer array

IN displs integer array of displacements

IN recvtype data type of receive bu�er elements

IN comm communicator

int MPI Allgatherv�void� sendbuf� int sendcount�

MPI Datatype sendtype� void� recvbuf� int �recvcounts�

int �displs� MPI Datatype recvtype� MPI Comm comm�

MPI ALLGATHERV�SENDBUF� SENDCOUNT� SENDTYPE� RECVBUF� RECVCOUNTS�

DISPLS� RECVTYPE� COMM� IERROR�

	type� SENDBUF���� RECVBUF���

INTEGER SENDCOUNT� SENDTYPE� RECVCOUNTS���� DISPLS���� RECVTYPE�

COMM� IERROR

MPI ALLGATHERV can be thought of as MPI GATHERV� except all processes

receive the result� instead of just the root� The jth block of data sent from each

process is received by every process and placed in the jth block of the bu�er recvbuf�

These blocks need not all be the same size�

The type signature associated with sendcount and sendtype at process j must be

equal to the type signature associated with recvcounts�j
 and recvtype at any other

process�

The outcome is as if all processes executed calls to MPI GATHERV� sendbuf�

sendcount� sendtype�recvbuf�recvcounts�displs� recvtype�root�comm�� for root 	 � � ����

n��� The rules for correct usage of MPI ALLGATHERV are easily found from the

corresponding rules for MPI GATHERV�

Collective Communications ���

��� All to All Scatter�Gather

MPI ALLTOALL�sendbuf� sendcount� sendtype� recvbuf� recvcount� recvtype� comm�

IN sendbuf starting address of send bu�er

IN sendcount number of elements sent to each process

IN sendtype data type of send bu�er elements

OUT recvbuf address of receive bu�er

IN recvcount number of elements received from any

process

IN recvtype data type of receive bu�er elements

IN comm communicator

int MPI Alltoall�void� sendbuf� int sendcount� MPI Datatype sendtype�

void� recvbuf� int recvcount� MPI Datatype recvtype�

MPI Comm comm�

MPI ALLTOALL�SENDBUF� SENDCOUNT� SENDTYPE� RECVBUF� RECVCOUNT�

RECVTYPE� COMM� IERROR�

	type� SENDBUF���� RECVBUF���

INTEGER SENDCOUNT� SENDTYPE� RECVCOUNT� RECVTYPE� COMM� IERROR

MPI ALLTOALL is an extension of MPI ALLGATHER to the case where each pro�

cess sends distinct data to each of the receivers� The jth block sent from process i

is received by process j and is placed in the ith block of recvbuf�

The type signature associated with sendcount and sendtype at a process must

be equal to the type signature associated with recvcount and recvtype at any other

process� This implies that the amount of data sent must be equal to the amount

of data received� pairwise between every pair of processes� As usual� however� the

type maps may be di�erent�

The outcome is as if each process executed a send to each process �itself included�

with a call to� MPI Send�sendbuf�i�sendcount�extent�sendtype�� sendcount� sendtype�

i� ����� and a receive from every other process with a call to� MPI Recv�recvbuf�i�

recvcount�extent�recvtype�� recvcount� i������ where i 	 �� � � �� n � ��

All arguments on all processes are signi�cant� The argument comm must repre�

sent the same intragroup communication domain on all processes�

Rationale� The de�nition of MPI ALLTOALL gives as much �exibility as one

would achieve by specifying at each process n independent� point�to�point commu�

��� Chapter �

nications� with two exceptions� all messages use the same datatype� and messages

are scattered from �or gathered to� sequential storage� �End of rationale��

	���� All to All� Vector Variant

MPI ALLTOALLV�sendbuf� sendcounts� sdispls� sendtype� recvbuf� recvcounts� rdispls�

recvtype� comm�

IN sendbuf starting address of send bu�er
IN sendcounts integer array

IN sdispls integer array of send displacements
IN sendtype data type of send bu�er elements

OUT recvbuf address of receive bu�er
IN recvcounts integer array

IN rdispls integer array of receive displacements
IN recvtype data type of receive bu�er elements

IN comm communicator

int MPI Alltoallv�void� sendbuf� int �sendcounts� int �sdispls�

MPI Datatype sendtype� void� recvbuf� int �recvcounts�

int �rdispls� MPI Datatype recvtype� MPI Comm comm�

MPI ALLTOALLV�SENDBUF� SENDCOUNTS� SDISPLS� SENDTYPE� RECVBUF�

RECVCOUNTS� RDISPLS� RECVTYPE� COMM� IERROR�

	type� SENDBUF���� RECVBUF���

INTEGER SENDCOUNTS���� SDISPLS���� SENDTYPE� RECVCOUNTS����

RDISPLS���� RECVTYPE� COMM� IERROR

MPI ALLTOALLV adds �exibility to MPI ALLTOALL in that the location of data

for the send is speci�ed by sdispls and the location of the placement of the data on

the receive side is speci�ed by rdispls�

The jth block sent from process i is received by process j and is placed in the

ith block of recvbuf� These blocks need not all have the same size�

The type signature associated with sendcount�j
 and sendtype at process i must

be equal to the type signature associated with recvcount�i
 and recvtype at process

j� This implies that the amount of data sent must be equal to the amount of data

received� pairwise between every pair of processes� Distinct type maps between

sender and receiver are still allowed�

The outcome is as if each process sent a message to process i with MPI Send�

sendbuf � displs�i
�extent�sendtype�� sendcounts�i
� sendtype� i� ����� and received a

Collective Communications ���

message from process i with a call to MPI Recv� recvbuf � displs�i
�extent�recvtype��

recvcounts�i
� recvtype� i� ����� where i 	 � � � � n � ��

All arguments on all processes are signi�cant� The argument comm must specify

the same intragroup communication domain on all processes�

Rationale� The de�nition of MPI ALLTOALLV gives as much �exibility as one

would achieve by specifying at each process n independent� point�to�point commu�

nications� with the exception that all messages use the same datatype� �End of

rationale��

���� Global Reduction Operations

The functions in this section perform a global reduce operation �such as sum� max�

logical AND� etc�� across all the members of a group� The reduction operation

can be either one of a prede�ned list of operations� or a user�de�ned operation�

The global reduction functions come in several �avors� a reduce that returns the

result of the reduction at one node� an all�reduce that returns this result at all

nodes� and a scan �parallel pre�x� operation� In addition� a reduce�scatter operation

combines the functionality of a reduce and of a scatter operation� In order to

improve performance� the functions can be passed an array of values� one call will

perform a sequence of element�wise reductions on the arrays of values� Figure ����

gives a pictorial representation of these operations�

	����� Reduce

MPI REDUCE� sendbuf� recvbuf� count� datatype� op� root� comm�

IN sendbuf address of send bu�er

OUT recvbuf address of receive bu�er

IN count number of elements in send bu�er

IN datatype data type of elements of send bu�er

IN op reduce operation

IN root rank of root process

IN comm communicator

int MPI Reduce�void� sendbuf� void� recvbuf� int count�

MPI Datatype datatype� MPI Op op� int root�

MPI Comm comm�

��� Chapter �

A0 B0 C0

A1 B1 C1

A2 B2 C2

A0 B0 C0

A1 B1 C1

A2 B2 C2

A0 B0 C0

A1 B1 C1

A2 B2 C2

A0 B0 C0

A1 B1 C1

A2 B2 C2

scan

A0+A1+A2

A0+A1+A2

B0+B1+B2

C0+C1+C2

A0+A1+A2 B0+B1+B2 C0+C1+C2

A0+A1+A2 B0+B1+B2 C0+C1+C2

A0+A1+A2 B0+B1+B2 C0+C1+C2

B0+B1+B2 C0+C1+C2

A0+A1+A2 B0+B1+B2 C0+C1+C2

A0

A0+A1

B0

B0+B1

C0

C0+C1

pr
oc

es
se

s

data

reduce

allreduce

reduce-scatter

Figure ����
Reduce functions illustrated for a group of three processes� In each case� each row of boxes
represents data items in one process� Thus� in the reduce� initially each process has three items�
after the reduce the root process has three sums�

Collective Communications ���

MPI REDUCE�SENDBUF� RECVBUF� COUNT� DATATYPE� OP� ROOT� COMM�

IERROR�

	type� SENDBUF���� RECVBUF���

INTEGER COUNT� DATATYPE� OP� ROOT� COMM� IERROR

MPI REDUCE combines the elements provided in the input bu�er of each pro�

cess in the group� using the operation op� and returns the combined value in the

output bu�er of the process with rank root� The input bu�er is de�ned by the ar�

guments sendbuf� count and datatype� the output bu�er is de�ned by the arguments

recvbuf� count and datatype� both have the same number of elements� with the same

type� The arguments count� op and root must have identical values at all processes�

the datatype arguments should match� and comm should represent the same intra�

group communication domain� Thus� all processes provide input bu�ers and output

bu�ers of the same length� with elements of the same type� Each process can provide

one element� or a sequence of elements� in which case the combine operation is exe�

cuted element�wise on each entry of the sequence� For example� if the operation is

MPI MAX and the send bu�er contains two elements that are �oating point numbers

�count ! � and datatype ! MPI FLOAT�� then recvbuf��� ! globalmax�sendbuf����

and recvbuf��� ! globalmax�sendbuf�����

Section ������ lists the set of prede�ned operations provided byMPI� That section

also enumerates the allowed datatypes for each operation� In addition� users may

de�ne their own operations that can be overloaded to operate on several datatypes�

either basic or derived� This is further explained in Section �����

The operation op is always assumed to be associative� All prede�ned operations

are also commutative� Users may de�ne operations that are assumed to be asso�

ciative� but not commutative� The �canonical� evaluation order of a reduction is

determined by the ranks of the processes in the group� However� the implemen�

tation can take advantage of associativity� or associativity and commutativity in

order to change the order of evaluation� This may change the result of the reduction

for operations that are not strictly associative and commutative� such as �oating

point addition�

Advice to implementors� It is strongly recommended that MPI REDUCE be im�

plemented so that the same result be obtained whenever the function is applied

on the same arguments� appearing in the same order� Note that this may prevent

optimizations that take advantage of the physical location of processors� �End of

advice to implementors��

��� Chapter �

The datatype argument of MPI REDUCEmust be compatible with op� Prede�ned

operators work only with the MPI types listed in Section ������ and Section �������

User�de�ned operators may operate on general� derived datatypes� In this case�

each argument that the reduce operation is applied to is one element described by

such a datatype� which may contain several basic values� This is further explained

in Section �����

	����� Prede�ned Reduce Operations

The following prede�ned operations are supplied forMPI REDUCE and related func�

tions MPI ALLREDUCE� MPI REDUCE SCATTER� and MPI SCAN� These opera�

tions are invoked by placing the following in op�

Name Meaning

MPI MAX maximum
MPI MIN minimum
MPI SUM sum
MPI PROD product
MPI LAND logical and
MPI BAND bit�wise and
MPI LOR logical or
MPI BOR bit�wise or
MPI LXOR logical xor
MPI BXOR bit�wise xor
MPI MAXLOC max value and location
MPI MINLOC min value and location

The two operations MPI MINLOC and MPI MAXLOC are discussed separately in

Section ������� For the other prede�ned operations� we enumerate below the allowed

combinations of op and datatype arguments� First� de�ne groups of MPI basic

datatypes in the following way�

C integer
 MPI INT� MPI LONG� MPI SHORT�

MPI UNSIGNED SHORT� MPI UNSIGNED�

MPI UNSIGNED LONG

Fortran integer
 MPI INTEGER

Floating point
 MPI FLOAT� MPI DOUBLE� MPI REAL�

MPI DOUBLE PRECISION� MPI LONG�

DOUBLE

Collective Communications ��	

Logical
 MPI LOGICAL

Complex
 MPI COMPLEX

Byte
 MPI BYTE

Now� the valid datatypes for each option is speci�ed below�

Op Allowed Types

MPI MAX� MPI MIN C integer� Fortran integer� Floating point

MPI SUM� MPI PROD C integer� Fortran integer� Floating point�

Complex

MPI LAND� MPI LOR� MPI LXOR C integer� Logical

MPI BAND� MPI BOR� MPI BXOR C integer� Fortran integer� Byte

Example 	��
 A routine that computes the dot product of two vectors that are

distributed across a group of processes and returns the answer at node zero�

SUBROUTINE PAR�BLAS
�m� a� b� c� comm�

REAL a�m�� b�m� ! local slice of array

REAL c ! result �at node zero�

REAL sum

INTEGER m� comm� i� ierr

! local sum

sum � ���

DO i �
� m

sum � sum
 a�i��b�i�

END DO

! global sum

CALL MPI�REDUCE�sum� c�
� MPI�REAL� MPI�SUM� �� comm� ierr�

RETURN

Example 	��
 A routine that computes the product of a vector and an array that

are distributed across a group of processes and returns the answer at node zero�

The distribution of vector a and matrix b is illustrated in Figure �����

SUBROUTINE PAR�BLAS��m� n� a� b� c� comm�

REAL a�m�� b�m�n� ! local slice of array

REAL c�n� ! result

��
 Chapter �

m

n

n

c

b

m

a

Figure ����
vector
matrix product� Vector a and matrix b are distributed in one dimension� The distribution
is illustrated for four processes� The slices need not be all of the same size	 each process may
have a di�erent value for m�

REAL sum�n�

INTEGER m� n� comm� i� j� ierr

! local sum

DO j�
� n

sum�j� � ���

DO i �
� m

sum�j� � sum�j�
 a�i��b�i�j�

END DO

END DO

! global sum

CALL MPI�REDUCE�sum� c� n� MPI�REAL� MPI�SUM� �� comm� ierr�

! return result at node zero �and garbage at the other nodes�

RETURN

	����� MINLOC and MAXLOC

The operator MPI MINLOC is used to compute a global minimum and also an

index attached to the minimum value� MPI MAXLOC similarly computes a global

maximum and index� One application of these is to compute a global minimum

�maximum� and the rank of the process containing this value�

Collective Communications ���

The operation that de�nes MPI MAXLOC is��
u

i

�
	

�
v

j

�
!

�
w

k

�
where w ! max�u� v� and k !

��
�

i if u � v

min�i� j� if u ! v

j if u � v

MPI MINLOC is de�ned similarly��
u

i

�
	

�
v

j

�
!

�
w

k

�
where w ! min�u� v� and k !

��
�

i if u � v

min�i� j� if u ! v

j if u � v

Both operations are associative and commutative� Note that if MPI MAXLOC is

applied to reduce a sequence of pairs �u�� ��� �u�� ��� � � � � �un��� n���� then the value

returned is �u� r�� where u ! maxi ui and r is the index of the �rst global maximum

in the sequence� Thus� if each process supplies a value and its rank within the

group� then a reduce operation with op ! MPI MAXLOC will return the maximum

value and the rank of the �rst process with that value� Similarly�MPI MINLOC can

be used to return a minimum and its index� More generally� MPI MINLOC com�

putes a lexicographic minimum� where elements are ordered according to the �rst

component of each pair� and ties are resolved according to the second component�

The reduce operation is de�ned to operate on arguments that consist of a pair�

value and index� In order to use MPI MINLOC and MPI MAXLOC in a reduce

operation� one must provide a datatype argument that represents a pair �value and

index�� MPI provides nine such prede�ned datatypes� In C� the index is an int and

the value can be a short or long int� a �oat� or a double� The potentially mixed�type

nature of such arguments is a problem in Fortran� The problem is circumvented�

for Fortran� by having the MPI�provided type consist of a pair of the same type as

value� and coercing the index to this type also�

The operations MPI MAXLOC and MPI MINLOC can be used with each of the

following datatypes�

Fortran

Name Description
MPI �REAL pair of REALs
MPI �DOUBLE PRECISION pair of DOUBLE PRECISION variables
MPI �INTEGER pair of INTEGERs

C

Name Description
MPI FLOAT INT �oat and int

MPI DOUBLE INT double and int

��� Chapter �

MPI LONG INT long and int

MPI �INT pair of int
MPI SHORT INT short and int

MPI LONG DOUBLE INT long double and int

The datatype MPI �REAL is as if de�ned by the following �see Section �����

MPI�TYPE�CONTIGUOUS��� MPI�REAL� MPI��REAL�

Similar statements apply for MPI �INTEGER� MPI �DOUBLE PRECISION� and MPI�

�INT�

The datatype MPI FLOAT INT is as if de�ned by the following sequence of in�

structions�

type��� � MPI�FLOAT

type�
� � MPI�INT

disp��� � �

disp�
� � sizeof�float�

block��� �

block�
� �

MPI�TYPE�STRUCT��� block� disp� type� MPI�FLOAT�INT�

Similar statements apply for the other mixed types in C�

Example 	��� Each process has an array of �� doubles� in C� For each of the ��

locations� compute the value and rank of the process containing the largest value�

���

�� each process has an array of �� doubles ain����

��

double ain����� aout�����

int ind�����

struct �

double val�

int rank�

� in����� out�����

int i� myrank� root�

MPI�Comm�rank�MPI�COMM�WORLD� �myrank��

for �i��� i	���

i� �

in�i��val � ain�i��

Collective Communications ���

in�i��rank � myrank�

�

MPI�Reduce� in� out� ��� MPI�DOUBLE�INT� MPI�MAXLOC� root� comm ��

�� At this point� the answer resides on process root

��

if �myrank �� root� �

�� read ranks out

��

for �i��� i	���

i� �

aout�i� � out�i��val�

ind�i� � out�i��rank�

�

�

Example 	��� Same example� in Fortran�

���

! each process has an array of �� doubles ain����

DOUBLE PRECISION ain����� aout����

INTEGER ind�����

DOUBLE PRECISION in������� out������

INTEGER i� myrank� root� ierr�

MPI�COMM�RANK�MPI�COMM�WORLD� myrank��

DO i�
� ��

in�
�i� � ain�i�

in���i� � myrank ! myrank is coerced to a double

END DO

MPI�REDUCE� in� out� ��� MPI��DOUBLE�PRECISION� MPI�MAXLOC� root�

comm� ierr ��

! At this point� the answer resides on process root

IF �myrank �EQ� root� THEN

! read ranks out

DO I�
� ��

aout�i� � out�
�i�

��� Chapter �

ind�i� � out���i� ! rank is coerced back to an integer

END DO

END IF

Example 	��� Each process has a non�empty array of values� Find the minimum

global value� the rank of the process that holds it and its index on this process�

$define LEN
���

float val�LEN�� �� local array of values ��

int count� �� local number of values ��

int myrank� minrank� minindex�

float minval�

struct �

float value�

int index�

� in� out�

�� local minloc ��

in�value � val����

in�index � ��

for �i�
� i 	 count� i

�

if �in�value � val�i�� �

in�value � val�i��

in�index � i�

�

�� global minloc ��

MPI�Comm�rank�MPI�COMM�WORLD� �myrank��

in�index � myrank�LEN
 in�index�

MPI�Reduce� in� out�
� MPI�FLOAT�INT� MPI�MINLOC� root� comm ��

�� At this point� the answer resides on process root

��

if �myrank �� root� �

�� read answer out

��

minval � out�value�

Collective Communications ���

minrank � out�index � LEN�

minindex � out�index " LEN�

�

Rationale� The de�nition of MPI MINLOC and MPI MAXLOC given here has the

advantage that it does not require any special�case handling of these two operations�

they are handled like any other reduce operation� A programmer can provide

his or her own de�nition of MPI MAXLOC and MPI MINLOC� if so desired� The

disadvantage is that values and indices have to be �rst interleaved� and that indices

and values have to be coerced to the same type� in Fortran� �End of rationale��

	����	 All Reduce

MPI includes variants of each of the reduce operations where the result is returned

to all processes in the group� MPI requires that all processes participating in these

operations receive identical results�

MPI ALLREDUCE� sendbuf� recvbuf� count� datatype� op� comm�

IN sendbuf starting address of send bu�er

OUT recvbuf starting address of receive bu�er

IN count number of elements in send bu�er

IN datatype data type of elements of send bu�er

IN op operation

IN comm communicator

int MPI Allreduce�void� sendbuf� void� recvbuf� int count�

MPI Datatype datatype� MPI Op op� MPI Comm comm�

MPI ALLREDUCE�SENDBUF� RECVBUF� COUNT� DATATYPE� OP� COMM� IERROR�

	type� SENDBUF���� RECVBUF���

INTEGER COUNT� DATATYPE� OP� COMM� IERROR

Same as MPI REDUCE except that the result appears in the receive bu�er of all

the group members�

Advice to implementors� The all�reduce operations can be implemented as a

reduce� followed by a broadcast� However� a direct implementation can lead to

better performance� In this case care must be taken to make sure that all processes

receive the same result� �End of advice to implementors��

��� Chapter �

Example 	��� A routine that computes the product of a vector and an array that

are distributed across a group of processes and returns the answer at all nodes �see

also Example ����� page �����

SUBROUTINE PAR�BLAS��m� n� a� b� c� comm�

REAL a�m�� b�m�n� ! local slice of array

REAL c�n� ! result

REAL sum�n�

INTEGER m� n� comm� i� j� ierr

! local sum

DO j�
� n

sum�j� � ���

DO i �
� m

sum�j� � sum�j�
 a�i��b�i�j�

END DO

END DO

! global sum

CALL MPI�ALLREDUCE�sum� c� n� MPI�REAL� MPI�SUM� comm� ierr�

! return result at all nodes

RETURN

	����
 Reduce�Scatter

MPI includes variants of each of the reduce operations where the result is scattered

to all processes in the group on return�

MPI REDUCE SCATTER� sendbuf� recvbuf� recvcounts� datatype� op� comm�

IN sendbuf starting address of send bu�er
OUT recvbuf starting address of receive bu�er
IN recvcounts integer array
IN datatype data type of elements of input bu�er
IN op operation
IN comm communicator

int MPI Reduce scatter�void� sendbuf� void� recvbuf� int �recvcounts�

MPI Datatype datatype� MPI Op op� MPI Comm comm�

Collective Communications ���

MPI REDUCE SCATTER�SENDBUF� RECVBUF� RECVCOUNTS� DATATYPE� OP� COMM�

IERROR�

	type� SENDBUF���� RECVBUF���

INTEGER RECVCOUNTS���� DATATYPE� OP� COMM� IERROR

MPI REDUCE SCATTER acts as if it �rst does an element�wise reduction on

vector of count !
P
i recvcounts�i� elements in the send bu�er de�ned by sendbuf�

count and datatype� Next� the resulting vector of results is split into n disjoint

segments� where n is the number of processes in the group of comm� Segment i

contains recvcounts�i
 elements� The ith segment is sent to process i and stored in

the receive bu�er de�ned by recvbuf� recvcounts�i
 and datatype�

Example 	��� A routine that computes the product of a vector and an array that

are distributed across a group of processes and returns the answer in a distributed

array� The distribution of vectors a and c and matrix b is illustrated in Figure �����

SUBROUTINE PAR�BLAS��m� n� k� a� b� c� comm�

REAL a�m�� b�m�n�� c�k� ! local slice of array

REAL sum�n�

INTEGER m� n� k� comm� i� j� gsize� ierr

INTEGER� ALLOCATABLE recvcounts� �

! distribute to all processes the sizes of the slices of

! array c �in real life� this would be precomputed�

CALL MPI�COMM�SIZE�comm� gsize� ierr�

ALLOCATE recvcounts�gsize�

CALL MPI�ALLGATHER�k�
� MPI�INTEGER� recvcounts�
�

MPI�INTEGER� comm� ierr�

! local sum

DO j�
� n

sum�j� � ���

DO i �
� m

sum�j� � sum�j�
 a�i��b�i�j�

END DO

END DO

! global sum and distribution of vector c

CALL MPI�REDUCE�SCATTER�sum� c� recvcounts� MPI�REAL�

MPI�SUM� comm� ierr�

��� Chapter �

m

a

m

n

n

c
ka

b

m

Figure ����
vector
matrix product� All vectors and matrices are distributed� The distribution is illustrated
for four processes� Each process may have a di�erent value for m and k�

! return result in distributed vector

RETURN

Advice to implementors� The MPI REDUCE SCATTER routine is functionally

equivalent to� A MPI REDUCE operation function with count equal to the sum

of recvcounts�i
 followed by MPI SCATTERV with sendcounts equal to recvcounts�

However� a direct implementationmay run faster� �End of advice to implementors��

���� Scan

MPI SCAN� sendbuf� recvbuf� count� datatype� op� comm �

IN sendbuf starting address of send bu�er

OUT recvbuf starting address of receive bu�er

IN count number of elements in input bu�er

IN datatype data type of elements of input bu�er

IN op operation

IN comm communicator

int MPI Scan�void� sendbuf� void� recvbuf� int count�

MPI Datatype datatype� MPI Op op� MPI Comm comm �

MPI SCAN�SENDBUF� RECVBUF� COUNT� DATATYPE� OP� COMM� IERROR�

Collective Communications ��	

	type� SENDBUF���� RECVBUF���

INTEGER COUNT� DATATYPE� OP� COMM� IERROR

MPI SCAN is used to perform a pre�x reduction on data distributed across the

group� The operation returns� in the receive bu�er of the process with rank i�

the reduction of the values in the send bu�ers of processes with ranks ������i

�inclusive�� The type of operations supported� their semantics� and the constraints

on send and receive bu�ers are as for MPI REDUCE�

Rationale� The MPI Forum de�ned an inclusive scan� that is� the pre�x reduction

on process i includes the data from process i� An alternative is to de�ne scan

in an exclusive manner� where the result on i only includes data up to i�
� Both

de�nitions are useful� The latter has some advantages� the inclusive scan can always

be computed from the exclusive scan with no additional communication� for non�

invertible operations such as max and min� communication is required to compute

the exclusive scan from the inclusive scan� There is� however� a complication with

exclusive scan since one must de�ne the �unit� element for the reduction in this

case� That is� one must explicitly say what occurs for process �� This was thought to

be complex for user�de�ned operations and hence� the exclusive scan was dropped�

�End of rationale��

���� User�De�ned Operations for Reduce and Scan

MPI OP CREATE� function� commute� op�

IN function user de�ned function

IN commute true if commutative� false otherwise�

OUT op operation

int MPI Op create�MPI User function �function� int commute�

MPI Op �op�

MPI OP CREATE� FUNCTION� COMMUTE� OP� IERROR�

EXTERNAL FUNCTION

LOGICAL COMMUTE

INTEGER OP� IERROR

MPI OP CREATE binds a user�de�ned global operation to an op handle that can

subsequently be used inMPI REDUCE�MPI ALLREDUCE�MPI REDUCE SCATTER�

�	
 Chapter �

and MPI SCAN� The user�de�ned operation is assumed to be associative� If com�

mute ! true� then the operation should be both commutative and associative� If

commute ! false� then the order of operations is �xed and is de�ned to be in

ascending� process rank order� beginning with process zero� The order of evalu�

ation can be changed� taking advantage of the associativity of the operation� If

commute ! true then the order of evaluation can be changed� taking advantage of

commutativity and associativity�

function is the user�de�ned function� which must have the following four argu�

ments� invec� inoutvec� len and datatype�

The ANSI�C prototype for the function is the following�

typedef void MPI�User�function� void �invec� void �inoutvec� int �len�

MPI�Datatype �datatype��

The Fortran declaration of the user�de�ned function appears below�

FUNCTION USER�FUNCTION� INVEC���� INOUTVEC���� LEN� TYPE�

	type� INVEC�LEN�� INOUTVEC�LEN�

INTEGER LEN� TYPE

The datatype argument is a handle to the data type that was passed into the

call to MPI REDUCE� The user reduce function should be written such that the

following holds� Let u��
� ��� � u�len��
 be the len elements in the communication

bu�er described by the arguments invec� len and datatype when the function is

invoked� let v��
� ��� � v�len��
 be len elements in the communication bu�er described

by the arguments inoutvec� len and datatype when the function is invoked� let w��
� ���

� w�len��
 be len elements in the communication bu�er described by the arguments

inoutvec� len and datatype when the function returns� then w�i
 	 u�i
	v�i
� for i	� �

��� � len��� where 	 is the reduce operation that the function computes�

Informally� we can think of invec and inoutvec as arrays of len elements that

function is combining� The result of the reduction over�writes values in inoutvec�

hence the name� Each invocation of the function results in the pointwise evaluation

of the reduce operator on len elements� i�e� the function returns in inoutvec�i
 the

value invec�i�	 inoutvec�i�� for i ! �� � � � � count��� where 	 is the combining operation

computed by the function�

Rationale� The len argument allows MPI REDUCE to avoid calling the function

for each element in the input bu�er� Rather� the system can choose to apply the

function to chunks of input� In C� it is passed in as a reference for reasons of

compatibility with Fortran�

Collective Communications �	�

By internally comparing the value of the datatype argument to known� global han�

dles� it is possible to overload the use of a single user�de�ned function for several�

di�erent data types� �End of rationale��

General datatypes may be passed to the user function� However� use of datatypes

that are not contiguous is likely to lead to ine�ciencies�

No MPI communication function may be called inside the user function� MPI A�

BORT may be called inside the function in case of an error�

Advice to users� Suppose one de�nes a library of user�de�ned reduce functions

that are overloaded� the datatype argument is used to select the right execution

path at each invocation� according to the types of the operands� The user�de�ned

reduce function cannot �decode� the datatype argument that it is passed� and can�

not identify� by itself� the correspondence between the datatype handles and the

datatype they represent� This correspondence was established when the datatypes

were created� Before the library is used� a library initialization preamble must be

executed� This preamble code will de�ne the datatypes that are used by the library�

and store handles to these datatypes in global� static variables that are shared by

the user code and the library code�

The Fortran version of MPI REDUCE will invoke a user�de�ned reduce function us�

ing the Fortran calling conventions and will pass a Fortran�type datatype argument�

the C version will use C calling convention and the C representation of a datatype

handle� Users who plan to mix languages should de�ne their reduction functions

accordingly� �End of advice to users��

Advice to implementors� We outline below a naive and ine�cient implementation

of MPI REDUCE�

if �rank � �� �

MPI�RECV�tempbuf� count� datatype� rank�
�����

User�reduce� tempbuf� sendbuf� count� datatype�

�

if �rank 	 groupsize�
� �

MPI�SEND� sendbuf� count� datatype� rank

� ����

�

�� answer now resides in process groupsize�
 ��� now send to root

��

if �rank �� groupsize�
� �

MPI�SEND� sendbuf� count� datatype� root� ����

�	� Chapter �

�

if �rank �� root� �

MPI�RECV�recvbuf� count� datatype� groupsize�
�����

�

The reduction computation proceeds� sequentially� from process � to process

groupsize�
� This order is chosen so as to respect the order of a possibly non�

commutative operator de�ned by the function User reduce��� A more e�cient

implementation is achieved by taking advantage of associativity and using a loga�

rithmic tree reduction� Commutativity can be used to advantage� for those cases

in which the commute argument to MPI OP CREATE is true� Also� the amount

of temporary bu�er required can be reduced� and communication can be pipelined

with computation� by transferring and reducing the elements in chunks of size len

�count�

The prede�ned reduce operations can be implemented as a library of user�de�ned

operations� However� better performance might be achieved if MPI REDUCE han�

dles these functions as a special case� �End of advice to implementors��

MPI OP FREE� op�

IN op operation

int MPI op free� MPI Op �op�

MPI OP FREE� OP� IERROR�

INTEGER OP� IERROR

Marks a user�de�ned reduction operation for deallocation and sets op to MPI OP�

NULL�

The following two examples illustrate usage of user�de�ned reduction�

Example 	��� Compute the product of an array of complex numbers� in C�

typedef struct �

double real�imag�

� Complex�

�� the user�defined function

��

Collective Communications �	�

void myProd� Complex �in� Complex �inout� int �len� MPI�Datatype �dptr �

�

int i�

Complex c�

for �i��� i	 �len�

i� �

c�real � inout��real�in��real �

inout��imag�in��imag�

c�imag � inout��real�in��imag

inout��imag�in��real�

�inout � c�

in

� inout

�

�

�

�� and� to call it���

��

���

�� each process has an array of
�� Complexes

��

Complex a�
���� answer�
����

MPI�Op myOp�

MPI�Datatype ctype�

�� explain to MPI how type Complex is defined

��

MPI�Type�contiguous� �� MPI�DOUBLE� �ctype ��

MPI�Type�commit� �ctype ��

�� create the complex�product user�op

��

MPI�Op�create� myProd� True� �myOp ��

MPI�Reduce� a� answer�
��� ctype� myOp� root� comm ��

�� At this point� the answer� which consists of
�� Complexes�

� resides on process root

��

�	� Chapter �

Example 	��� This example uses a user�de�ned operation to produce a segmented

scan� A segmented scan takes� as input� a set of values and a set of logicals� and

the logicals delineate the various segments of the scan� For example�
values v� v� v� v� v� v� v	 v

logicals � � � � � � � �

result v� v� � v� v� v� � v� v� � v� � v� v� v� � v	 v

The operator that produces this e�ect is��

u

i

�
	

�
v

j

�
!

�
w

j

�
�

where�

w !

�
u� v if i ! j

v if i
! j
�

Note that this is a non�commutative operator� C code that implements it is given

below�

typedef struct �

double val�

int log�

� SegScanPair�

�� the user�defined function

��

void segScan� SegScanPair �in� SegScanPair �inout� int �len�

MPI�Datatype �dptr �

�

int i�

SegScanPair c�

for �i��� i	 �len�

i� �

if � in��log �� inout��log �

c�val � in��val
 inout��val�

else

c�val � inout��val�

c�log � inout��log�

�inout � c�

in

� inout

�

�

�

Collective Communications �	�

�� Note that the inout argument to the user�defined

� function corresponds to the right�hand operand of the

� operator� When using this operator� we must be careful

� to specify that it is non�commutative� as in the following�

��

int i�base�

SeqScanPair a� answer�

MPI�Op myOp�

MPI�Datatype type��� � �MPI�DOUBLE� MPI�INT��

MPI�Aint disp����

int blocklen��� � �
�
��

MPI�Datatype sspair�

�� explain to MPI how type SegScanPair is defined

��

MPI�Address� a� disp��

MPI�Address� a�log� disp

��

base � disp����

for �i��� i	��

i� disp�i� �� base�

MPI�Type�struct� �� blocklen� disp� type� �sspair ��

MPI�Type�commit� �sspair ��

�� create the segmented�scan user�op

��

MPI�Op�create� segScan� False� �myOp ��

���

MPI�Scan� a� answer�
� sspair� myOp� root� comm ��

���� The Semantics of Collective Communications

A correct� portable program must invoke collective communications so that dead�

lock will not occur� whether collective communications are synchronizing or not�

The following examples illustrate dangerous use of collective routines�

�	� Chapter �

Example 	��	 The following is erroneous�

switch�rank� �

case �

MPI�Bcast�buf
� count� type� �� comm��

MPI�Bcast�buf�� count� type�
� comm��

break�

case

MPI�Bcast�buf�� count� type�
� comm��

MPI�Bcast�buf
� count� type� �� comm��

break�

�

We assume that the group of comm is f���g� Two processes execute two broadcast

operations in reverse order� MPI may match the �rst broadcast call of each process�

resulting in an error� since the calls do not specify the same root� Alternatively� if

MPI matches the calls correctly� then a deadlock will occur if the the operation is

synchronizing�

Collective operations must be executed in the same order at all members of the

communication group�

Example 	��
 The following is erroneous�

switch�rank� �

case �

MPI�Bcast�buf
� count� type� �� comm���

MPI�Bcast�buf�� count� type� �� comm���

break�

case

MPI�Bcast�buf
� count� type�
� comm
��

MPI�Bcast�buf�� count� type� �� comm���

break�

case �

MPI�Bcast�buf
� count� type� �� comm���

MPI�Bcast�buf�� count� type�
� comm
��

break�

�

Assume that the group of comm� is f���g� of comm� is f�� �g and of comm� is

f���g� If the broadcast is a synchronizing operation� then there is a cyclic depen�

Collective Communications �	�

dency� the broadcast in comm� completes only after the broadcast in comm�� the

broadcast in comm� completes only after the broadcast in comm�� and the broad�

cast in comm� completes only after the broadcast in comm�� Thus� the code will

deadlock�

Collective operations must be executed in an order so that no cyclic dependencies

occur�

Example 	��
 The following is erroneous�

switch�rank� �

case �

MPI�Bcast�buf
� count� type� �� comm��

MPI�Send�buf�� count� type�
� tag� comm��

break�

case

MPI�Recv�buf�� count� type� �� tag� comm��

MPI�Bcast�buf
� count� type� �� comm��

break�

�

Process zero executes a broadcast� followed by a blocking send operation� Process

one �rst executes a blocking receive that matches the send� followed by broadcast

call that matches the broadcast of process zero� This program may deadlock� The

broadcast call on process zero may block until process one executes the matching

broadcast call� so that the send is not executed� Process one will de�nitely block

on the receive and so� in this case� never executes the broadcast�

The relative order of execution of collective operations and point�to�point opera�

tions should be such� so that even if the collective operations and the point�to�point

operations are synchronizing� no deadlock will occur�

Example 	��� A correct� but non�deterministic program�

switch�rank� �

case �

MPI�Bcast�buf
� count� type� �� comm��

MPI�Send�buf�� count� type�
� tag� comm��

break�

case

MPI�Recv�buf�� count� type� MPI�ANY�SOURCE� tag� comm��

MPI�Bcast�buf
� count� type� �� comm��

MPI�Recv�buf�� count� type� MPI�ANY�SOURCE� tag� comm��

�	� Chapter �

break�

case �

MPI�Send�buf�� count� type�
� tag� comm��

MPI�Bcast�buf
� count� type� �� comm��

break�

�

All three processes participate in a broadcast� Process � sends a message to

process � after the broadcast� and process � sends a message to process � before

the broadcast� Process � receives before and after the broadcast� with a wildcard

source argument�

Two possible executions of this program� with di�erent matchings of sends and

receives� are illustrated in Figure ����� Note that the second execution has the

peculiar e�ect that a send executed after the broadcast is received at another node

before the broadcast� This example illustrates the fact that one should not rely

on collective communication functions to have particular synchronization e�ects�

A program that works correctly only when the �rst execution occurs �only when

broadcast is synchronizing� is erroneous�

Finally� in multithreaded implementations� one can have more than one� concur�

rently executing� collective communication calls at a process� In these situations�

it is the user�s responsibility to ensure that the same communicator is not used

concurrently by two di�erent collective communication calls at the same process�

Advice to implementors� Assume that broadcast is implemented using point�to�

point MPI communication� Suppose the following two rules are followed�

�� All receives specify their source explicitly �no wildcards��

�� Each process sends all messages that pertain to one collective call before send�

ing any message that pertain to a subsequent collective call�

Then� messages belonging to successive broadcasts cannot be confused� as the order

of point�to�point messages is preserved�

It is the implementor�s responsibility to ensure that point�to�point messages are

not confused with collective messages� One way to accomplish this is� whenever

a communicator is created� to also create a �hidden communicator� for collective

communication� One could achieve a similar e�ect more cheaply� for example� by

using a hidden tag or context bit to indicate whether the communicator is used for

point�to�point or collective communication� �End of advice to implementors��

Collective Communications �		

First Execution

Second Execution

0 1 2

recv

broadcast broadcast broadcast

send

recv

process:

send

match

match

broadcast

recv

recv send

broadcast

send

broadcast
match

match

Figure ����
A race condition causes non
deterministic matching of sends and receives� One cannot rely on
synchronization from a broadcast to make the program deterministic�

�

 Chapter �

� Communicators

��� Introduction

It was the intent of the creators of the MPI standard to address several issues that

augment the power and usefulness of point�to�point and collective communications�

These issues are mainly concerned with the the creation of portable� e�cient and

safe libraries and codes with MPI� and will be discussed in this chapter� This e�ort

was driven by the need to overcome several limitations in many message passing

systems� The next few sections describe these limitations�

���� Division of Processes

In some applications it is desirable to divide up the processes to allow di�erent

groups of processes to perform independent work� For example� we might want an

application to utilize �
�
of its processes to predict the weather based on data already

processed� while the other �
�
of the processes initially process new data� This would

allow the application to regularly complete a weather forecast� However� if no new

data is available for processing we might want the same application to use all of its

processes to make a weather forecast�

Being able to do this e�ciently and easily requires the application to be able

to logically divide the processes into independent subsets� It is important that

these subsets are logically the same as the initial set of processes� For example� the

module to predict the weather might use process � as the master process to dole

out work� If subsets of processes are not numbered in a consistent manner with the

initial set of processes� then there may be no process � in one of the two subsets�

This would cause the weather prediction model to fail�

Applications also need to have collective operations work on a subset of processes�

If collective operations only work on the initial set of processes then it is impossible

to create independent subsets that perform collective operations� Even if the ap�

plication does not need independent subsets� having collective operations work on

subsets is desirable� Since the time to complete most collective operations increases

with the number of processes� limiting a collective operation to only the processes

that need to be involved yields much better scaling behavior� For example� if a

matrix computation needs to broadcast information along the diagonal of a matrix�

only the processes containing diagonal elements should be involved�

���

�
� Chapter �

���� Avoiding Message Con�icts Between Modules

Library routines have historically had di�culty in isolating their own message pass�

ing calls from those in other libraries or in the user�s code� For example� suppose

the user�s code posts a non�blocking receive with both tag and source wildcarded

before it enters a library routine� The �rst send in the library may be received

by the user�s posted receive instead of the one posted by the library� This will

undoubtedly cause the library to fail�

The solution to this di�culty is to allow a module to isolate its message passing

calls from the other modules� Some applications may only determine at run time

which modules will run so it can be impossible to statically isolate all modules in

advance� This necessitates a run time callable system to perform this function�

���� Extensibility by Users

Writers of libraries often want to expand the functionality of the message passing

system� For example� the library may want to create its own special and unique

collective operation� Such a collective operation may be called many times if the

library is called repetitively or if multiple libraries use the same collective routine�

To perform the collective operation e�ciently may require a moderately expensive

calculation up front such as determining the best communication pattern� It is

most e�cient to reuse the up front calculations if the same the set of processes are

involved� This is most easily done by attaching the results of the up front calculation

to the set of processes involved� These types of optimization are routinely done

internally in message passing systems� The desire is to allow others to perform

similar optimizations in the same way�

���	 Safety

There are two philosophies used to provide mechanisms for creating subgroups�

isolating messages� etc� One point of view is to allow the user total control over the

process� This allows maximum �exibility to the user and can� in some cases� lead

to fast implementations� The other point of view is to have the message passing

system control these functions� This adds a degree of safety while limiting the

mechanisms to those provided by the system� MPI chose to use the latter approach�

The added safety was deemed to be very important for writing portable message

passing codes� Since the MPI system controls these functions� modules that are

written independently can safely perform these operations without worrying about

con�icts� As in other areas� MPI also decided to provide a rich set of functions so

that users would have the functionality they are likely to need�

Communicators �
�

��� Overview

The above features and several more are provided in MPI through communicators�

The concepts behind communicators encompass several central and fundamental

ideas in MPI� The importance of communicators can be seen by the fact that they

are present in most calls in MPI� There are several reasons that these features are

encapsulated into a single MPI object� One reason is that it simpli�es calls to

MPI functions� Grouping logically related items into communicators substantially

reduces the number of calling arguments� A second reason is it allows for easier

extensibility� Both the MPI system and the user can add information onto commu�

nicators that will be passed in calls without changing the calling arguments� This

is consistent with the use of opaque objects throughout MPI�

���� Groups

A group is an ordered set of process identi�ers �henceforth processes�� processes are

implementation�dependent objects� Each process in a group is associated with an

integer rank� Ranks are contiguous and start from zero� Groups are represented

by opaque group objects� and hence cannot be directly transferred from one

process to another�

There is a special pre�de�ned group� MPI GROUP EMPTY� which is a group with

no members� The prede�ned constant MPI GROUP NULL is the value used for in�

valid group handles� MPI GROUP EMPTY� which is a valid handle to an empty

group� should not be confused with MPI GROUP NULL� which is an invalid handle�

The former may be used as an argument to group operations� the latter� which is

returned when a group is freed� in not a valid argument�

Group operations are discussed in Section
���

���� Communicator

A communicator is an opaque object with a number of attributes� together with

simple rules that govern its creation� use and destruction� The communicator spec�

i�es a communication domain which can be used for point�to�point communica�

tions� An intracommunicator is used for communicating within a single group of

processes� we call such communication intra�group communication� An intracom�

municator has two �xed attributes� These are the process group and the topology

describing the logical layout of the processes in the group� Process topologies are

the subject of chapter �� Intracommunicators are also used for collective operations

within a group of processes�

�
� Chapter �

An intercommunicator is used for point�to�point communication between two

disjoint groups of processes� We call such communication inter�group communi�

cation� The �xed attributes of an intercommunicator are the two groups� No

topology is associated with an intercommunicator� In addition to �xed attributes a

communicator may also have user�de�ned attributes which are associated with the

communicator using MPI�s caching mechanism� as described in Section
��� The

table below summarizes the di�erences between intracommunicators and intercom�

municators�

Functionality Intracommunicator Intercommunicator

$ of groups � �

Communication Safety Yes Yes

Collective Operations Yes No

Topologies Yes No

Caching Yes Yes

Intracommunicator operations are described in Section
��� and intercommuni�

cator operations are discussed in Section
���

���� Communication Domains

Any point�to�point or collective communication occurs in MPI within a commu�

nication domain� Such a communication domain is represented by a set of com�

municators with consistent values� one at each of the participating processes� each

communicator is the local representation of the global communication domain� If

this domain is for intra�group communication then all the communicators are in�

tracommunicators� and all have the same group attribute� Each communicator

identi�es all the other corresponding communicators�

One can think of a communicator as an array of links to other communicators�

An intra�group communication domain is speci�ed by a set of communicators such

that

� their links form a complete graph� each communicator is linked to all communica�

tors in the set� including itself� and

� links have consistent indices� at each communicator� the i�th link points to the

communicator for process i�

This distributed data structure is illustrated in Figure
��� for the case of a three

member group�

We discuss inter�group communication domains in Section
���

Communicators �
�

0 1 2

0 1 2

20 1 20

1

Figure ���
Distributed data structure for intra
communication domain�

In point�to�point communication� matching send and receive calls should have

communicator arguments that represent the same communication domains� The

rank of the processes is interpreted relative to the group� or groups� associated with

the communicator� Thus� in an intra�group communication domain� process ranks

are relative to the group associated with the communicator�

Similarly� a collective communication call involves all processes in the group of an

intra�group communication domain� and all processes should use a communicator

argument that represents this domain� Intercommunicators may not be used in

collective communication operations�

We shall sometimes say� for simplicity� that two communicators are the same� if

they represent the same communication domain� One should not be misled by this

abuse of language� Each communicator is really a distinct object� local to a process�

Furthermore� communicators that represent the same communication domain may

have di�erent attribute values attached to them at di�erent processes�

Advice to implementors� An often�used design is that each communicator is associ�

ated with an id which is process�unique� and which is identical at all communicators

that de�ne one intra�group communication domain� This id is referred as the com�

munication context� Thus� each message is tagged with the context of the send

communicator argument� and that context identi�es the matching communicator

at the receiving process�

In more detail� a group can be represented by an array group such that group�i

is the address of the process with rank i in group� An intracommunicator can be

represented by a structure with components group� myrank and context�

When a process posts a send with arguments dest� tag and comm� then the address

�
� Chapter �

of the destination is computed as comm�group�dest
� The message sent carries a

header with the tuple �comm�myrank� tag� comm�context��

If a process posts a receive with argument source� tag and comm� then headers of

incoming messages are matched to the tuple �source� tag� comm�context� ��rst two

may be dontcare��

Another design is to use ids which are process�unique� but not necessarily identical

at all processes� In such case� the context component of the communicator structure

is an array� where comm�context�i
 is the id chosen by the process with rank i for

that communication domain� A message is sent with header comm�myrank� tag�

comm�context�dest
� a receive call causes incoming messages to be matched against

the tuple �source� tag� comm�context�myrank
��

The later design uses more storage for the communicator object� but simpli�es the

creation of new communicators� since ids can be selected locally �they still need to

be broadcast to all other group members��

It is important to remember that MPI does not require a unique context to be asso�

ciated with each communicator� �Context� is a possible implementation structure�

not an MPI object�

With both designs we assumed a ��at� representation for groups� where each pro�

cess holds a complete list of group members� This requires� at each process� storage

of size proportional to the size of the group� While this presents no problem with

groups of practical size �����s or �����s of processes� it is not a scalable design�

Other representations will be needed for MPI computations that spawn the Inter�

net� The group information may be distributed and managed hierarchically� as are

Internet addresses� at the expense of additional communication� �End of advice to

implementors��

MPI is designed to ensure that communicator constructors always generate con�

sistent communicators that are a valid representation of the newly created com�

munication domain� This is done by requiring that a new intracommunicator be

constructed out of an existing parent communicator� and that this be a collective

operation over all processes in the group associated with the parent communicator�

The group associated with a new intracommunicator must be a subgroup of that

associated with the parent intracommunicator� Thus� all the intracommunicator

constructor routines described in Section
���� have an existing communicator as

an input argument� and the newly created intracommunicator as an output argu�

ment� This leads to a chicken�and�egg situation since we must have an existing

Communicators �
�

communicator to create a new communicator� This problem is solved by the provi�

sion of a prede�ned intracommunicator� MPI COMM WORLD� which is available for

use once the routine MPI INIT has been called� MPI COMM WORLD� which has as

its group attribute all processes with which the local process can communicate� can

be used as the parent communicator in constructing new communicators� A second

pre�de�ned communicator� MPI COMM SELF� is also available for use after calling

MPI INIT and has as its associated group just the process itself� MPI COMM SELF is

provided as a convenience since it could easily be created out ofMPI COMM WORLD�

���	 Compatibility with Current Practice

The current practice in many codes is that there is a unique� prede�ned commu�

nication universe that includes all processes available when the parallel program is

initiated� the processes are assigned consecutive ranks� Participants in a point�to�

point communication are identi�ed by their rank� a collective communication �such

as broadcast� always involves all processes� As such� most current message passing

libraries have no equivalent argument to the communicator� It is implicitly all the

processes as ranked by the system�

This practice can be followed in MPI by using the prede�ned communicator

MPI COMM WORLD wherever a communicator argument is required� Thus� using

current practice in MPI is very easy� Users that are content with it can ignore most

of the information in this chapter� However� everyone should seriously consider

understanding the potential risks in usingMPI COMM WORLD to avoid unexpected

behavior of their programs�

��� Group Management

This section describes the manipulation of process groups in MPI� These operations

are local and their execution do not require interprocess communication� MPI allows

manipulation of groups outside of communicators but groups can only be used for

message passing inside of a communicator�

�
� Chapter �

���� Group Accessors

MPI GROUP SIZE�group� size�

IN group group

OUT size number of processes in group

int MPI Group size�MPI Group group� int �size�

MPI GROUP SIZE�GROUP� SIZE� IERROR�

INTEGER GROUP� SIZE� IERROR

MPI GROUP SIZE returns the number of processes in the group� Thus� if group

	 MPI GROUP EMPTY then the call will return size 	 �� �On the other hand� a

call with group 	 MPI GROUP NULL is erroneous��

MPI GROUP RANK�group� rank�

IN group group

OUT rank rank of the calling process in group

int MPI Group rank�MPI Group group� int �rank�

MPI GROUP RANK�GROUP� RANK� IERROR�

INTEGER GROUP� RANK� IERROR

MPI GROUP RANK returns the rank of the calling process in group� If the process

is not a member of group then MPI UNDEFINED is returned�

MPI GROUP TRANSLATE RANKS �group�� n� ranks�� group�� ranks��

IN group� group�

IN n number of ranks in ranks� and ranks�

arrays

IN ranks� array of zero or more valid ranks in group�

IN group� group�

OUT ranks� array of corresponding ranks in group�

int MPI Group translate ranks �MPI Group group
� int n� int �ranks
�

MPI Group group�� int �ranks��

Communicators �
	

MPI GROUP TRANSLATE RANKS�GROUP
� N� RANKS
� GROUP�� RANKS�� IERROR�

INTEGER GROUP
� N� RANKS
���� GROUP�� RANKS����� IERROR

MPI GROUP TRANSLATE RANKS maps the ranks of a set of processes in group�

to their ranks in group�� Upon return� the array ranks� contains the ranks in group�

for the processes in group� with ranks listed in ranks�� If a process in group� found

in ranks� does not belong to group� then MPI UNDEFINED is returned in ranks��

This function is important for determining the relative numbering of the same

processes in two di�erent groups� For instance� if one knows the ranks of certain

processes in the group of MPI COMM WORLD� one might want to know their ranks

in a subset of that group�

Example
�� Let group� be a handle to the group fa�b�c�d�e�fg and let group�

be a handle to the group fd�e�a�cg� Let ranks� 	 ���������� Then� a call to

MPI GROUP TRANSLATE RANKS will return the ranks of the processes fa�f�a�cg

in group�� namely ranks� 	 ���������� �� denotes the value MPI UNDEFINED��

MPI GROUP COMPARE�group�� group�� result�

IN group� �rst group

IN group� second group

OUT result result

int MPI Group compare�MPI Group group
�MPI Group group�� int �result�

MPI GROUP COMPARE�GROUP
� GROUP�� RESULT� IERROR�

INTEGER GROUP
� GROUP�� RESULT� IERROR

MPI GROUP COMPARE returns the relationship between two groups� MPI IDENT

results if the group members and group order is exactly the same in both groups�

This happens� for instance� if group� and group� are handles to the same object�

MPI SIMILAR results if the group members are the same but the order is di�erent�

MPI UNEQUAL results otherwise�

���� Group Constructors

Group constructors are used to construct new groups from existing groups� using

various set operations� These are local operations� and distinct groups may be

de�ned on di�erent processes� a process may also de�ne a group that does not

��
 Chapter �

include itself� Consistent de�nitions are required when groups are used as argu�

ments in communicator�building functions� MPI does not provide a mechanism

to build a group from scratch� but only from other� previously de�ned groups�

The base group� upon which all other groups are de�ned� is the group associated

with the initial communicator MPI COMM WORLD �accessible through the func�

tion MPI COMM GROUP��

Local group creation functions are useful since some applications have the needed

information distributed on all nodes� Thus� new groups can be created locally

without communication� This can signi�cantly reduce the necessary communication

in creating a new communicator to use this group�

In Section
����� communicator creation functions are described which also create

new groups� These are more general group creation functions where the information

does not have to be local to each node� They are part of communicator creation

since they will normally require communication for group creation� Since commu�

nicator creation may also require communication� it is logical to group these two

functions together for this case�

Rationale� In what follows� there is no group duplication function analogous

to MPI COMM DUP� de�ned later in this chapter� There is no need for a group

duplicator� A group� once created� can have several references to it by making

copies of the handle� However� care should be taken when �aliasing� groups in

this way since a call to free a group using MPI GROUP FREE may leave dangling

references� �End of rationale��

Advice to implementors� Each group constructor behaves as if it returned a new

group object� When this new group is a copy of an existing group� then one can

avoid creating such new objects� using a reference�count mechanism� �End of advice

to implementors��

MPI COMM GROUP�comm� group�

IN comm communicator

OUT group group corresponding to comm

int MPI Comm group�MPI Comm comm� MPI Group �group�

MPI COMM GROUP�COMM� GROUP� IERROR�

INTEGER COMM� GROUP� IERROR

Communicators ���

MPI COMM GROUP returns in group a handle to the group of comm�

The following three functions do standard set type operations� The only di�er�

ence is that ordering is important so that ranks are consistently de�ned�

MPI GROUP UNION�group�� group�� newgroup�

IN group� �rst group

IN group� second group

OUT newgroup union group

int MPI Group union�MPI Group group
� MPI Group group��

MPI Group �newgroup�

MPI GROUP UNION�GROUP
� GROUP�� NEWGROUP� IERROR�

INTEGER GROUP
� GROUP�� NEWGROUP� IERROR

MPI GROUP INTERSECTION�group�� group�� newgroup�

IN group� �rst group

IN group� second group

OUT newgroup intersection group

int MPI Group intersection�MPI Group group
� MPI Group group��

MPI Group �newgroup�

MPI GROUP INTERSECTION�GROUP
� GROUP�� NEWGROUP� IERROR�

INTEGER GROUP
� GROUP�� NEWGROUP� IERROR

MPI GROUP DIFFERENCE�group�� group�� newgroup�

IN group� �rst group

IN group� second group

OUT newgroup di�erence group

int MPI Group difference�MPI Group group
� MPI Group group��

MPI Group �newgroup�

MPI GROUP DIFFERENCE�GROUP
� GROUP�� NEWGROUP� IERROR�

INTEGER GROUP
� GROUP�� NEWGROUP� IERROR

��� Chapter �

The operations are de�ned as follows�

union All elements of the �rst group �group��� followed by all elements of second

group �group�� not in �rst�

intersection All elements of the �rst group that are also in the second group�

ordered as in �rst group�

di�erence All elements of the �rst group that are not in the second group� ordered

as in the �rst group�

Note that for these operations the order of processes in the output group is deter�

mined primarily by order in the �rst group �if possible� and then� if necessary� by

order in the second group� Neither union nor intersection are commutative� but

both are associative�

The new group can be empty� that is� equal to MPI GROUP EMPTY�

Example
�� Let group� ! fa� b� c� dg and group� ! fd� a� eg� Then

group�
�

group� ! fa� b� c� d� eg �union��

group�
�

group� ! fa� dg �intersection��

and

group� n group� ! fb� cg �di�erence��

MPI GROUP INCL�group� n� ranks� newgroup�

IN group group

IN n number of elements in array ranks �and

size of newgroup�

IN ranks ranks of processes in group to appear in

newgroup

OUT newgroup new group derived from above
 in the

order de�ned by ranks

int MPI Group incl�MPI Group group� int n� int �ranks�

MPI Group �newgroup�

MPI GROUP INCL�GROUP� N� RANKS� NEWGROUP� IERROR�

Communicators ���

INTEGER GROUP� N� RANKS���� NEWGROUP� IERROR

The function MPI GROUP INCL creates a group newgroup that consists of the

n processes in group with ranks rank��
�� � � � rank�n��
� the process with rank i in

newgroup is the process with rank ranks�i
 in group� Each of the n elements of ranks

must be a valid rank in group and all elements must be distinct� or else the call is

erroneous� If n 	 �� then newgroup is MPI GROUP EMPTY� This function can� for

instance� be used to reorder the elements of a group�

Example
�� Let group be a handle to the group fa�b�c�d�e�fg and let ranks 	

�������� Then� a handle to the group fd�b�cg is returned in newgroup�

Assume that newgroup was created by a call toMPI GROUP INCL�group� n� ranks�

newgroup�� Then� a subsequent call to MPI GROUP TRANSLATE RANKS�group� n�

ranks� newgroup� newranks� will return newranks�i� ! i� i ! �� � � � � n�
 �in C� or

newranks�i�
� ! i� i ! �� � � � � n�
 �in Fortran��

MPI GROUP EXCL�group� n� ranks� newgroup�

IN group group

IN n number of elements in array ranks

IN ranks array of integer ranks in group not to

appear in newgroup

OUT newgroup new group derived from above
 preserv�

ing the order de�ned by group

int MPI Group excl�MPI Group group� int n� int �ranks�

MPI Group �newgroup�

MPI GROUP EXCL�GROUP� N� RANKS� NEWGROUP� IERROR�

INTEGER GROUP� N� RANKS���� NEWGROUP� IERROR

The function MPI GROUP EXCL creates a group of processes newgroup that is

obtained by deleting from group those processes with ranks ranks��
�� � � � ranks�n��

in C or ranks��
�� � � � ranks�n
 in Fortran� The ordering of processes in newgroup is

identical to the ordering in group� Each of the n elements of ranks must be a valid

rank in group and all elements must be distinct� otherwise� the call is erroneous� If

n 	 �� then newgroup is identical to group�

Example
�	 Let group be a handle to the group fa�b�c�d�e�fg and let ranks 	

�������� Then� a handle to the group fa�e�fg is returned in newgroup�

��� Chapter �

Suppose one callsMPI GROUP INCL�group� n� ranks� newgroupi� andMPI GROUP�

EXCL�group� n� ranks� newgroupe�� The call MPI GROUP UNION�newgroupi� new�

groupe� newgroup� would return in newgroup a group with the same members as

group but possibly in a di�erent order� The callMPI GROUP INTERSECTION�groupi�

groupe� newgroup� would return MPI GROUP EMPTY�

MPI GROUP RANGE INCL�group� n� ranges� newgroup�

IN group group

IN n number of triplets in array ranges

IN ranges an array of integer triplets
 of the form

��rst rank
 last rank
 stride� indicating

ranks in group of processes to be included

in newgroup

OUT newgroup new group derived from above
 in the

order de�ned by ranges

int MPI Group range incl�MPI Group group� int n� int ranges������

MPI Group �newgroup�

MPI GROUP RANGE INCL�GROUP� N� RANGES� NEWGROUP� IERROR�

INTEGER GROUP� N� RANGES������ NEWGROUP� IERROR

Each triplet in ranges speci�es a sequence of ranks for processes to be included in

the newly created group� The newly created group contains the processes speci�ed

by the �rst triplet� followed by the processes speci�ed by the second triplet� etc�

Example
�
 Let group be a handle to the group fa�b�c�d�e�f�g�h�i�jg and let ranges

	 �������������������������� The �rst triplet �������g speci�es the processes fg�hg�

with ranks ������ the second triplet ������� speci�es the processes fb�d�fg� with

ranks �������� and the third triplet ������� speci�es the processes fa�e�ig� with ranks

�������� The call creates the new group fg�h�b�d�f�a�e�ig�

Generally� if ranges consist of the triplets

�first�� last�� stride��� � � � � �firstn� lastn� striden�

then newgroup consists of the sequence of processes in group with ranks

first�� first� � stride�� � � � � first� �

	
last� � first�

stride�

� stride�� � � �

Communicators ���

firstn� firstn � striden� � � � � firstn �

	
lastn � firstn

striden

� striden�

Each computed rank must be a valid rank in group and all computed ranks must

be distinct� or else the call is erroneous� Note that a call may have firsti � lasti�

and stridei may be negative� but cannot be zero�

The functionality of this routine is speci�ed to be equivalent to expanding the

array of ranges to an array of the included ranks and passing the resulting array

of ranks and other arguments to MPI GROUP INCL� A call to MPI GROUP INCL is

equivalent to a call to MPI GROUP RANGE INCL with each rank i in ranks replaced

by the triplet �i�i�
� in the argument ranges�

MPI GROUP RANGE EXCL�group� n� ranges� newgroup�

IN group group

IN n number of elements in array ranks

IN ranges an array of integer triplets of the form

��rst rank
 last rank
 stride�
 indicating

the ranks in group of processes to be ex�

cluded from the output group newgroup�

OUT newgroup new group derived from above
 preserv�

ing the order in group

int MPI Group range excl�MPI Group group� int n� int ranges������

MPI Group �newgroup�

MPI GROUP RANGE EXCL�GROUP� N� RANGES� NEWGROUP� IERROR�

INTEGER GROUP� N� RANGES������ NEWGROUP� IERROR

Each triplet in ranges speci�es a sequence of ranks for processes to be excluded

from the newly created group� The newly created group contains the remaining

processes� ordered as in group�

Example
�
 Let� as in Example
�
� group be a handle to the group fa�b�c�d�e�f�g��

h�i�jg and let ranges 	 �������������������������� The call creates the new group fc�jg�

consisting of all processes in the old group omitted by the list of triplets�

Each computed rank must be a valid rank in group and all computed ranks must

be distinct� or else the call is erroneous�

The functionality of this routine is speci�ed to be equivalent to expanding the

array of ranges to an array of the excluded ranks and passing the resulting array of

��� Chapter �

ranks and other arguments to MPI GROUP EXCL� A call to MPI GROUP EXCL is

equivalent to a call toMPI GROUP RANGE EXCL with each rank i in ranks replaced

by the triplet �i�i�
� in the argument ranges�

Advice to users� The range operations do not explicitly enumerate ranks� and

therefore are more scalable if implemented e�ciently� Hence� it is recommend that

MPI programmers use them whenever possible� as high�quality implementations

may take advantage of this fact� �End of advice to users��

Advice to implementors� The range operations should be implemented� if possible�

without enumerating the group members� in order to obtain better scalability �time

and space�� �End of advice to implementors��

���� Group Destructors

MPI GROUP FREE�group�

INOUT group group

int MPI Group free�MPI Group �group�

MPI GROUP FREE�GROUP� IERROR�

INTEGER GROUP� IERROR

This operation marks a group object for deallocation� The handle group is set to

MPI GROUP NULL by the call� Any ongoing operation using this group will complete

normally�

Advice to implementors� One can keep a reference count that is incremented

for each call to MPI COMM CREATE and MPI COMM DUP� and decremented for

each call toMPI GROUP FREE orMPI COMM FREE� the group object is ultimately

deallocated when the reference count drops to zero� �End of advice to implemen�

tors��

��� Communicator Management

This section describes the manipulation of communicators in MPI� Operations that

access communicators are local and their execution does not require interprocess

communication� Operations that create communicators are collective and may

Communicators ���

require interprocess communication� We describe the behavior of these functions�

assuming that their comm argument is an intracommunicator� we describe later in

Section
�� their semantics for intercommunicator arguments�

�	�� Communicator Accessors

The following are all local operations�

MPI COMM SIZE�comm� size�

IN comm communicator

OUT size number of processes in the group of comm

int MPI Comm size�MPI Comm comm� int �size�

MPI COMM SIZE�COMM� SIZE� IERROR�

INTEGER COMM� SIZE� IERROR

MPI COMM SIZE returns the size of the group associated with comm�

This function indicates the number of processes involved in an intracommunica�

tor� For MPI COMM WORLD� it indicates the total number of processes available

at initialization time� �For this version of MPI� this is also the total number of

processes available throughout the computation��

Rationale� This function is equivalent to accessing the communicator�s group with

MPI COMM GROUP �see above�� computing the size using MPI GROUP SIZE� and

then freeing the group temporary via MPI GROUP FREE� However� this function is

so commonly used� that this shortcut was introduced� �End of rationale��

MPI COMM RANK�comm� rank�

IN comm communicator

OUT rank rank of the calling process in group of

comm

int MPI Comm rank�MPI Comm comm� int �rank�

MPI COMM RANK�COMM� RANK� IERROR�

INTEGER COMM� RANK� IERROR

��� Chapter �

MPI COMM RANK indicates the rank of the process that calls it� in the range

from � � � �size��� where size is the return value of MPI COMM SIZE� This rank is

relative to the group associated with the intracommunicator comm� Thus� MPI�

COMM RANK�MPI COMM WORLD� rank� returns in rank the �absolute� rank of

the calling process in the global communication group of MPI COMM WORLD�

MPI COMM RANK� MPI COMM SELF� rank� returns rank 	 ��

Rationale� This function is equivalent to accessing the communicator�s group with

MPI COMM GROUP �see above�� computing the rank using MPI GROUP RANK�

and then freeing the group temporary via MPI GROUP FREE� However� this func�

tion is so commonly used� that this shortcut was introduced� �End of rationale��

Advice to users� Many programs will be written with the master�slave model�

where one process �such as the rank�zero process� will play a supervisory role�

and the other processes will serve as compute nodes� In this framework� the two

preceding calls are useful for determining the roles of the various processes of a

communicator� �End of advice to users��

MPI COMM COMPARE�comm�� comm�� result�

IN comm� �rst communicator

IN comm� second communicator

OUT result result

int MPI Comm compare�MPI Comm comm
�MPI Comm comm�� int �result�

MPI COMM COMPARE�COMM
� COMM�� RESULT� IERROR�

INTEGER COMM
� COMM�� RESULT� IERROR

MPI COMM COMPARE is used to �nd the relationship between two intra�com�

municators� MPI IDENT results if and only if comm� and comm� are handles for the

same object �representing the same communication domain�� MPI CONGRUENT re�

sults if the underlying groups are identical in constituents and rank order �the com�

municators represent two distinct communication domains with the same group at�

tribute�� MPI SIMILAR results if the group members of both communicators are the

same but the rank order di�ers� MPI UNEQUAL results otherwise� The groups asso�

ciated with two di
erent communicators could be gotten via MPI COMM GROUP

and then used in a call to MPI GROUP COMPARE� If MPI COMM COMPARE

gives MPI CONGRUENT then MPI GROUP COMPARE will give MPI IDENT� If MPI�

Communicators ��	

COMM COMPARE gives MPI SIMILAR then MPI GROUP COMPARE will give MPI�

SIMILAR�

�	�� Communicator Constructors

The following are collective functions that are invoked by all processes in the group

associated with comm�

MPI COMM DUP�comm� newcomm�

IN comm communicator
OUT newcomm copy of comm

int MPI Comm dup�MPI Comm comm� MPI Comm �newcomm�

MPI COMM DUP�COMM� NEWCOMM� IERROR�

INTEGER COMM� NEWCOMM� IERROR

MPI COMM DUP creates a new intracommunicator� newcomm� with the same

�xed attributes �group� or groups� and topology� as the input intracommunicator�

comm� The newly created communicators at the processes in the group of comm

de�ne a new� distinct communication domain� with the same group as the old

communicators� The function can also be used to replicate intercommunicators�

The association of user�de�ned �or cached� attributes with newcomm is controlled

by the copy callback function speci�ed when the attribute was attached to comm�

For each key value� the respective copy callback function determines the attribute

value associated with this key in the new communicator� User�de�ned attributes

are discussed in Section
���

Advice to users� This operation can be used to provide a parallel library call

with a duplicate communication space that has the same properties as the original

communicator� This includes any user�de�ned attributes �see below�� and topolo�

gies �see chapter ��� This call is valid even if there are pending point�to�point

communications involving the communicator comm� A typical call might involve a

MPI COMM DUP at the beginning of the parallel call� and an MPI COMM FREE

of that duplicated communicator at the end of the call see Example
���� Other

models of communicator management are also possible� �End of advice to users��

Advice to implementors� Assume that communicators are implemented as de�

scribed on page ��
� If a unique context is used per communication domain� then

the generation of a new communicator requires a collective call where processes

��
 Chapter �

agree on a new context value� E�g�� this could be � �maxfalready used contextsg�

computed using an MPI ALLREDUCE call �assuming there is no need to garbage

collect contexts�� If a di�erent context is used by each process� then a collective

call is needed where each process exchange with all other processes the value of the

context it selected� using an MPI ALLGATHER call�

It is theoretically possible to agree on a group�wide unique context with no commu�

nication� e�g� one could use as context a unique encoding of the group� followed by

a sequence number for intracommunicators with this group� Since all processes in

the group execute the same sequence of calls to MPI COMM DUP with this group

argument� all processes will locally compute the same id� This design is not be

practical because it generates large context ids� Implementations may strike vari�

ous compromises between communication overhead for communicator creation and

context size�

Important� If new communicators are created without synchronizing the processes

involved then the communication system should be able to cope with messages

arriving for a communicator that has not yet been created at the receiving process�

When a communicator is duplicated� one need not actually copy the group infor�

mation� but only add a new reference and increment the reference count� �End of

advice to implementors��

MPI COMM CREATE�comm� group� newcomm�

IN comm communicator

IN group Group
 which is a subset of the group of

comm
OUT newcomm new communicator

int MPI Comm create�MPI Comm comm� MPI Group group�

MPI Comm �newcomm�

MPI COMM CREATE�COMM� GROUP� NEWCOMM� IERROR�

INTEGER COMM� GROUP� NEWCOMM� IERROR

This function creates a new intracommunicator newcomm with communication

group de�ned by group� No attributes propagates from comm to newcomm� The

function returns MPI COMM NULL to processes that are not in group� The commu�

nicators returned at the processes in group de�ne a new intra�group communication

domain�

Communicators ���

The call is erroneous if not all group arguments have the same value on di�erent

processes� or if group is not a subset of the group associated with comm �but it

does not have to be a proper subset�� Note that the call is to be executed by all

processes in comm� even if they do not belong to the new group�

Rationale� The requirement that the entire group of comm participate in the call

stems from the following considerations�

� It allows the implementation to layer MPI COMM CREATE on top of regular

collective communications�

� It provides additional safety� in particular in the case where partially overlap�

ping groups are used to create new communicators�

� It permits implementations sometimes to avoid communication related to the

creation of communicators�

�End of rationale��

Advice to users� MPI COMM CREATE provides a means to subset a group of

processes for the purpose of separate MIMD computation� with a separate commu�

nication space� newcomm� which emerges from MPI COMM CREATE can be used

in subsequent calls to MPI COMM CREATE �or other communicator constructors�

further to subdivide a computation into parallel sub�computations� A more general

service is provided by MPI COMM SPLIT� below� �End of advice to users��

MPI COMM SPLIT�comm� color� key� newcomm�

IN comm communicator

IN color control of subset assignment

IN key control of rank assignment

OUT newcomm new communicator

int MPI Comm split�MPI Comm comm� int color� int key�

MPI Comm �newcomm�

MPI COMM SPLIT�COMM� COLOR� KEY� NEWCOMM� IERROR�

INTEGER COMM� COLOR� KEY� NEWCOMM� IERROR

This function partitions the group associated with comm into disjoint subgroups�

one for each value of color� Each subgroup contains all processes of the same color�

Within each subgroup� the processes are ranked in the order de�ned by the value

��� Chapter �

of the argument key� with ties broken according to their rank in the old group�

A new communication domain is created for each subgroup and a handle to the

representative communicator is returned in newcomm� A process may supply the

color value MPI UNDEFINED to not be a member of any new group� in which case

newcomm returns MPI COMM NULL� This is a collective call� but each process is

permitted to provide di�erent values for color and key� The value of color must be

nonnegative�

Example
�� Assume that a collective call to MPI COMM SPLIT is executed in a

�� element group� with the arguments listed in the table below�

rank � � � � �
 � �
 �

process a b c d e f g h i j

color � � � � � � �
 � �

key � � �
 � � � � � �

The call generates three new communication domains� the �rst with group

ff�g�a�dg� the second with group fe�i�cg� and the third with singleton group fhg�

The processes b and j do not participate in any of the newly created communica�

tion domains� and are returned a null communicator handle�

A call to MPI COMM CREATE�comm� group� newcomm� is equivalent to a call

to MPI COMM SPLIT�comm� color� key� newcomm�� where all members of group

provide color ! � and key ! rank in group� and all processes that are not members

of group provide color ! MPI UNDEFINED� The functionMPI COMM SPLIT allows

more general partitioning of a group into one or more subgroups with optional

reordering�

Advice to users� This is an extremely powerful mechanism for dividing a single

communicating group of processes into k subgroups� with k chosen implicitly by the

user �by the number of colors asserted over all the processes�� Each resulting com�

munication domain will be unique and their associated groups are non�overlapping�

Such a division could be useful for de�ning a hierarchy of computations� such as

for multigrid� or linear algebra�

Multiple calls to MPI COMM SPLIT can be used to overcome the requirement that

any call have no overlap of the resulting communicators �each process is of only one

color per call�� In this way� multiple overlapping communication structures can be

created�

Note that� for a �xed color� the keys need not be unique� It is MPI COMM SPLIT�s

responsibility to sort processes in ascending order according to this key� and to

Communicators ���

break ties according to old rank� If all the keys are speci�ed with the same value�

then all the processes in a given color will have the same relative rank order as they

did in their parent group� �End of advice to users��

�	�� Communicator Destructor

MPI COMM FREE�comm�

INOUT comm communicator to be destroyed

int MPI Comm free�MPI Comm �comm�

MPI COMM FREE�COMM� IERROR�

INTEGER COMM� IERROR

This collective operation marks the communication object for deallocation� The

handle is set to MPI COMM NULL� Any pending operations that use this commu�

nicator will complete normally� the object is actually deallocated only if there are

no other active references to it� This call applies to intra� and intercommunicators�

The delete callback functions for all cached attributes �see Section
��� are called

in arbitrary order� It is erroneous to attempt to free MPI COMM NULL�

Advice to implementors� Though collective� it is anticipated that this operation will

normally be implemented with no communication� though the debugging version

of an MPI library might choose to synchronize� �End of advice to implementors��

Advice to users� Aliasing of communicators �e�g�� comma	 commb� is possible� but

is not generally advised� After callingMPI COMM FREE any aliased communicator

handle will be left in an unde�ned state� �End of advice to users��

��� Safe Parallel Libraries

This section illustrates the design of parallel libraries� and the use of communicators

to ensure the safety of internal library communications�

Assume that a new parallel library function is needed that is similar to the MPI

broadcast function� except that it is not required that all processes provide the rank

of the root process� Instead of the root argument of MPI BCAST� the function takes

a Boolean �ag input that is true if the calling process is the root� false� otherwise�

To simplify the example we make another assumption� namely that the datatype

��� Chapter �

of the send bu�er is identical to the datatype of the receive bu�er� so that only

one datatype argument is needed� A possible code for such a modi�ed broadcast

function is shown below�

Example
�� Code for modi�ed broadcast functionmcast��� The algorithm uses a

broadcast tree that is built dynamically� The root divides the sequence of processes

that follows the root into two segments� It sends a message to the �rst process

in the second segment� which becomes the root for this segment� The process is

repeated� recursively� within each subsegment�

In this example� we use blocking communication� Also� we select the two segments

to be of equal size� performance can be improved by using a biased tree� and by

using nonblocking communication�

void mcast� void �buff� �� address of output buffer at ��

�� root� address of input buffer ��

�� at other processes� ��

int count� �� number of items to broadcast ��

MPI�Datatype type� �� types of items to broadcast ��

int isroot� �� �
 if calling process is root ��

�� ��� otherwise ��

MPI�Comm comm� �� communicator for broadcast ��

�

int size� �� group size ��

rank� �� rank in group ��

numleaves� �� number of leaves in broadcast tree ��

child� �� rank of current child in broadcast tree ��

childleaves� �� number of leaves in child�s broadcast tree ��

MPI�Status status�

MPI�Comm�size�comm� �size��

MPI�Comm�rank�comm� �rank��

if �isroot� �

numleaves � size�
�

�

else �

Communicators ���

�� receive from parent leaf count and message ��

MPI�Recv��numleaves�
� MPI�INT� MPI�ANY�SOURCE� �� comm� �status��

MPI�Recv�buff� count� type� MPI�ANY�SOURCE� �� comm� �status��

�

while �numleaves � �� �

�� pick child in middle of current leaf processes ��

child � �rank
 �numleaves

����"size�

childleaves � numleaves���

�� send to child leaf count and message ��

MPI�Send��childleaves�
� MPI�INT� child� �� comm��

MPI�Send�buff� count� type� child� �� comm��

�� compute remaining number of leaves ��

numleaves �� �childleaves

��

�

�

Consider a collective invocation to the broadcast function just de�ned� in the

context of the program segment shown in the example below� for a group of three

processes�

Example
�� Before the collective invocation to mcast��� process � sends a mes�

sage to process �� process � posts a receive with a dontcare source� mcast is invoked�

with process � as the root�

���

MPI�Comm�rank�comm� �myrank��

if �myrank �� ��

MPI�Send��i�
� MPI�INT�
� �� comm��

else if �myrank ��
�

MPI�Recv��i�
� MPI�INT� MPI�ANY�SOURCE� �� comm� �status��

mcast��i�
� MPI�INT� �myrank ����� comm��

���

A �correct� execution of this code is illustrated in Figure
��� with arrows used

to indicate communications�

Since the invocation of mcast at the three processes is not simultaneous� it may

actually happen that mcast is invoked at process � before process � executed the

��� Chapter �

Process 0 Process 1 Process 2

Send 1Recv *

Recv *
Recv *
Send 2
Send 2

Send 1
Send 1

Recv *
Recv *

Callee code

Caller code

Figure ���
Correct invocation of mcast

Process 0 Process 1 Process 2

Send 1Recv *

Recv *
Recv *
Send 2
Send 2

Send 1
Send 1

Recv *
Recv *

Callee code

Caller code

Figure ���
Erroneous invocation of mcast

receive in the caller code� This receive� rather than being matched by the caller

code send at process �� might be matched by the �rst send of process � within

mcast� The erroneous execution illustrated in Figure
�� results�

How can such erroneous execution be prevented	 One option is to enforce syn�

chronization at the entry to mcast� and� for symmetric reasons� at the exit from

mcast� E�g�� the �rst and last executable statements within the code of mcast would

be a call to MPI Barrier�comm�� This� however� introduces two super�uous synchro�

nizations that will slow down execution� Furthermore� this synchronization works

only if the caller code obeys the convention that messages sent before a collective

invocation should also be received at their destination before the matching invo�

cation� Consider an invocation to mcast�� in a context that does not obey this

restriction� as shown in the example below�

Example
��� Before the collective invocation to mcast��� process � sends a mes�

sage to process �� process � posts a matching receive with a dontcare source after

the invocation to mcast�

Communicators ���

Process 0 Process 1 Process 2

Send 1

Recv *
Recv *
Send 2
Send 2

Send 1
Send 1

Recv *
Recv *

Callee code

Caller code

Recv *

Figure ���
Correct invocation of mcast

���

MPI�Comm�rank�comm� �myrank��

if �myrank �� ��

MPI�Send��i�
� MPI�INT�
� �� comm��

mcast��i�
� MPI�INT� �myrank ����� comm��

if �myrank ��
�

MPI�Recv��i�
� MPI�INT� MPI�ANY�SOURCE� �� comm� �status��

The desired execution of the code in this example is illustrated in Figure
���

However� a more likely matching of sends with receives will lead to the erroneous

execution is illustrated in Figure
�
� Erroneous results may also occur if a process

that is not in the group of comm and does not participate in the collective invocation

of mcast sends a message to processes one or two in the group of comm�

A more robust solution to this problem is to use a distinct communication domain

for communication within the library� which is not used by the caller code� This

will ensure that messages sent by the library are not received outside the library�

and vice�versa� The modi�ed code of the function mcast is shown below�

Example
��� Code for modi�ed broadcast function mcast�� that uses a private

communicator� The code is identical to the one in Example
�
� with the following

exceptions� Upon entry� a duplicate pcomm of the input communicator comm is

created� This private communicator is used for communication within the library

��� Chapter �

Process 0 Process 1 Process 2

Send 1

Recv *
Recv *
Send 2
Send 2

Send 1
Send 1

Recv *
Recv *

Callee code

Caller code

Recv *

Figure ���
Erroneous invocation of mcast

code� It is freed before exit�

void mcast� void �buff� int count� MPI�Datatype type�

int isroot� MPI�Comm comm�

�

int size� rank� numleaves� child� childleaves�

MPI�Status status�

MPI�Comm pcomm� �� private communicator� for internal communication ��

MPI�Comm�dup�comm� �pcomm��

MPI�Comm�size�pcomm� �size��

MPI�Comm�rank�pcomm� �rank��

if �isroot� �

numleaves � size�
�

�

else �

�� receive from parent leaf count and message ��

MPI�Recv��numleaves�
� MPI�INT� MPI�ANY�SOURCE� �� pcomm� �status��

MPI�Recv�buff� count� type� MPI�ANY�SOURCE� �� pcomm� �status��

�

while �numleaves � �� �

�� pick child in middle of current leaf processes ��

Communicators ��	

child � �rank
 �numleaves

����"size�

childleaves � numleaves���

�� send to child leaf count and message ��

MPI�Send��childleaves�
� MPI�INT� child� �� pcomm��

MPI�Send�buff� count� type� child� �� pcomm��

�� compute remaining number of leaves ��

numleaves �� �childleaves

��

�

MPI�Comm�free��pcomm��

�

This code su�ers the penalty of one communicator allocation and deallocation at

each invocation� We show in the next section� in Example
���� how to avoid this

overhead� by using a preallocated communicator�

��� Caching

�
�� Introduction

As the previous examples showed� a communicator provides a �scope� for collective

invocations� The communicator� which is passed as parameter to the call� speci�es

the group of processes that participate in the call and provide a private commu�

nication domain for communications within the callee body� In addition� it may

carry information about the logical topology of the executing processes� It is often

useful to attach additional persistent values to this scope� e�g�� initialization pa�

rameters for a library� or additional communicators to provide a separate� private

communication domain�

MPI provides a caching facility that allows an application to attach arbitrary

pieces of information� called attributes� to both intra� and intercommunicators�

More precisely� the caching facility allows a portable library to do the following�

� pass information between calls by associating it with an MPI intra� or inter�com�

municator�

� quickly retrieve that information� and

� be guaranteed that out�of�date information is never retrieved� even if the com�

municator is freed and its handle subsequently reused by MPI�

��
 Chapter �

Each attribute is associated with a key� To provide safety� MPI internally

generates key values� MPI functions are provided which allow the user to allocate

and deallocate key values �MPI KEYVAL CREATE and MPI KEYVAL FREE�� Once

a key is allocated by a process� it can be used to attach one attribute to any

communicator de�ned at that process� Thus� the allocation of a key can be thought

of as creating an empty box at each current or future communicator object at that

process� this box has a lock that matches the allocated key� �The box is �virtual��

one need not allocate any actual space before an attempt is made to store something

in the box��

Once the key is allocated� the user can set or access attributes associated with

this key� The MPI call MPI ATTR PUT can be used to set an attribute� This call

stores an attribute� or replaces an attribute in one box� the box attached with the

speci�ed communicator with a lock that matches the speci�ed key�

The call MPI ATTR GET can be used to access the attribute value associated

with a given key and communicator� I�e�� it allows one to access the content of the

box attached with the speci�ed communicator� that has a lock that matches the

speci�ed key� This call is valid even if the box is empty� e�g�� if the attribute was

never set� In such case� a special �empty� value is returned�

Finally� the call MPI ATTR DELETE allows one to delete an attribute� I�e�� it

allows one to empty the box attached with the speci�ed communicator with a lock

that matches the speci�ed key�

To be general� the attribute mechanism must be able to store arbitrary user

information� On the other hand� attributes must be of a �xed� prede�ned type�

both in Fortran and C � the type speci�ed by the MPI functions that access or

update attributes� Attributes are de�ned in C to be of type void �� Generally� such

an attribute will be a pointer to a user�de�ned data structure or a handle to an MPI

opaque object� In Fortran� attributes are of type INTEGER� These can be handles

to opaque MPI objects or indices to user�de�ned tables�

An attribute� from the MPI viewpoint� is a pointer or an integer� An attribute�

from the application viewpoint� may contain arbitrary information that is attached

to the �MPI attribute�� User�de�ned attributes are �copied� when a new com�

municator is created by a call to MPI COMM DUP� they are �deleted� when a

communicator is deallocated by a call to MPI COMM FREE� Because of the arbi�

trary nature of the information that is copied or deleted� the user has to specify

the semantics of attribute copying or deletion� The user does so by providing

copy and delete callback functions when the attribute key is allocated �by a call to

MPI KEYVAL CREATE�� Prede�ned� default copy and delete callback functions are

available�

Communicators ���

All attribute manipulation functions are local and require no communication�

Two communicator objects at two di�erent processes that represent the same com�

munication domainmay have a di�erent set of attribute keys and di�erent attribute

values associated with them�

MPI reserves a set of prede�ned key values in order to associate with MPI COMM�

WORLD information about the execution environment� at MPI initialization time�

These attribute keys are discussed in Chapter �� These keys cannot be deallocated

and the associated attributes cannot be updated by the user� Otherwise� they

behave like user�de�ned attributes�

Rationale� A much smaller interface� consisting of just a callback facility� would

allow the entire caching facility to be implemented by portable code� However� such

a minimal interface does not provide good protection when di�erent libraries try

to attach attributes to the same communicator� Some convention will be needed to

avoid them using the same key values� With the current design� the initialization

code for each library can allocate a separate key value for that library� the code

written for one library is independent of the code used by another library� Further�

more the more complete interface de�ned here allows high�quality implementations

of MPI to implement fast attribute access algorithms �e�g�� using an incrementable

dictionary data structure��

Attribute keys are allocated process�wide� rather then speci�cally for one commu�

nicator� This often simpli�es usage� since a particular type of attribute may be

associated with many communicators� and simpli�es implementation�

The use of callback functions for attribute copying and deletion allows one to de�ne

di�erent behaviors for these operations� For example� copying may involve the

allocation of a new data structure� if the attribute is modi�able� or� it may involve

only the increment of a reference count if the attribute is not modi�able� With

the current design� the implementation of attribute copying and deletion is de�ned

when the attribute key is allocated� and need not be visible to all program modules

that use this key� �End of rationale��

Advice to users� The communicatorMPI COMM SELF can be used to store process�

local attributes� via this attribute caching mechanism� �End of advice to users��

Advice to implementors� C Attributes are scalar values� equal in size to� or larger

than a C�language pointer� Fortran attributes are of type INTEGER� Attributes can

always hold an MPI handle� It is very desirable to have identical attribute types�

both for Fortran and C� in order to facilitate mixed language programming� E�g��

��� Chapter �

on systems with �� bit C pointers but �� bit Fortran INTEGER� one could use �� bit

attribute values� Fortran calls will convert from INTEGER��� to INTEGER���� and

vice versa�

Caching and callback functions are only called synchronously� in response to ex�

plicit application requests� This avoid problems that result from repeated crossings

between user and system space� �This synchronous calling rule is a general property

of MPI�� �End of advice to implementors��

�
�� Caching Functions

MPI provides the following services related to caching� They are all process local�

MPI KEYVAL CREATE�copy fn� delete fn� keyval� extra state�

IN copy fn Copy callback function for keyval

IN delete fn Delete callback function for keyval

OUT keyval key value for future access

IN extra state Extra state for callback functions

int MPI Keyval create�MPI Copy function �copy fn� MPI Delete function

�delete fn� int �keyval� void� extra state�

MPI KEYVAL CREATE�COPY FN� DELETE FN� KEYVAL� EXTRA STATE� IERROR�

EXTERNAL COPY FN� DELETE FN

INTEGER KEYVAL� EXTRA STATE� IERROR

MPI KEYVAL CREATE allocates a new attribute key value� Key values are

unique in a process� Once allocated� the key value can be used to associate

attributes and access them on any locally de�ned communicator� The special key

value MPI KEYVAL INVALID is never returned by MPI KEYVAL CREATE� Therefore�

it can be used for static initialization of key variables� to indicate an �unallocated�

key�

The copy fn function is invoked when a communicator is duplicated by MPI�

COMM DUP� copy fn should be of type MPI Copy function� which is de�ned as fol�

lows�

typedef int MPI�Copy�function�MPI�Comm oldcomm� int keyval�

void �extra�state� void �attribute�val�in�

void �attribute�val�out� int �flag�

Communicators ���

A Fortran declaration for such a function is as follows�

SUBROUTINE COPY FUNCTION�OLDCOMM� KEYVAL� EXTRA STATE�

ATTRIBUTE VAL IN� ATTRIBUTE VAL OUT� FLAG� IERR�

INTEGER OLDCOMM� KEYVAL� EXTRA STATE� ATTRIBUTE VAL IN�

ATTRIBUTE VAL OUT� IERR

LOGICAL FLAG

Whenever a communicator is replicated using the function MPI COMM DUP� all

callback copy functions for attributes that are currently set are invoked �in arbi�

trary order�� Each call to the copy callback is passed as input parameters the

old communicator oldcomm� the key value keyval� the additional state extra state

that was provided to MPI KEYVAL CREATE when the key value was created� and

the current attribute value attribute val in� If it returns �ag 	 false� then the at�

tribute is deleted in the duplicated communicator� Otherwise� when �ag 	 true�

the new attribute value is set to the value returned in attribute val out� The func�

tion returns MPI SUCCESS on success and an error code on failure �in which case

MPI COMM DUP will fail��

copy fn may be speci�ed as MPI NULL COPY FN or MPI DUP FN from either

C or FORTRAN� MPI NULL COPY FN is a function that does nothing other than

returning �ag 	
 and MPI SUCCESS� I�e�� the attribute is not copied� MPI DUP FN

sets �ag 	 �� returns the value of attribute val in in attribute val out and returns

MPI SUCCESS� I�e�� the attribute value is copied� with no side�e�ects�

Rationale� The use of the extra state argument allows one to specialize the behavior

of a generic copy callback function to a particular attribute� E�g�� one might have a

generic copy function that allocates m bytes of storage� copy m bytes from address

attribute val in into the newly allocated space� and returns the address of the allo�

cated space in attribute val out� the value of m� i�e�� the size of the data structure

for a speci�c attribute� can be speci�ed via extra state� �End of rationale��

Advice to users� Even though both formal arguments attribute val in and at�

tribute val out are of type void �� their usage di�ers� The C copy function is passed

by MPI in attribute val in the value of the attribute� and in attribute val out the

address of the attribute� so as to allow the function to return the �new� attribute

value� The use of type void � for both is to avoid messy type casts�

A valid copy function is one that completely duplicates the information by making

a full duplicate copy of the data structures implied by an attribute� another might

just make another reference to that data structure� while using a reference�count

mechanism� Other types of attributes might not copy at all �they might be speci�c

��� Chapter �

to oldcomm only�� �End of advice to users��

Advice to implementors� A C interface should be assumed for copy and delete

functions associated with key values created in C� a Fortran calling interface should

be assumed for key values created in Fortran� �End of advice to implementors��

Analogous to copy fn is a callback deletion function� de�ned as follows� The

delete fn function is invoked when a communicator is deleted by MPI COMM FREE

or by a call to MPI ATTR DELETE or MPI ATTR PUT� delete fn should be of type

MPI Delete function� which is de�ned as follows�

typedef int MPI�Delete�function�MPI�Comm comm� int keyval�

void �attribute�val� void �extra�state��

A Fortran declaration for such a function is as follows�

SUBROUTINE DELETE FUNCTION�COMM� KEYVAL� ATTRIBUTE VAL� EXTRA STATE�

IERR�

INTEGER COMM� KEYVAL� ATTRIBUTE VAL� EXTRA STATE� IERR

Whenever a communicator is deleted using the function MPI COMM FREE� all

callback delete functions for attributes that are currently set are invoked �in ar�

bitrary order�� In addition the callback delete function for the deleted attribute

is invoked by MPI ATTR DELETE and MPI ATTR PUT� The function is passed as

input parameters the communicator comm� the key value keyval� the current at�

tribute value attribute val� and the additional state extra state that was passed to

MPI KEYVAL CREATE when the key value was allocated� The function returns

MPI SUCCESS on success and an error code on failure �in which case MPI COMM�

FREE will fail��

delete fn may be speci�ed as MPI NULL DELETE FN from either C or FOR�

TRAN� MPI NULL DELETE FN is a function that does nothing� other than return�

ing MPI SUCCESS�

Advice to users� The delete callback function may be invoked by MPI asyn�

chronously� after the call to MPI COMM FREE returned� when MPI actually deletes

the communicator object� �End of advice to users��

Communicators ���

MPI KEYVAL FREE�keyval�

INOUT keyval Frees the integer key value

int MPI Keyval free�int �keyval�

MPI KEYVAL FREE�KEYVAL� IERROR�

INTEGER KEYVAL� IERROR

MPI KEYVAL FREE deallocates an attribute key value� This function sets the

value of keyval to MPI KEYVAL INVALID� Note that it is not erroneous to free an

attribute key that is in use �i�e�� has attached values for some communicators��

the key value is not actually deallocated until after no attribute values are locally

attached to this key� All such attribute values need to be explicitly deallocated by

the program� either via calls toMPI ATTR DELETE that free one attribute instance�

or by calls to MPI COMM FREE that free all attribute instances associated with

the freed communicator�

MPI ATTR PUT�comm� keyval� attribute val�

IN comm communicator to which attribute will be

attached

IN keyval key value
 as returned by

MPI KEYVAL CREATE

IN attribute val attribute value

int MPI Attr put�MPI Comm comm� int keyval� void� attribute val�

MPI ATTR PUT�COMM� KEYVAL� ATTRIBUTE VAL� IERROR�

INTEGER COMM� KEYVAL� ATTRIBUTE VAL� IERROR

MPI ATTR PUT associates the value attribute val with the key keyval on commu�

nicator comm� If a value is already associated with this key on the communicator�

then the outcome is as if MPI ATTR DELETE was �rst called to delete the previ�

ous value �and the callback function delete fn was executed�� and a new value was

next stored� The call is erroneous if there is no key with value keyval� in particular

MPI KEYVAL INVALID is an erroneous value for keyval�

��� Chapter �

MPI ATTR GET�comm� keyval� attribute val�
ag�

IN comm communicator to which attribute is at�

tached

IN keyval key value

OUT attribute val attribute value
 unless �ag � false

OUT
ag true if an attribute value was extracted�

false if no attribute is associated with

the key

int MPI Attr get�MPI Comm comm� int keyval� void �attribute val�

int �flag�

MPI ATTR GET�COMM� KEYVAL� ATTRIBUTE VAL� FLAG� IERROR�

INTEGER COMM� KEYVAL� ATTRIBUTE VAL� IERROR

LOGICAL FLAG

MPI ATTR GET retrieves an attribute value by key� The call is erroneous if

there is no key with value keyval� In particularMPI KEYVAL INVALID is an erroneous

value for keyval� On the other hand� the call is correct if the key value exists� but

no attribute is attached on comm for that key� in such a case� the call returns flag

� false� If an attribute is attached on comm to keyval� then the call returns flag

� true� and returns the attribute value in attribute val�

Advice to users� The call to MPI Attr put passes in attribute val the value of the

attribute� the call to MPI Attr get passes in attribute val the address of the the loca�

tion where the attribute value is to be returned� Thus� if the attribute value itself

is a pointer of type void�� then the actual attribute val parameter to MPI Attr put

will be of type void� and the actual attribute val parameter to MPI Attr get will be

of type void��� �End of advice to users��

Rationale� The use of a formal parameter attribute val of type void� �rather than

void��� in MPI Attr get avoids the messy type casting that would be needed if the

attribute is declared with a type other than void�� �End of rationale��

Communicators ���

MPI ATTR DELETE�comm� keyval�

IN comm communicator to which attribute is at�

tached

IN keyval The key value of the deleted attribute

int MPI Attr delete�MPI Comm comm� int keyval�

MPI ATTR DELETE�COMM� KEYVAL� IERROR�

INTEGER COMM� KEYVAL� IERROR

MPI ATTR DELETE deletes the attribute attached to key keyval on comm� This

function invokes the attribute delete function delete fn speci�ed when the keyval

was created� The call will fail if there is no key with value keyval or if the delete fn

function returns an error code other than MPI SUCCESS� On the other hand� the

call is correct even if no attribute is currently attached to keyval on comm�

Example
��� We come back to the code in Example
���� Rather than duplicat�

ing the communicator comm at each invocation� we desire to do it once� and store

the duplicate communicator� It would be inconvenient to require initialization code

that duplicates all communicators to be used later with mcast� Fortunately� this is

not needed� Instead� we shall use an initialization code that allocates an attribute

key for the exclusive use of mcast��� This key can then be used to store� with each

communicator comm� a private copy of comm which is used by mcast� This copy is

created once at the �rst invocation of mcast with argument comm�

static int �extra�state� �� not used ��

static void �mcast�key � MPI�KEYVAL�INVALID�

�� attribute key for mcast ��

int mcast�delete�fn�MPI�Comm comm� int keyval� void �attr�val�

void �extra�state�

�� delete function to be used for mcast�key ��

�� attribute� The callback function frees ��

�� the private communicator attached to ��

�� this key ��

�

return MPI�Comm�free��MPI�Comm ���attr�val��

�

void mcast�init�� �� initialization function for mcast� It ��

��� Chapter �

�� should be invoked once by each process ��

�� before it invokes mcast ��

�

MPI�Keyval�create� MPI�NULL�COPY�FN� mcast�delete�fn�

�mcast�key� extra�state��

�

void mcast�void �buff� int count� MPI�Datatype type�

int isroot� MPI�Comm comm�

�

int size� rank� numleaves� child� childleaves� flag�

MPI�Comm pcomm�

void �attr�val�

MPI�Status status�

MPI�Attr�get�comm� mcast�key� �attr�val� �flag��

if �flag� �� private communicator cached ��

pcomm � �MPI�Comm�attr�val�

else � �� first invocation� no cached communicator ��

�� create private communicator ��

MPI�Comm�dup�comm� �pcomm��

�� and cache it ��

MPI�Attr�put�comm� mcast�key� pcomm��

�

�� continue now as before ��

MPI�Comm�size�pcomm� �size��

MPI�Comm�rank�pcomm� �rank��

if �isroot� �

numleaves � size�
�

�

else �

�� receive from parent leaf count and message ��

MPI�RECV��numleaves�
� MPI�INT� MPI�ANY�SOURCE� �� pcomm� �status��

MPI�RECV�buff� count� type� MPI�ANY�SOURCE� �� pcomm� �status��

�

Communicators ��	

while �numleaves � �� �

�� pick child in middle of current leaf processes ��

child � mod�rank
 �numleaves

���� size��

childleaves � numleaves���

�� send to child leaf count and message ��

MPI�SEND��childleaves�
� MPI�INT� child� �� pcomm��

MPI�SEND�buff� count� type� child� �� pcomm��

�� compute remaining number of leaves ��

numleaves �� �childleaves

��

�

�

The code above dedicates a statically allocated private communicator for the use

of mcast� This segregates communication within the library from communication

outside the library� However� this approach does not provide separation of com�

munications belonging to distinct invocations of the same library function� since

they all use the same communication domain� Consider two successive collective

invocations of mcast by four processes� where process � is the broadcast root in the

�rst one� and process � is the root in the second one� The intended execution and

communication �ow for these two invocations is illustrated in Figure
���

However� there is a race between messages sent by the �rst invocation of mcast�

from process � to process �� and messages sent by the second invocation of mcast�

from process � to process �� The erroneous execution illustrated in Figure
�� may

occur� where messages sent by second invocation overtake messages from the �rst

invocation� This phenomenon is known as backmasking�

How can we avoid backmasking	 One option is to revert to the approach in

Example
���� where a separate communication domain is generated for each invo�

cation� Another option is to add a barrier synchronization� either at the entry or

at the exit from the library call� Yet another option is to rewrite the library code�

so as to prevent the nondeterministic race� The race occurs because receives with

dontcare�s are used� It is often possible to avoid the use of such constructs� Un�

fortunately� avoiding dontcares leads to a less e�cient implementation of mcast� A

possible alternative is to use increasing tag numbers to disambiguate successive in�

vocations of mcast� An �invocation count� can be cached with each communicator�

as an additional library attribute� The resulting code is shown below�

��
 Chapter �

Process 0 Process 1 Process 2 Process 3

Send 2
Send 2
Send 1
Send 1

Recv *
Recv *
Send 3
Send 3

First call

Recv *
Recv *
Send 2
Send 2

Recv *
Recv *

Send 1
Send 1
Send 0
Send 0

Second call

Recv *
Recv *

Recv *
Recv *

Recv *
Recv *

Figure ���
Correct execution of two successive invocations of mcast

Process 0 Process 1 Process 2 Process 3

Send 2
Send 2
Send 1
Send 1

Recv *
Recv *
Send 3
Send 3

First call

Recv *
Recv *
Send 2
Send 2

Recv *
Recv *

Send 1
Send 1
Send 0
Send 0

Second call

Recv *
Recv *

Recv *
Recv *

Recv *
Recv *

Figure ���
Erroneous execution of two successive invocations of mcast

Communicators ���

Example
��� Code in previous example is modi�ed� to prevent backmasking�

successive invocations of mcast with the same communicator use distinct tags�

static int �extra�state� �� not used ��

static void �mcast�key � MPI�KEYVAL�INVALID�

typedef struct � �� mcast attribute structure ��

MPI�Comm pcomm� �� private communicator ��

int invcount� �� invocation count ��

� Mcast�attr�

int mcast�delete�fn�MPI�Comm comm� int keyval� void �attr�val�

void �extra�state�

�

MPI�Comm�free����Mcast�attr ��attr�val���pcomm��

free�attr�val��

�

void mcast�init�� �� initialization function for mcast� ��

�

MPI�Keyval�create� MPI�NULL�COPY�FN� mcast�delete�fn�

�mcast�key� extra�state��

�

void mcast�void �buff� int count� MPI�Datatype type�

int isroot� MPI�Comm comm�

�

int size� rank� numleaves� child� childleaves� flag� tag�

MPI�Comm pcomm�

void �attr�val�

Mcast�attr �attr�struct�

MPI�Status status�

MPI�Attr�get�comm� mcast�key� �attr�val� �flag��

if �flag� � �� attribute cached ��

attr�struct � �Mcast�attr ��attr�val�

pcomm � attr�struct��pcomm�

tag �

attr�struct��invcount�

�

��� Chapter �

else � �� first invocation� no cached communicator ��

�� create private communicator ��

MPI�Comm�dup�comm� �pcomm��

�� create attribute structure ��

attr�struct � �Mcast�attr ��malloc�sizeof�Mcast�attr���

attr�struct��pcomm � pcomm�

attr�struct��invcount � ��

MPI�Attr�put�comm� mcast�key� attr�struct��

�

�� broadcast code� using tag ��

MPI�Comm�size�pcomm� �size��

MPI�Comm�rank�pcomm� �rank��

if �isroot� �

numleaves � size�
�

�

else �

�� receive from parent leaf count and message ��

MPI�RECV��numleaves�
� MPI�INT� MPI�ANY�SOURCE� tag� pcomm� �status��

MPI�RECV�buff� count� type� MPI�ANY�SOURCE� tag� pcomm� �status��

�

while �numleaves � �� �

�� pick child in middle of current leaf processes ��

child � mod�rank
 �numleaves

���� size��

childleaves � numleaves���

�� send to child leaf count and message ��

MPI�SEND��childleaves�
� MPI�INT� child� �� pcomm��

MPI�SEND�buff� count� type� child� �� pcomm��

�� compute remaining number of leaves ��

numleaves �� �childleaves

��

�

�

Communicators ���

��	 Intercommunication

���� Introduction

This section introduces the concept of inter�communication and describes the por�

tions of MPI that support it�

All point�to�point communication described thus far has involved communica�

tion between processes that are members of the same group� In modular and

multi�disciplinary applications� di�erent process groups execute distinct modules

and processes within di�erent modules communicate with one another in a pipeline

or a more general module graph� In these applications� the most natural way for

a process to specify a peer process is by the rank of the peer process within the

peer group� In applications that contain internal user�level servers� each server may

be a process group that provides services to one or more clients� and each client

may be a process group that uses the services of one or more servers� It is again

most natural to specify the peer process by rank within the peer group in these

applications�

An inter�group communication domain is speci�ed by a set of intercommunicators

with the pair of disjoint groups �A�B� as their attribute� such that

� their links form a bipartite graph� each communicator at a process in group A is

linked to all communicators at processes in group B� and vice�versa� and

� links have consistent indices� at each communicator at a process in group A� the

i�th link points to the communicator for process i in group B� and vice�versa�

This distributed data structure is illustrated in Figure
�
� for the case of a pair

of groups �A�B�� with two �upper box� and three �lower box� processes� respectively�

The communicator structure distinguishes between a local group� namely the

group containing the process where the structure reside� and a remote group� namely

the other group� The structure is symmetric� for processes in group A� then A is

the local group and B is the remote group� whereas for processes in group B� then

B is the local group and A is the remote group�

An inter�group communication will involve a process in one group executing a

send call and another process� in the other group� executing a matching receive

call� As in intra�group communication� the matching process �destination of send

or source of receive� is speci�ed using a �communicator� rank� pair� Unlike intra�

group communication� the rank is relative to the second� remote group� Thus� in

the communication domain illustrated in Figure
�
� process � in group A sends a

��� Chapter �

A

0 1 2

0 1210

0 1 0 1

0 1

0

2

1B

Figure ��	
Distributed data structure for inter
communication domain�

message to process � in group B with a call MPI SEND�� � � � �� tag� comm�� pro�

cess � in group B receives this message with a call MPI RECV�� � � � �� tag� comm��

Conversely� process � in group B sends a message to process � in group A with

a call to MPI SEND�� � � � �� tag� comm�� and the message is received by a call to

MPI RECV�� � � � �� tag� comm�� a remote process is identi�ed in the same way for

the purposes of sending or receiving� All point�to�point communication functions

can be used with intercommunicators for inter�group communication�

Here is a summary of the properties of inter�group communication and intercom�

municators�

� The syntax of point�to�point communication is the same for both inter� and int�

ra�communication� The same communicator can be used both for send and for

receive operations�

� A target process is addressed by its rank in the remote group� both for sends

and for receives�

� Communications using an intercommunicator are guaranteed not to con�ict with

any communications that use a di�erent communicator�

� An intercommunicator cannot be used for collective communication�

� A communicator will provide either intra� or inter�communication� never both�

The routineMPI COMM TEST INTERmay be used to determine if a communicator

is an inter� or intracommunicator� Intercommunicators can be used as arguments

to some of the other communicator access routines� Intercommunicators cannot

be used as input to some of the constructor routines for intracommunicators �for

instance� MPI COMM CREATE��

Rationale� The correspondence between inter� and intracommunicators can be best

understood by thinking of an intra�group communication domain as a special case of

Communicators ���

an inter�group communication domain� where both communication groups happen

to be identical� This interpretation can be used to derive a consistent semantics

for communicator inquiry functions and for point�to�point communication� or an

identical implementation for both types of objects�

This correspondence indicates how collective communication functions could be

extended to inter�group communication� Rather than a symmetric design� where

processes in the group both send and receive� one would have an asymmetric design�

where one group sends �either from a single root or from all processes� and the

other group receives �either to a single root or to all processes�� Additional syntax

is needed to distinguish sender group from receiver group� Such extensions are

discussed for MPI���

Note� however� that the two groups of an intercommunicator are currently required

to be disjoint� for reasons explained later in this section� �End of rationale��

Advice to implementors� An intercommunicator can be implemented with a data

structure very similar to that used for an intracommunicator� The intercommunica�

tor can be represented by a structure with components group� myrank� local context

and remote context� The group array represents the remote group� whereas myrank

is the rank of the process in the local group�

When a process posts a send with arguments dest� tag and comm� then the address

of the destination is computed as comm�group�dest
� The message sent carries a

header with the tuple �comm�myrank� tag� comm�remote context��

If a process posts a receive with argument source� tag and comm� then headers of

incoming messages are matched to the tuple �source� tag� comm�local context� ��rst

two may be dontcare�s��

This design provides a safe inter�group communication domain provided that

� the local context is process unique and is identical at all processes in the same

group� and

� the local context of one group equals to the remote context of the other group�

Note that this data structure can be used to represent intracommunicators merely

be setting local context 	 remote context� It is then identical to the �rst represen�

tation discussed on page ��
�

Another design is to use ids which are process�unique� but not necessarily identical

at all processes� In such case� the remote context component of the communica�

tor structure is an array� where comm�remote context�i
 is the context chosen by

��� Chapter �

process i in remote group to identify that communication domain� local context is

the context chosen by the local process to identify that communication domain�

A message is sent with header comm�myrank� tag� comm�remote context�dest
� a re�

ceive call causes incoming messages to be matched against the tuple �source� tag�

comm�local context��

Comparing with the second implementation outlined on page ��
� we see again

that the same data structure can be used to represent an intra�group communi�

cation domain� with no changes� When used for an intracommunicator� then the

identity comm�local context 	 comm�remote context�myrank
 holds� �End of advice

to implementors��

It is often convenient to generate an inter�group communication domain by join�

ing together two intra�group communication domains� i�e�� building the pair of

communicating groups from the individual groups� This requires that there exists

one process in each group that can communicate with each other through a com�

munication domain that serves as a bridge between the two groups� For example�

suppose that comm� has � processes and comm� has � processes �see Figure
����

In terms of the MPI COMM WORLD� the processes in comm� are �� � and � and

in comm� are �� ��
 and �� Let local process � in each intracommunicator form

the bridge� They can communicate via MPI COMM WORLD where process � in

comm� has rank � and process � in comm� has rank �� Once the intercommunicator

is formed� the original group for each intracommunicator is the local group in the

intercommunicator and the group from the other intracommunicator becomes the

remote group� For communication with this intercommunicator� the rank in the

remote group is used� For example� if a process in comm� wants to send to process

� of comm� �MPI COMM WORLD rank
� then it uses � as the rank in the send�

Intercommunicators are created in this fashion by the call MPI INTERCOMM�

CREATE� The two joined groups are required to be disjoint� The converse function

of building an intracommunicator from an intercommunicator is provided by the

call MPI INTERCOMM MERGE� This call generates a communication domain with

a group which is the union of the two groups of the inter�group communication do�

main� Both calls are blocking� Both will generally require collective communication

within each of the involved groups� as well as communication across the groups�

Rationale� The two groups of an inter�group communication domain are required

to be disjoint in order to support the de�ned intercommunicator creation function�

If the groups were not disjoint then a process in the intersection of the two groups

would have to make two calls to MPI INTERCOMM CREATE� one on behalf of each

Communicators ���

local rank

0

1

2

comm1

local rank

0

1

2

3

comm2

WORLD rank

0

1

2

3

4

5

6

MPI_COMM_WORLD

Bridge

0 (0)

1 (1)

2 (2)

local rank (WORLD rank)

remote group

0 (3)

1 (4)

2 (5)

3 (6)

local group

local rank (WORLD rank)

remote group

local rank (WORLD rank)

0 (3)

1 (4)

2 (5)

3 (6)

0 (0)

1 (1)

2 (2)

local group

local rank (WORLD rank)

intra-communicator inter-communicator

Figure ��

Example of two intracommunicators merging to become one intercommunicator�

group it belongs to� This is not feasible with a blocking call� One would need to

use a nonblocking call� implemented using nonblocking collective communication�

in order to relax the disjointness condition� �End of rationale��

���� Intercommunicator Accessors

MPI COMM TEST INTER�comm�
ag�

IN comm communicator

OUT
ag true if comm is intercommunicator

int MPI Comm test inter�MPI Comm comm� int �flag�

MPI COMM TEST INTER�COMM� FLAG� IERROR�

INTEGER COMM� IERROR

LOGICAL FLAG

MPI COMM TEST INTER is a local routine that allows the calling process to

determine if a communicator is an intercommunicator or an intracommunicator� It

returns true if it is an intercommunicator� otherwise false�

When an intercommunicator is used as an input argument to the communicator

accessors described in Section
����� the following table describes the behavior�

��� Chapter �

MPI COMM � Function Behavior

�in Inter�Communication Mode�

MPI COMM SIZE returns the size of the local group�

MPI COMM GROUP returns the local group�

MPI COMM RANK returns the rank in the local group

Furthermore� the operation MPI COMM COMPARE is valid for intercommunica�

tors� Both communicators must be either intra� or intercommunicators� or else

MPI UNEQUAL results� Both corresponding local and remote groups must compare

correctly to get the results MPI CONGRUENT and MPI SIMILAR� In particular� it is

possible for MPI SIMILAR to result because either the local or remote groups were

similar but not identical�

The following accessors provide consistent access to the remote group of an in�

tercommunicator� they are all local operations�

MPI COMM REMOTE SIZE�comm� size�

IN comm intercommunicator

OUT size number of processes in the remote group

of comm

int MPI Comm remote size�MPI Comm comm� int �size�

MPI COMM REMOTE SIZE�COMM� SIZE� IERROR�

INTEGER COMM� SIZE� IERROR

MPI COMM REMOTE SIZE returns the size of the remote group in the intercom�

municator� Note that the size of the local group is given by MPI COMM SIZE�

MPI COMM REMOTE GROUP�comm� group�

IN comm intercommunicator
OUT group remote group corresponding to comm

int MPI Comm remote group�MPI Comm comm� MPI Group �group�

MPI COMM REMOTE GROUP�COMM� GROUP� IERROR�

INTEGER COMM� GROUP� IERROR

MPI COMM REMOTE GROUP returns the remote group in the intercommunica�

tor� Note that the local group is give by MPI COMM GROUP�

Communicators ��	

Advice to implementors� It is necessary to expand the representation outlined on

page ��
� in order to support intercommunicator accessors that return information

on the local group� namely� the data structure has to carry information on the

local group� in addition to the remote group� This information is also needed in

order to support conveniently the call MPI INTERCOMM MERGE� �End of advice

to implementors��

���� Intercommunicator Constructors

An intercommunicator can be created by a call to MPI COMM DUP� see Sec�

tion
����� As for intracommunicators� this call generates a new inter�group com�

munication domain with the same groups as the old one� and also replicates user�

de�ned attributes� An intercommunicator is deallocated by a call to MPI COMM�

FREE� The other intracommunicator constructor functions of Section
���� do not

apply to intercommunicators� Two new functions are speci�c to intercommunica�

tors�

MPI INTERCOMM CREATE�local comm� local leader� bridge comm� remote leader�

tag� newintercomm�

IN local comm local intracommunicator

IN local leader rank of local group leader in local comm

IN bridge comm �bridge� communicator� signi�cant only

at two local leaders

IN remote leader rank of remote group leader in bridge comm�

signi�cant only at two local leaders

IN tag �safe� tag

OUT newintercomm new intercommunicator �handle�

int MPI Intercomm create�MPI Comm local comm� int local leader�

MPI Comm bridge comm� int remote leader� int tag�

MPI Comm �newintercomm�

MPI INTERCOMM CREATE�LOCAL COMM� LOCAL LEADER� PEER COMM�

REMOTE LEADER� TAG� NEWINTERCOMM� IERROR�

INTEGER LOCAL COMM� LOCAL LEADER� PEER COMM� REMOTE LEADER� TAG�

NEWINTERCOMM� IERROR

MPI INTERCOMM CREATE creates an intercommunicator� The call is col�

lective over the union of the two groups� Processes should provide matching

��
 Chapter �

local comm and identical local leader arguments within each of the two groups�

The two leaders specify matching bridge comm arguments� and each provide in re�

mote leader the rank of the other leader within the domain of bridge comm� Both

provide identical tag values�

Wildcards are not permitted for remote leader� local leader� nor tag�

This call uses point�to�point communication with communicator bridge comm�

and with tag tag between the leaders� Thus� care must be taken that there be no

pending communication on bridge comm that could interfere with this communica�

tion�

MPI INTERCOMM MERGE�intercomm� high� newintracomm�

IN intercomm InterCommunicator

IN high see below

OUT newintracomm new intracommunicator

int MPI Intercomm merge�MPI Comm intercomm� int high�

MPI Comm �newintracomm�

MPI INTERCOMM MERGE�INTERCOMM� HIGH� NEWINTRACOMM� IERROR�

INTEGER INTERCOMM� NEWINTRACOMM� IERROR

LOGICAL HIGH

MPI INTERCOMM MERGE creates an intracommunicator from the union of

the two groups that are associated with intercomm� All processes should provide

the same high value within each of the two groups� If processes in one group

provided the value high 	 false and processes in the other group provided the value

high 	 true then the union orders the �low� group before the �high� group� If all

processes provided the same high argument then the order of the union is arbitrary�

This call is blocking and collective within the union of the two groups�

Advice to implementors� In order to implement MPI INTERCOMM MERGE�

MPI COMM FREE and MPI COMM DUP� it is necessary to support collective com�

municationwithin the two groups as well as communicationbetween the two groups�

One possible mechanism is to create a data structure that will allow one to run code

similar to that used for MPI INTERCOMM CREATE� A private communication do�

main for each group� a leader for each group� and a private bridge communication

domain for the two leaders� �End of advice to implementors��

Communicators ���

0 (0)

1 (3)

2 (6)

3 (9) 3 (11)

0 (1)

2 (7)

1 (4)

3 (10)

0 (2)

1 (5)

2 (8)

Group 0 Group 1 Group 2

Figure ����
Three
group pipeline� The �gure shows the local rank and �within brackets� the global rank of
each process�

Example
��	 In this example� processes are divided in three groups� Groups �

and � communicate� Groups � and � communicate� Therefore� group � requires one

intercommunicator� group � requires two intercommunicators� and group � requires

� intercommunicator� See Figure
���

$include 	mpi�h�

main�int argc� char ��argv�

�

MPI�Comm myComm� �� intra�communicator of local sub�group ��

MPI�Comm myFirstComm� �� inter�communicator ��

MPI�Comm mySecondComm� �� second inter�communicator �group
 only� ��

int membershipKey� rank�

MPI�Init��argc� �argv��

MPI�Comm�rank�MPI�COMM�WORLD� �rank��

�� Generate membershipKey in the range ���
� �� ��

membershipKey � rank " ��

�� Build intra�communicator for local sub�group ��

MPI�Comm�split�MPI�COMM�WORLD� membershipKey� rank� �myComm��

�� Build inter�communicators� Tags are hard�coded� ��

��� Chapter �

if �membershipKey �� �� �

�� Group � communicates with group
� ��

MPI�Intercomm�create� myComm� �� MPI�COMM�WORLD�
� �
� �myFirstComm��

�

else if �membershipKey ��
� �

�� Group
 communicates with groups � and �� ��

MPI�Intercomm�create� myComm� �� MPI�COMM�WORLD� �� �
� �myFirstComm��

MPI�Intercomm�create� myComm� �� MPI�COMM�WORLD� ��
�� �mySecondComm��

�

else if �membershipKey �� �� �

�� Group � communicates with group
� ��

MPI�Intercomm�create� myComm� �� MPI�COMM�WORLD�
�
�� �myFirstComm��

�

�� Do work ��� �not shown� ��

�� free communicators appropriately ��

MPI�Comm�free��myComm��

MPI�Comm�free��myFirstComm��

if�membershipkey ��
�

MPI�Comm�free��mySecondComm��

MPI�Finalize���

�

� Process Topologies

��� Introduction

This chapter discusses the MPI topology mechanism� A topology is an extra�

optional attribute that one can give to an intra�communicator� topologies cannot

be added to inter�communicators� A topology can provide a convenient naming

mechanism for the processes of a group �within a communicator�� and additionally�

may assist the runtime system in mapping the processes onto hardware�

As stated in Chapter
� a process group in MPI is a collection of n processes�

Each process in the group is assigned a rank between � and n�
� In many parallel

applications a linear ranking of processes does not adequately re�ect the logical

communication pattern of the processes �which is usually determined by the under�

lying problem geometry and the numerical algorithm used�� Often the processes

are arranged in topological patterns such as two� or three�dimensional grids� More

generally� the logical process arrangement is described by a graph� In this chapter

we will refer to this logical process arrangement as the �virtual topology��

A clear distinction must be made between the virtual process topology and the

topology of the underlying� physical hardware� The virtual topology can be ex�

ploited by the system in the assignment of processes to physical processors� if this

helps to improve the communication performance on a given machine� How this

mapping is done� however� is outside the scope of MPI� The description of the vir�

tual topology� on the other hand� depends only on the application� and is machine�

independent� The functions in this chapter deal only with machine�independent

mapping�

Rationale� Though physical mapping is not discussed� the existence of the virtual

topology informationmay be used as advice by the runtime system� There are well�

known techniques for mapping grid�torus structures to hardware topologies such as

hypercubes or grids� For more complicated graph structures good heuristics often

yield nearly optimal results ����� On the other hand� if there is no way for the

user to specify the logical process arrangement as a �virtual topology�� a random

mapping is most likely to result� On some machines� this will lead to unneces�

sary contention in the interconnection network� Some details about predicted and

measured performance improvements that result from good process�to�processor

mapping on modern wormhole�routing architectures can be found in ���
��

Besides possible performance bene�ts� the virtual topology can function as a conve�

nient� process�naming structure� with tremendous bene�ts for program readability

�
�

��� Chapter �

and notational power in message�passing programming� �End of rationale��

��� Virtual Topologies

The communication pattern of a set of processes can be represented by a graph� The

nodes stand for the processes� and the edges connect processes that communicate

with each other� Since communication is most often symmetric� communication

graphs are assumed to be symmetric� if an edge uv connects node u to node v�

then an edge vu connects node v to node u�

MPI provides message�passing between any pair of processes in a group� There

is no requirement for opening a channel explicitly� Therefore� a �missing link� in

the user�de�ned process graph does not prevent the corresponding processes from

exchanging messages� It means� rather� that this connection is neglected in the

virtual topology� This strategy implies that the topology gives no convenient way

of naming this pathway of communication� Another possible consequence is that

an automatic mapping tool �if one exists for the runtime environment� will not take

account of this edge when mapping� and communication on the �missing� link will

be less e�cient�

Rationale� As previously stated� the message passing in a program can be rep�

resented as a directed graph where the vertices are processes and the edges are

messages� On many systems� optimizing communication speeds requires a mini�

mization of the contention for physical wires by messages occurring simultaneously�

Performing this optimization requires knowledge of when messages occur and their

resource requirements� Not only is this information di�cult to represent� it may

not be available at topology creation time in complex programs� A simpler alter�

native is to provide information about �spatial� distribution of communication and

ignore �temporal� distribution� Though the former method can lead to greater op�

timizations and faster programs� the later method is used in MPI to allow a simpler

interface that is well understood at the current time� As a result� the programmer

tells the MPI system the typical connections� e�g�� topology� of their program� This

can lead to compromises when a speci�c topology may over� or under�specify the

connectivity that is used at any time in the program� Overall� however� the chosen

topology mechanism was seen as a useful compromise between functionality and

ease of usage� Experience with similar techniques in PARMACS ��� �� show that

this information is usually su�cient for a good mapping� �End of rationale��

Process Topologies ���

0

(0,0) (0,2) (0,3)

4

(1,0)

5

(0,1)

(1,1)

8 9 10

(1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

1 2 3

6 7

11

Figure ���
Relationship between ranks and Cartesian coordinates for a �x� �D topology� The upper number
in each box is the rank of the process and the lower value is the �row� column� coordinates�

Specifying the virtual topology in terms of a graph is su�cient for all applications�

However� in many applications the graph structure is regular� and the detailed set�

up of the graph would be inconvenient for the user and might be less e�cient at run

time� A large fraction of all parallel applications use process topologies like rings�

two� or higher�dimensional grids� or tori� These structures are completely de�ned

by the number of dimensions and the numbers of processes in each coordinate

direction� Also� the mapping of grids and tori is generally an easier problem than

general graphs� Thus� it is desirable to address these cases explicitly�

Process coordinates in a Cartesian structure begin their numbering at �� Row�

major numbering is always used for the processes in a Cartesian structure� This

means that� for example� the relation between group rank and coordinates for twelve

processes in a �� � grid is as shown in Figure ����

��� Overlapping Topologies

In some applications� it is desirable to use di�erent Cartesian topologies at di�erent

stages in the computation� For example� in a QR factorization� the ith transforma�

tion is determined by the data below the diagonal in the ith column of the matrix�

It is often easiest to think of the upper right hand corner of the �D topology as

starting on the process with the ith diagonal element of the matrix for the ith

stage of the computation� Since the original matrix was laid out in the original �D

topology� it is necessary to maintain a relationship between it and the shifted �D

topology in the ith stage� For example� the processes forming a row or column in

��� Chapter �

the original �D topology must also form a row or column in the shifted �D topol�

ogy in the ith stage� As stated in Section ��� and shown in Figure ���� there is a

clear correspondence between the rank of a process and its coordinates in a Carte�

sian topology� This relationship can be used to create multiple Cartesian topologies

with the desired relationship� Figure ��� shows the relationship of two �D Cartesian

topologies where the second one is shifted by two rows and two columns�

0 / (0,0)

6 / (1,2)

1 / (0,1)

7 / (1,3) 4 / (1,0)

3 / (0,3)

5 / (1,1)

2 / (0,2)

4 / (1,0)

10 / (2,2)

5 / (1,1)

11 / (2,3)

6 / (1,2)

8 / (2,0)

7 / (1,3)

9 / (2,1)

8 / (2,0)

2 / (0,2)

9 / (2,1)

3 / (0,3)

10 / (2,2)

0 / (0,0)

11 / (2,3)

1 / (0,1)

Figure ���
The relationship between two overlaid topologies on a �� � torus� The upper values in each
process is the rank � �row�col� in the original �D topology and the lower values are the same for
the shifted �D topology� Note that rows and columns of processes remain intact�

��� Embedding in MPI

The support for virtual topologies as de�ned in this chapter is consistent with

other parts of MPI� and� whenever possible� makes use of functions that are de�ned

elsewhere� Topology information is associated with communicators� It can be

implemented using the caching mechanism described in Chapter
�

Rationale� As with collective communications� the virtual topology features can

be layered on top of point�to�point and communicator functionality� By doing

this� a layered implementation is possible� though not required� A consequence of

this design is that topology information is not given directly to point�to�point nor

collective routines� Instead� the topology interface provides functions to translate

between the virtual topology and the ranks used in MPI communication routines�

�End of rationale��

Process Topologies ���

��� Cartesian Topology Functions

This section describes the MPI functions for creating Cartesian topologies�

�
�� Cartesian Constructor Function

MPI CART CREATE can be used to describe Cartesian structures of arbitrary di�

mension� For each coordinate direction one speci�es whether the process structure

is periodic or not� For a �D topology� it is linear if it is not periodic and a ring

if it is periodic� For a �D topology� it is a rectangle� cylinder� or torus as it goes

from non�periodic to periodic in one dimension to fully periodic� Note that an

n�dimensional hypercube is an n�dimensional torus with � processes per coordinate

direction� Thus� special support for hypercube structures is not necessary�

MPI CART CREATE�comm old� ndims� dims� periods� reorder� comm cart�

IN comm old input communicator

IN ndims number of dimensions of Cartesian grid

IN dims integer array of size ndims specifying the

number of processes in each dimension

IN periods logical array of size ndims specifying whether

the grid is periodic �true� or not �false�

in each dimension

IN reorder ranks may be reordered �true� or not

�false�

OUT comm cart communicator with new Cartesian topol�

ogy

int MPI Cart create�MPI Comm comm old� int ndims� int �dims�

int �periods� int reorder� MPI Comm �comm cart�

MPI CART CREATE�COMM OLD� NDIMS� DIMS� PERIODS� REORDER� COMM CART�

IERROR�

INTEGER COMM OLD� NDIMS� DIMS���� COMM CART� IERROR

LOGICAL PERIODS���� REORDER

MPI CART CREATE returns a handle to a new communicator to which the Carte�

sian topology information is attached� In analogy to the function MPI COMM�

CREATE� no cached information propagates to the new communicator� Also� this

��� Chapter �

function is collective� As with other collective calls� the program must be written

to work correctly� whether the call synchronizes or not�

If reorder 	 false then the rank of each process in the new group is identical

to its rank in the old group� Otherwise� the function may reorder the processes

�possibly so as to choose a good embedding of the virtual topology onto the physical

machine�� If the total size of the Cartesian grid is smaller than the size of the

group of comm old� then some processes are returned MPI COMM NULL� in analogy

to MPI COMM SPLIT� The call is erroneous if it speci�es a grid that is larger than

the group size�

Advice to implementors� MPI CART CREATE can be implemented by creating a

new communicator� and caching with the new communicator a description of the

Cartesian grid� e�g��

�� ndims �number of dimensions��

�� dims �numbers of processes per coordinate direction��

�� periods �periodicity information��

�� own�position �own position in grid�

�End of advice to implementors��

�
�� Cartesian Convenience Function� MPI DIMS CREATE

For Cartesian topologies� the function MPI DIMS CREATE helps the user select

a balanced distribution of processes per coordinate direction� depending on the

number of processes in the group to be balanced and optional constraints that can

be speci�ed by the user� One possible use of this function is to partition all the

processes �the size of MPI COMM WORLD�s group� into an n�dimensional topology�

MPI DIMS CREATE�nnodes� ndims� dims�

IN nnodes number of nodes in a grid

IN ndims number of Cartesian dimensions

INOUT dims integer array of size ndims specifying the

number of nodes in each dimension

int MPI Dims create�int nnodes� int ndims� int �dims�

MPI DIMS CREATE�NNODES� NDIMS� DIMS� IERROR�

INTEGER NNODES� NDIMS� DIMS���� IERROR

Process Topologies ��	

The entries in the array dims are set to describe a Cartesian grid with ndims

dimensions and a total of nnodes nodes� The dimensions are set to be as close to

each other as possible� using an appropriate divisibility algorithm� The caller may

further constrain the operation of this routine by specifying elements of array dims�

If dims�i� is set to a positive number� the routine will not modify the number of

nodes in dimension i� only those entries where dims�i� � � are modi�ed by the

call�

Negative input values of dims�i� are erroneous� An error will occur if nnodes is

not a multiple of
Y

i�dims�i����

dims�i��

For dims�i� set by the call� dims�i� will be ordered in monotonically decreasing

order� Array dims is suitable for use as input to routine MPI CART CREATE�

MPI DIMS CREATE is local� Several sample calls are shown in Example ����

Example
��

dims function call dims

before call on return

����� MPI DIMS CREATE��� �� dims� �����

����� MPI DIMS CREATE��� �� dims� �����

������� MPI DIMS CREATE��� �� dims� �������

������� MPI DIMS CREATE��� �� dims� erroneous call

�
�� Cartesian Inquiry Functions

Once a Cartesian topology is set up� it may be necessary to inquire about the

topology� These functions are given below and are all local calls�

MPI CARTDIM GET�comm� ndims�

IN comm communicator with Cartesian structure

OUT ndims number of dimensions of the Cartesian

structure

int MPI Cartdim get�MPI Comm comm� int �ndims�

MPI CARTDIM GET�COMM� NDIMS� IERROR�

INTEGER COMM� NDIMS� IERROR

MPI CARTDIM GET returns the number of dimensions of the Cartesian structure

associated with comm� This can be used to provide the other Cartesian inquiry

��
 Chapter �

functions with the correct size of arrays� The communicator with the topology in

Figure ��� would return ndims ! ��

MPI CART GET�comm� maxdims� dims� periods� coords�

IN comm communicator with Cartesian structure

IN maxdims length of vectors dims� periods
 and

coords in the calling program

OUT dims number of processes for each Cartesian

dimension

OUT periods periodicity �true�false� for each Carte�

sian dimension

OUT coords coordinates of calling process in Carte�

sian structure

int MPI Cart get�MPI Comm comm� int maxdims� int �dims� int �periods�

int �coords�

MPI CART GET�COMM� MAXDIMS� DIMS� PERIODS� COORDS� IERROR�

INTEGER COMM� MAXDIMS� DIMS���� COORDS���� IERROR

LOGICAL PERIODS���

MPI CART GET returns information on the Cartesian topology associated with

comm� maxdims must be at least ndims as returned by MPI CARTDIM GET� For

the example in Figure ���� dims ! ��� ��� The coords are as given for the rank of

the calling process as shown� e�g�� process � returns coords ! ��� ���

�
�	 Cartesian Translator Functions

The functions in this section translate to�from the rank and the Cartesian topology

coordinates� These calls are local�

MPI CART RANK�comm� coords� rank�

IN comm communicator with Cartesian structure

IN coords integer array specifying the Cartesian

coordinates of a process

OUT rank rank of speci�ed process

int MPI Cart rank�MPI Comm comm� int �coords� int �rank�

Process Topologies ���

MPI CART RANK�COMM� COORDS� RANK� IERROR�

INTEGER COMM� COORDS���� RANK� IERROR

For a process group with Cartesian structure� the function MPI CART RANK

translates the logical process coordinates to process ranks as they are used by the

point�to�point routines� coords is an array of size ndims as returned by MPI CART�

DIM GET� For the example in Figure ���� coords ! ��� �� would return rank ! ��

For dimension i with periods�i� � true� if the coordinate� coords�i�� is out of

range� that is� coords�i� � � or coords�i� � dims�i�� it is shifted back to the

interval � � coords�i� � dims�i� automatically� If the topology in Figure ��� is

periodic in both dimensions �torus�� then coords ! ��� �� would also return rank ! ��

Out�of�range coordinates are erroneous for non�periodic dimensions�

MPI CART COORDS�comm� rank� maxdims� coords�

IN comm communicator with Cartesian structure

IN rank rank of a process within group of comm

IN maxdims length of vector coord in the calling pro�

gram

OUT coords integer array containing the Cartesian

coordinates of speci�ed process

int MPI Cart coords�MPI Comm comm� int rank� int maxdims�

int �coords�

MPI CART COORDS�COMM� RANK� MAXDIMS� COORDS� IERROR�

INTEGER COMM� RANK� MAXDIMS� COORDS���� IERROR

MPI CART COORDS is the rank�to�coordinates translator� It is the inverse map�

ping of MPI CART RANK� maxdims is at least as big as ndims as returned by

MPI CARTDIM GET� For the example in Figure ���� rank ! � would return coords !

��� ���

�
�
 Cartesian Shift Function

If the process topology is a Cartesian structure� a MPI SENDRECV operation is

likely to be used along a coordinate direction to perform a shift of data� As input�

MPI SENDRECV takes the rank of a source process for the receive� and the rank of

a destination process for the send� A Cartesian shift operation is speci�ed by the

coordinate of the shift and by the size of the shift step �positive or negative�� The

��� Chapter �

function MPI CART SHIFT inputs such speci�cation and returns the information

needed to call MPI SENDRECV� The function MPI CART SHIFT is local�

MPI CART SHIFT�comm� direction� disp� rank source� rank dest�

IN comm communicator with Cartesian structure

IN direction coordinate dimension of shift

IN disp displacement ��
� upwards shift
 �
�

downwards shift�

OUT rank source rank of source process

OUT rank dest rank of destination process

int MPI Cart shift�MPI Comm comm� int direction� int disp�

int �rank source� int �rank dest�

MPI CART SHIFT�COMM� DIRECTION� DISP� RANK SOURCE� RANK DEST� IERROR�

INTEGER COMM� DIRECTION� DISP� RANK SOURCE� RANK DEST� IERROR

The direction argument indicates the dimension of the shift� i�e�� the coordinate

whose value is modi�ed by the shift� The coordinates are numbered from � to

ndims��� where ndims is the number of dimensions�

Depending on the periodicity of the Cartesian group in the speci�ed coordinate

direction� MPI CART SHIFT provides the identi�ers for a circular or an end�o�

shift� In the case of an end�o� shift� the value MPI PROC NULL may be returned in

rank source and�or rank dest� indicating that the source and�or the destination for

the shift is out of range� This is a valid input to the sendrecv functions�

Neither MPI CART SHIFT� nor MPI SENDRECV are collective functions� It is

not required that all processes in the grid call MPI CART SHIFT with the same

direction and disp arguments� but only that sends match receives in the subsequent

calls to MPI SENDRECV� Example ��� shows such use of MPI CART SHIFT� where

each column of a �D grid is shifted by a di�erent amount� Figures ��� and ��� show

the result on �� processors�

Example
�� The communicator� comm� has a �� � periodic� Cartesian topology

associated with it� A two�dimensional array of REALs is stored one element per pro�

cess� in variable a� One wishes to skew this array� by shifting column i �vertically�

i�e�� along the column� by i steps�

INTEGER comm��d� rank� coords���� ierr� source� dest

INTEGER status�MPI�STATUS�SIZE�� dims���

LOGICAL reorder� periods���

Process Topologies ���

REAL a� b

CALL MPI�COMM�SIZE�MPI�COMM�WORLD� isize� ierr�

IF �isize�LT�
�� CALL MPI�ABORT�MPI�COMM�WORLD� MPI�ERR�OTHER� ierr�

CALL MPI�COMM�RANK�MPI�COMM�WORLD� rank� ierr�

! initialize arrays

a � rank

b � �

! create topology

! values to run on
� processes

dims�
� � �

dims��� � �

! change to �FALSE� for non�periodic

periods�
� � �TRUE�

periods��� � �TRUE�

reorder � �FALSE�

CALL MPI�CART�CREATE�MPI�COMM�WORLD� �� dims� periods�

reorder� comm��d� ierr�

! first
� processes of MPI�COMM�WORLD are in group of comm��d�

! with same rank as in MPI�COMM�WORLD

! find Cartesian coordinates

CALL MPI�CART�COORDS�comm��d� rank� �� coords� ierr�

! compute shift source and destination

CALL MPI�CART�SHIFT�comm��d� �� coords���� source� dest� ierr�

! skew a into b

CALL MPI�SENDRECV�a�
� MPI�REAL� dest�
�� b�
� MPI�REAL�

source�
�� comm��d� status� ierr�

Rationale� The e�ect of returning MPI PROC NULL when the source of an end�o�

shift is out of range is that� in the subsequent shift� the destination bu�er stays

unchanged� This is di�erent from the behavior of a Fortran �� EOSHIFT intrinsic

function� where the user can provide a �ll value for the target of a shift� if the source

is out of range� with a default which is zero or blank� To achieve the behavior of

the Fortran function� one would need that a receive from MPI PROC NULL put a

��� Chapter �

0

(0,0)

0 / 0 9 / 5

2

(0,2)

6 / 10

3

(0,3)

3 / 3

4

(1,0)

1

4 / 4

5

(1,1)

1 / 9

6 7

8 9 10 11

(1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

10 / 2 7 / 7

8 / 8 5 / 1 2 / 6 11 / 11

0

4

8

9

1

5

6

10

2

3

7

11

(0,1)

Figure ���
Outcome of Example ��� when the �D topology is periodic �a torus� on �� processes� In the
boxes on the left� the upper number in each box represents the process rank� the middle values
are the �row� column� coordinate� and the lower values are the source�dest for the sendrecv
operation� The value in the boxes on the right are the results in b after the sendrecv has
completed�

0

(0,0)

0 / 0

(0,2) (0,3)

4

(1,0)

4 / 4

5

(1,1)

1 / 9

8

7

9 10

(1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

8 / 8

0

4

8

1

5 211

- / 5

- / -

- / -

- / -

- / -5 / - 2 / -

-1 -1 -1

-1-1

-1

- / 10

(0,1)

1 2 3

6

Figure ���
Similar to Figure ��� except the �D Cartesian topology is not periodic �a rectangle�� This results
when the values of periods��� and periods��� are made �FALSE� A �
� in a source or dest
value indicatesMPI CART SHIFT returnsMPI PROC NULL�

�xed �ll value in the receive bu�er� A default �ll cannot be easily provided� since

a di�erent �ll value is required for each datatype argument used in the sendreceive

call� Since the user can mimic the EOSHIFT behavior with little additional code� it

was felt preferable to choose the simpler interface� �End of rationale��

Advice to users� In Fortran� the dimension indicated by DIRECTION ! i has

DIMS�i��� processes� where DIMS is the array that was used to create the grid� In

C� the dimension indicated by direction ! i is the dimension speci�ed by dims�i
�

�End of advice to users��

Process Topologies ���

�
�
 Cartesian Partition Function

MPI CART SUB�comm� remain dims� newcomm�

IN comm communicator with Cartesian structure

IN remain dims the ith entry of remain dims speci�es

whether the ith dimension is kept in the

subgrid �true� or is dropped �false�

OUT newcomm communicator containing the subgrid that

includes the calling process

int MPI Cart sub�MPI Comm comm� int �remain dims� MPI Comm �newcomm�

MPI CART SUB�COMM� REMAIN DIMS� NEWCOMM� IERROR�

INTEGER COMM� NEWCOMM� IERROR

LOGICAL REMAIN DIMS���

If a Cartesian topology has been created with MPI CART CREATE� the function

MPI CART SUB can be used to partition the communicator group into subgroups

that form lower�dimensional Cartesian subgrids� and to build for each subgroup a

communicator with the associated subgrid Cartesian topology� This call is collec�

tive�

Advice to users� The same functionality as MPI CART SUB can be achieved with

MPI COMM SPLIT� However� since MPI CART SUB has additional information� it

can greatly reduce the communication and work needed by logically working on

the topology� As such� MPI CART SUB can be easily implemented in a scalable

fashion� �End of advice to users��

Advice to implementors� The functionMPI CART SUB�comm� remain dims� comm�

new� can be implemented by a call to MPI COMM SPLIT� comm� color� key� comm�

new �� using a single number encoding of the lost dimensions as color and a single

number encoding of the preserved dimensions as key� In addition� the new topology

information has to be cached� �End of advice to implementors��

Example
�� Assume that MPI CART CREATE����� comm� has de�ned a �� �

�� �� grid� Let remain dims � �true� false� true�� Then a call to�

MPI�CART�SUB�comm� remain�dims� comm�new��

��� Chapter �

will create three communicators each with eight processes in a � � � Cartesian

topology� If remain dims � �false� false� true� then the call to MPI CART�

SUB� comm� remain dims� comm new� will create six non�overlapping communica�

tors� each with four processes� in a one�dimensional Cartesian topology�

�
�� Cartesian Low�level Functions

Typically� the functions already presented are used to create and use Cartesian

topologies� However� some applications may want more control over the process�

MPI CART MAP returns the Cartesian map recommended by the MPI system� in

order to map well the virtual communication graph of the application on the phys�

ical machine topology� This call is collective�

MPI CART MAP�comm� ndims� dims� periods� newrank�

IN comm input communicator

IN ndims number of dimensions of Cartesian struc�

ture

IN dims integer array of size ndims specifying the

number of processes in each coordinate

direction

IN periods logical array of size ndims specifying the

periodicity speci�cation in each coordi�

nate direction

OUT newrank reordered rank of the calling process� MPI�

UNDEFINED if calling process does not

belong to grid

int MPI Cart map�MPI Comm comm� int ndims� int �dims� int �periods�

int �newrank�

MPI CART MAP�COMM� NDIMS� DIMS� PERIODS� NEWRANK� IERROR�

INTEGER COMM� NDIMS� DIMS���� NEWRANK� IERROR

LOGICAL PERIODS���

MPI CART MAP computes an �optimal� placement for the calling process on the

physical machine�

Advice to implementors� The function MPI CART CREATE�comm� ndims� dims�

periods� reorder� comm cart�� with reorder � true can be implemented by calling

Process Topologies ���

MPI CART MAP�comm� ndims� dims� periods� newrank�� then calling

MPI COMM SPLIT�comm� color� key� comm cart�� with color � � if newrank
!

MPI UNDEFINED� color � MPI UNDEFINED otherwise� and key � newrank� �End of

advice to implementors��

��� Graph Topology Functions

This section describes the MPI functions for creating graph topologies�

�
�� Graph Constructor Function

MPI GRAPH CREATE�comm old� nnodes� index� edges� reorder� comm graph�

IN comm old input communicator

IN nnodes number of nodes in graph

IN index array of integers describing node degrees

�see below�

IN edges array of integers describing graph edges

�see below�

IN reorder ranking may be reordered �true� or not

�false�

OUT comm graph communicator with graph topology added

int MPI Graph create�MPI Comm comm old� int nnodes� int �index�

int �edges� int reorder� MPI Comm �comm graph�

MPI GRAPH CREATE�COMM OLD� NNODES� INDEX� EDGES� REORDER� COMM GRAPH�

IERROR�

INTEGER COMM OLD� NNODES� INDEX���� EDGES���� COMM GRAPH� IERROR

LOGICAL REORDER

MPI GRAPH CREATE returns a new communicator to which the graph topology

information is attached� If reorder 	 false then the rank of each process in the

new group is identical to its rank in the old group� Otherwise� the function may

reorder the processes� If the size� nnodes� of the graph is smaller than the size

of the group of comm old� then some processes are returned MPI COMM NULL� in

analogy to MPI COMM SPLIT� The call is erroneous if it speci�es a graph that is

larger than the group size of the input communicator� In analogy to the function

MPI COMM CREATE� no cached information propagates to the new communicator�

��� Chapter �

Also� this function is collective� As with other collective calls� the program must

be written to work correctly� whether the call synchronizes or not�

The three parameters nnodes� index and edges de�ne the graph structure� nnodes

is the number of nodes of the graph� The nodes are numbered from � to nnodes�
�

The ith entry of array index stores the total number of neighbors of the �rst i

graph nodes� The lists of neighbors of nodes ��
� � � �� nnodes�
 are stored in

consecutive locations in array edges� The array edges is a �attened representation of

the edge lists� The total number of entries in index is nnodes and the total number

of entries in edges is equal to the number of graph edges�

The de�nitions of the arguments nnodes� index� and edges are illustrated in

Example ����

Example
�	 Assume there are four processes �� �� �� � with the following adja�

cency matrix�

process neighbors

� �� �

� �

� �

� �� �

Then� the input arguments are�

nnodes ! �

index ! ��� �� �� ��

edges ! ��� �� �� �� �� ��

Thus� in C� index��� is the degree of node zero� and index�i� � index�i�
�

is the degree of node i� i�
� � � �� nnodes�
� the list of neighbors of node zero is

stored in edges�j�� for � � j � index����
 and the list of neighbors of node i�

i � �� is stored in edges�j�� index�i�
� � j � index�i��
�

In Fortran� index�
� is the degree of node zero� and index�i

� � index�i�

is the degree of node i� i�
� � � �� nnodes�
� the list of neighbors of node zero

is stored in edges�j�� for
 � j � index�
� and the list of neighbors of node i�

i � �� is stored in edges�j�� index�i� �
 � j � index�i�
��

Rationale� Since bidirectional communication is assumed� the edges array is

symmetric� To allow input checking and to make the graph construction easier for

Process Topologies ��	

the user� the full graph is given and not just half of the symmetric graph� �End of

rationale��

Advice to implementors� A graph topology can be implemented by caching with

the communicator the two arrays

�� index�

�� edges

The number of nodes is equal to the number of processes in the group� An additional

zero entry at the start of array index simpli�es access to the topology information�

�End of advice to implementors��

�
�� Graph Inquiry Functions

Once a graph topology is set up� it may be necessary to inquire about the topology�

These functions are given below and are all local calls�

MPI GRAPHDIMS GET�comm� nnodes� nedges�

IN comm communicator for group with graph struc�

ture

OUT nnodes number of nodes in graph

OUT nedges number of edges in graph

int MPI Graphdims get�MPI Comm comm� int �nnodes� int �nedges�

MPI GRAPHDIMS GET�COMM� NNODES� NEDGES� IERROR�

INTEGER COMM� NNODES� NEDGES� IERROR

MPI GRAPHDIMS GET returns the number of nodes and the number of edges

in the graph� The number of nodes is identical to the size of the group associated

with comm� nnodes and nedges can be used to supply arrays of correct size for index

and edges� respectively� in MPI GRAPH GET� MPI GRAPHDIMS GET would return

nnodes ! � and nedges ! � for Example ����

��
 Chapter �

MPI GRAPH GET�comm� maxindex� maxedges� index� edges�

IN comm communicator with graph structure

IN maxindex length of vector index in the calling pro�

gram

IN maxedges length of vector edges in the calling pro�

gram

OUT index array of integers containing the graph

structure

OUT edges array of integers containing the graph

structure

int MPI Graph get�MPI Comm comm� int maxindex� int maxedges�

int �index� int �edges�

MPI GRAPH GET�COMM� MAXINDEX� MAXEDGES� INDEX� EDGES� IERROR�

INTEGER COMM� MAXINDEX� MAXEDGES� INDEX���� EDGES���� IERROR

MPI GRAPH GET returns index and edges as was supplied to MPI GRAPH CRE�

ATE� maxindex and maxedges are at least as big as nnodes and nedges� respectively�

as returned by MPI GRAPHDIMS GET above� Using the comm created in Exam�

ple ��� would return the index and edges given in the example�

�
�� Graph Information Functions

The functions in this section provide information about the structure of the graph

topology� All calls are local�

MPI GRAPH NEIGHBORS COUNT�comm� rank� nneighbors�

IN comm communicator with graph topology

IN rank rank of process in group of comm

OUT nneighbors number of neighbors of speci�ed process

int MPI Graph neighbors count�MPI Comm comm� int rank�

int �nneighbors�

MPI GRAPH NEIGHBORS COUNT�COMM� RANK� NNEIGHBORS� IERROR�

INTEGER COMM� RANK� NNEIGHBORS� IERROR

MPI GRAPH NEIGHBORS COUNT returns the number of neighbors for the pro�

cess signi�ed by rank� It can be used by MPI GRAPH NEIGHBORS to give an

Process Topologies ���

array of correct size for neighbors� Using Example ��� with rank ! � would give

nneighbors ! ��

MPI GRAPH NEIGHBORS�comm� rank� maxneighbors� neighbors�

IN comm communicator with graph topology
IN rank rank of process in group of comm

IN maxneighbors size of array neighbors

OUT neighbors array of ranks of processes that are neigh�

bors to speci�ed process

int MPI Graph neighbors�MPI Comm comm� int rank� int maxneighbors�

int �neighbors�

MPI GRAPH NEIGHBORS�COMM� RANK� MAXNEIGHBORS� NEIGHBORS� IERROR�

INTEGER COMM� RANK� MAXNEIGHBORS� NEIGHBORS���� IERROR

MPI GRAPH NEIGHBORS returns the part of the edges array associated with

process rank� Using Example ���� rank ! � would return neighbors ! �� �� Another

use is given in Example ��
�

Example
�
 Suppose that comm is a communicator with a shu�e�exchange topol�

ogy� The group has �n members� Each process is labeled by a�� � � � � an with ai �

f�� �g� and has three neighbors� exchange�a�� � � � � an� ! a�� � � � � an��� %an �%a ! ��a��

unshu�e�a�� � � � � an� ! a�� � � � � an� a�� and shu�e�a�� � � � � an� ! an� a�� � � � � an���

The graph adjacency list is illustrated below for n ! ��

node exchange unshu�e shu�e

neighbors��� neighbors��� neighbors���

� ����� � � �

� ����� � � �

� ����� � � �

� ����� � �

� �����
 � �

 ����� � � �

� ����� �
 �

� ����� � � �

Suppose that the communicator comm has this topology associated with it� The

following code fragment cycles through the three types of neighbors and performs

��� Chapter �

an appropriate permutation for each�

! assume each process has stored a real number A�

! extract neighborhood information

CALL MPI�COMM�RANK�comm� myrank� ierr�

CALL MPI�GRAPH�NEIGHBORS�comm� myrank� �� neighbors� ierr�

! perform exchange permutation

CALL MPI�SENDRECV�REPLACE�A�
� MPI�REAL� neighbors�
�� ��

neighbors�
�� �� comm� status� ierr�

! perform unshuffle permutation

CALL MPI�SENDRECV�REPLACE�A�
� MPI�REAL� neighbors���� ��

neighbors���� �� comm� status� ierr�

! perform shuffle permutation

CALL MPI�SENDRECV�REPLACE�A�
� MPI�REAL� neighbors���� ��

neighbors���� �� comm� status� ierr�

�
�	 Low�level Graph Functions

The low�level function for general graph topologies as in the Cartesian topologies

given in Section ��
�� is as follows� This call is collective�

MPI GRAPH MAP�comm� nnodes� index� edges� newrank�

IN comm input communicator

IN nnodes number of graph nodes
IN index integer array specifying the graph struc�

ture
 see MPI GRAPH CREATE
IN edges integer array specifying the graph struc�

ture
OUT newrank reordered rank of the calling process� MPI�

UNDEFINED if the calling process does

not belong to graph

int MPI Graph map�MPI Comm comm� int nnodes� int �index� int �edges�

int �newrank�

MPI GRAPH MAP�COMM� NNODES� INDEX� EDGES� NEWRANK� IERROR�

INTEGER COMM� NNODES� INDEX���� EDGES���� NEWRANK� IERROR

Advice to implementors� The function MPI GRAPH CREATE�comm� nnodes�

index� edges� reorder� comm graph�� with reorder � true can be implemented

Process Topologies ���

by calling MPI GRAPH MAP�comm� nnodes� index� edges� newrank�� then calling

MPI COMM SPLIT�comm� color� key� comm graph�� with color � � if newrank
!

MPI UNDEFINED� color � MPI UNDEFINED otherwise� and key � newrank� �End of

advice to implementors��

��	 Topology Inquiry Functions

A routine may receive a communicator for which it is unknown what type of topol�

ogy is associated with it� MPI TOPO TEST allows one to answer this question�

This is a local call�

MPI TOPO TEST�comm� status�

IN comm communicator

OUT status topology type of communicator comm

int MPI Topo test�MPI Comm comm� int �status�

MPI TOPO TEST�COMM� STATUS� IERROR�

INTEGER COMM� STATUS� IERROR

The function MPI TOPO TEST returns the type of topology that is assigned to

a communicator�

The output value status is one of the following�

MPI GRAPH graph topology
MPI CART Cartesian topology
MPI UNDEFINED no topology

��
 An Application Example

Example
�
 We present here two algorithms for parallel matrix product� Both

codes compute a product C ! A � B� where A is an n� � n� matrix and B is an

n� � n� matrix �the result matrix C has size n� � n��� The input matrices are

initially available on process zero� and the result matrix is returned at process zero�

The �rst parallel algorithm maps the computation onto a p� � p� ��dimensional

grid of processes� The matrices are partitioned as shown in Figure ��
� matrix A

is partitioned into p� horizontal slices� the matrix B is partitioned into p� vertical

slices� and matrix C is partitioned into p� � p� submatrices�

��� Chapter �

1

2
p

p
2

p
1

p

BA C

Figure ���
Data partition in �D parallel matrix product algorithm�

Each process �i� j� computes the product of the i�th slice of A and the j�th slice

of B� resulting in submatrix �i� j� of C�

The successive phases of the computation are illustrated in Figure ����

�� Matrix A is scattered into slices on the �x� �� line�

�� Matrix B is scattered into slices on the ��� y� line�

�� The slices of A are replicated in the y dimension�

�� The slices of B are replicated in the x dimension�

� Each process computes one submatrix product�

�� Matrix C is gathered from the �x� y� plane�

SUBROUTINE PMATMULT� A� B� C� n� p� comm�

! subroutine arguments are meaningful only at process �

INTEGER n���

! matrix dimensions

REAL A�n�
��n�����

B�n����n�����

C�n�
��n����

! data

INTEGER p���

! dimensions of processor grid� p�
� divides n�
�� p���

! divides n��� and the product of the � dimensions

! must equal the size of the group of comm

INTEGER comm

! communicator for processes that participate in computation

INTEGER nn���

Process Topologies ���

5. compute
 products of
 submatrices

 submatrices

of A
3. broadcast

x

 submatrices

of B
4. broadcast

Axes

y

1. scatter A

2. scatter B

6. gather C

Figure ���
Phases in �D parallel matrix product algorithm�

��� Chapter �

! dimensions of local submatrices

REAL� ALLOCATABLE AA� �� BB� �� CC� � �

! local submatrices

INTEGER comm��D� comm�
D���� pcomm

! communicators for �D grid� for subspaces� and copy of comm

INTEGER coords���

! Cartesian coordinates

INTEGER rank

! process rank

INTEGER� ALLOCATABLE dispc� �� countc� �

! displacement and count array for gather call�

INTEGER typea� typec� types���� blen���� disp���

! datatypes and arrays for datatype creation

INTEGER ierr� i� j� k� sizeofreal

LOGICAL periods���� remains���

CALL MPI�COMM�DUP� comm� pcomm� ierr�

! broadcast parameters n��� and p���

CALL MPI�BCAST� n� �� MPI�INTEGER� �� pcomm� ierr�

CALL MPI�BCAST� p� �� MPI�INTEGER� �� pcomm� ierr�

! create �D grid of processes

periods � �� �FALSE�� �FALSE���

CALL MPI�CART�CREATE� pcomm� �� p� periods� �FALSE�� comm��D� ierr�

! find rank and Cartesian coordinates

CALL MPI�COMM�RANK� comm��D� rank� ierr�

CALL MPI�CART�COORDS� comm��D� rank� �� coords� ierr�

! compute communicators for subspaces

DO i �
� �

DO j �
� �

remains�j� � �i�EQ�j�

END DO

CALL MPI�CART�SUB� comm��D� remains� comm�
D�i�� ierr�

END DO

Process Topologies ���

! allocate submatrices

nn�
� � n�
��p�
�

nn��� � n����p���

END DO

ALLOCATE �AA�nn�
��n����� BB�n����nn����� CC�nn�
��nn�����

IF �rank�EQ��� THEN

! compute datatype for slice of A

CALL MPI�TYPE�VECTOR� n���� nn�
�� n�
�� MPI�REAL�

types�
�� ierr�

! and correct extent to size of subcolumn so that

! consecutive slices be �contiguous�

CALL MPI�TYPE�EXTENT� MPI�REAL� sizeofreal� ierr�

blen � ��
�
 ��

disp � �� �� sizeofreal�nn�
� ��

types��� � MPI�UB

CALL MPI�TYPE�STRUCT� �� blen� disp� types� typea� ierr�

CALL MPI�TYPE�COMMIT� typea� ierr�

! compute datatype for submatrix of C

CALL MPI�TYPE�VECTOR� nn���� nn�
�� n�
�� MPI�REAL�

types�
�� ierr�

! and correct extent to size of subcolumn

CALL MPI�TYPE�STRUCT��� blen� disp� types� typec� ierr�

CALL MPI�TYPE�COMMIT�typec� ierr�

! compute number of subcolumns preceeding each successive

! submatrix of C� Submatrices are ordered in row�major

! order� to fit the order of processes in the grid�

ALLOCATE �dispc�p�
��p����� countc�p�
��p�����

DO i �
� p�
�

DO j �
� p���

dispc��i�
��p���
j� � ��j�
��p�
�
 �i�
���nn���

countc��i�
��p���
j� �

END DO

END DO

END IF

��� Chapter �

! and now� the computation

!
� scatter row slices of matrix A on x axis

IF �coords����EQ��� THEN

CALL MPI�SCATTER�A�
� typea� AA� nn�
��n���� MPI�REAL�

�� comm�
D�
�� ierr�

END IF

! �� scatter column slices of matrix B on y axis

IF �coords�
��EQ��� THEN

CALL MPI�SCATTER�B� n����nn���� MPI�REAL� BB�

n����nn���� MPI�REAL� �� comm�
D���� ierr�

END IF

! �� broadcast matrix AA in y dimension

CALL MPI�BCAST�AA� nn�
��n���� MPI�REAL� �� comm�
D����

! �� broadcast matrix BB in x dimension

CALL MPI�BCAST�BB� n����nn���� MPI�REAL� �� comm�
D�
��

! �� compute submatrix products

DO j �
� nn���

DO i �
� nn�
�

CC�i�j� � �

DO k �
� n���

CC�i�j� � CC�i�j�
 AA�i�k��BB�k�j�

END DO

END DO

END DO

! �� gather results from plane to node �

CALL MPI�GATHERV� CC� nn�
��nn���� MPI�REAL�

C� countc� dispc� typec� �� comm��D� ierr�

! clean up

DEALLOCATE�AA� BB� CC�

MPI�COMM�FREE� pcomm� ierr�

MPI�COMM�FREE� comm��D� ierr�

DO i �
� �

Process Topologies ��	

2

p
1 p

2
p
1

p

BA

p
3

C

p
3

Figure ���
Data partition in �D parallel matrix product algorithm�

MPI�COMM�FREE� comm�
D�i�� ierr�

END DO

IF �rank�EQ��� THEN

DEALLOCATE�countc� dispc�

MPI�TYPE�FREE� typea� ierr�

MPI�TYPE�FREE� typec� ierr�

MPI�TYPE�FREE� types�
�� ierr�

END IF

! returns matrix C at process �

RETURN

END

Example
�� For large matrices� performance can be improved by using Strassen�s

algorithm� rather than the n� one� Even if one uses the simple� n� algorithm� the

amount of communication can be decreased by using an algorithm that maps the

computation on a ��dimensional grid of processes�

The parallel computation maps the n� � n� � n� volume of basic products onto

a three�dimensional grid of dimensions p� � p� � p�� The matrices are partitioned

as shown in Figure ���� matrix A is partitioned into p� � p� submatrices� matrix

B is partitioned into p� � p� submatrices� and matrix C is partitioned into p� � p�

submatrices� Process �i� j� k� computes the product of submatrix �i� j� of matrix A

and submatrix �j� k� of matrix B� The submatrix �i� k� of matrix C is obtained by

summing the subproducts computed at processes �i� j� k�� j ! �� � � � � p� � ��

��
 Chapter �

Axes

x
y

z

 submatrices of B
4. broadcast

3. broadcast
 submatrices

of A

7. gather C

5. compute products
 of submatrices

2. scatter B

1. scatter A

6. reduce products
Figure ��	
Phases in �D parallel matrix product algorithm�

Process Topologies ���

The successive phases of the computation are illustrated in Figure ��
�

�� The submatrices of A are scattered in the �x� y� �� plane�

�� The submatrices of B are scattered in the ��� y� z� plane�

�� The submatrices of A are replicated in the z dimension�

�� The submatrices of B are replicated in the x dimension�

� Each process computes one submatrix product�

�� The subproducts are reduced in the y dimension�

�� Matrix C is gathered from the �x� �� z� plane�

SUBROUTINE PMATMULT� A� B� C� n� p� comm�

! subroutine arguments are meaningful only at process �

INTEGER n���

! matrix dimensions

REAL A�n�
��n�����

B�n����n�����

C�n�
��n����

! data

INTEGER p���

! dimensions of processor grid� p�i� must divide

! exactly n�i� and the product of the � dimensions

! must equal the size of the group of comm

INTEGER comm

! communicator for processes that participate in computation

INTEGER nn���

! dimensions of local submatrices

REAL� ALLOCATABLE AA� � �� BB� � �� CC� � �� CC
� � �

! local submatrices

INTEGER comm��D� comm��D���� comm�
D���� pcomm

! communicators for �D grid� for subspaces� and copy of comm

INTEGER coords���

! Cartesian coordinates

INTEGER rank

! process rank

INTEGER� ALLOCATABLE dispa� �� dispb� �� dispc� ��

counta� �� countb� �� countc� �

! displacement and count arrays for scatter�gather calls�

INTEGER typea� typeb� typec� types���� blen���� disp���

��� Chapter �

! datatypes and arrays for datatype creation

INTEGER ierr� i� j� k� sizeofreal

LOGICAL periods���� remains���

CALL MPI�COMM�DUP� comm� pcomm� ierr�

! broadcast parameters n��� and p���

CALL MPI�BCAST� n� �� MPI�INTEGER� �� pcomm� ierr�

CALL MPI�BCAST� p� �� MPI�INTEGER� �� pcomm� ierr�

! create �D grid of processes

periods � �� �FALSE�� �FALSE�� �FALSE���

CALL MPI�CART�CREATE� pcomm� �� p� periods� �FALSE�� comm��D� ierr�

! find rank and Cartesian coordinates

CALL MPI�COMM�RANK�comm��D� rank� ierr�

CALL MPI�CART�COORDS�comm��D� rank� �� coords� ierr�

! compute communicators for subspaces

! �D subspaces

DO i �
� �

DO j �
� �

remains�j� � �i�NE�j�

END DO

CALL MPI�CART�SUB� comm��D� remains� comm��D�i�� ierr�

END DO

!
D subspaces

DO i �
� �

DO j �
� �

remains�j� � �i�EQ�j�

END DO

CALL MPI�CART�SUB� comm��D� remains� comm�
D�i�� ierr�

END DO

! allocate submatrices

DO i �
� �

Process Topologies ���

nn�i� � n�i��p�i�

END DO

ALLOCATE �AA�nn�
��nn����� BB�nn����nn����� CC�nn�
��nn�����

IF �rank�EQ��� THEN

! compute datatype for submatrix of A

CALL MPI�TYPE�VECTOR� nn���� nn�
�� n�
�� MPI�REAL�

types�
�� ierr�

! and correct extent to size of subcolumn

MPI�TYPE�EXTENT� MPI�REAL� sizeofreal� ierr�

blen � ��
�
 ��

disp � �� �� sizeofreal�nn�
� ��

types��� � MPI�UB

CALL MPI�TYPE�STRUCT� �� blen� disp� types� typea� ierr�

CALL MPI�TYPE�COMMIT� typea� ierr�

! compute number of subcolumns preceeding each

! submatrix of A� Submatrices are ordered in row�major

! order� to fit the order of processes in the grid�

ALLOCATE �dispa�p�
��p����� counta�p�
��p�����

DO i �
� p�
�

DO j �
� p���

dispa��i�
��p���
j� � ��j�
��p�
�
 �i�
���nn���

counta��i�
��p���
j� �

END DO

END DO

! same for array B

CALL MPI�TYPE�VECTOR� nn���� nn���� n���� MPI�REAL�

types�
�� ierr�

disp��� � sizeofreal�nn���

CALL MPI�TYPE�STRUCT��� blen� disp� types� typeb� ierr�

CALL MPI�TYPE�COMMIT�typeb� ierr�

ALLOCATE �dispb�p����p����� countb�p����p�����

DO i �
� p���

DO j �
� p���

dispb��i�
��p���
j� � ��j�
��p���
 �i�
���nn���

countb��i�
��p���
j� �

��� Chapter �

END DO

END DO

! same for array C

CALL MPI�TYPE�VECTOR�nn���� nn�
�� n�
�� MPI�REAL�

types�
�� ierr�

disp��� � sizeofreal�nn�
�

CALL MPI�TYPE�STRUCT��� blen� disp� types� typec� ierr�

CALL MPI�TYPE�COMMIT�typec� ierr�

ALLOCATE �dispc�p�
��p����� countc�p�
��p�����

DO i �
� p�
�

DO j �
� p���

dispc��i�
��p���
j� � ��j�
��p�
�
 �i�
���nn���

countc��i�
��p���
j� �

END DO

END DO

END IF

! and now� the computation

!
� scatter matrix A

IF �coords����EQ���

CALL MPI�SCATTERV�A� counta� dispa� typea�

AA� nn�
��nn���� MPI�REAL� �� Comm��D���� ierr�

END IF

! �� scatter matrix B

IF �coords�
��EQ��� THEN

CALL MPI�SCATTERV�B� countb� dispb� typeb�

BB� nn����nn���� MPI�REAL� �� Comm��D�
�� ierr�

END IF

! �� broadcast matrix AA in z dimension

CALL MPI�BCAST�AA� nn�
��nn���� MPI�REAL� �� comm�
D���� ierr�

! �� broadcast matrix BB in x dimension

CALL MPI�BCAST�BB� nn����nn���� MPI�REAL� �� comm�
D�
�� ierr�

Process Topologies ���

! �� compute submatrix products

DO j �
� nn���

DO i �
� nn�
�

CC�i�j� � �

DO k �
� nn���

CC�i�j� � CC�i�j�
 AA�i�k��BB�k�j�

END DO

END DO

END DO

! �� reduce subproducts in y dimension

! need additional matrix� since one cannot reduce �in place�

ALLOCATE �CC
�nn�
��nn�����

CALL MPI�REDUCE�CC� CC
� nn�
��nn���� MPI�REAL� MPI�SUM�

�� comm�
D���� ierr�

! �� gather results from plane �x���z� to node �

IF �coords����EQ��� THEN

CALL MPI�GATHERV�CC
� nn�
��nn���� MPI�REAL�

C� countc� dispc� typec� �� comm��D���� ierr�

END IF

! clean up

DEALLOCATE�AA� BB� CC�

DEALLOCATE �CC
�

IF �rank�EQ��� THEN

DEALLOCATE �counta� countb� countc� dispa� dispb� dispc�

MPI�TYPE�FREE� typea� ierr�

MPI�TYPE�FREE� typeb� ierr�

MPI�TYPE�FREE� typec� ierr�

MPI�TYPE�FREE� types�
�� ierr�

END IF

MPI�COMM�FREE� pcomm� ierr�

MPI�COMM�FREE� comm��D� ierr�

DO i �
� �

MPI�COMM�FREE� comm��D�i�� ierr�

MPI�COMM�FREE� comm�
D�i�� ierr�

END DO

��� Chapter �

! returns matrix C at process �

RETURN

END

� Environmental Management

This chapter discusses routines for getting and� where appropriate� setting various

parameters that relate to the MPI implementation and the execution environment�

It discusses error handling in MPI and the procedures available for controlling MPI

error handling� The procedures for entering and leaving the MPI execution environ�

ment are also described here� Finally� the chapter discusses the interaction between

MPI and the general execution environment�

	�� Implementation Information

����� Environmental Inquiries

A set of attributes that describe the execution environment are attached to the com�

municatorMPI COMM WORLD whenMPI is initialized� The value of these attributes

can be inquired by using the function MPI ATTR GET described in Chapter
� It

is erroneous to delete these attributes� free their keys� or change their values�

The list of prede�ned attribute keys include

MPI TAG UB Upper bound for tag value�

MPI HOST Host process rank� if such exists� MPI PROC NULL� otherwise�

MPI IO rank of a node that has regular I�O facilities �possibly rank of calling pro�

cess�� Nodes in the same communicator may return di�erent values for this param�

eter�

MPI WTIME IS GLOBAL Boolean variable that indicates whether clocks are synchro�

nized�

Vendors may add implementation speci�c parameters �such as node number� real

memory size� virtual memory size� etc��

These prede�ned attributes do not change value between MPI initialization �MPI�

INIT� and MPI completion �MPI FINALIZE��

Advice to users� Note that in the C binding� the value returned by these attributes

is a pointer to an int containing the requested value� �End of advice to users��

The required parameter values are discussed in more detail below�

Tag Values Tag values range from � to the value returned for MPI TAG UB� in�

clusive� These values are guaranteed to be unchanging during the execution of an

MPI program� In addition� the tag upper bound value must be at least ������ An

�
�

��� Chapter �

MPI implementation is free to make the value of MPI TAG UB larger than this� for

example� the value ���� � is also a legal value for MPI TAG UB �on a system where

this value is a legal int or INTEGER value��

The attribute MPI TAG UB has the same value on all processes in the group of

MPI COMM WORLD�

Host Rank The value returned for MPI HOST gets the rank of the HOST process

in the group associated with communicator MPI COMM WORLD� if there is such�

MPI PROC NULL is returned if there is no host� This attribute can be used on

systems that have a distinguished host processor� in order to identify the process

running on this processor� However� MPI does not specify what it means for a

process to be a HOST� nor does it requires that a HOST exists�

The attribute MPI HOST has the same value on all processes in the group of

MPI COMM WORLD�

I�O Rank The value returned for MPI IO is the rank of a processor that can

provide language�standard I�O facilities� For Fortran� this means that all of the

Fortran I�O operations are supported �e�g�� OPEN� REWIND� WRITE�� For C� this means

that all of the ANSI�C I�O operations are supported �e�g�� fopen� fprintf� lseek��

If every process can provide language�standard I�O� then the value MPI ANY�

SOURCE will be returned� Otherwise� if the calling process can provide language�

standard I�O� then its rank will be returned� Otherwise� if some process can provide

language�standard I�O then the rank of one such process will be returned� The same

value need not be returned by all processes� If no process can provide language�

standard I�O� then the value MPI PROC NULL will be returned�

Advice to users� MPI does not require that all processes provide language�standard

I�O� nor does it specify how the standard input or output of a process is linked to

a particular �le or device� In particular� there is no requirement� in an interactive

environment� that keyboard input be broadcast to all processes which support

language�standard I�O� �End of advice to users��

Clock Synchronization The value returned for MPI WTIME IS GLOBAL is � if

clocks at all processes in MPI COMM WORLD are synchronized� � otherwise� A

collection of clocks is considered synchronized if explicit e�ort has been taken to

synchronize them� The expectation is that the variation in time� as measured by

calls to MPI WTIME� will be less then one half the round�trip time for an MPI

message of length zero� If time is measured at a process just before a send and

at another process just after a matching receive� the second time should be always

Environmental Management ��	

higher than the �rst one�

The attribute MPI WTIME IS GLOBAL need not be present when the clocks are

not synchronized �however� the attribute key MPI WTIME IS GLOBAL is always

valid�� This attribute may be associated with communicators other then MPI�

COMM WORLD�

The attribute MPI WTIME IS GLOBAL has the same value on all processes in the

group of MPI COMM WORLD�

MPI GET PROCESSOR NAME�name� resultlen�

OUT name A unique speci�er for the current phys�

ical node�

OUT resultlen Length �in printable characters� of the

result returned in name

int MPI Get processor name�char �name� int �resultlen�

MPI GET PROCESSOR NAME� NAME� RESULTLEN� IERROR�

CHARACTER���� NAME

INTEGER RESULTLEN�IERROR

This routine returns the name of the processor on which it was called at the

moment of the call� The name is a character string for maximum �exibility� From

this value it must be possible to identify a speci�c piece of hardware� possible

values include �processor � in rack � of mpp�cs�org� and ����� �where ��� is the

actual processor number in the running homogeneous system�� The argument name

must represent storage that is at leastMPI MAX PROCESSOR NAME characters long�

MPI GET PROCESSOR NAME may write up to this many characters into name�

The number of characters actually written is returned in the output argument�

resultlen�

Rationale� The de�nition of this function does not preclude MPI implemen�

tations that do process migration� In such a case� successive calls to MPI GET�

PROCESSOR NAME by the same process may return di�erent values� Note that

nothing in MPI requires or de�nes process migration� this de�nition of MPI GET�

PROCESSOR NAME simply allows such an implementation� �End of rationale��

Advice to users� The user must provide at least MPI MAX PROCESSOR NAME

space to write the processor name � processor names can be this long� The user

�	
 Chapter �

should examine the output argument� resultlen� to determine the actual length of

the name� �End of advice to users��

The constant MPI BSEND OVERHEAD provides an upper bound on the �xed over�

head per message bu�ered by a call to MPI BSEND�

	�� Timers and Synchronization

MPI de�nes a timer� A timer is speci�ed even though it is not �message�passing��

because timing parallel programs is important in �performance debugging� and be�

cause existing timers �both in POSIX ���������

 and ������D ���� and in Fortran

��� are either inconvenient or do not provide adequate access to high�resolution

timers�

MPI WTIME��

double MPI Wtime�void�

DOUBLE PRECISION MPI WTIME��

MPI WTIME returns a �oating�point number of seconds� representing elapsed

wall�clock time since some time in the past�

The �time in the past� is guaranteed not to change during the life of the process�

The user is responsible for converting large numbers of seconds to other units if

they are preferred�

This function is portable �it returns seconds� not �ticks��� it allows high�resolution�

and carries no unnecessary baggage� One would use it like this�

�

double starttime� endtime�

starttime � MPI�Wtime���

���� stuff to be timed ���

endtime � MPI�Wtime���

printf��That took "f seconds�n��endtime�starttime��

�

The times returned are local to the node that called them� There is no require�

ment that di�erent nodes return �the same time�� �But see also the discussion of

MPI WTIME IS GLOBAL in Section �������

Environmental Management �	�

MPI WTICK��

double MPI Wtick�void�

DOUBLE PRECISION MPI WTICK��

MPI WTICK returns the resolution ofMPI WTIME in seconds� That is� it returns�

as a double precision value� the number of seconds between successive clock ticks�

For example� if the clock is implemented by the hardware as a counter that is

incremented every millisecond� the value returned by MPI WTICK should be �����

	�� Initialization and Exit

One goal of MPI is to achieve source code portability� By this we mean that a

program written using MPI and complying with the relevant language standards

is portable as written� and must not require any source code changes when moved

from one system to another� This explicitly does not say anything about how an

MPI program is started or launched from the command line� nor what the user

must do to set up the environment in which an MPI program will run� However� an

implementation may require some setup to be performed before other MPI routines

may be called� To provide for this� MPI includes an initialization routine MPI INIT�

MPI INIT��

int MPI Init�int �argc� char ���argv�

MPI INIT�IERROR�

INTEGER IERROR

This routine must be called before any other MPI routine� It must be called at

most once� subsequent calls are erroneous �see MPI INITIALIZED��

All MPI programs must contain a call to MPI INIT� this routine must be called

before any other MPI routine �apart from MPI INITIALIZED� is called� The version

for ANSI C accepts the argc and argv that are provided by the arguments to main�

int main�argc� argv�

int argc�

char ��argv�

�

MPI�Init��argc� �argv��

�	� Chapter �

�� parse arguments ��

�� main program ��

MPI�Finalize��� �� see below ��

�

The Fortran version takes only IERROR�

An MPI implementation is free to require that the arguments in the C binding

must be the arguments to main�

Rationale� The command line arguments are provided to MPI Init to allow an MPI

implementation to use them in initializing the MPI environment� They are passed

by reference to allow anMPI implementation to provide them in environments where

the command�line arguments are not provided to main� �End of rationale��

MPI FINALIZE��

int MPI Finalize�void�

MPI FINALIZE�IERROR�

INTEGER IERROR

This routines cleans up all MPI state� Once this routine is called� no MPI routine

�even MPI INIT� may be called� The user must ensure that all pending communi�

cations involving a process complete before the process calls MPI FINALIZE�

MPI INITIALIZED�
ag �

OUT
ag Flag is true ifMPI INIT has been called

and false otherwise�

int MPI Initialized�int �flag�

MPI INITIALIZED�FLAG� IERROR�

LOGICAL FLAG

INTEGER IERROR

This routine may be used to determine whether MPI INIT has been called� It is

the only routine that may be called before MPI INIT is called�

Environmental Management �	�

MPI ABORT� comm� errorcode �

IN comm communicator of tasks to abort

IN errorcode error code to return to invoking environ�

ment

int MPI Abort�MPI Comm comm� int errorcode�

MPI ABORT�COMM� ERRORCODE� IERROR�

INTEGER COMM� ERRORCODE� IERROR

This routine makes a �best attempt� to abort all tasks in the group of comm�

This function does not require that the invoking environment take any action with

the error code� However� a Unix or POSIX environment should handle this as a

return errorcode from the main program or an abort�errorcode��

MPI implementations are required to de�ne the behavior of MPI ABORT at least

for a comm of MPI COMM WORLD� MPI implementations may ignore the comm ar�

gument and act as if the comm was MPI COMM WORLD�

Advice to users� The behavior of MPI ABORT�comm� errorcode�� for comm other

then MPI COMM WORLD� is implementation�dependent� One the other hand� a call

to MPI ABORT�MPI COMM WORLD� errorcode� should always cause all processes

in the group of MPI COMM WORLD to abort� �End of advice to users��

	�� Error Handling

MPI provides the user with reliable message transmission� A message sent is always

received correctly� and the user does not need to check for transmission errors� time�

outs� or other error conditions� In other words� MPI does not provide mechanisms

for dealing with failures in the communication system� If the MPI implementation is

built on an unreliable underlying mechanism� then it is the job of the implementor

of the MPI subsystem to insulate the user from this unreliability� or to re�ect

unrecoverable errors as exceptions�

Of course� errors can occur during MPI calls for a variety of reasons� A program

error can occur when an MPI routine is called with an incorrect argument �non�

existing destination in a send operation� bu�er too small in a receive operation� etc��

This type of error would occur in any implementation� In addition� a resource

errormay occur when a program exceeds the amount of available system resources

�number of pending messages� system bu�ers� etc��� The occurrence of this type of

�	� Chapter �

error depends on the amount of available resources in the system and the resource

allocation mechanism used� this may di�er from system to system� A high�quality

implementation will provide generous limits on the important resources so as to

alleviate the portability problem this represents�

An MPI implementation cannot or may choose not to handle some errors that

occur during MPI calls� These can include errors that generate exceptions or traps�

such as �oating point errors or access violations� errors that are too expensive to

detect in normal execution mode� or �catastrophic� errors which may prevent MPI

from returning control to the caller in a consistent state�

Another subtle issue arises because of the nature of asynchronous communica�

tions� MPI can only handle errors that can be attached to a speci�c MPI call� MPI

calls �both blocking and nonblocking� may initiate operations that continue asyn�

chronously after the call returned� Thus� the call may complete successfully� yet

the operation may later cause an error� If there is a subsequent call that relates to

the same operation �e�g�� a wait or test call that completes a nonblocking call� or

a receive that completes a communication initiated by a blocking send� then the

error can be associated with this call� In some cases� the error may occur after all

calls that relate to the operation have completed� �Consider the case of a block�

ing ready mode send operation� where the outgoing message is bu�ered� and it is

subsequently found that no matching receive is posted�� Such errors will not be

handled by MPI�

The set of errors in MPI calls that are handled by MPI is implementation�

dependent� Each such error generates an MPI exception� A good quality im�

plementation will attempt to handle as many errors as possible as MPI exceptions�

Errors that are not handled by MPI will be handled by the error handling mecha�

nisms of the language run�time or the operating system� Typically� errors that are

not handled by MPI will cause the parallel program to abort�

The occurrence of an MPI exception has two e�ects�

� An MPI error handler will be invoked�

� If the error handler did not cause the process to halt� then a suitable error code

will be returned by the MPI call�

Some MPI calls may cause more than one MPI exception �see Section ����� In

such a case� the MPI error handler will be invoked once for each exception� and

multiple error codes will be returned�

After an error is detected� the state of MPI is unde�ned� That is� the state of the

computation after the error�handler executed does not necessarily allow the user to

Environmental Management �	�

continue to use MPI� The purpose of these error handlers is to allow a user to issue

user�de�ned error messages and to take actions unrelated to MPI �such as �ushing

I�O bu�ers� before a program exits� An MPI implementation is free to allow MPI

to continue after an error but is not required to do so�

Advice to implementors� A good quality implementation will� to the greatest

possible extent� circumscribe the impact of an error� so that normal processing can

continue after an error handler was invoked� The implementation documentation

will provide information on the possible e�ect of each class of errors� �End of advice

to implementors��

��	�� Error Handlers

A user can associate an error handler with a communicator� The speci�ed er�

ror handling routine will be used for any MPI exception that occurs during a call

to MPI for a communication with this communicator� MPI calls that are not re�

lated to any communicator are considered to be attached to the communicator

MPI COMM WORLD� The attachment of error handlers to communicators is purely

local� di�erent processes may attach di�erent error handlers to communicators for

the same communication domain�

A newly created communicator inherits the error handler that is associated with

the �parent� communicator� In particular� the user can specify a �global� error

handler for all communicators by associating this handler with the communicator

MPI COMM WORLD immediately after initialization�

Several prede�ned error handlers are available in MPI�

MPI ERRORS ARE FATAL The handler� when called� causes the program to abort on

all executing processes� This has the same e�ect as ifMPI ABORT was called by the

process that invoked the handler �with communicator argumentMPI COMM WORLD��

MPI ERRORS RETURN The handler has no e�ect �other than returning the error

code to the user��

Implementations may provide additional prede�ned error handlers and program�

mers can code their own error handlers�

The error handler MPI ERRORS ARE FATAL is associated by default with MPI�

COMM WORLD after initialization� Thus� if the user chooses not to control error

handling� every error that MPI handles is treated as fatal� Since �almost� all MPI

calls return an error code� a user may choose to handle errors in his or her main code�

by testing the return code of MPI calls and executing a suitable recovery code when

the call was not successful� In this case� the error handler MPI ERRORS RETURN

�	� Chapter �

will be used� Usually it is more convenient and more e�cient not to test for errors

after each MPI call� and have such an error handled by a non�trivial MPI error

handler�

An MPI error handler is an opaque object� which is accessed by a handle� MPI

calls are provided to create new error handlers� to associate error handlers with

communicators� and to test which error handler is associated with a communicator�

MPI ERRHANDLER CREATE�function� errhandler�

IN function user de�ned error handling procedure

OUT errhandler MPI error handler

int MPI Errhandler create�MPI Handler function �function�

MPI Errhandler �errhandler�

MPI ERRHANDLER CREATE�FUNCTION� HANDLER� IERROR�

EXTERNAL FUNCTION

INTEGER ERRHANDLER� IERROR

Register the user routine function for use as an MPI exception handler� Returns

in errhandler a handle to the registered exception handler�

In the C language� the user routine should be a C function of type MPI Handler�

function� which is de�ned as�

typedef void �MPI�Handler�function��MPI�Comm �� int �� �����

The �rst argument is the communicator in use� The second is the error code to

be returned by the MPI routine that raised the error� If the routine would have

returned multiple error codes �see Section ����� it is the error code returned in the

status for the request that caused the error handler to be invoked� The remaining ar�

guments are �stdargs� arguments whose number and meaning is implementation�

dependent� An implementation should clearly document these arguments� Ad�

dresses are used so that the handler may be written in Fortran�

Rationale� The variable argument list is provided because it provides an ANSI�

standard hook for providing additional information to the error handler� without

this hook� ANSI C prohibits additional arguments� �End of rationale��

Environmental Management �	�

MPI ERRHANDLER SET�comm� errhandler�

IN comm communicator to set the error handler

for

IN errhandler new MPI error handler for communica�

tor

int MPI Errhandler set�MPI Comm comm� MPI Errhandler errhandler�

MPI ERRHANDLER SET�COMM� ERRHANDLER� IERROR�

INTEGER COMM� ERRHANDLER� IERROR

Associates the new error handler errorhandler with communicator comm at the

calling process� Note that an error handler is always associated with the commu�

nicator�

MPI ERRHANDLER GET�comm� errhandler�

IN comm communicator to get the error handler

from

OUT errhandler MPI error handler currently associated

with communicator

int MPI Errhandler get�MPI Comm comm� MPI Errhandler �errhandler�

MPI ERRHANDLER GET�COMM� ERRHANDLER� IERROR�

INTEGER COMM� ERRHANDLER� IERROR

Returns in errhandler �a handle to� the error handler that is currently associated

with communicator comm�

Example� A library function may register at its entry point the current error

handler for a communicator� set its own private error handler for this communicator�

and restore before exiting the previous error handler�

MPI ERRHANDLER FREE�errhandler�

IN errhandler MPI error handler

int MPI Errhandler free�MPI Errhandler �errhandler�

MPI ERRHANDLER FREE�ERRHANDLER� IERROR�

�	� Chapter �

INTEGER ERRHANDLER� IERROR

Marks the error handler associated with errhandler for deallocation and sets er�

rhandler to MPI ERRHANDLER NULL� The error handler will be deallocated after all

communicators associated with it have been deallocated�

��	�� Error Codes

Most MPI functions return an error code indicating successful execution �MPI SUC�

CESS�� or providing information on the type of MPI exception that occurred� In

certain circumstances� when the MPI function may complete several distinct op�

erations� and therefore may generate several independent errors� the MPI function

may return multiple error codes� This may occur with some of the calls described

in Section ��� that complete multiple nonblocking communications� As described

in that section� the call may return the code MPI ERR IN STATUS� in which case a

detailed error code is returned with the status of each communication�

The error codes returned by MPI are left entirely to the implementation �with

the exception of MPI SUCCESS� MPI ERR IN STATUS and MPI ERR PENDING�� This

is done to allow an implementation to provide as much information as possible in

the error code� Error codes can be translated into meaningful messages using the

function below�

MPI ERROR STRING� errorcode� string� resultlen �

IN errorcode Error code returned by an MPI routine

OUT string Text that corresponds to the errorcode

OUT resultlen Length �in printable characters� of the

result returned in string

int MPI Error string�int errorcode� char �string� int �resultlen�

MPI ERROR STRING�ERRORCODE� STRING� RESULTLEN� IERROR�

INTEGER ERRORCODE� RESULTLEN� IERROR

CHARACTER���� STRING

Returns the error string associated with an error code or class� The argument

string must represent storage that is at least MPI MAX ERROR STRING characters

long�

The number of characters actually written is returned in the output argument�

resultlen�

Environmental Management �		

Rationale� The form of this function was chosen to make the Fortran and C

bindings similar� A version that returns a pointer to a string has two di�culties�

First� the return string must be statically allocated and di�erent for each error mes�

sage �allowing the pointers returned by successive calls to MPI ERROR STRING to

point to the correct message�� Second� in Fortran� a function declared as returning

CHARACTER���� can not be referenced in� for example� a PRINT statement� �End

of rationale��

The use of implementation�dependent error codes allows implementers to provide

more information� but prevents one from writing portable error�handling code� To

solve this problem� MPI provides a standard set of speci�ed error values� called

error classes� and a function that maps each error code into a suitable error class�

Valid error classes are

MPI SUCCESS No error

MPI ERR BUFFER Invalid bu�er pointer

MPI ERR COUNT Invalid count argument

MPI ERR TYPE Invalid datatype argument

MPI ERR TAG Invalid tag argument

MPI ERR COMM Invalid communicator

MPI ERR RANK Invalid rank

MPI ERR REQUEST Invalid request

MPI ERR ROOT Invalid root

MPI ERR GROUP Invalid group

MPI ERR OP Invalid operation

MPI ERR TOPOLOGY Invalid topology

MPI ERR DIMS Invalid dimension argument

MPI ERR ARG Invalid argument of some other kind

MPI ERR UNKNOWN Unknown error

MPI ERR TRUNCATE Message truncated on receive

MPI ERR OTHER Known error not in this list

MPI ERR INTERN Internal MPI error

MPI ERR IN STATUS Error code is in status

MPI ERR PENDING Pending request

MPI ERR LASTCODE Last error code

Most of these classes are self explanatory� The use of MPI ERR IN STATUS and

MPI ERR PENDING is explained in Section ���� The list of standard classes may be

extended in the future�

�

 Chapter �

The function MPI ERROR STRING can be used to compute the error string as�

sociated with an error class�

The error codes satisfy�

� ! MPI SUCCESS � MPI ERR ��� � MPI ERR LASTCODE�

MPI ERROR CLASS� errorcode� errorclass �

IN errorcode Error code returned by an MPI routine

OUT errorclass Error class associated with errorcode

int MPI Error class�int errorcode� int �errorclass�

MPI ERROR CLASS�ERRORCODE� ERRORCLASS� IERROR�

INTEGER ERRORCODE� ERRORCLASS� IERROR

The function MPI ERROR CLASS maps each error code into a standard error

code �error class�� It maps each standard error code onto itself�

Rationale� The di�erence between MPI ERR UNKNOWN and MPI ERR OTHER is

that MPI ERROR STRING can return useful information about MPI ERR OTHER�

Note that MPI SUCCESS ! � is necessary to be consistent with C practice�

The value of MPI ERR LASTCODE can be used for error�checking� or for selecting

error codes for libraries that do not con�ict with MPI error codes�

�End of rationale��

Advice to implementors� An MPI implementation may use error classes as the

error codes returned by some or all MPI functions� Another choice is to use error

classes as �major error codes�� extended with additional bits that provide �minor�

error codes� Then� the MPI ERROR CLASS function merely needs to truncate the

full error code�

Implementations may go beyond this document in supporting MPI calls that are

de�ned here to be erroneous� For example� MPI speci�es strict type matching rules

between matching send and receive operations� it is erroneous to send a �oating

point variable and receive an integer� Implementations may go beyond these type

matching rules� and provide automatic type conversion in such situations� It will

be helpful to generate warnings for such nonconforming behavior� �End of advice

to implementors��

Environmental Management �
�

	�� Interaction with Executing Environment

There are a number of areas where an MPI implementation may interact with the

operating environment and system� While MPI does not mandate that any services

�such as I�O or signal handling� be provided� it does strongly suggest the behavior

to be provided if those services are available� This is an important point in achieving

portability across platforms that provide the same set of services�

��
�� Independence of Basic Runtime Routines

MPI programs require that library routines that are part of the basic language

environment �such as date and write in Fortran and printf and malloc in ANSI

C� and are executed after MPI INIT and before MPI FINALIZE operate independently

and that their completion is independent of the action of other processes in an MPI

program�

Note that this in no way prevents the creation of library routines that provide

parallel services whose operation is collective� However� the following program is

expected to complete in an ANSI C environment regardless of the size of

MPI COMM WORLD �assuming that I�O is available at the executing nodes��

int rank�

MPI�Init� argc� argv ��

MPI�Comm�rank� MPI�COMM�WORLD� �rank ��

if �rank �� �� printf� �Starting program�n� ��

MPI�Finalize���

The corresponding Fortran �� program is also expected to complete�

An example of what is not required is any particular ordering of the action of these

routines when called by several tasks� For example�MPImakes neither requirements

nor recommendations for the output from the following program �again assuming

that I�O is available at the executing nodes��

MPI�Comm�rank� MPI�COMM�WORLD� �rank ��

printf� �Output from task rank "d�n�� rank ��

In addition� calls that fail because of resource exhaustion or other error are

not considered a violation of the requirements here �however� they are required to

complete� just not to complete successfully��

��
�� Interaction with Signals in POSIX

MPI does not specify either the interaction of processes with signals� in a UNIX

�
� Chapter �

environment� or with other events that do not relate to MPI communication� That

is� signals are not signi�cant from the view point of MPI� and implementors should

attempt to implement MPI so that signals are transparent� an MPI call suspended

by a signal should resume and complete after the signal is handled� Generally� the

state of a computation that is visible or signi�cant from the view�point of MPI

should only be a�ected by MPI calls�

The intent of MPI to be thread and signal safe has a number of subtle e�ects�

For example� on Unix systems� a catchable signal such as SIGALRM �an alarm

signal� must not cause an MPI routine to behave di�erently than it would have in

the absence of the signal� Of course� if the signal handler issues MPI calls or changes

the environment in which the MPI routine is operating �for example� consuming all

available memory space�� the MPI routine should behave as appropriate for that

situation �in particular� in this case� the behavior should be the same as for a

multithreaded MPI implementation��

A second e�ect is that a signal handler that performs MPI calls must not interfere

with the operation of MPI� For example� an MPI receive of any type that occurs

within a signal handler must not cause erroneous behavior by the MPI implemen�

tation� Note that an implementation is permitted to prohibit the use of MPI calls

from within a signal handler� and is not required to detect such use�

It is highly desirable that MPI not use SIGALRM� SIGFPE� or SIGIO� An im�

plementation is required to clearly document all of the signals that the MPI imple�

mentation uses� a good place for this information is a Unix &man� page on MPI�

� The MPI Pro�ling Interface

�� Requirements

To satisfy the requirements of the MPI pro�ling interface� an implementation of the

MPI functions must

�� provide a mechanism through which all of the MPI de�ned functions may be

accessed with a name shift� Thus all of the MPI functions �which normally start

with the pre�x �MPI �� should also be accessible with the pre�x �PMPI ��

�� ensure that those MPI functions which are not replaced may still be linked into

an executable image without causing name clashes�

�� document the implementation of di�erent language bindings of the MPI interface

if they are layered on top of each other� so that the pro�ler developer knows whether

the pro�le interface must be implemented for each binding� or whether it needs to

be implemented only for the lowest level routines�

�� ensure that where the implementation of di�erent language bindings is done

through a layered approach �e�g� the Fortran binding is a set of �wrapper� functions

which call the C implementation�� these wrapper functions are separable from the

rest of the library� This is necessary to allow a separate pro�ling library to be

correctly implemented� since �at least with Unix linker semantics� the pro�ling

library must contain these wrapper functions if it is to perform as expected� This

requirement allows the person who builds the pro�ling library to extract these

functions from the original MPI library and add them into the pro�ling library

without bringing along any other unnecessary code�

� provide a no�op routine MPI PCONTROL in the MPI library�

�� Discussion

The objective of the MPI pro�ling interface is to ensure that it is relatively easy

for authors of pro�ling �and other similar� tools to interface their codes to MPI

implementations on di�erent machines�

Since MPI is a machine independent standard with many di�erent implementa�

tions� it is unreasonable to expect that the authors of pro�ling tools for MPI will

have access to the source code which implements MPI on any particular machine�

It is therefore necessary to provide a mechanism by which the implementors of such

tools can collect whatever performance information they wish without access to the

underlying implementation�

���

�
� Chapter �

The MPI Forum believed that having such an interface is important if MPI is to

be attractive to end users� since the availability of many di�erent tools will be a

signi�cant factor in attracting users to the MPI standard�

The pro�ling interface is just that� an interface� It says nothing about the way

in which it is used� Therefore� there is no attempt to lay down what information is

collected through the interface� or how the collected information is saved� �ltered�

or displayed�

While the initial impetus for the development of this interface arose from the

desire to permit the implementationof pro�ling tools� it is clear that an interface like

that speci�ed may also prove useful for other purposes� such as �internetworking�

multiple MPI implementations� Since all that is de�ned is an interface� there is no

impediment to it being used wherever it is useful�

As the issues being addressed here are intimately tied up with the way in which

executable images are built� which may di�er greatly on di�erent machines� the

examples given below should be treated solely as one way of implementing the MPI

pro�ling interface� The actual requirements made of an implementation are those

detailed in Section
��� the whole of the rest of this chapter is only present as

justi�cation and discussion of the logic for those requirements�

The examples below show one way in which an implementation could be con�

structed to meet the requirements on a Unix system �there are doubtless others

which would be equally valid��

�� Logic of the Design

Provided that an MPI implementation meets the requirements listed in Section
���

it is possible for the implementor of the pro�ling system to intercept all of the MPI

calls which are made by the user program� Whatever information is required can

then be collected before calling the underlying MPI implementation �through its

name shifted entry points� to achieve the desired e�ects�

����� Miscellaneous Control of Pro�ling

There is a clear requirement for the user code to be able to control the pro�ler

dynamically at run time� This is normally used for �at least� the purposes of

� Enabling and disabling pro�ling depending on the state of the calculation�

� Flushing trace bu�ers at non�critical points in the calculation

� Adding user events to a trace �le�

The MPI Pro�ling Interface �
�

These requirements are met by use of the MPI PCONTROL�

MPI PCONTROL�level� � � � �

IN level Pro�ling level

int MPI Pcontrol�const int level� � � ��

MPI PCONTROL�level�

INTEGER LEVEL

MPI libraries themselves make no use of this routine� and simply return imme�

diately to the user code� However the presence of calls to this routine allows a

pro�ling package to be explicitly called by the user�

Since MPI has no control of the implementation of the pro�ling code� The MPI

Forum was unable to specify precisely the semantics which will be provided by calls

to MPI PCONTROL� This vagueness extends to the number of arguments to the

function� and their datatypes�

However to provide some level of portability of user codes to di�erent pro�ling

libraries� the MPI Forum requested the following meanings for certain values of

level�

� level � � Pro�ling is disabled�

� level �
 Pro�ling is enabled at a normal default level of detail�

� level � � Pro�le bu�ers are �ushed� �This may be a no�op in some pro�lers��

� All other values of level have pro�le library de�ned e�ects and additional ar�

guments�

The MPI Forum also requested that the default state after MPI INIT has been

called is for pro�ling to be enabled at the normal default level� �i�e� as if MPI P�

CONTROL had just been called with the argument ��� This allows users to link

with a pro�ling library and obtain pro�le output without having to modify their

source code at all�

The provision of MPI PCONTROL as a no�op in the standard MPI library allows

users to modify their source code to obtain more detailed pro�ling information� but

still be able to link exactly the same code against the standard MPI library�

�
� Chapter �

�� Examples

��	�� Pro�ler Implementation

Suppose that the pro�ler wishes to accumulate the total amount of data sent by

the MPI Send�� function� along with the total elapsed time spent in the function�

This could trivially be achieved thus

static int totalBytes�

static double totalTime�

int MPI�Send�void � buffer� const int count� MPI�Datatype datatype�

int dest� int tag� MPI�comm comm�

�

double tstart � MPI�Wtime��� �� Pass on all the arguments ��

int extent�

int result � PMPI�Send�buffer�count�datatype�dest�tag�comm��

MPI�Type�size�datatype��extent�� �� Compute size ��

totalBytes
� count � extent�

totalTime
� MPI�Wtime�� � tstart�

return result�

�

��	�� MPI Library Implementation

On a Unix system� in which the MPI library is implemented in C� then there are

various possible options� of which two of the most obvious are presented here� Which

is better depends on whether the linker and compiler support weak symbols�

SystemsWithWeak symbols If the compiler and linker support weak external

symbols �e�g� Solaris ��x� other system V�� machines�� then only a single library is

required through the use of $pragma weak thus

$pragma weak MPI�Send � PMPI�Send

int PMPI�Send��� appropriate args ���

�

�� Useful content ��

�

The MPI Pro�ling Interface �
�

Application

MPI_Send

MPI_Bcast

prof library

MPI_Send

PMPI_Send

mpi library

PMPI_Send

PMPI_Bcast

Figure 	��
Resolution of MPI calls on systems with weak links�

The e�ect of this $pragma is to de�ne the external symbol MPI Send as a weak

de�nition� This means that the linker will not complain if there is another def�

inition of the symbol �for instance in the pro�ling library�� however if no other

de�nition exists� then the linker will use the weak de�nition� This type of situation

is illustrated in Fig�
��� in which a pro�ling library has been written that pro�les

calls to MPI Send�� but not calls to MPI Bcast��� On systems with weak links the

link step for an application would be something like

" cc ��� �lprof �lmpi

References to MPI Send�� are resolved in the pro�ling library� where the routine

then calls PMPI Send�� which is resolved in the MPI library� In this case the weak

link to PMPI Send�� is ignored� However� since MPI Bcast�� is not included in the

pro�ling library� references to it are resolved via a weak link to PMPI Bcast�� in

the MPI library�

Systems without Weak Symbols In the absence of weak symbols then one

possible solution would be to use the C macro pre�processor thus

$ifdef PROFILELIB

$ ifdef ��STDC��

$ define FUNCTION�name� P$$name

$ else

$ define FUNCTION�name� P����name

$ endif

$else

$ define FUNCTION�name� name

$endif

�
� Chapter �

Application

MPI_Send

MPI_Bcast

prof library

MPI_Send

PMPI_Send

pmpi library

PMPI_Send

mpi library

MPI_Bcast

Figure 	��
Resolution of MPI calls on systems without weak links�

Each of the user visible functions in the library would then be declared thus

int FUNCTION�MPI�Send���� appropriate args ���

�

�� Useful content ��

�

The same source �le can then be compiled to produce the MPI and the PMPI

versions of the library� depending on the state of the PROFILELIB macro symbol�

It is required that the standard MPI library be built in such a way that the

inclusion of MPI functions can be achieved one at a time� This is a somewhat

unpleasant requirement� since it may mean that each external function has to be

compiled from a separate �le� However this is necessary so that the author of the

pro�ling library need only de�ne those MPI functions that are to be intercepted�

references to any others being ful�lled by the normal MPI library� Therefore the

link step can look something like this

" cc ��� �lprof �lpmpi �lmpi

Here libprof�a contains the pro�ler functions which intercept some of the MPI

functions� libpmpi�a contains the �name shifted� MPI functions� and libmpi�a

contains the normal de�nitions of the MPI functions� Thus� on systems without

weak links the example shown in Fig�
�� would be resolved as shown in Fig�
��

The MPI Pro�ling Interface �
	

��	�� Complications

Multiple Counting Since parts of the MPI library may themselves be imple�

mented using more basic MPI functions �e�g� a portable implementation of the

collective operations implemented using point to point communications�� there is

potential for pro�ling functions to be called from within an MPI function which was

called from a pro�ling function� This could lead to �double counting� of the time

spent in the inner routine� Since this e�ect could actually be useful under some

circumstances �e�g� it might allow one to answer the question �How much time is

spent in the point to point routines when they�re called from collective functions

	��� the MPI Forum decided not to enforce any restrictions on the author of the MPI

library which would overcome this� Therefore� the author of the pro�ling library

should be aware of this problem� and guard against it� In a single threaded world

this is easily achieved through use of a static variable in the pro�ling code which

remembers if you are already inside a pro�ling routine� It becomes more complex

in a multi�threaded environment �as does the meaning of the times recorded#�

Linker Oddities The Unix linker traditionally operates in one pass� The e�ect

of this is that functions from libraries are only included in the image if they are

needed at the time the library is scanned� When combined with weak symbols�

or multiple de�nitions of the same function� this can cause odd �and unexpected�

e�ects�

Consider� for instance� an implementation of MPI in which the Fortran binding is

achieved by using wrapper functions on top of the C implementation� The author

of the pro�le library then assumes that it is reasonable to provide pro�le functions

only for the C binding� since Fortran will eventually call these� and the cost of the

wrappers is assumed to be small� However� if the wrapper functions are not in the

pro�ling library� then none of the pro�led entry points will be unde�ned when the

pro�ling library is called� Therefore none of the pro�ling code will be included in

the image� When the standard MPI library is scanned� the Fortran wrappers will

be resolved� and will also pull in the base versions of the MPI functions� The overall

e�ect is that the code will link successfully� but will not be pro�led�

To overcome this we must ensure that the Fortran wrapper functions are included

in the pro�ling version of the library� We ensure that this is possible by requiring

that these be separable from the rest of the base MPI library� This allows them to

be extracted out of the base library and placed into the pro�ling library using the

Unix ar command�

��
 Chapter �

�� Multiple Levels of Interception

The scheme given here does not directly support the nesting of pro�ling functions�

since it provides only a single alternative name for each MPI function� The MPI

Forum gave consideration to an implementation which would allow multiple levels

of call interception� however� it was unable to construct an implementation of this

which did not have the following disadvantages

� assuming a particular implementation language�

� imposing a run time cost even when no pro�ling was taking place�

Since one of the objectives ofMPI is to permit e�cient� low latency implementations�

and it is not the business of a standard to require a particular implementation

language� the MPI Forum decided to accept the scheme outlined above�

Note� however� that it is possible to use the scheme above to implement a multi�

level system� since the function called by the user may call many di�erent pro�ling

functions before calling the underlying MPI function�

Unfortunately such an implementation may require more cooperation between

the di�erent pro�ling libraries than is required for the single level implementation

detailed above�

	 Conclusions

This book has attempted to give a complete description of the MPI speci�cation�

and includes code examples to illustrate aspects of the use of MPI� After reading

the preceding chapters programmers should feel comfortable using MPI to develop

message�passing applications� This �nal chapter addresses some important topics

that either do not easily �t into the other chapters� or which are best dealt with after

a good overall understanding of MPI has been gained� These topics are concerned

more with the interpretation of the MPI speci�cation� and the rationale behind some

aspects of its design� rather than with semantics and syntax� Future extensions to

MPI and the current status of MPI implementations will also be discussed�

��� Design Issues

����� Why is MPI so big�

One aspect of concern� particularly to novices� is the large number of routines

comprising the MPI speci�cation� In all there are ��
 MPI routines� and further

extensions �see Section ��
� will probably increase their number� There are two

fundamental reasons for the size of MPI� The �rst reason is that MPI was designed

to be rich in functionality� This is re�ected in MPI�s support for derived datatypes�

modular communication via the communicator abstraction� caching� application

topologies� and the fully�featured set of collective communication routines� The

second reason for the size of MPI re�ects the diversity and complexity of today�s

high performance computers� This is particularly true with respect to the point�

to�point communication routines where the di�erent communication modes �see

Sections ��� and ����� arise mainly as a means of providing a set of the most widely�

used communication protocols� For example� the synchronous communicationmode

corresponds closely to a protocol that minimizes the copying and bu�ering of data

through a rendezvous mechanism� A protocol that attempts to initiate delivery

of messages as soon as possible would provide bu�ering for messages� and this

corresponds closely to the bu�ered communication mode �or the standard mode if

this is implemented with su�cient bu�ering�� One could decrease the number of

functions by increasing the number of parameters in each call� But such approach

would increase the call overhead and would make the use of the most prevalent calls

more complex� The availability of a large number of calls to deal with more esoteric

features ofMPI allows one to provide a simpler interface to the more frequently used

functions�

���

��� Chapter 	

����� Should we be concerned about the size of MPI�

There are two potential reasons why we might be concerned about the size of

MPI� The �rst is that potential users might equate size with complexity and decide

that MPI is too complicated to bother learning� The second is that vendors might

decide that MPI is too di�cult to implement� The design of MPI addresses the �rst

of these concerns by adopting a layered approach� For example� novices can avoid

having to worry about groups and communicators by performing all communication

in the pre�de�ned communicator MPI COMM WORLD� In fact� most existing message�

passing applications can be ported to MPI simply by converting the communication

routines on a one�for�one basis �although the resulting MPI application may not

be optimally e�cient�� To allay the concerns of potential implementors the MPI

Forum at one stage considered de�ning a core subset of MPI known as the MPI

subset that would be substantially smaller than MPI and include just the point�

to�point communication routines and a few of the more commonly�used collective

communication routines� However� early work by Lusk� Gropp� Skjellum� Doss�

Franke and others on early implementations of MPI showed that it could be fully

implemented without a prohibitively large e�ort ���� ���� Thus� the rationale for

the MPI subset was lost� and this idea was dropped�

����� Why does MPI not guarantee bu�ering�

MPI does not guarantee to bu�er arbitrary messages because memory is a �nite

resource on all computers� Thus� all computers will fail under su�ciently adverse

communication loads� Di�erent computers at di�erent times are capable of provid�

ing di�ering amounts of bu�ering� so if a program relies on bu�ering it may fail

under certain conditions� but work correctly under other conditions� This is clearly

undesirable�

Given that no message passing system can guarantee that messages will be

bu�ered as required under all circumstances� it might be asked why MPI does

not guarantee a minimum amount of memory available for bu�ering� One major

problem is that it is not obvious how to specify the amount of bu�er space that

is available� nor is it easy to estimate how much bu�er space is consumed by a

particular program�

Di�erent bu�ering policies make sense in di�erent environments� Messages can

be bu�ered at the sending node or at the receiving node� or both� In the former

case�

� bu�ers can be dedicated to one destination in one communication domain�

Conclusions ���

� or dedicated to one destination for all communication domains�

� or shared by all outgoing communications�

� or shared by all processes running at a processor node�

� or part of the bu�er pool may be dedicated� and part shared�

Similar choices occur if messages are bu�ered at the destination� Communication

bu�ers may be �xed in size� or they may be allocated dynamically out of the heap�

in competition with the application� The bu�er allocation policy may depend on

the size of the messages �preferably bu�ering short messages�� and may depend on

communication history �preferably bu�ering on busy channels��

The choice of the right policy is strongly dependent on the hardware and software

environment� For instance� in a dedicated environment� a processor with a process

blocked on a send is idle and so computing resources are not wasted if this processor

copies the outgoing message to a bu�er� In a time shared environment� the com�

puting resources may be used by another process� In a system where bu�er space

can be in paged memory� such space can be allocated from heap� If the bu�er space

cannot be paged� or has to be in kernel space� then a separate bu�er is needed�

Flow control may require that some amount of bu�er space be dedicated to each

pair of communicating processes�

The optimal strategy strongly depends on various performance parameters of the

system� the bandwidth� the communication start�up time� scheduling and context

switching overheads� the amount of potential overlap between communication and

computation� etc� The choice of a bu�ering and scheduling policy may not be

entirely under the control of the MPI implementor� as it is partially determined

by the properties of the underlying communication layer� Also� experience in this

arena is quite limited� and underlying technology can be expected to change rapidly�

fast� user�space interprocessor communication mechanisms are an active research

area ��
� ����

Attempts by the MPI Forum to design mechanisms for querying or setting the

amount of bu�er space available to standard communication led to the conclusion

that such mechanisms will either restrict allowed implementations unacceptably�

or provide bounds that will be extremely pessimistic on most implementations in

most cases� Another problem is that parameters such as bu�er sizes work against

portability� Rather then restricting the implementation strategies for standard

communication� the choice was taken to provide additional communication modes

for those users that do not want to trust the implementation to make the right

choice for them�

��� Chapter 	

��� Portable Programming with MPI

The MPI speci�cation was designed to make it possible to write portable message

passing programs while avoiding unacceptable performance degradation� Within

the context of MPI� �portable� is synonymous with �safe�� Unsafe programs may

exhibit a di�erent behavior on di�erent systems because they are non�deterministic�

Several outcomes are consistent with the MPI speci�cation� and the actual outcome

to occur depends on the precise timing of events� Unsafe programs may require

resources that are not always guaranteed by MPI� in order to complete successfully�

On systems where such resources are unavailable� the program will encounter a

resource error� Such an error will manifest itself as an actual program error� or will

result in deadlock�

There are three main issues relating to the portability of MPI programs �and�

indeed� message passing programs in general��

�� The program should not depend on the bu�ering of messages by MPI or lower levels

of the communication system� A validMPI implementationmay� or may not� bu�er

messages of a given size �in standard mode��

�� The program should not depend upon whether collective communication routines�

such as MPI Bcast��� act as barrier synchronizations� In a valid MPI implemen�

tation collective communication routines may� or may not� have the side e�ect of

performing a barrier synchronization�

�� The program should ensure that messages are matched by the intended receive

call� Ambiguities in the speci�cation of communication can lead to incorrect or

non�deterministic programs since race conditions may arise� MPI provides message

tags and communicators to help avoid these types of problem�

If proper attention is not paid to these factors a message passing code may fail

intermittently on a given computer� or may work correctly on one machine but not

on another� Clearly such a program is not portable� We shall now consider each of

the above factors in more detail�

����� Dependency on Bu�ering

A message passing program is dependent on the bu�ering of messages if its commu�

nication graph has a cycle� The communication graph is a directed graph in which

the nodes represent MPI communication calls and the edges represent dependencies

between these calls� a directed edge uv indicates that operation v might not be

able to complete before operation u is started� Calls may be dependent because

Conclusions ���

they have to be executed in succession by the same process� or because they are

matching send and receive calls�

Example ��� Code for periodic shift in which the processes are arranged with a

ring topology �i�e� a one�dimensional� periodic topology� where communicates data

to its clockwise neighbor� A degenerate instance of this is when a process sends a

message to itself� The following code uses a blocking send in standard mode to send

a message to its clockwise neighbor� and a blocking receive to receive a message

from its anti�clockwise neighbor�

���

MPI�Comm�size�comm� �size��

MPI�Comm�rank�comm� �rank��

clock � �rank

�"size�

anticlock � �rank
size�
�"size�

MPI�Send �buf
� count� MPI�INT� clock� tag� comm��

MPI�Recv �buf�� count� MPI�INT� anticlock� tag� comm� �status��

The execution of the code results in the dependency graph illustrated in Fig�

ure ���� for the case of a three process group�

Receive

Send

Receive

Send

Receive

Send

2

0

1

Figure
��
Cycle in communication graph for cyclic shift�

The arrow from each send to the following receive executed by the same process

re�ects the program dependency within each process� the receive call cannot be

��� Chapter 	

executed until the previous send call has completed� The double arrow between

each send and the matching receive re�ects their mutual dependency� Obviously�

the receive cannot complete unless the matching send was invoked� Conversely�

since a standard mode send is used� it may be the case that the send blocks until

a matching receive occurs�

The dependency graph has a cycle� This code will only work if the system

provides su�cient bu�ering� in which case the send operation will complete locally�

the call to MPI Send�� will return� and the matching call to MPI Recv�� will be

performed� In the absence of su�cient bu�ering MPI does not specify an outcome�

but for most implementations deadlock will occur� i�e�� the call to MPI Send�� will

never return� each process will wait for the next process on the ring to execute a

matching receive� Thus� the behavior of this code will di�er from system to system�

or on the same system� when message size �count� is changed�

There are a number of ways in which a shift operation can be performed portably

using MPI� These are

�� alternate send and receive calls �only works if more than one process��

�� use a blocking send in bu�ered mode�

�� use a nonblocking send and�or receive�

�� use a call to MPI Sendrecv���

If at least one process in a shift operation calls the receive routine before the

send routine� and at least one process calls the send routine before the receive

routine� then at least one communication can proceed� and� eventually� the shift

will complete successfully� One of the most e�cient ways of doing this is to alternate

the send and receive calls so that all processes with even rank send �rst and then

receive� and all processes with odd rank receive �rst and then send� Thus� the

following code is portable provided there is more than one process� i�e�� clock and

anticlock are di�erent�

if �rank"�� �

MPI�Recv �buf�� count� MPI�INT� anticlock� tag� comm� �status��

MPI�Send �buf
� count� MPI�INT� clock� tag� comm��

�

else �

MPI�Send �buf
� count� MPI�INT� clock� tag� comm��

MPI�Recv �buf�� count� MPI�INT� anticlock� tag� comm� �status��

�

Conclusions ���

The resulting communication graph is illustrated in Figure ���� This graph is

acyclic�

Receive

Send

Receive

Send

Send

0

12

Receive

Figure
��
Cycle in communication graph is broken by reordering send and receive�

If there is only one process then clearly blocking send and receive routines cannot

be used since the send must be called before the receive� and so cannot complete

in the absence of bu�ering�

We now consider methods for performing shift operations that work even if there

is only one process involved� A blocking send in bu�ered mode can be used to

perform a shift operation� In this case the application program passes a bu�er

to the MPI communication system� and MPI can use this to bu�er messages� If

the bu�er provided is large enough� then the shift will complete successfully� The

following code shows how to use bu�ered mode to create a portable shift operation�

���

MPI�Pack�size �count� MPI�INT� comm� �buffsize�

buffsize
� MPI�BSEND�OVERHEAD

userbuf � malloc �buffsize�

MPI�Buffer�attach �userbuf� buffsize��

MPI�Bsend �buf
� count� MPI�INT� clock� tag� comm��

MPI�Recv �buf�� count� MPI�INT� anticlock� tag� comm� �status��

MPI guarantees that the bu�er supplied by a call to MPI Buffer attach��will be

used if it is needed to bu�er the message� �In an implementation of MPI that pro�

��� Chapter 	

vides su�cient bu�ering� the user�supplied bu�er may be ignored�� Each bu�ered

send operations can complete locally� so that a deadlock will not occur� The acyclic

communication graph for this modi�ed code is shown in Figure ���� Each receive

depends on the matching send� but the send does not depend anymore on the

matching receive�

Receive

Send

Receive

Send

Receive

Send

2

0

1

Figure
��
Cycle in communication graph is broken by using bu�ered sends�

Another approach is to use nonblocking communication� One can either use a

nonblocking send� a nonblocking receive� or both� If a nonblocking send is used�

the call to MPI Isend�� initiates the send operation and then returns� The call

to MPI Recv�� can then be made� and the communication completes successfully�

After the call to MPI Isend��� the data in buf
 must not be changed until one is

certain that the data have been sent or copied by the system� MPI provides the

routines MPI Wait�� and MPI Test�� to check on this� Thus� the following code is

portable�

���

MPI�Isend �buf
� count� MPI�INT� clock� tag� comm� �request��

MPI�Recv �buf�� count� MPI�INT� anticlock� tag� comm� �status��

MPI�Wait ��request� �status��

Conclusions ��	

The corresponding acyclic communication graph is shown in Figure ���� Each

Isend

Receive

Wait

2

0

Receive

Wait

Isend

Isend

Receive

Wait

1

Figure
��
Cycle in communication graph is broken by using nonblocking sends�

receive operation depends on the matching send� and each wait depends on the

matching communication� the send does not depend on the matching receive� as a

nonblocking send call will return even if no matching receive is posted�

�Posted nonblocking communications do consume resources� MPI has to keep

track of such posted communications� But the amount of resources consumed is

proportional to the number of posted communications� not to the total size of

the pending messages� Good MPI implementations will support a large number

of pending nonblocking communications� so that this will not cause portability

problems��

An alternative approach is to perform a nonblocking receive �rst to initiate �or

�post�� the receive� and then to perform a blocking send in standard mode�

���

MPI�Irecv �buf�� count� MPI�INT� anticlock� tag� comm� �request��

MPI�Send �buf
� count� MPI�INT� clock� tag� comm�

MPI�Wait ��request� �status��

��
 Chapter 	

The call to MPI Irecv�� indicates to MPI that incoming data should be stored in

buf�� thus� no bu�ering is required� The call to MPI Wait�� is needed to block until

the data has actually been received into buf�� This alternative code will often result

in improved performance� since sends complete faster in many implementations

when the matching receive is already posted�

Finally� a portable shift operation can be implemented using the routine MPI�

Sendrecv��� which was explicitly designed to send to one process while receiving

from another in a safe and portable way� In this case only a single call is required�

���

MPI�Sendrecv �buf
� count� MPI�INT� clock� tag�

buf�� count� MPI�INT� anticlock� tag� comm� �status��

����� Collective Communication and Synchronization

The MPI speci�cation purposefully does not mandate whether or not collective

communication operations have the side e�ect of synchronizing the processes over

which they operate� Thus� in one valid implementation collective communication

operations may synchronize processes� while in another equally valid implementa�

tion they do not� Portable MPI programs� therefore� must not rely on whether or

not collective communication operations synchronize processes� Thus� the following

assumptions must be avoided�

�� We assume MPI Bcast�� acts as a barrier synchronization and it doesn�t�

MPI�Irecv �buf�� count� MPI�INT� anticlock� tag� comm� �status��

MPI�Bcast �buf��
� MPI�CHAR� �� comm��

MPI�Rsend �buf
� count� MPI�INT� clock� tag� comm��

Here if we want to perform the send in ready mode we must be certain that the

receive has already been initiated at the destination� The above code is nonportable

because if the broadcast does not act as a barrier synchronization we cannot be sure

this is the case�

�� We assume that MPI Bcast�� does not act as a barrier synchronization and it

does� Examples of this case are given in Examples ����� ���
� and ���� starting on

page ����

����� Ambiguous Communications and Portability

MPI employs the communicator abstraction to promote software modularity by al�

lowing the construction of independent communication streams between processes�

Conclusions ���

thereby ensuring that messages sent in one phase of an application are not incor�

rectly intercepted by another phase� Communicators are particularly important in

allowing libraries that make message passing calls to be used safely within an ap�

plication� The point here is that the application developer has no way of knowing

if the tag� group� and rank completely disambiguate the message tra�c of di�er�

ent libraries and the rest of the application� Communicators� in e�ect� provide an

additional criterion for message selection� and hence permits the construction of

independent tag spaces�

We discussed in Section
�
 possible hazards when a library uses the same com�

municator as the calling code� The incorrect matching of sends executed by the

caller code with receives executed by the library occurred because the library code

used wildcarded receives� Conversely� incorrect matches may occur when the caller

code uses wildcarded receives� even if the library code by itself is deterministic�

Consider the example in Figure ��
� If the program behaves correctly processes �

and � each receive a message from process �� using a wildcarded selection criterion

to indicate that they are prepared to receive a message from any process� The three

processes then pass data around in a ring within the library routine� If separate

communicators are not used for the communication inside and outside of the library

routine this program may intermittently fail� Suppose we delay the sending of the

second message sent by process �� for example� by inserting some computation� as

shown in Figure ���� In this case the wildcarded receive in process � is satis�ed by

a message sent from process �� rather than from process �� and deadlock results�

Even if neither caller nor callee use wildcarded receives� incorrect matches may

still occur if a send initiated before the collective library invocation is to be matched

by a receive posted after the invocation �Ex�
���� page ����� By using a di�erent

communicator in the library routine we can ensure that the program is executed

correctly� regardless of when the processes enter the library routine�

��� Heterogeneous Computing with MPI

Heterogeneous computing uses di�erent computers connected by a network to solve

a problem in parallel� With heterogeneous computing a number of issues arise that

are not applicable when using a homogeneous parallel computer� For example� the

computers may be of di�ering computational power� so care must be taken to dis�

tribute the work between them to avoid load imbalance� Other problems may arise

because of the di�erent behavior of �oating point arithmetic on di�erent machines�

However� the two most fundamental issues that must be faced in heterogeneous

��� Chapter 	

Process 0 Process 1 Process 2

recv(any) recv(any) send(1)

send(0)

recv(1)

send(2)

recv(0)

send(1)

send(0)

recv(2)

Figure
��
Use of communicators� Numbers in parentheses indicate the process to which data are being
sent or received� The gray shaded area represents the library routine call� In this case the
program behaves as intended� Note that the second message sent by process � is received by
process �� and that the message sent by process � is received by process ��

computing are�

� incompatible data representation�

� interoperability of di�ering implementations of the message passing layer�

Incompatible data representations arise when computers use di�erent binary rep�

resentations for the same number� In MPI all communication routines have a

datatype argument so implementations can use this information to perform the

appropriate representation conversion when communicating data between comput�

ers�

Interoperability refers to the ability of di�erent implementations of a given piece

of software to work together as if they were a single homogeneous implementa�

tion� A prerequisite of interoperability for MPI would be the standardization of the

MPI�s internal data structures� of the communication protocols� of the initializa�

tion� termination and error handling procedures� of the implementation of collective

operations� and so on� Since this has not been done� there is no support for in�

teroperability in MPI� In general� hardware�speci�c implementations of MPI will

not be interoperable� However it is still possible for di�erent architectures to work

together if they both use the same portable MPI implementation�

Conclusions ���

Process 0 Process 1 Process 2

recv(any) recv(any) send(1)

compute

send(0)

send(0)

recv(2)
recv(1)

recv(0)

Figure
��
Unintended behavior of program� In this case the message from process � to process � is never
received� and deadlock results�

��� MPI Implementations

At the time of writing several portable implementations of MPI exist�

� the MPICH implementation from Argonne National Laboratory and Mississippi

State University ����� available by anonymous ftp at info�mcs�anl�gov�pub�mpi� This

version is layered on PVM or P� and can be run on many systems�

� The CHIMP implementation from Edinburgh Parallel Computing Center� available

by anonymous ftp at ftp�epcc�ed�ac�uk�pub�chimp�release�chimp�tar�Z�

� the LAM implementation from the Ohio Supercomputing Center� a full MPI stan�

dard implementation using LAM� a UNIX cluster computing environment� Avail�

able by anonymous ftp at tbag�osc�edu�pub�lam�

� The UNIFY system provides a subset of MPI within the PVM environment� with�

out sacri�cing the PVM calls already available� Available by anonymous ftp at

ftp�erc�msstate�edu�unify�

In addition� hardware�speci�c MPI implementations exist for the Cray T�D� the

IBM SP��� The NEC Cinju� and the Fujitsu AP�����

Information on MPI implementations and other useful information onMPI can be

found on the MPI web pages at Argonne National Laboratory �http���www�mcs�anl��

gov�mpi�� and at Mississippi State Univ �http���www�erc�msstate�edu�mpi�� Addi�

tional information can be found on the MPI newsgroup comp�parallel�mpi and on

netlib�

��� Chapter 	

��� Extensions to MPI

When the MPI Forum reconvened in March ���
� the main reason was to produce

a new version of MPI that would have signi�cant new features� The original MPI

is being referred to as MPI�� and the new e�ort is being called MPI��� The need

and desire to extend MPI�� arose from several factors� One consideration was that

the MPI�� e�ort had a constrained scope� This was done to avoid introducing a

standard that was seen as too large and burdensome for implementors� It was also

done to complete MPI�� in the Forum�imposed deadline of one year� A second

consideration for limiting MPI�� was the feeling by many Forum members that

some proposed areas were still under investigation� As a result� the MPI Forum

decided not to propose a standard in these areas for fear of discouraging useful

investigations into improved methods�

The MPI Forum is now actively meeting and discussing extensions to MPI�� that

will become MPI��� The areas that are currently under discussion are�

External Interfaces� This will de�ne interfaces to allow easy extension of MPI

with libraries� and facilitate the implementation of packages such as debuggers and

pro�lers� Among the issues considered are mechanisms for de�ning new nonblocking

operations and mechanisms for accessing internal MPI information�

One�Sided Communications� This will extend MPI to allow communication

that does not require execution of matching calls at both communicating processes�

Examples of such operations are put�get operations that allow a process to access

data in another process� memory� messages with interrupts �e�g�� active messages��

and Read�Modify�Write operations �e�g�� fetch and add��

Dynamic ResourceManagement� This will extend MPI to allow the acquisition

of computational resources and the spawning and destruction of processes after

MPI INIT�

Extended Collective� This will extend the collective calls to be non�blocking and

apply to inter�communicators�

Bindings� This will produce bindings for Fortran �� and C���

Real Time� This will provide some support for real time processing�

Since the MPI�� e�ort is ongoing� the topics and areas covered are still subject to

change�

The MPI Forum set a timetable at its �rst meeting in March ���
� The goal

is release of a preliminary version of certain parts of MPI�� in December ���
 at

Supercomputing ��
� This is to include dynamic processes� The goal of this early

Conclusions ���

release is to allow testing of the ideas and to receive extended public comments�

The complete version of MPI�� will be released at Supercomputing ��� for �nal

public comment� The �nal version of MPI�� is scheduled for release in the spring

of �����

Bibliography

��� V� Bala and S� Kipnis� Process groups	 a mechanism for the coordination of and commu

nication among processes in the Venus collective communication library� Technical report�
IBM T� J� Watson Research Center� October ����� Preprint�

��� V� Bala� S� Kipnis� L� Rudolph� and Marc Snir� Designing e�cient� scalable� and portable
collective communication libraries� In SIAM ���� Conference on Parallel Processing for
Scienti�c Computing� pages
���
��� March �����

��� Luc Bomans and Rolf Hempel� The Argonne�GMD macros in FORTRAN for portable
parallel programming and their implementation on the Intel iPSC��� Parallel Computing�
��	�������� �����

��� J� Bruck� R� Cypher� P� Elustond� A� Ho� C
T� Ho� V� Bala� S� Kipnis� � and M� Snir� Ccl	 A
portable and tunable collective communicationlibrary for scalable parallel computers� IEEE
Trans� on Parallel and Distributed Systems� ����	�������� �����

��� R� Butler and E� Lusk� User�s guide to the p� programming system� Technical Report
TM
ANL������� Argonne National Laboratory� �����

��� Ralph Butler and Ewing Lusk� Monitors� messages� and clusters	 the p� parallel program

ming system� Journal of Parallel Computing� �����	�������� April �����

��� Robin Calkin� Rolf Hempel� Hans
Christian Hoppe� and Peter Wypior� Portable program

ming with the parmacs message�passing library� Parallel Computing� �����	�������� April
�����

�
� S� Chittor and R� J� Enbody� Performance evaluation of mesh�connected wormhole�routed
networks for interprocessor communication in multicomputers� In Proceedings of the ����
Supercomputing Conference� pages �������� �����

��� S� Chittor and R� J� Enbody� Predicting the e�ect of mapping on the communication per

formance of large multicomputers� In Proceedings of the ���� International Conference on
Parallel Processing� vol� II �Software	� pages II�� � II��� �����

���� R� Cypher and E� Leu� The semantics of blocking and nonblocking send and receive primi

tives� In
th International Parallel Processing Symposium� pages �������� April �����

���� J� J� Dongarra� R� Hempel� A� J� G� Hey� and D� W� Walker� A proposal for a user
level�
message passing interface in a distributed memory environment� Technical Report TM

������ Oak Ridge National Laboratory� February �����

���� Nathan Doss� William Gropp� Ewing Lusk� and Anthony Skjellum� A model implementation
of MPI� Technical report� Argonne National Laboratory� �����

���� Edinburgh Parallel Computing Centre� University of Edinburgh� CHIMP Concepts� June
�����

���� Edinburgh Parallel Computing Centre� University of Edinburgh� CHIMP Version ��� In�
terface� May �����

���� Message Passing Interface Forum� MPI	 A message
passing interface standard� International
Journal of Supercomputer Applications�
������ ����� Special issue on MPI�

���� H� Franke� H� Wu� C�E� Riviere� P�Pattnaik� and M� Snir� MPI programming environment
for IBM SP��SP�� In ��th International Conference on Distributed Computing Systems�
pages �������� June �����

���� A� Geist� A� Beguelin� J� Dongarra� W� Jiang� R� Manchek� and V� Sunderam� PVM
 A
Users� Guide and Tutorial for Networked Parallel Computing� MIT Press� ����� The book
is available electronically� the url is ftp���www�netlib�org�pvm��book�pvm�book�ps�

��
� G� A� Geist� M� T� Heath� B� W� Peyton� and P� H� Worley� A user�s guide to PICL	
a portable instrumented communication library� Technical Report TM
������ Oak Ridge
National Laboratory� October �����

���� William D� Gropp and Barry Smith� Chameleon parallel programming tools users manual�
Technical Report ANL
������ Argonne National Laboratory� March �����

���� V� Karamcheti and A�A� Chien� Software overheads in messaging layers	 Where does the
time go� In �th International Conference on Architectural Support for Programming Lan�
guages and Operating Systems �ASPLOS VI	� pages ������ October �����

���� O� Kr�amer and H� M�uhlenbein� Mapping strategies in message�based multiprocessor sys

tems� Parallel Computing� �	�������� ��
��

���� nCUBE Corporation� nCUBE � Programmers Guide� r���� December �����

���� Parasoft Corporation� Pasadena� CA� Express User�s Guide� version ����� edition� �����

���� Paul Pierce� The NX�� operating system� In Proceedings of the Third Conference on
Hypercube Concurrent Computers and Applications� pages �
������ ACM Press� ��

�

���� A� Skjellum and A� Leung� Zipcode	 a portable multicomputer communication library atop
the reactive kernel� In D� W� Walker and Q� F� Stout� editors� Proceedings of the Fifth
Distributed Memory Concurrent Computing Conference� pages �������� IEEE Press� �����

���� A� Skjellum� S� Smith� C� Still� A� Leung� and M� Morari� The Zipcode message passing
system� Technical report� Lawrence Livermore National Laboratory� September �����

���� V�S� Sunderam�G�A� Geist� J� Dongarra� and R� Manchek� The PVM concurrent computing
system	 Evolution� experiences� and trends� Parallel Computing� �����	�������� April �����

��
� T� von Eicken� D�E� Culler� S�C� Goldstein� and K�E� Shauser� Active messages	 a mechanism
for integrated communication and computation� In ��th Annual International Symposium
on Computer Architecture� pages �������� May �����

���� D� Walker� Standards for message passing in a distributed memory environment� Technical
Report TM
������ Oak Ridge National Laboratory� August �����

Index

active request handle�
�
address� ��
� ���� ���
aliased arguments� �
alignment� ���� ��
� ���
all reduce� �
�
all to all� ���
all to all� vector variant� ���
ambiguity of communications� ���
arguments� �
associativity and reduction� ���
associativity� and user
de�nedoperation� ���
asymmetry� ��
attribute� ���� ���
attribute� key� ���� ���� ���
attribute� prede�ned� �
�
attribute� topology� ���� ���

backmasking� ���
balance� hot spot� ��
barrier� ���
blocking� �� ��� ��� ���
broadcast� ���
bu�er attach� ��
bu�er policy� ��
bu�er� receive� ��
bu�er� send� ��
bu�ered mode� �
�
�� ��
bu�ering� ��� ��� ��� ���� ���
bu�ering� nonblocking� ��

caching� ���� ���
callback function� ���� ���
callback function� copy� ���� ���� ���
callback function� delete� ���� ���
cancelation� ��� ��
choice� ��
clock� ���
clock synchronization� �
�� �

collective� �
collective communication� ���
collective� and blocking semantics� ���
collective� and communicator� ���
collective� and correctness� ���
collective� and deadlock� ���
collective� and intercommunicator� ���
collective� and message tag� ���
collective� and modes� ���
collective� and nondeterminism� ���
collective� and portability� ���� ���
collective� and threads� ��

collective� and type matching� ���
collective� compatibilitywith point
to
point�

���
collective� process group� ���

collective� restrictions� ���
collective� semantics of� ���� ���
collective� vector variants� ���
commit� ���
communication domain� ��� ��� ��� ���� ���
communication domain� inter� ���
communication domain� intra� ���
communication hot spot� ��
communication modes� ���
�
communication modes� comments� �

communication protocol� ��
communication� nonblocking� ��
communicator� ��� ��� ���
communicator� accessors� ���
communicator� and collective� ���
communicator� caching� ���� ���
communicator� constructors� ���
communicator� destructor� ���
communicator� hidden� ���
communicator� intra vs inter� ���
communicator� manipulation� ���
commutativity and reduction� ���
commutativity� and user
de�ned operation�

���
complete
receive� ��
complete
send� ��
completion functions� ��
completion� multiple� ��
complexity of MPI� ���
context id� ��� ���
conversion� ��
conversion� representation� ��
conversion� type� ��
correctness� ���
cycles� ��

data conversion� ��� ��
data distribution� ��
datatype� ��
datatype matching� ��
deadlock� ��� ��
derived datatype� ���� ���
derived datatype� address� ��
� ���� ���
derived datatype� commit� ���
derived datatype� constructor� ���� ���
derived datatype� destructor� ���
derived datatype� extent� ���� ���� ���
derived datatype� lower bound� ���� ���
derived datatype� map� ���
derived datatype� markers� ���
derived datatype� matching� ���
derived datatype� overlapping entries� ���
derived datatype� signature� ���
derived datatype� upper bound� ���� ���

��
 Index

destination� ��� ��
deterministic programs� ��

e�ciency� �
enabled communication� ��
encapsulation� ��
environmental parameters� �
�
error classes� ���
error code� ��
error codes� ��

error handler� ���
error handler� prede�ned� ���
error handling� �
�� ���
error� program� ���
error� resource� ���
exception� ���
exchange communication� ��
exit� �
�� ���
extensions� ���
extent� ���� ���� ���

failure� ��
fairness� �

fairness� and server� ��� ��
fairness� nonblocking� ��
�rst
come
�rst
served� ��

gather� ���
gather and scatter� ���
gather to all� ���
gather to all� vector variant� ���
gather� vector variant� ���
global reduction� ���
group� ��� ���� ���� ���� ���
group� for collective� ���
group� local and remote� ���

half
channel�
�
handle� null� ��
handles� �
heterogeneous� �� ��� ���
hidden communicator� ���� ��

host process� �
�� �

hot spot� ��

I�O inquiry� �
�� �

implementations� ���
IN� �
inactive request handle�
�
include �le� ��� ��
initialization� �
�� ���
INOUT� �
inter
group communication domain� ���
inter
language communication� ��

interaction�MPIwith executionenvironment�
�
�� ���

intercommunication� ���
intercommunication� and collective� ���
intercommunication� summary� ���
intercommunicator� ��� ���
intercommunicator� accessors� ���
intercommunicator� and collective� ���
intercommunicator� constructors� ���
interoperability� �� ���
interoperability� language� ��
intra
group communication domain� ���
intracommunicator� ��� ���

Jacobi� ��� ��
Jacobi� safe version� ��
Jacobi� using nonblocking� ��
Jacobi� using send
receive� ��
Jacobi� with null processes� �

Jacobi� with persistent requests�
�
Jacobi� with MPI WAITALL� ��

key� ���� ���� ���

layering� ���� ���� ���
libraries� ��� ���� ���
libraries� safety� ���� ���� ���
local� �
long protocol� ��
lower bound� ���� ���

markers� ���
matching� ��
matching� narrow� ��
matching� type� ��
matrix product� ���
maximum and location� �
�
message destination� ��
message envelope� ��
message matching� ��
message order� ��
message selection� ��
message source� ��� ��
message tag� ��� ��� ��
message� self� ��
message� self
typed� ��
minimum and location� �
�
mode�
�
mode� bu�ered�
�� ��
mode� comments� �

mode� ready�
�
mode� standard� ���
�
mode� synchronous�
�
modes� ��� ���
�� ���

Index ���

modularity� ���� ���� ���
MPI
�� ���
MPI BYTE � ��� ��� �

MPI CHARACTER � ��
MPI COMM WORLD� ��
MPI PACKED � ��
MPI exception� ���
mpif�h� ��� ��
MPI Forum� �
MPI implementations� ���
multiple completion� ��

name shift� �
�
narrow matching� ��
non�blocking� �
non�local� �� ��
nonblocking� ��� ��
nonblocking communication� ��
nonblocking� bu�ering� ��
nonblocking� fairness� ��
nonblocking� order� �

nonblocking� progress� ��
nonblocking� safety� ��
nondeterminism and collective� ���
null process� ��
null request handle� ��

opaque objects� �
order� ��
order� nonblocking� �

order� with threads� ��
OUT� �
over�ow� ��� �

overlap� ��

pack� �
�� ���
packing unit� ���
parallel pre�x� ���
persistent request� ��
polling� ��
port� ��
portability� �� ���� ���
portable programming� ���
post�receive� ��
post�send� ��

post�send� failure of� ��
posting� ��
posting functions� ��
prede�ned attributes� ���
probing� ��
procedure speci�cation� �
process allocation� �
process group� �
� �
�� �
�� �
�� ���
process group� local and remote� ���
process rank� �
� �
�� ���
processes� �
producer�consumer� ��� �
� ��
pro�le interface� �
�
progress� ��
progress� for probe� ��
progress� nonblocking� ��
protocol� communication� ��
protocol� two�phase� ��
protocols� ��

rank� ��� �
� �
�� ���
ready mode� ��� ��
receive� ��
receive bu�er� ��
receive� wildcard� ��
reduce� ���
reduce and scatter� ���
reduce� list of operations� ���
reduce� user�de�ned� ���
reduction� ���
reduction and associativity� ���
reduction and commutativity� ���
remote procedure call� ��
rendezvous� ��� ��
representation conversion� ��� �

request object� �

request object� allocation of� ��
request object� deallocation of� ��
request� inactive vs active� ��
request� null handle� ��
request� persistent� ��
resource limitations� ��
return codes� ��� ��
return status� ��

��� Index

root� ���
round�robin� ��

safe program� ��
safety� ��� ��� ���� �
�
scalability� �
scan� ���
scan� inclusive vs exclusive� ���
scan� segmented� ���
scan� user�de�ned� ���
scatter� ���
scatter and gather� ���
scatter� vector variant� ���
selection� ��
self message� ��
self�typed message� ��
semantics� ��� ��
semantics of collective� ���
semantics� nonblocking� �

send� ��
send bu�er� ��
send�receive� ��
sequential storage� ���
server� and fairness� �
� ��
short protocol� ��
signal safety� �
�
source� �
� ��
standard mode� ��� ��� ��
starvation� ��� �
� ��� ��
status� ��� ��
status� empty� ��
synchronization� ���� ���
synchronous mode� ��� ��

tag� ��� �
� ��� ��� ���
tag� upper bound� ���
test�for�completion� ��
thread safety� ��� �
�
threads� �� ��� ��
threads and collective� ���
throttle e�ect� ��
time function� ��

topology� ���� ���
topology and intercommunicator� ���
topology� Cartesian� ���

topology� general graph� ���
topology� overlapping� ���
topology� virtual vs physical� ���
two�phase protocol� ��
type constructor� �
�� �
�
type conversion� �

type map� �
�
type matching� ��� ��� ���� ��

type signature� �
�
typed data� ��

under�ow� �

unpack� �
�� ���
upper bound� �
�� ���
user�de�ned operations� ���
user�de�ned reduction� ���

wildcard� ��
wildcard receive� ��

Constants Index

MPI �DOUBLE PRECISION� �
�
MPI �INT� �
�
MPI �INTEGER� �
�
MPI �REAL� �
�
MPI ANY SOURCE� ��� ��� �
� ��� �
�
��

�

MPI ANY TAG� ��� ��� ��� ��� �
�
�
MPI BAND� ��

MPI BOR� ��

MPI BOTTOM� ��� ��� �������
MPI BSEND OVERHEAD� ��� ���
MPI BXOR� ��

MPI BYTE� ��� ��� ��
MPI CART� ���
MPI CHAR� ��� ��
MPI CHARACTER� ��� �
� ��
MPI COMM NULL� ���� ���� ���� ��
� ���
MPI COMM SELF� ���� ���
MPI COMM WORLD� ��� ��� ���� ���� �
��

���� ���
MPI COMPLEX� ��
MPI CONGRUENT� ��
� ��

MPI DATATYPE NULL� ���
MPI DOUBLE� ��
MPI DOUBLE COMPLEX� ��
MPI DOUBLE INT� �
�
MPI DOUBLE PRECISION� ��
MPI ERR ARG� ���
MPI ERR BUFFER� ���
MPI ERR COMM� ���
MPI ERR COUNT� ���
MPI ERR DIMS� ���
MPI ERR GROUP� ���
MPI ERR IN STATUS� ��� ��� ��
� ���
MPI ERR INTERN� ���
MPI ERR LASTCODE� ���
MPI ERR OP� ���
MPI ERR OTHER� ���� ���
MPI ERR PENDING� ��
� ���
MPI ERR RANK� ���
MPI ERR REQUEST� ���
MPI ERR ROOT� ���
MPI ERR TAG� ���
MPI ERR TOPOLOGY� ���
MPI ERR TRUNCATE� ���
MPI ERR TYPE� ���
MPI ERR UNKNOWN� ���� ���
MPI ERRHANDLER NULL� ��

MPI ERROR� ��
MPI ERRORS ARE FATAL� ���
MPI ERRORS RETURN� ���� ���
MPI FLOAT� ��
MPI FLOAT INT� �
�
MPI GRAPH� ���

MPI GROUP EMPTY� ���� �������
MPI GROUP NULL� ���� ���
MPI HOST� �
�� �

MPI IDENT� ���� ��

MPI INT� ��� ��� ���
MPI INTEGER� ��� ��
MPI INTEGER�� ��
MPI INTEGER�� ��
MPI INTEGER�� ��
MPI IO� �
�� �

MPI KEYVAL INVALID� ���� ���
MPI LAND� ��

MPI LB� ���
MPI LOGICAL� ��
MPI LONG� ��
MPI LONG DOUBLE� ��
MPI LONG DOUBLE INT� �
�
MPI LONG INT� �
�
MPI LONG LONG� ��
MPI LOR� ��

MPI LXOR� ��

MPI MAX� ���� ��

MPI MAX ERROR STRING� ��

MPI MAX PROCESSOR NAME� �
�
MPI MAXLOC� ��
� �
�� �
�� �
�
MPI MIN� ��

MPI MINLOC� ��
� �
�� �
�� �
�
MPI OP NULL� ���
MPI PACKED� ��� ��� ��
����
MPI PENDING� ��
MPI PROC NULL� ��� ���� ���� �
�� �

MPI PROD� ��

MPI REAL� ��
MPI REAL�� ��
MPI REAL�� ��
MPI REAL
� ��
MPI REQUEST NULL� ��� ��� �
� ��� ���

���
�
MPI SHORT� ��
MPI SHORT INT� �
�
MPI SIMILAR� ���� ��
� ��

MPI SOURCE� ��
MPI STATUS SIZE� ��
MPI SUCCESS� ��� ��� ��� ���� ��
����
MPI SUM� ��

MPI TAG� ��
MPI TAG UB� ��� �
�� �

MPI UB� ���
MPI UNDEFINED� ��� �
�
�� ���� ���� ���
MPI UNEQUAL� ���� ��
� ��

MPI UNSIGNED� ��
MPI UNSIGNED CHAR� ��
MPI UNSIGNED LONG� ��
MPI UNSIGNED SHORT� ��

��� Constants Index

MPI WTIME IS GLOBAL� �
�����

Function Index

MPI ABORT� ���
MPI ADDRESS� ��

MPI ALLGATHER� ���
MPI ALLGATHERV� ���
MPI ALLREDUCE� �
�
MPI ALLTOALL� ���
MPI ALLTOALLV� ���
MPI ATTR DELETE� ���
MPI ATTR GET� ���
MPI ATTR PUT� ���
MPI BARRIER� ���
MPI BCAST� ���
MPI BSEND � ��
MPI BSEND INIT� ��
MPI BUFFER ATTACH� ��
MPI BUFFER DETACH� ��
MPI CANCEL� ��
MPI CART COORDS� ���
MPI CART CREATE� ���
MPI CART GET� ���
MPI CART MAP� ���
MPI CART RANK� ���
MPI CART SHIFT� ���
MPI CART SUB� ���
MPI CARTDIM GET� ���
MPI COMM COMPARE� ��

MPI COMM CREATE� ���
MPI COMM DUP� ���
MPI COMM FREE� ���
MPI COMM GROUP� ���
MPI COMM RANK� ���
MPI COMM REMOTE GROUP� ��

MPI COMM REMOTE SIZE� ��

MPI COMM SIZE� ���
MPI COMM SPLIT� ���
MPI COMM TEST INTER� ���
MPI DIMS CREATE� ��

MPI ERRHANDLER CREATE� ���
MPI ERRHANDLER FREE� ���
MPI ERRHANDLER GET� ���
MPI ERRHANDLER SET� ���
MPI ERROR CLASS� ���
MPI ERROR STRING� ��

MPI FINALIZE� ���
MPI GATHER � ���
MPI GATHERV � ���
MPI GET COUNT� ��
MPI GET ELEMENTS� ���
MPI GET PROCESSOR NAME� �
�
MPI GRAPH CREATE� ���
MPI GRAPH GET� ���
MPI GRAPH MAP� ���
MPI GRAPH NEIGHBORS� ���
MPI GRAPH NEIGHBORS COUNT� ���

MPI GRAPHDIMS GET� ���
MPI GROUP COMPARE� ���
MPI GROUP DIFFERENCE� ���
MPI GROUP EXCL� ���
MPI GROUP FREE� ���
MPI GROUP INCL� ���
MPI GROUP INTERSECTION� ���
MPI GROUP RANGE EXCL� ���
MPI GROUP RANGE INCL� ���
MPI GROUP RANK� ��

MPI GROUP SIZE� ��

MPI GROUP TRANSLATE RANKS � ��

MPI GROUP UNION� ���
MPI IBSEND� ��
MPI INIT� ���
MPI INITIALIZED� ���
MPI INTERCOMM CREATE� ���
MPI INTERCOMM MERGE� ���
MPI IPROBE� ��
MPI IRECV � ��
MPI IRSEND� ��
MPI ISEND� ��
MPI ISSEND� ��
MPI KEYVAL CREATE� ���
MPI KEYVAL FREE� ���
MPI OP CREATE� �
�
MPI OP FREE� ���
MPI PACK� ���
MPI PACK SIZE� ���
MPI PCONTROL� ���
MPI PROBE� ��
MPI RECV � ��
MPI RECV INIT�
�
MPI REDUCE� ���
MPI REDUCE SCATTER� �
�
MPI REQUEST FREE� ��
MPI RSEND � ��
MPI RSEND INIT� ��
MPI SCAN� �

MPI SCATTER� ���
MPI SCATTERV� ���
MPI SEND� �

MPI SEND INIT�
�
MPI SENDRECV� ��
MPI SENDRECV REPLACE� ��
MPI SSEND � ��
MPI SSEND INIT� ��
MPI START�
�
MPI STARTALL�
�
MPI TEST� ��
MPI TEST CANCELLED�
�
MPI TESTALL� ��
MPI TESTANY� �

MPI TESTSOME� ��

��� Function Index

MPI TOPO TEST� ���
MPI TYPE COMMIT� ���
MPI TYPE CONTIGUOUS� ���
MPI TYPE EXTENT� ���
MPI TYPE FREE� ���
MPI TYPE HINDEXED� ���
MPI TYPE HVECTOR� ���
MPI TYPE INDEXED� ���
MPI TYPE LB� ���
MPI TYPE SIZE� ���
MPI TYPE STRUCT� ��

MPI TYPE UB� ���
MPI TYPE VECTOR� ���
MPI UNPACK� ���
MPI WAIT� ��
MPI WAITALL� ��
MPI WAITANY � ��
MPI WAITSOME� ��
MPI WTICK� ���
MPI WTIME� ���

