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Abstract. We have developed a methodology for predicting the performance of
parallel algorithms on real parallel machines. The methodology consists of two
steps. First, we characterize a machine by enumerating the primitive operations that
it is capable of performing along with the cost of each operation. Next, we ana-
lyze an algorithm by making a precise count of the number of times the algorithm
performs each type of operation. We have used this methodology to evaluate many
of the parallel sorting algorithms proposed in the literature. Of these, we selected
the three most promising, Batcher’s bitonic sort, a parallel radix sort, and a sample
sort similar to Reif and Valiant’s flashsort, and implemented them on the connec-
tion Machine model CM-2. This paper analyzes the three algorithms in detail and
discusses the issues that led us to our particular implementations. On the CM-2 the
predicted performance of the algorithms closely matches the observed performance,
and hence our methodology can be used to tune the algorithms for optimal perfor-
mance. Although our programs were designed for the CM-2, our conclusions about
the merits of the three algorithms apply to other parallel machines as well.
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1. Introduction

Sorting is arguably the most studied problem in computer science, both because it is
used as a substep in many applications and because it is a simple combinatorial problem
with many interesting and diverse solutions. Sorting is also an important benchmark
for parallel supercomputers. It requires significant communication bandwidth among
processors, unlike many other supercomputer benchmarks, and the most efficient sorting
algorithms communicate data in irregular patterns.

Parallel algorithms for sorting have been studied since at least the 1960s. An early
advance in parallel sorting came in 1968 when Batcher discovered the elegantbitonic
sorting network[3] which sortsn keys in depth(lg n)(lg n+1)/2. (Throughout this paper
lg n denotes log2 n.) For certain families of fixed interconnection networks, such as the
hypercube and shuffle-exchange, Batcher’s bitonic sorting technique provides a parallel
algorithm for sortingn numbers in2(lg2 n) time with n processors. The question of
the existence of ao(lg2 n)-depth sorting network remained open until 1983, when Ajtai,
Komlós, and Szemer´edi [1] provided an optimal2(lg n)-depth sorting network, but,
unfortunately, their construction leads to larger networks than those given by bitonic sort
for all “practical” values ofn. Leighton [15] has shown that any2(lg n)-depth family of
sorting networks can be used to sortn numbers in2(lg n) time in then-node bounded-
degree fixed-connection network domain. Not surprisingly, the optimal2(lg n)-time
n-node fixed-connection sorting networks implied by the AKS construction are also
impractical.

In 1983 Reif and Valiant proposed a more practicalO(lg n)-time randomized al-
gorithm for sorting [19], calledflashsort. Many other parallel sorting algorithms have
been proposed in the literature, including parallel versions ofradix sort andquicksort
[5], a variant of quicksort called hyperquicksort [23], smoothsort [18], column sort [15],
Nassimi and Sahni’s sort [17], and parallel merge sort [6].

This paper reports the findings of a project undertaken at Thinking Machines Cor-
poration to develop a fast sorting algorithm for the Connection Machine Supercomputer
model CM-2. The primary goals of this project were:

1. To implement as fast a sorting algorithm as possible for integers and floating-pont
numbers on the CM-2.

2. To generate a library sort for the CM-2 (here we were concerned with memory
use, stability, and performance over a wide range of problem and key sizes in
addition to running time).

3. To gain insight into practical sorting algorithms in general.

Our first step toward achieving these goals was to analyze and evaluate many of the
parallel sorting algorithms that have been proposed in the literature. After analyzing
many algorithms, we selected the three most promising alternatives for implementation:
bitonic sort, radix sort, and sample sort. Figure 1 compares the running times of these
three algorithms (two versions of radix sort are shown). Typically the number of keys,
n, is larger than the number of processors,p. As is apparent from the figure, when the
number of keys per processor(n/p) is large, sample sort is the fastest sorting algorithm.
On the other hand, radix sort performs reasonably well over the entire range ofn/p, and
it is deterministic, much simpler to code, stable, and faster with small keys. Although
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Fig. 1. Actual running times for sorting 64-bit keys on a 32K Connection Machine CM-2. In the figure
the running times are divided by the number of keys per processor to permit extrapolation to machines with
different numbers of processors. The termprocessor, as used in this paper, is a 32-bit wide so-calledSprint
node, of which there arep = 1024 in a 32K CM-2. To determine the total running time of a sort involvingn
keys, multiply the time per key per processor in the figure byn/p.

bitonic sort is the slowest of the three sorts whenn/p is large, it is more space-efficient
than the other two algorithms, and represents the fastest alternative whenn/p is small.
Based on various pragmatic issues, the radix sort was selected to be used as the library
sort for Fortran now available on the CM-2.

We have modeled the running times of our sorts using equations based on problem
size, number of processors, and a set of machine parameters (e.g., time for point-to-
point communication, hypercube communication, scans, and local operations). These
equations serve several purposes. First, they make it easy to analyze how much time
is spent in various parts of the algorithms. For example, the ratio of computation to
communication for each algorithm can be quickly determined and how this is affected
by problem and machine size can be seen. Second, they make it easy to generate good
estimates of running times on variations of the algorithms without having to implement
them. Third, it can be determined how various improvements in the architecture would
improve the running times of the algorithms. For example, the equations make it easy
to determine the effect of doubling the performance of message routing. Fourth, in the
case of radix sort we are able to use the equations analytically to determine the best
radix size as a function of the problem size. Finally, the equations allow anyone to
make reasonable estimates of the running times of the algorithms on other machines.
For example, the radix sort has been implemented and analyzed on the Cray Y-MP [25],
and the Thinking Machines CM-5 [22], which differs significantly from the CM-2. In
both cases, when appropriate values for the machine parameters are used, our equations
accurately predicted the running times. Similar equations are used by Stricker [21] to
analyze the running time of bitonic sort on the iWarp, and by Hightoweret al. [12] to
analyze the running time of flashsort on the Maspar MP-1.

The remainder of this paper studies the implementations of bitonic sort, radix sort,
and sample sort. In each case it describes and analyzes the basic algorithm, as well as any
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enhancements and/or minor modifications that we introduced to optimize performance.
After describing the primitive operations that our algorithms use in Section 2, Sections 3,
4, and 5 present our studies of bitonic sort, radix sort, and sample sort, respectively. In
Section 6 we compare the relative performance of these three sorts, not only in terms of
running time, but also with respect to such criteria as stability and space. Appendix A
presents a brief analysis of other algorithms that we considered for implementation.
Appendix B presents a probabilistic analysis of the sampling procedure used in our
sample sort algorithm.

2. Primitive Operations

This section describes a set of primitive parallel operations that can be used to implement
a parallel sorting algorithm. These operations are likely to be found on any parallel
computer, with the possible exception of the cube swap operation, which applies only to
hypercube-based machines. All of the algorithms in this paper are described in terms of
these operations. Although the costs of the operations are given only for the CM-2, our
analysis can be applied to other machines by substituting the appropriate costs.

There are four classes of operations:

• Arithmetic: A local arithmetic or logical operation on each processor. Also in-
cluded are global operations involving a front-end machine and the processors,
such as broadcasting a word from the front end to all processors.
• Cube swap: Each processor sends and receives one message across each of the

dimensions of the hypercube.
• Send: Each processor sends one message to any other processor through a routing

network. In this paper we use two types of sends: asingle-destination sendand
asend-to-queue. In the single-destination send (used in our radix-sort) messages
are sent to a particular address within a particular processor, and no messages
may have the same destination. In the send-to-queue (used in our sample sort)
messages are sent to a particular processor and are placed in a queue in the order
they are received.
• Scan: A parallel-prefix (or suffix) computation on integers, one per processor.

Scans operate on a vector of input values using an associative binary operator such
as integer addition. (The only operator employed by our algorithms is addition.) As
output, the scan returns a vector in which each position has the “sum,” according
to the operator, of those input values in lesser positions. For example, a plus-scan
(with integer addition as the operator) of the vector

[4 7 1 0 5 2 6 4 8 1 9 5]

yields

[0 4 11 12 12 17 19 25 29 37 38 47]

as the result of the scan.

In this paper we describe our algorithms in English, and, where more precision is
required, in a parallel vector pseudocode. We generally assume that the variablen refers
to the number of keys to be sorted, and thatp is the number of processors in the machine.
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In the parallel vector pseudocode we assume that data is stored in two kinds of
variables:n-element vectors and scalars. Vectors are identified by capitalized variable
names, whereas scalar variable names are uncapitalized. Parallel arithmetic operations
on vectors are performed in an elementwise fashion. The special vectorSelf refers to
the vector of coordinate indices(Self[i ] = i ). Cube swaps along one dimension of
the hypercube are performed on a vectorV by an operation CUBE-SWAP(V, j ), which
returns a vector whosei th coordinate isV [i + 2 j ] if the j th bit of i (in binary) is 0,
andV [i − 2 j ] if the j th bit of i is 1. Cube swaps along all dimensions simultaneously
are described in English. A single-destination send is accomplished by the operation
SEND(V,Dest), which returns the vector whosei th coordinate is thatV [ j ] such that
Dest[ j ] = i . Scan operations are performed by a procedure SCAN(V) that returns the
plus-scan of the vector.

2.1. Primitive Operations on the CM-2

The CM-2 is a single-instruction multiple-data (SIMD) computer. In its full 64K-
processor configuration, it can be viewed as 2048(211) Sprint nodes configured as
an 11-dimensional hypercube. (Ad-dimensional hypercube is a network with 2d nodes
in which each node has ad-bit label, and two nodes are neighbors if their labels differ
in precisely on bit position.) The Sprint nodes havemultiport capability: all dimensions
of the hypercube can be used at the same time. The Sprint nodes are controlled by a
front-end processor(typically a Sun4 or Vax). Figure 2 illustrates the organization of a
Sprint node, which consists of the following chips:

• Two processor chips, each containing 16 1-bit processors, a 1-bit bidirectional
wire to each of up to 11 neighboring nodes in the hypercube, and hardware for
routing support.
• Ten DRAM chips, containing a total of between 256K bytes and 4M bytes of

error-corrected memory, depending on the configuration. All recent machines
contain at least 1M bytes of memory per node.
• A floating-point chip (FPU) capable of 32-bit and 64-bit floating-point arithmetic,

as well as 32-bit integer arithmetic.

Fig. 2. The organization of a CM-2 Sprint node.
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Table 1. The time required for operations on a 32K Connection Machine CM-2.∗

Operation Symbolic time Actual time

Arithmetic A · (n/p) 1 · (n/1024)
Cube Swap Q · (n/p) 40 · (n/1024)
Send (routing) R · (n/p) 130· (n/1024)
Scan (parallel prefix) 3A · (n/p)+ S 3 · (n/1024)+ 50

∗The valuep is the number of processors (Sprint nodes), andn is the total number
of elements being operated on. All operations are on 64-bit words, except for scans
which are on 32-bit words. All times are in microseconds.

• A Sprint chip that serves as an interface between the memory and the floating-
point chip. The Sprint chip contains 128 32-bit registers and has the capability to
convert data from the bit-serial format used by the 1-bit processors to the 32-bit
word format used by the floating-point chip.

In this paper we view each Sprint node as a single processor, rather than considering
each of the 64K 1-bit processors on a fully configured CM-2 as separate processors. This
point of view makes it easier to extrapolate our results on the CM-2 to other hypercube
machines, which typically have 32- or 64-bit processors. Furthermore, it is closer to the
way in which we viewed the machine when implementing the sorting algorithms. Our
programs for the CM-2 were written in Connection Machine assembly language (Paris)
and high-level microcode (CMIS).

Table 1 gives estimated running times for each of the four classes of primitives on
a 32K CM-2. We assume that each ofp = 1024 processors containsn/p elements,
for a total ofn elements. Times are given for 64-bit data, except for scans, which op-
erate on 32-bit data. With respect to the operation times, we have generally simplified
our expressions by ignoring fixed overheads whenever they are small, concentrating in-
stead on throughput. (For scans, the fixed overhead is substantial, so we have included
it explicitly.) Because of these simplifications, our analyses do not accurately model
performance when the number of elements per processor is small. Whenn/p is large,
however, they are accurate to within approximately 10%. Since most data on the CM-2
originates in the 1-bit processors,n/p is typically at least 32. As a practical matter, most
sorting applications involven/p ≥ 128, and, often,n/p = 2048 or much larger.

We now discuss in somewhat more detail the time estimates for each of the classes
of operations.

The time A for arithmetic operations is nominally chosen to be 1 microsecond.
For example, the cost of summing two integer values, including the costs of loading
and storing the data into local memory and of incrementing a counter (assuming the
operation is in a loop) is about 1.4A. An indirect access in which different processors
access potentially different memory locations requires about 3A time. Also, computing
the maximum (or minimum) of two values require about 3A time, since these operations
involve a compare followed by a conditional memory move. Throughout the paper the
coefficients ofA were obtained empirically. For radix sort and sample sort, we instru-
mented the code with calls to a real-time clock which provides accurate and deterministic
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timings. The constant coefficient reported for bitonic merge was determined by fitting a
curve to the timing data.

On the CM-2, the timeQ for cube swapping is the same whether a processor sends
one message across just one dimension of the hypercube or 11 messages each across one
of the 11 dimensions of the hypercube. To exploit the communication bandwidth provided
by the hypercube fully, it is desirable, of course, to use all dimensions simultaneously.

The timeR given for a send is based on routing messages randomly, where each
message is equally likely to go to any other processor. The time for the two types of
sends (i.e., single-destination and send-to-queue) is approximately the same as long as in
the send-to-queue the number of messages received at each processor is approximately
balanced. Some variation in the time for a send occurs because some routing patterns take
longer than others. As long as there is no congestion at the receiving processor, however,
no known pattern takes longer than 2.5R. If each processor is receiving approximately
the same number of messages, congestion can be avoided by injecting messages into the
router in a pseudorandom order. The CM-2 also supports combining sends.

Consider the cost of a single scan operation on the CM-2 when the number of
elements per processor is large. In this case the running time is only about 3A · (n/p),
since the fixed overheadS can be safely ignored. In the case of multiple independent
scans (each on one element per processor), however, the fixed overheadSmust be taken
into consideration. The other operations (Cube Swap and Send) have fixed overheads as
well, but they are negligible by comparison.

3. Batcher’s Bitonic Sort

Batcher’s bitonic sort [3] is a parallel merge sort that is based upon an efficient tech-
nique for merging so-called “bitonic” sequences. A bitonic sequence is one that increases
monotonically and then decreases monotonically, or can be circularly shifted to become
so. One of the earliest sorts, bitonic sort was considered to be the most practical parallel
sorting algorithm for many years. The theoretical running time of the sort is2(lg2 n),
where the constant hidden by2 is small. Moreover, bitonic sort makes use of a sim-
ple fixed communication pattern that maps directly to the edges of the hypercube; a
general routing primitive need not be invoked when bitonic sort is implemented on the
hypercube.

In this section we discuss our implementation of bitonic sort. The basic algorithm
runs efficiently on a hypercube architecture, but uses only one dimension of the hypercube
wires at a time. The CM-2 hypercube has multiport capability, however, and, by pipelining
the algorithm, it is possible to make efficient use of all hypercube wires at once. This
optimization results in a five-fold speedup of the communication and over a two-fold
speedup in the total running time of the algorithm. Even with this optimization, the other
two algorithms that we implemented outperform bitonic sort when the numbern/p of
keys per processor is large. Whenn/p is small, however, bitonic sort is the fastest of the
three, and uses considerably less space than the other two.

Figure 3 illustrates the bitonic sort algorithm. The key step is an operation called
a bitonic merge. The inputs to this operation are a pair of sequences that are sorted
in opposite directions, one in ascending order and the other in descending order, so
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Fig. 3. An illustration of the BITONIC-SORT procedure. Each arrow represents a sequence of keys sorted in
the direction of the arrow. The unsorted input sequence ofn keys is shown at the top, and the sorted output
sequence is shown at the bottom. A bitonic merge operation is shaded. During thedth step of the algorithm
(where 1≤ d ≤ lg n), n/2d merges are performed, each producing a sorted sequence of length 2d from two
sorted sequences of length 2d−1.

that together they form a bitonic sequence. Bitonic merge takes this bitonic sequence
and from it forms a single sorted sequence. (In fact, bitonic merge will form a sorted
sequence from any bitonic sequence.) For the moment, we assume that we haven input
keys to be sorted and that we havep = n processors, each with one key. For each integer
d = 1, . . . , lg n, the algorithm performsn/2d merges, where each merge produces a
sorted sequence of length 2d from two sorted sequences of length 2d−1.

The key step of bitonic sort is the merge operation, which is described by the
following pseudocode:

BITONIC-MERGE(Key, d)
1 for j ← d − 1 downto 0
2 do Opposite← CUBE-SWAP(Key, j )
3 if Self 〈 j 〉 ⊕ Self〈d〉
4 then Key← min(Key, Opposite)
5 elseKey← max(Key, Opposite)

In line 3 the operator⊕ denotes the exclusive-or function, and the expression “Self〈 j 〉”
means thej th bit of the integer representing the position of the key in the input vector.
Self〈0〉 is the least-significant bit.Self〈 j 〉 determines whether the keys should be sorted
in increasing or decreasing order.

The operation of this algorithm can be understood with the help of Figure 4, which
shows how two sorted sequences (i.e., a single bitonic sequence) are merged into a
single ascending sequence. Each vertical line of the figure represents a processor in the
hypercube, each of which initially contains one of the input keys. Time moves downward
in the diagram, with the two sorted input sequences at the top, and the final single sorted
sequence at the bottom. During a single step of the algorithm, all keys are communicated
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Fig. 4. Viewing the BITONIC-MERGE procedure as a hypercube algorithm. Each vertical line represents a
hypercube processor. Each horizontal line segment represents the communication of keys along the hypercube
wire between two processors.

across a single dimension of the hypercube. After keys have been communicated across
all the dimensions of the hypercube, the hypercube processors contain the output sorted
in ascending order.

Each iteration of the loop in BITONIC-MERGE is represented by the collection of
horizontal line segments in a shaded region of the figure. Each horizontal line segment
represents the communication of keys between two processors along a hypercube wire,
which corresponds to the CUBE-SWAP in line 2. In the algorithm,Self〈d〉 tells whether
we are producing an ascending (0) or descending (1) order, andSelf〈 j 〉 tells whether the
processor is on the left (0) or right (1) side of a wire. For the example in the figure, we
are sorting into ascending order(Self〈d〉 = 0), and thus for each pair of keys that are
swapped, the smaller replaces the key in the processor on the left and the larger is kept
on the right.

We do not prove the correctness of this well-known algorithm; the interested reader
is referred to [2] and [7].

To this point, we have assumed that the numbern of input keys is equal to the number
p of processors. In practice, it is important for a sorting algorithm to be able to cope
with unequal values ofn andp. As it happens, the best hypercube algorithms to date use
substantially different techniques for the casesn¿ p andnÀ p. This project focuses
entirely on the development of sorting algorithms for the more frequently occurring case
whenn ≥ p.

To handle multiple keys per processor, we view each key address as being composed
of a processor address (high-order bits corresponding to “physical” hypercube dimen-
sions) and an index within the processor (low-order bits corresponding to “virtual”
hypercube dimensions). In a bitonic merge, communication occurs across successive
dimensions, in descending order. Across any physical dimension, this communication
is realized by a set ofn/p cube swaps. After processing the physical dimensions, what
remains to be performed amounts to a bitonic merge within each processor. Givenn keys
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and p processors, the CM-2 time for the bitonic merge becomes

Tmerge=
{
(n/p) · 5A · d if d ≤ lg(n/p),
(n/p) · (Q · (d − lg(n/p))+ 5A · d) if d > lg(n/p);

where the coefficient 5 was determined empirically by fitting to the data. (Ifd ≤ lg(n/p),
then the bitonic merges occur entirely within processors, and so the coefficient ofQ is 0.)

The bitonic sort algorithm calls the BITONIC-MERGEsubroutine once for each di-
mension.

BITONIC-SORT(Key, n)
1 for d← 1 to lg n
2 do BITONIC-MERGE(Key, d)

The time taken by the algorithm is

Tbitonic =
lg n∑
d=1

Tmerge

= Q · (n/p)(lg p)(lg p+ 1)/2+ 5A · (n/p)(lg n)(lg n+ 1)/2

≈ 0.5Q · (n/p) lg2 p+ 2.5A · (n/p) lg2 n. (1)

We examine this formula more closely. The times in Table 1 indicate thatQ is 40
times larger thanA, and lgn is at most two or three times larger than lgp for all but
enormous volumes of data. Thus, the first term in (1), corresponding to communication
time, dominates the arithmetic time for practical values ofn and p.

The problem with this naive implementation is that it is a single-port algorithm:
communication occurs across only one dimension of the hypercube at a time. By using
all of the dimensions virtually all of the time, we can improve the algorithm’s performance
significantly. The idea is to use a multiport version of BITONIC-MERGEthat pipelines the
keys across all dimensions of the hypercube. In the multiport version, a call of the form
BITONIC-MERGE(Key, d) is implemented as follows. On the first step, all processors cube
swap their first keys across dimensiond. On the second step, they cube swap their first
keys across dimensiond − 1, while simultaneously cube swapping their second keys
across dimensiond. Continuing the pipelining in this manner, the total number of steps to
move all the keys throughd− lg(n/p) physical dimensions isn/p+d− lg(n/p)−1. This
algorithm is essentially equivalent to a pipelined bitonic merge on a butterfly network.

Thus, pipelining improves the time for bitonic merging to

Tmultiport-merge=
(n/p) · 5A · d if d ≤ lg(n/p),

Q · (n/p+ d − lg(n/p)− 1)
+5A · (n/p)d if d > lg(n/p).

By summing fromd = 1 to lgn, the time for the entire multiport bitonic sort, therefore,
becomes

Tmultiport-bitonic = Q · (lg p)(n/p+ (lg p)/2− 1
2)+ 5A · (n/p)(lg n)(lg n+ 1)/2

≈ Q · ((n/p) lg p+ 0.5 lg2 P)+ 2.5A · (n/p) lg2 n. (2)
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Fig. 5. Bitonic sorting 64-bit keys on a 32K CM-2 (p = 1024). (a) The predicted single-port communication
is approximately five times the predicted multiport communication time. (b) The measured performance of
multiport bitonic sort closely matches the predicted performance, but contains a fixed overhead.

Compare this formula with the single-port result of (1). Forn = O(p), the two
running times do not differ by more than a constant factor. Forn = Ä(p lg p), however,
the coefficient ofQ is2(lg p) times smaller in the multiport case. Thus, total commu-
nication time is considerably reduced by pipelining whenn/p is large. The number of
arithmetic operations is not affected by pipelining.

Figure 5(a) shows the communication and computation components of the running
time for both the single-port and multiport versions of bitonic sort. These times are
generated from (1) and (2). The computation component is equivalent for both algorithms.
Figure 5(b) shows the predicted total time for the single-port and multiport bitonic,
and the measured performance of our implementation of the multiport algorithm. The
difference between predicted and measured times for small values ofn/p is mostly
due to the fact that our equations ignore constant overhead. The difference at highn/p
is due to some overhead in our implementation caused by additional memory moves,
effectively increasing the costQ of the cube swap. This overhead could be eliminated by
an improved implementation, but the resulting algorithm would still not be competitive
with sample sort for large values ofn/p.

Multiport bitonic sort can be further improved by using a linear-time serial merge
instead of a bitonic merge in order to execute the merges that occur entirely within a
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processor [4]. We estimated that the time for a processor to merge two sorted sequences
of length (n/2p) to form a single sorted sequence of length(n/p) is approximately
(n/p) · 10A. The constant is large because of the indirect addressing that would be
required by the implementation. In this case the time for multiport-merge becomes

Tmultiport-merge=
(n/p) · 10A if d ≤ lg(n/p),

Q · (n/p+ d − lg(n/p)− 1)
+5A · (n/p)d if d > lg(n/p).

This variation yields a final running time of

Tmultiport-bitonic ≈ Q · ((n/p) lg p+ 0.5 lg2 p)

+A · (n/p)(2.5 lg2 p− 5 lg p+ 10 lgn).

For largen/p, this formula reduces theA term by a factor of 2 or more relative to (2). Once
again, this improvement would not yield an algorithm that is close to the performance
of the sample sort, and thus we decided not to implement it. Furthermore, the local
merges could not be executed in place, so that the algorithm would lose one of its major
advantages: it would no longer only require a fixed amount of additional memory.

4. Radix Sort

The second algorithm that we implemented is a parallel version of a counting-based radix
sort [7, Section 9.3]. In contrast with bitonic sort, radix sort is not acomparison sort:
it does not use comparisons alone to determine the relative ordering of keys. Instead, it
relies on the representation of keys asb-bit integers. (Floating-point numbers can also be
sorted using radix sort. With a few simple bit manipulations, floating-point keys can be
converted to integer keys with the same ordering and key size. For example, IEEE double
precision floating-point numbers can be sorted by inverting the mantissa and exponent
bits if the sign bit is 1, and then inverting the sign bit. The keys are then sorted as if they
were integers.) Our optimized version of radix sort is quite fast, and it was the simplest
to code of the three sorting algorithms that we implemented.

The basic radix sort algorithm (whether serial or parallel) examines the keys to be
sortedr bits at a time, starting with the least-significant block ofr bits in each key.
Each time through the loop, it sorts the keys according to ther -bit block currently being
considered in each key. Of fundamental importance is that this intermediate radix-2r sort
bestable: the output ordering must preserve the input order of any two keys whoser -bit
blocks have equal values.

The most common implementation of the intermediate radix-2r sort is as a counting
sort. We first count to determine therankof each key—its position in the output order—
and then we permute the keys to their respective locations. The following pseudocode
describes the implementation:

RADIX -SORT(Key)
1 for i ← 0 to b− 1 by r
2 do Rank← COUNTING-RANK(r,Key〈i, . . . , i + r − 1〉)
3 Key← SEND(Key, Rank)
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Since the algorithm requiresb/r passes, the total time for a parallel sort is

Tradix = (b/r ) · (R · (n/p)+ Trank),

whereTrank is the time taken by COUNTING-RANK.
The most interesting part of radix sort is the subroutine for computing ranks called

in line 2. We first consider the simple algorithm underlying the original Connection
Machine library sort [5], which was programmed by one of us several years ago. In the
following implementation of COUNTING-RANK, the vectorBlockholds ther -bit values
on which we are sorting.

SIMPLE-COUNTING-RANK(r , Block)
1 offset← 0
2 for k← 0 to 2r − 1
3 do Flag← 0
4 whereBlock= k do Flag← 1
5 Index← SCAN(Flag)
6 whereFlag do Rank← offset+ Index
7 offset← offset+ SUM(Flag)
8 return Rank

In this pseudocode thewhere statement executes its body only in those processors for
which the condition evaluates toTRUE.

The SIMPLE-COUNTING-RANK procedure operates as follows. Consider thei th key,
and assume thatBlock[i ] = k. The rank of thei th key is the numberoffsetk of keys j
for which Block[ j ] < k, plus the numberIndex[i ] of keys for whichBlock[ j ] = k and
j < i . (Here,offsetk is the value ofoffsetat the beginning of thekth iteration of thefor
loop.) The code iterates over each of the 2r possible values that can be taken on by the
r -bit block on which we are sorting. For each value ofk, the algorithm uses a scan to
generate the vectorIndexand updates the value ofoffsetto reflect the total number of
keys whoseBlockvalue is less than or equal tok.

To compute the running time of SIMPLE-COUNTING-RANK, we refer to the running
times of the CM-2 operations in Table 1. On the CM-2, the SUM function can be computed
as a by-product of the SCAN function, and thus no additional time is required to compute
it. Assuming that we havep processors andn keys, the total time is

Tsimple-rank= 2r · (3A · (n/p)+ S)+ 2r (2A)(n/p)

= A · (5 · 2r (n/p))+ S · 2r , (3)

where the coefficient 2 ofA in the last term of the first line was determined empirically by
instrumenting the code. Here the term 2r ·(3A·(n/p)+S) represents the time to perform
2r scans, and the term 2r (2A)(n/p) represents the cost of the remaining operations, such
as initializing the vectorFlag and computing the vectorRank.

The total time for this version of radix sort—call it SIMPLE-RADIX -SORT—which
uses SIMPLE-COUNTING-RANK on r -bit blocks ofb-bit keys, is therefore

Tsimple-radix = (b/r )(R · (n/p)+ Tsimple-rank)

= (b/r )(R · (n/p)+ 5A · 2r (n/p)+ S · 2r ). (4)
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(The library sort actually runs somewhat slower for small values ofn/p, because of a
large fixed overhead.) Notice from this formula that increasingr reduces the number of
routings proportionally, but it increases the arithmetic and scans exponentially.

We can determine the value ofr that minimizesTsimple-radix by differentiating the
right-hand side of (4) with respect tor and setting the result equal to 0, which yields

r = lg

(
(n/p)R

(n/p)5A+ S

)
− lg(r ln 2− 1).

For largen/p (i.e.,n/pÀ (S/5A)), the optimal value ofr is

r ≈ lg(R/5A)− lg(r ln 2− 1)

≈ 3.9.

This analysis is borne out in practice by the CM-2 library sort, which runs the fastest for
largen/p whenr = 4.

We now consider an improved version of a parallel radix sort. The idea behind this
algorithm was used by Johnsson [14]. We describe the new algorithm for counting ranks
in terms of the physical processors, rather than in terms of the keys themselves. Thus,
we view the length-n input vectorBlockas a length-p vector, each element of which is a
length-(n/p) array stored in a single processor. We also maintain a length-p vectorIndex,
each element of which is a length-2r array stored in a single processor. We describe the
operation of the algorithm after giving the pseudocode:

COUNTING-RANK(r , Block)
1 for j ← 0 to 2r − 1
2 do Index[ j ] ← 0
3 for j ← 0 to n/p
4 do incrementIndex[Block[ j ]]
5 offset← 0
6 for k← 0 to 2r − 1
7 do count← SUM(Index[k])
8 Index[k] ← SCAN(Index[k]) + offset
9 offset← offset+ count

10 for j ← 0 to n/p− 1
11 do Rank[ j ] ← Index[Block[ j ]]
12 incrementIndex[Block[ j ]]
13 return Rank

The basic idea of the algorithm is as follows. For allBlockvaluesk = 0, 1, . . . ,2r −
1, lines 1–4 determine how many times each valuek appears in each processor. Now,
consider thei th processor and a particular valuek. Lines 5–9 determine the final rank of
the first key, if any, in processori that hasBlockvaluek. The algorithm calculates this
rank by computing the numberoffsetk of keys withBlockvalues less thank to which it
adds the number of keys withBlock value equal tok that are in processors 0 through
i − 1. These values are placed in the vectorIndex[k]. Having computed the overall rank
of the first key in each processor (for eachBlockvaluek), the final phase of the algorithm
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(lines 10–12) computes the overall rank of every key. This algorithm requires indirect
addressing, since the processors must index their local arrays independently.

The total time for COUNTING-RANK is

Trank= A · (2 · 2r + 10(n/p))+ S · 2r ,

where the constants 2 and 10 were determined empirically. Note that SUM(Index[k]) in
line 7 is actually a by-product of SCAN(Index[k]) in line 8, and hence a single SCAN
suffices. Comparing with the result obtained for SIMPLE-COUNTING-RANK, we find that
then/p and 2r terms are now additive rather than multiplicative.

The time for RADIX -SORT is

Tradix = (b/r )(R · (n/p)+ Trank)

= (b/r )(R · (n/p)+ S · 2r + A · (2 · 2r + 10(n/p)))

= (b/r )((n/p) · (R+ 10A)+ 2r (S+ 2A)). (5)

Figure 6 breaks down the running time of radix sort as a function ofr for n/p = 4096.
As can be seen from the figure, asr increases, the send time diminishes and the scan time
grows. We can determine the value forr that minimizes the total time of the algorithm
by differentiating the right-hand side of (5) with respect tor and setting the result equal
to 0. For large numbers of keys per processor, the value forr that we obtain satisfies

r = lg((n/p)(R+ 10A)/(S+ 2A))− lg(r ln 2− 1) (6)

≈ lg(n/p)− lg lg(n/p)+ 2. (7)

For n/p = 4096, as in Figure 6, (7) suggests that we setr ≈ 10, which indeed comes
very close to minimizing the total running time. The marginally better value ofr = 11
can be obtained by solving (6) numerically.

Fig. 6. A breakdown of the total predicted running time of radix sort into send time and scan time for sorting
64-bit keys(b = 64) with n/p = 4096. The total running time is indicated by the top curve. The two shaded
areas represent the scan time and send time. Asr is increased, the scan time increases and the send time
decreases. (The arithmetic time is negligible.) for the parameters chosen, the optimal value ofr is 11.
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Fig. 7. Predicted and measured performance of radix sort with 64-bit keys. Measured performance is on a
32K CM-2 and uses the empirically determined optimal values forr . Predicted performance was calculated
using (8).

Unlike the choice ofr dictated by the analysis of SIMPLE-RADIX -SORT, the optimal
choice ofr for RADIX -SORTgrows withn/p. Consequently, for large numbers of keys per
processor, the number of passes of RADIX -SORT is smaller than that of SIMPLE-RADIX -
SORT. When we substitute our choice ofr back into (5), we obtain

Tradix ≈ (n/p)
(

b

lg(n/p)− lg lg(n/p)+ 1.5

)(
R+ 10A+ 3

lg(n/p)
(S+ 2A)

)
.

(8)

In our implementation of RADIX -SORT, the optimal values ofr have been determined
empirically. Figure 7 compares the performance predicted by (8) with the actual running
time of our implementation.

5. Sample Sort

The third sort that we implemented is a sample sort [10], [13], [19], [20], [24]. This
sorting algorithm was the fastest for large sets of input keys, beating radix sort by more
than a factor of 2. It also was the most complicated to implement. The sort is a randomized
sort: it uses a random number generator. The running time is almost independent of the
input distribution of keys and, with very high probability, the algorithm runs quickly.

Assumingn input keys are to be sorted on a machine withpprocessors, the algorithm
proceeds in three phases:

1. A set of p − 1 “splitter” keys are picked that partition the linear order of key
values intop “buckets.”
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2. Based on their values, the keys are sent to the appropriate bucket, where thei th
bucket is stored in thei th processor.

3. The keys are sorted within each bucket.

If necessary, a fourth phase can be added to load balance the keys, since the buckets do
not typically have exactly equal size.

Sample sort gets its name from the way thep− 1 splitters are selected in the first
phase. From then input keys, a sample ofps≤ n keys are chosen at random, wheres is a
parameter called theoversampling ratio. This sample is sorted, and then thep−1 splitters
are selected by taking those keys in the sample that have rankss, 2s, 3s, . . . , (p− 1)s.

Some sample sort algorithms [10], [20], [24] choose an oversampling ratio ofs= 1,
but this choice results in a relatively large deviation in the bucket sizes. By choosing a
larger value, as suggested by Reif and Valiant [19] and by Huang and Chow [13], we can
guarantee with high probability that no bucket contains many more keys than the average.
(The Reif–Valiant flashsort algorithm differs in that it uses buckets corresponding to
O(lg7 p)-processor subcubes of the hypercube.)

The time for Phase 3 of the algorithm depends on the maximum number, call itL,
of keys in a single bucket. Since the average bucket size isn/p, the efficiency by which
a given oversampling ratios maintains small bucket sizes can be measured as the ratio
L/(n/p), which is referred to as thebucket expansion. The bucket expansion gives the
ratio of the maximum bucket size to the average bucket size. The expected value of the
bucket expansion depends on the oversampling ratios and on the total numbern of keys,
and is denoted byβ(s, n).

It is extremely unlikely that the bucket expansion will be significantly greater than
its expected value. If the oversampling ratio iss, then the probability that the bucket
expansion is greater than some factorα ≤ 1+ 1/s is

Pr[β(s, n) > α] ≤ ne−(1−1/α)2αs/2. (9)

This bound, which is proved in Appendix B, is graphed in Figure 8. As an example, with
an oversampling ratio ofs= 64 andn = 106 keys, the probability that the largest bucket
is more than 2.5 times as large as the average bucket is less than 10−6.

We shall see shortly that the running time of sample sort depends linearly on both
the oversampling ratio and the bucket expansion. As is apparent from Figure 8, as the
oversampling ratios increases, the bucket expansion decreases. Thus, the oversampling
ratios must be carefully adjusted in order to obtain optimal performance.

We are now ready to discuss our implementation of the sample sort algorithm. Before
executing Phase 1, however, the algorithm must do a little preprocessing. The reason
is that the basic sample sort algorithm assumes that all input keys are distinct. If many
keys happen to have the same value, failure to break ties consistently between them can
result in an uneven distribution of keys to buckets. Consequently, before the first phase
of the sample sort begins, we tag each key with its address, thereby guaranteeing that
the tagged keys all have distinct values.

Phase1: Selecting the Splitters. The first phase of sample sort begins with each pro-
cessor randomly selecting a set ofs tagged keys from among those stored in its local
memory. We call these keys thecandidates. We implement this method by partitioning
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Fig. 8. Bucket expansion for sample sortingn = 106 keys, as a function of oversampling ratios(p = 1024).
The dashed curves are theoretical upper bounds given by (9) when setting the probability of being within
the bound to 1–10−3 (the lower dashed curve) and 1–10−6 (the upper dashed curve). The solid curves are
experimental values for bucket expansion. The upper solid curve shows the maximum bucket expansion found
over 103 trials, and the lower solid curve shows the average bucket expansion over 103 trials. In practice,
oversampling ratios ofs= 32 ors= 64 yield bucket expansions of less than 2.

each processor’sn/p keys intos blocks ofn/ps keys, and then we choose one key at
random from each block. This selection process differs from that where each processor
selectss tagged keys randomly from the entire set, as is done in both the Reif–Valiant [19]
and Huang–Chow [13] algorithms. All of these methods yield small bucket expansions.
Since the CM-2 is a distributed-memory machine, however, the local-choice method has
an advantage in performance over global-choice methods: no global communication is
required to select the candidates. In our implementation we typically picks = 32 or
s= 64, depending on the number of keys per processor in the input.

Once the candidates have been selected, they are sorted across the machine using
the simple version of radix sort described in Section 4. (Since radix sort is stable, the
tags need not be sorted, although they must remain attached to the corresponding keys.)
Since the sample contains many fewer keys than does the input, this step runs significantly
faster than sorting all of the keys with radix sort. The splitters are now chosen as the
keys with rankss, 2s, 3s, . . . , (p− 1)s. The actual extraction of the splitters from the
sample is implemented as part of Phase 2.

The dominant time required by Phase 1 is the time for sorting the candidates:
Tcandidates= RS(ps, p), (10)
whereRS(ps, p) is the time required to radix sortps keys onp processors. Using

the radix sort from the original CM-2 Paris library, we haveTcandidates≈ 7000A · s.
Notice that the time for Phase 1 is independent of the total numbern of keys, since

during the selection process, a processor need not look at all of itsn/p keys in order
to select from them randomly. Notice also that if we had implemented a global-choice
sampling strategy, we would have had a term containingR · s in the expression.
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Phase2: Distributing the Keys to Buckets. Except for our local-choice method of
picking a sample and the choice of algorithm used to sort the oversampled keys, Phase
1 follows both the Reif–Valiant and Huang–Chow algorithms. In Phase 2, however, we
follow Huang–Chow more closely.

Each key can determine the bucket to which it belongs by performing a binary search
of the sorted array of splitters. We implemented this part of the phase in a straightfor-
ward fashion: the front end reads the splitters one by one and broadcasts them to each
processor. Then each processor determines the bucket for each of its keys by performing
a binary search of the array of splitters stored separately in each processor. Once we have
determined to which bucket a key belongs, we throw away the tagging information used
to make each key unique and route the keys directly to their appropriate buckets. We
allocate enough memory for the buckets to guarantee a very high probability of accom-
modating the maximum bucket size. In the unlikely event of a bucket overflow, excess
keys are discarded during the route and the algorithm is restarted with a new random
seed.

The time required by Phase 2 can be separated into the time for the broadcast, the
time for the binary search, and the time for the send:

Tbroadcast= 50A · p,
Tbin-search= 6.5A · (n/p) lg p,

Tsend= R · (n/p);
where the constants 50 and 6.5 were determined empirically by instrumenting the code.

As is evident by our description and also by inspection of the formula forTbroadcast,
the reading and broadcasting of splitters by the front end is a serial bottleneck for the
algorithm. Our sample sort is really only a reasonable sort whenn/p is large, however.
In particular, the costs due to binary search outweigh the costs due to reading and
broadcasting the splitters when 6.5(n/p) lg p > 50p, or, equivalently, whenn/p >

(50/6.5)p/lg p. For a 64K CM-2, we havep = 2048, and the preceding inequality
holds when the numbern/p of input keys per processor is at least 1432. This number is
not particularly large, since each processor on the CM-2 has a full megabyte of memory
even when the machine is configured with only 1-megabit DRAMs.

Phase3: Sorting Keys Within Processors. The third phase sorts the keys locally within
each bucket. The time taken by this phase is equal to the time taken by the processor with
the most keys in its bucket. If the expected bucket expansion isβ(s, n), the expected size
of the largest bucket is(n/p)β(s, n).

We use a standard serial radix sort in which each pass is implemented using several
passes of a counting sort (see, for example, Section 9.3 of [7]). Radix sort was used
because it is significantly faster than comparison sorts such as quicksort. The serial radix
sort requires time

Tlocal-sort= (b/r )A · ((1.3)2r + 10(n/p)β(s, n)), (11)

whereb is the number of bits in a key and 2r is the radix of the sort. The first term in
the coefficient ofA corresponds to theb/r (serial) scan computations on a histogram of
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Fig. 9. Breakdown of sample sort for various choices of the oversampling ratios. The graph shows the
measured running time for sorting 64-bit keys(b = 64)with n/p = 16,384 keys per processor on a 32K CM-2
(p = 1024), where the height of each labeled region indicates the time for the corresponding component of
the sort. As the oversampling ratio is increased, two effects may be observed: (i) the time for the candidate sort
increases because there are more candidates to sort, and (ii) the time for the local sort decreases because the
maximum bucket expansion diminishes. For these parameters, the total time is minimized ats= 64. (Tbroadcast

is not shown, since it is negligible.)

key values, and the second term corresponds to the work needed to count the number of
keys with eachr -bit value and to put the keys in their final destinations.

We can determine the value ofr that minimizesTlocal-sort by differentiating the
right-hand side of (11) with respect tor and setting the result equal to 0. This yields
r ≈ lg(n/p) − 1 for largen/p. With this selection ofr , the cost of the first term in the
equation is small relative to the second term. Typically,b/r ≈ 6 andβ(s, n) ≈ 2, which
yields

Tlocal-sort≈ 6A · 10(n/p) · 2
= 120A · (n/p). (12)

Discussion. The main parameter to choose in the algorithm is the oversampling ratio
s. A largers distributes the keys more evenly within the buckets, thereby speeding up
Phase 3 of the algorithm. A largers also means a larger sample to be sorted, however,
thereby causing Phase 1 of the algorithm to take longer. Figure 9 shows the tradeoff we
obtained experimentally, forn/p = 16,384. As can be seen from the figure, choosing
s= 64 is optimal in this case.

To obtain the arithmetic expression that describes the total running time of the
sample sort, we sum the formulas for the phases, which results in the expression

Tsample= Tcandidates+ Tbroadcast+ Tbin-search + Tsend + Tlocal-sort

≈ 7000A · s+ 50A · p + 6.5A · (n/p) lg p+ R · (n/p) + 120A · (n/p),
where we have dropped inessential terms. Figure 10 shows the experimental breakdown
of times for the various tasks accomplished by the algorithm, which closely match this
equation.
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Fig. 10. A breakdown of the actual running time of sample sort, as a function of the input sizen. The graph
shows actual running times for 64-bit keys on a 32K CM-2(p = 1024). The per-key cost of broadcasting
splitters decreases asn/p increases, since the total cost of the broadcast is independent ofn. The per-key cost of
the candidate sort decreases until there are 4K keys per processor; at this point, we increase the oversampling
ratio from s = 32 to s = 64 in order to reduce the time for local sorting. The local sort improves slightly
at higher values ofn/p, because the bucket expansion decreases while the per-key times for send and binary
search remain constant.

We look more closely at the formula forTsample asn/p becomes large. The first
two terms, which correspond to the sorting of candidates and the broadcasting of split-
ters, become insignificant. On a 64K CM-2, the other three terms grow proportionally.
Specifically, the last two terms, which correspond to the send and local sort, take about
the same time, and the third term, binary searching, takes about half that time. Thus, as
n/p becomes large, the entire algorithm runs in less than three times the cost of a single
send. SinceTsampleis so close to the time of a single send, it is unlikely that any other
sorting algorithm on the CM-2 can outperform it by much.

There were many variations of the sample sort algorithm that we considered imple-
menting. We now discuss a few.

Splitter-Directed Routing. Rather than broadcasting the splitters, binary searching,
and sending in Phase 2, we might have used the “splitter-directed routing” method from
Reif and Valiant’s flashsort. The idea is to send each key through the hypercube to its
destination bucket, using the dimensions of the hypercube in some fixed order. At each
hypercube node, the key chooses either to leave the node or not based on a comparison
of the key to a splitter value stored at the node. Each key therefore follows a path through
the network to its bucket based on lgp comparisons, one for each dimension of the
network. On the CM-2, the algorithm can be pipelined across the cube wires in a way
that is similar to the pipelined version of bitonic sort. The local processing required
at each step of the routing is quite involved, however. It requires managing queues
since a variable number of messages can arrive at each node. Our analysis indicated
that although communication costs for splitter-directed routing might take less time
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than the communication costs required to simply route messages through the network,
this advantage could not be exploited, because bookkeeping (arithmetic) costs would
dominate. Our conclusion was that splitter-directed routing may be a reasonable option
if it is supported by special-purpose hardware. Lacking that on the CM-2, the scheme
that we chose to implement was faster and much simpler to code. Since our original
work, Hightoweret al. have implemented a version of splitter-directed routing [12] on a
toroidal mesh and found that when the number of keys per processor is not large, splitter
directed routing can outperform sample sort on the Maspar MP-1.

Smaller Sets of Keys. As implemented, sample sort is suitable only when the number
n/p of keys per processor is large, especially since we broadcast thep−1 splitters from
the front end. One way to improve the algorithm when each processor contains relatively
few input keys would be to execute two passes of Phases 1 and 2. In the first pass we
can generate

√
p−1 splitters and assign a group of

√
p processors to each bucket. Each

key can then be sent to a random processor within the processor group corresponding
to its bucket. In the second pass each group generates

√
p splitters which are locally

broadcast within the subcubes, and then keys are sent to their final destinations. With
this algorithm, many fewer splitters need to be distributed to each processor, but twice
the number of sends are required. This variation was not implemented, because we felt
that it would not outperform bitonic sort for small values ofn/p.

Load Balancing. When the three phases of the algorithm are complete, not all pro-
cessors have the same number of keys. Although some applications of sorting—such as
implementing a combining send or heuristic clustering—do not require that the proces-
sor loads be exactly balanced, many do. After sorting, load balancing can be performed
by first scanning to determine the destination of each sorted key and then routing the
keys to their final destinations. The dominant cost in load balancing is the extra send. We
implemented a version of sample sort with load balancing. With large numbers of keys
per processor, the additional cost was only 30%, and the algorithm still outperforms the
other sorts.

Key Distribution. The randomized sample sort algorithm is insensitive to the distri-
bution of keys, but, unfortunately, the CM-2 message router is not, as was mentioned in
Section 2. In fact, for certain patterns, routing can take up to two and a half times longer
than normally expected. This difficulty can be overcome, however, by randomizing the
location of buckets. For algorithms that require the output keys in the canonical order of
processors, an extra send is required, as well as a small amount of additional routing so
that the scan for load balancing is performed in the canonical order. This same send can
also be used for load balancing.

6. Conclusions

Our goal in this project was to develop a system sort for the Connection Machine. Because
of this goal, raw speed was not our only concern. Other issues included space, stability,
portability, and simplicity. Radix sort has several notable advantages with respect to
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Table 2. Summary of the three sorting algorithms assuming 64-bit keys.∗

Time/(n/p)

Algorithm Stable Load balanced n/p = 64 n/p = 16K Memory Rank

Bitonic No Yes 1600µs 2200µs 1.0 1.5
Radix Yes Yes 2400µs 950µs 2.1 1.0
Sample No No 5500µs 330µs 3.2 1.5

∗Theloaded balancedcolumn specifies whether the final result is balanced across the processors. The
timecolumn is the time to sort on a 1024-processor machine (32K CM-2). Thememorycolumn is the
ratio, for largen/p, of the space taken by the algorithm to the space taken by the original data. The rank
column is an approximate ratio of the time of a rank to the time of a sort. Therank operation returns
to each key the rank it would attain if the vector were sorted.

these criteria. Radix sort is stable, easy to code and maintain, performs reasonably well
over the entire range ofn/p, requires less memory than sample sort, and performs well
on short keys. Although the other two sorts have domains of applicability, we concluded
that the radix sort was most suitable as a system sort.

Table 2 compares the three sorting algorithms. In the following paragraphs we
examine some of the quantitative differences between the algorithms.

Running Time. A graph of the actual running times of all three sorts along with the
time of the original system sort was given in Figure 1. With many keys per processor, the
sample sort is approximately three times faster than the other two sorts and therefore,
based on pure performance, sample sort is the clear winner.

More informative than the raw running times are the equations for the running times,
since they show how the running time is affected by the number of keys, the number
of processors, and various machine parameters. If we assume thatn/p is large, we can
approximate the equations for the three algorithms as

Tbitonic ≈ (n/p)(Q · (lg p)+ A · 2.5(lg2 n)),

Tradix ≈ (n/p)(R · 6+ A · 80),

Tsample≈ (n/p)(R+ A · (5 lg p+ 120)).

If Q, R, andA are known, these equations can be used to give rough estimates of running
times for the algorithms on other machines. We caution, however, that running times
predicted in this fashion could err by as much as a factor of 2. TheA terms in the equations
are likely to be the least accurate since the constants were all derived empirically for the
CM-2, and they depend highly on the local capabilities of the processors.

The equations can also give an idea of how much would be gained in each sorting
algorithm by improving various aspects of the CM-2. For example, we could analyze
the effect of improving the time for a send. Based on the equations, we see that radix
sort would benefit the most, since its running time is dominated by the send (currently
on the CM-2,R= 130A).

Space. A second important concern is the space required by each sorting algorithm.
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Bitonic sort executes in place and therefore requires only a small constant amount of
additional memory per processor for storing certain temporary variables. Our radix sort,
usingn keys, each consisting ofw 32-bit words, requires 2w(n/p) + 2r 32-bit words
of space per processor. The first term is needed for storing the keys before and after the
send (the send cannot be executed in place), and the second term is needed for holding
the bucket sums. Because of the first term, the space required by the sort is at least
twice that required by the original data. The number in Table 2 corresponds to the case
w = 2 (64-bits) andr = lg(n/p) − 2 (set to minimize the running time). Our sample
sort requires a maximum of 2w(n/p)β(s, n) + 2r + (w + 1)(p − 1) 32-bit words of
space in any processor. The first and second terms are needed for local radix sorting, and
the third term is needed for storing the splitters within each processor. The number in
Table 2 corresponds to the casew = 2, r = lg(n/p) − 1 (set to minimize the running
time), andβ(s, n) ≈ 1.5 (determined from experimental values).

Ranking. Often, in practice, a “rank” is a more useful operation than a sort. For a
vector of keys, therank operation returns to each key the rank it would attain if the
vector were sorted. This operation allows the user to rank the keys and then send a much
larger block of auxiliary information associated with each key to the final sorted position.
For each of the three algorithms that we implemented, we also implemented a version
that generates the ranks instead of the final sorted order. To implement a rank operation
in terms of a sort, the original index in the vector is tagged onto each key and is then
carried around during the sort. Once sorted, the final index is sent back to the location
specified by the tag (the key’s original position). In a radix-sort-based implementation
of the rank operation, the cost of the additional send can be avoided by omitting the last
send of radix sort, and sending the rank directly back to the index specified by the tag.
Furthermore, as each block of the key is used by radix sort, that block can be thrown
away, thereby shortening the message length of subsequent sends. Because of this, the
time of “radix-rank” is only marginally more expensive than that of radix sort. For sample
sort and bitonic sort, carrying the tag around slows down the algorithm by a factor of
between 1.3 and 1.5.

Stability. Radix sort is stable, but the other two sorts are not. Bitonic sort and sample
sort can be made stable by tagging each key with its initial index, as is done for the rank.
In this case, however, not only must the tag be carried around during the sends, it must
also be used in the comparisons. Sorting the extra tag can cause a slowdown of up to a
factor of 1.5.

Key Length. Another issue is sorting short keys—keys with perhaps 10, 16, or 24
significant bits. Sorting short keys is a problem that arises reasonably often in CM-2
applications. For short keys, the time required by bitonic sort is not at all improved
over the 32-bit time. The time required by the sample sort is marginally improved, since
the cost of the local radix sort is reduced. The time required by radix sort, however, is
essentially proportional to the key length. Sincer is typically in the range 10≤ r < 16,
sorting 20 bits requires two passes instead of three to four for 32 bits and five to seven
for 64 bits.
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Appendix A. Other Sorts of Sorts

Many algorithms have been developed for sorting on the hypercube and related networks
such as the butterfly, cube-connected cycles, and shuffle-exchange. We considered a
number of these algorithms before deciding to implement bitonic sort, radix sort, and
sample sort. The purpose of this section is to discuss some of the other sorting algorithms
considered and, in particular, to indicate why these alternatives were not selected for
implementation.

Quicksort. It is relatively easy to implement a parallel version of quicksort on the
CM-2 using segmented scans. First, a pivot is chosen at random and broadcast using
scans. The pivot partitions the keys intosmallkeys andlarge keys. Next, using scans,
each small key is labeled with the number of small keys that precede it in the linear
order, and each large key is labeled with the number of large keys that precede it, plus
the total number of small keys. The keys are then routed to the locations specified by their
labels. The new linear order is broken into two segments, the small keys and the large
keys, and the algorithm is recursively applied to each segment. The expected number of
levels of recursion is close to lgn, and, at each level, the algorithm performs one route
and approximately seven scans. This algorithm has been implemented in a high-level
language (∗Lisp) and runs about half as fast as the original system sort. We believed that
we could not speed it up significantly, since the scan and route operations are already
performed in hardware.

Hyperquicksort. The hyperquicksort algorithm [23] can be outlined as follows. First,
each hypercube node sorts itsn/p keys locally. Then one of the hypercube nodes broad-
casts its median key,m, to all of the other nodes. This key is used as a pivot. Each node
partitions its keys into those smaller thanm, and those larger. Next, the hypercube nodes
exchange keys along the dimension-0 edges of the hypercube. A node whose address
begins with 0 sends all of its keys that are larger thanm to its neighbor whose address
begins with 1. The neighbor sends back all of its keys that are smaller thanm. As keys
arrive at a node, they are merged into the sorted sequence of keys that were not sent by
that node. Finally, the algorithm is recursively applied to thep/2-node subcubes whose
addresses begin with 0 and 1, respectively.

The communication cost of hyperquicksort is comparable to that of the fully pipelined
version of bitonic sort. The expected cost is at leastQn lg p/2p since the algorithm uses
the lgp dimensions one at a time and, for each dimension, every node expects to send
half of its n/p keys to its neighbor. The cost of bitonic sort is alwaysQ · (lg p)(n/p+
(lg p)/2− 1

2) (see Section 3).
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The main advantage of bitonic sort over hyperquicksort is that its performance is
not affected by the initial distribution of the keys to be sorted. Hyperquicksort relies on a
random initial distribution to ensure that the work each processor has to do is reasonably
balanced. Although hyperquicksort may perform less arithmetic than bitonic sort in the
best case, it uses indirect addressing, which is relatively expensive on the CM-2.

Sparse Enumeration Sort. The Nassimi–Sahni sorting algorithm [17], which is re-
ferred to assparse enumeration sort, is used when the numbern of items to be sorted is
smaller than the numberp of processors. In the special casen = √p, sparse enumeration
sort is a very simple algorithm indeed. Then records are initially stored one-per-processor
in then lowest-numbered processors; viewing the processors of the hypercube as form-
ing a two-dimensionaln × n array, the input records occupy the first row of the array.
Sparse enumeration sort proceeds by performing a set ofn parallel column broadcasts
(from the topmost entry in each column) followed byn parallel row broadcasts (from
the diagonal position), so that the processor at rowi and columnj of the array contains
a copy of thei th and j th items. At this point, all pairs of items can be simultaneously
compared in constant time, and prefix operations over the rows can be used to compute
the overall rank of each item. Thei th row is then used to route a copy of itemi to the
column corresponding to its output rank. Finally, a set ofn parallel column routes is used
to move each item to its sorted output position in the first row. For values ofn strictly less
than
√

p, sparse enumeration sort proceeds in exactly the same fashion:n2 processors
are used, and the remainingp− n2 processors are idle. Thus, sparse enumeration sort
runs inO(lg n) time whenn ≤ √p.

Spares enumeration sort generalizes the preceding algorithm in an elegant manner
to obtain a smooth tradeoff betweenO(lg n) performance atn = √p and O(lg2 n)
performance atn = p (the performance of bitonic sort). In this range, sparse enumeration
sort is structured as a(p/n)-way merge sort. After thei th set of parallel merges, then
items are organized inton(n/p)i sorted lists of length(p/n)i . (Initially there aren lists
of length 1.) Thei th set of merges is performed inO(i lg(p/n)) time using a constant
number of bitonic merges, prefix operations, and monotone routes. Monotone routes are
a special class of routing operations that can be performed deterministically on-line in
a collision-free manner. On the CM-2, monotone routes would be implemented using
cube swaps; the entire implementation of sparse enumeration sort would not make use of
the CM-2 router. A straightforward computation shows that the overall time complexity
of sparse enumeration sort isO(lg2 n/lg(p/n)) time.

For sufficiently large values of the ratiop/n > 1, it would be expected that sparse
enumeration sort would perform better than the other sorts we looked at. It is unclear,
however, that a parallel computer would be required to solve such small problems and
better times might be achieved by solving the problem on a single processor, or by
reducingp.

Column Sort. Leighton’s column sort [15] is an elegant parallel sorting technique that
has found many theoretical applications. Column sort sortsn keys using two primitive
operations. The first primitive operation is to sortn1/3 separate sets (called columns) of
n2/3 keys each. Depending on the particular application, this sorting primitive may either
be accomplished by a recursive call or, more typically, by some other sorting algorithm.
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The second primitive operation is to route alln keys according to a fixed permutation.
Alternating between sorts and routes four times suffices to sort alln elements.

If n ≥ p3, then column sort runs quite efficiently. The sorting primitive is executed as
a local sort, and all of the fixed permutations required by column sort are straightforward
to implement in a greedy, collision-free manner. In terms of the CM-2, they can be
implemented with a simple sequence of cube swaps rather than by invoking the router.
As another implementation optimization, we remark that the “standard” column sort
algorithm is not pipelined and would only make use of a 1/lg p fraction of the CM-2
wires at any give time. A2(lg p) speedup can be achieved by pipelining, and there are at
least two approaches worthy of consideration. The first approach is to partition the data
at each processor into lgp equal-sized sets, interleave lgp column sorts, and then merge
the resulting lgp sorted lists. The second approach is to pipeline each of the routing
operations in a single application of column sort.

The main drawback of column sort is that, forn < p3, some degree (depending on
the ration/p) of recursion is necessary in order to perform the sorting primitive; sets
of n2/3 items occupy more than a single processor. We chose not to implement column
sort because it appeared that the conditionn ≥ p3 would not be satisfied in many cases
of interest, and a close analysis of critical sections of the potential code indicated that
a recursive version of column sort would provide little, if any, improvement over either
radix sort or sample sort. Furthermore, the relative performance of column sort would
tend to degrade quite severely for small values of the ration/p.

The asymptotic performance of column sort is best understood by considering arith-
metic and communication costs separately. We assume thatn ≥ p1+ε, whereε denotes
an arbitrary positive constant, which implies a bounded depth of recursion. Under this
assumption, the total arithmetic cost of column sort is2((n/p) lg n), which is optimal
for any comparison-based sort. With pipelining, the communication cost of column sort
is2(n/p), which is optimal foranysorting algorithm.

To summarize, although we felt that column sort might turn out to be competitive at
unusually high loads(n ≥ p3), its mediocre performance at high loads(p2 ≤ n < p3),
and poor performance at low to moderate loads(p ≤ n < p2) made other alternatives
more attractive. Column sort might well be a useful component of a hybrid sorting
scheme that automatically selects an appropriate algorithm depending upon the values
of n and p.

Cubesort. Like column sort, the cubesort algorithm of Cypher and Sanz [9] gives a
scheme for sortingn items in a number of “rounds,” where in each round the data is
partitioned inton/s sets of sizes (for somes, 2 ≤ s ≤ n), and each set is sorted.
(Successive partitions of the data are determined by simple fixed permutations that can
be routed just as efficiently as those used by column sort.) The main advantage of
cubesort over column sort is that, for a wide range of values ofs, cubesort requires
asymptotically fewer rounds than column sort. In particular, for 2≤ s ≤ n, column sort
(applied recursively) uses2((lg n/lg s)β) rounds forβ = 2/(lg 3−1) ≈ 3.419, whereas
cubesort uses onlyO((25)lg

∗ n−lg∗ s(lg n/lg s)2) rounds. (The cost of implementing a
round is essentially the same in each case.) Forn ≥ p3, cubesort can be implemented
without recursion, but requires seven rounds as opposed to four for column sort. For
n < p3, both cubesort and column sort are applied recursively. Forn sufficiently smaller
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than p3 (and p sufficiently large), the aforementioned asymptotic bounds imply that
cubesort will eventually outperform column sort. However, for practical values ofn and
p, if such a crossover in performance ever occurs, it appears likely to occur at a point
where both cubesort and column sort have poor performance relative to other algorithms
(e.g., at low to moderate loads).

Nonadaptive Smoothsort. There are several variants of the smoothsort algorithm, all
of which are described in [18]. The most practical variant, and the one of interest to
use here, is the nonadaptive version of the smoothsort algorithm. The structure of this
algorithm, hereinafter referred to simply as “smoothsort,” is similar to that of column
sort. Both algorithms make progress by ensuring that under a certain partitioning of the
data into subcubes, the distribution of ranks of the items within each subcube is similar.
The benefit of performing such a “balancing” operation is that after the subcubes have
been recursively sorted, all of the items can immediately be routed close to their correct
position in the final sorted order (i.e., the subcubes can be approximately merged in an
oblivious fashion). The effectiveness of the algorithm is determined by how close (in
terms of number of processors) every item is guaranteed to come to its correct sorted
position. It turns out that for both column sort as well as smoothsort, the amount of error
decreases asn/p, the load per processor, is increased.

As noted in the preceding section, forn ≥ p3, column sort can be applied without
recursion. This is due to the fact that after merging the balanced subcubes, every item has
either been routed to the correct processori , or it has been routed to one of processors
i − 1 andi + 1. Thus, the sort can be completed by performing local sorts followed
by merge-and-split operations between odd and even pairs of adjacent processors. As
a simple optimization, it is more efficient to sort thei th largest set ofn/p items to the
processor with thei th largest standard Gray code instead of processori . This permits
the merge-and-split operations to be performed between adjacent processors.

The main difference between column sort and smoothsort is that the “balancing”
operation performed by smoothsort (the cost of which is related to that of column sort
by a small constant factor) guarantees an asymptotically smaller degree of error. For this
reason, smoothsort can be applied without recursion over a larger range of values ofn
and p, namely, forn ≥ p2 lg p. Interestingly, the balancing operation of smoothsort is
based upon a simple variant of merge-and-split: the “merge-and-unshuffle” operation.
Essentially, the best way to guarantee similarity between the distribution of ranks of the
items at a given pair A and B of adjacent processors is to merge the two sets of items,
assign the odd-ranked items in the resulting sorted list to processor A (say), and the
even-ranked items to processor B. This effect is precisely that of a merge-and-unshuffle
operation. The balancing operation of smoothsort amounts to performing lgp sets of
such merge-and-unshuffle operations, one over each of the hypercube dimensions. As in
the case of column sort, there are at least two ways to pipeline the balancing operation in
order to take advantage of the CM-2’s ability to communicate across all of the hypercube
wires at once.

At high loads (p2 ≤ n < p3), we felt that smoothsort might turn out to be com-
petitive with sample sort. Like column sort, however, the performance of smoothsort
degrades (relative to that of other algorithms) at low to moderate loads(p ≤ n < p2),
which was the overriding factor in our decision not to implement smoothsort. For un-
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usually high loads (n ≥ p3), it is likely that column sort would slightly outperform
smoothsort because of a small constant factor advantage in the running time of its bal-
ancing operation on the CM-2. It should be mentioned that, forn ≥ p1+ε, the asymptotic
performance of smoothsort is the same as that of column sort, both in terms of arithmetic
as well as communication. Smoothsort outperforms column sort for smaller values of
n/p, however. For a detailed analysis of the running time of smoothsort, the reader is
referred to [18].

Theoretical Results. This subsection summarizes several “theoretical” sorting re-
sults—algorithms with optimal or near-optimal asymptotic performance but which re-
main impractical due to large constant factors and/or nonconstant costs that are not
accounted for by the model of computation. In certain instances, a significant addi-
tional penalty must be paid in order to “port” the algorithm to the particular architecture
provided by the CM-2.

Many algorithms have been developed for sorting on parallel random access ma-
chines (PRAMs). The fastest comparison-based sort is Cole’s parallel merge sort [6].
This algorithm requires optimalO(lg n) time to sortn items on ann-processor exclusive-
read exclusive-write (EREW) PRAM. Another way to sort inO(lg n) time is to emulate
the AKS sorting circuit [1]. In this case, however, the constants hidden by theO-notation
are large.

If one is interested in emulating a PRAM algorithm on a fixed-connection network
such as the hypercube or butterfly, the cost of the emulation must be taken into account.
Most emulation schemes are based on routing. Since the cost of sample sort is only
about three times the cost of a single routing operation, it seems unlikely that any direct
emulation of a PRAM sorting algorithm will lead to a competitive solution.

For the hypercube and related networks such as butterfly, cube-connected cycles,
and shuffle-exchange, there have been recent asymptotic improvements in both the de-
terministic and randomized settings. A deterministicO(lg n(lg lg n)2)-time algorithm
for the casen = p is described in [8]. AnO(lg n)-time algorithm that admits an efficient
bit-serial implementation and also improves upon the asymptotic failure probability of
the Reif–Valiant flashsort algorithm is presented in [16]. Unfortunately, both of these al-
gorithms are quite impractical. The reader interested in theoretical bounds should consult
the aforementioned papers for further references to previous work.

Appendix B. Probabilistic Analysis of Sample Sort

This appendix analyzes the sizes of the buckets created by the sample sort algorithm
from Section 5. Recall how buckets are created, a method we callMethod P. First, each
of thep processors partitions itsn/p keys intosgroups ofn/psand selects one candidate
at random from each group. Thus, there are a total of exactlyps candidates. Next, the
candidates are sorted, and everysth candidate in the sorted order is chosen to be a splitter.
The keys lying between two successive splitters form a bucket. Theorem B.4 shows that
it is unlikely that this method assigns many more keys than average to any one bucket.

The proof of Theorem B.4 uses three lemmas, the first two of which are well known
in the literature. The first is due to Hoeffding.
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Lemma B.1. Let Xi be a random variable that is equal to1 with probability qi and
to 0 with probability1− qi , for i = 1, 2, . . . ,n. Let W=∑n

i=1 Xi , which implies that
E[W] =∑n

i=1 qi . Let q= E[W]/n, and let Z be the sum of n random variables, each
equal to1with probability q and to0with probability1−q. (Note that E[W] = E[Z] =
qn.) If k ≤ qn− 1 is an integer, then

Pr[W ≤ k] ≤ Pr[Z ≤ k].

Our second lemma is a “Chernoff” bound due to Angluin and Valiant [11].

Lemma B.2. Consider a sequence of r Bernoulli trials, where success occurs in each
trial with probability q. Let Y be the random variable denoting the total number of
successes. Then, for 0≤ γ ≤ 1, we have

Pr[Y ≤ γ rq] ≤ e−(1−γ )
2rq/2.

Our third lemma shows that Method P can be analyzed in terms of another simpler
method which we call Method I. In Method I each key of then keys independently
chooses to be a candidate with probabilityps/n. For this method, the expected number
of candidates isps. The following lemma shows that upper bounds for Method I apply
to Method P.

Lemma B.3. Let S be a set of n keys, and let T denote an arbitrary subset of S. Let YP

and YI denote the number of candidates chosen from T by Methods P and I, respectively.
Then, for any integer k≤ (|T |ps/n)− 1, we have

Pr[YP ≤ k] ≤ Pr[YI ≤ k].

Proof. Let {Si } be the partition of keys used by Method P, that is,S = ∪ps
i=1Si and

|Si | = n/ps. DefineTi = Si ∩ T , for i = 1, 2, . . . , ps. Since|Ti | ≤ |Si | = n/ps,
under Method P each setTi contributes one candidate with probability|Ti |ps/n, and no
candidates otherwise.

Now, define|T | 0–1 random variables as follows. For each nonemptyTi , define|Ti |
random variables, where the first random variable is equal to 1 with probability|Ti |ps/n
and 0 otherwise, and the remaining|Ti | − 1 random variables are always 0.

Call the resulting set of|T | random variablesX1, . . . , X|T | (order is unimportant),
and letYP be the random variable defined byYP =

∑|T |
i=1 Xi . Consequently,

E[YP] =
|T |∑
i=1

E[Xi ] =
ps∑

i=1

|Ti |ps/n = |T |ps/n,

and, thus,YP is the random variable corresponding to the number of candidates chosen
from the setT by Method P.
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Define YI to be the sum of|T |ps/n-biased Bernoulli trials. Note thatYI is the
random variable corresponding to the number of candidates chosen from the setT by
Method I. Hence, by substitutingW = YP andZ = YI into Lemma B.1, we have

Pr[YP ≤ k] ≤ Pr[YI ≤ k]

for k ≤ E[YP] − 1= E[YI ] − 1= (|T |ps/n)− 1.

With Lemmas B.2 and B.3 in hand, we are prepared to prove the bound given
by (9).

Theorem B.4. Let n be the number of keys in a sample sort algorithm, let p be the
number of processors, and let s be the oversampling ratio. Then, for anyα ≥ 1+ 1/s,
the probability that Method P causes any bucket to contain more thanαn/p keys is at
most ne−(1−1/α)2αs/2.

Proof. To prove that no bucket receives more thanαn/p keys, it suffices to show that
the distancel from any key to the next splitter in the sorted order is at mostαn/p. We
begin by looking at a single key. We havel > αn/p only if fewer thans of the next
αn/p keys in the sorted order are candidates. LetT denote this set ofαn/p keys. LetYP

denote the number of candidates inT , which are chosen according to Method P. Thus,
Pr[l > αn/p] ≤ Pr[YP < s].

We can obtain an upper bound on Pr[YP < s] by analyzing Method I instead of
Method P, since, by Lemma B.3, any upper bound derived for Pr[YI ≤ s] also applies
to Pr[YP < s], as long ass ≤ (|T |ps/n) − 1, which holds forα ≥ 1+ 1/s. If the
candidates are chosen according to Method I, then the number of candidates in the set
T of αn/p keys has a binomial distribution, that is,

Pr[YI = k] =
(

r

k

)
qk(1− q)r−k,

wherer = αn/p is the number of independent Bernoulli trials,q = ps/n is the prob-
ability of success in each trial, andYI is the number of successes. The probability that
fewer successes occur than expected can be bounded using the “Chernoff” bound

Pr[YI ≤ γ rq] ≤ e−(1−γ )
2rq/2,

which holds for 0≤ γ ≤ 1. Substitutingr = αn/p, q = ps/n, andγ = 1/α, we have

Pr[l > αn/p] ≤ Pr[YP ≤ s]

≤ Pr[YI ≤ s]

≤ e−(1−1/α)2αs/2.
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The probability that the distance fromanyof then keys to the next splitter is more
thanαn/p is at most the sum of the individual probabilities, each of which is bounded
by e−(1−1/α)2αs/2. Since there aren keys, the probability that the distance from any key
to the next splitter is greater thanαn/p is therefore at mostne−(1−1/α)2αs/2, which proves
the theorem.
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