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A SIMPLE PARALLEL ALGORITHM ,FOR THE MAXIMAL
INDEPENDENT SET PROBLEM*

MICHAEL LUBYf

Abstract. Two basic design strategies are used to develop a very simple and fast parallel algorithms
for the maximal independent set (MIS) problem. The first strategy consists of assigning identical copies of
a simple algorithm to small local portions of the problem input. The algorithm is designed so that when
the copies are executed in parallel the correct problem output is produced very quickly. A very simple
Monte Carlo algorithm for the MIS problem is presented which is based upon this strategy. The second
strategy is a general and powerful technique for removing randomization from algorithms. This strategy is
used to convert the Monte Carlo algorithm for this MIS problem into a simple deterministic algorithm with
the same parallel running time.
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Introduction. A maximal independent set (MIS) in an undirected graph is a
maximal collection of vertices I subject to the restriction that no pair of vertices in I
are adjacent. The MIS problem is to find a MIS. in this paper, fast parallel algorithms
are presented for the MIS problem. All of the algorithms are especially noteworthy
for their simplicity.

One of the key properties behind any successful parallel algorithm design is that
the algorithm can be productively subdivided into a number of almost identical simple
algorithms, which when executed in parallel produce a correct problem output very
quickly. Monte Carlo Algorithm A for the MIS problem ( 3.2) has an even stronger
property: the subdivision into almost identical simple algorithms respects the inherent
subdivision in the problem input. More specifically, the problem input is a local
description of the graph in terms of vertices and edges. Algorithm A is described in
terms of two algorithm templates called ALGVERTEX and ALGEDGE. A copy of
ALGVERTEX is assigned to each vertex in the graph and a copy of ALGEDGE is
assigned to each edge in the graph. The algorithm runs in phases. During each phase
all copies of ALGVERTEX are executed in parallel followed by the execution of all
copies of ALGEDGE in parallel. The algorithm has the property that after a very
small number ofphases the output is a MIS. This property ofthe Monte Carlo algorithm
may make it a useful protocol design tool in distributed computation.

One of the main contributions of this paper is the development of a powerful and
general technique for converting parallel Monte Carlo algorithms into deterministic
algorithms ( 4.1). Monte Carlo Algorithm B ( 3.3) is very similar to, but slightly more
complicated than, Algorithm A. The random variables in Algorithm B are mutually
independent. The general technique is used to convert Algorithm B into a deterministic
algorithm with the same running time. The first major step in the conversion process
is a more sophisticated analysis of the algorithm ( 4.3), which shows that if the random
variables are only pairwise independent [Fr] then the algorithm has essentially the same
expected running time as when the random variables are mutually independent. The
second major step is a method for generating a probability space over n random
variables containing O(n2) sample points, where the n random variables are pairwise
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independent ( 4.2). Algorithm C, which is almost exactly the same as Algorithm B,
chooses values for the random variables by randomly choosing one of the sample
points in this probability space ( 4.4). The number of random bits needed to choose
a random sample point is O(log n). Algorithm D tests in parallel all of the sample
points and uses the best ( 4.4). This algorithm is deterministic.

For purposes of analysis the P-RAM parallel computer is used [FW]. Two models
of a P-RAM are considered: the CRCW P-RAM, in which concurrent reads and writes
to the same memory location are allowed; and the less powerful but perhaps more
realistic EREW P-RAM, in which concurrent reads and writes to the same memory
location are disallowed. Algorithm A is the simplest Monte Carlo algorithm and has
the best running time on a CRCW P-RAM. Algorithm B is slightly more complicated,
but it is presented because it is the basis for Algorithms C and D. Algorithm D can
be implemented by a logspace-uniform circuit family, where the circuit which accepts
inputs of length k has depth O((log k)2) and polynomial in k gates. (All logs are base
2 in this paper.) This establishes that the MIS problem is in NC2 (see [Co] for a
discussion of the complexity class NC). Let n be the number of vertices and m be the
number of edges in the graph. Let EO(k) denote "the expected values is O(k)." Table
1 summarizes the features of each algorithm. The analysis for Algorithm A assuming
implementation on a EREW P-RAM is the same as for Algorithm B. The column
labelled "Random bits" indicates the number of unbiased random bits consumed
during the execution of the algorithm.

1. History of the MIS problem. The obvious sequential algorithm for the MIS
problem can be simply stated as: Initialize I to the empty set; for 1, , n, if vertex

is not adjacent to any vertex in I then add vertex, to I. The MIS output by this
algorithm is called the lexicographically first maximal independent set (LFMIS). Valiant
[Va] noted that the MIS problem, which has such an easy sequential algorithm, may
be one of the problems for which there is no fast parallel algorithm. Cook [Co]
strengthened this belief by proving that outputting the LFMIS is NC-complete for P.
This gave strong evidence that there is no NC algorithm which outputs the LFMIS.
Thus, it became clear that either there was no fast parallel algorithm for the MIS
problem or else the fast parallel algorithm had to have a completely different design
than the sequential algorithm.

TABLE

Algorithm P-RAM Type Processors Time Random bits

A CRCW O(m) EO (log n) EO (n(log n)
B EREW O(m EO ((log n )2) EO n log n
C EREW O(m) EO ((log n)2) EO ((log n)2)
D EREW O tlE. m) O ((log n )2) none

Surprisingly, Karp and Wigderson [KW] did develop a fast parallel algorithm for
the MIS problem. They presented a randomized algorithm with expected running time
O((log n)4) using O(n2) processors, and a deterministic algorithm with running time
O((log n)4) using o(na/(log n)3) processors on a EREW P-RAM, also establishing
the result that the MIS problem is in NC4. This paper describes algorithms which are
substantially simpler than their algorithm, and establishes that the MIS problem is in
NC2.
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Alon, Babai and Itai [ABI] independently found a Monte Carlo algorithm for the
MIS problem, which is similar to Algorithm B, shortly after the present author found
Algorithms B, C and D [Lu]. Their algorithm can be implemented on a EREW P-RAM
with the same efficiency as is shown for Algorithm B in Table 1. They have an
implementation of their algorithm on a CRCW P-RAM where the running time is
EO(log n) using O(Am) processors, where A is the maximum degree of any vertex in
the graph. Algorithm A was developed after seeing a preliminary version of [ABI],
inspired by the CRCW P-RAM parallel computation model they consider. Algorithm
A is the simplest Monte Carlo algorithm for the MIS problem. It has a more processor
efficient implementation then the algorithm described in [ABI], using O(m) processors
versus O(Am).

2. Applicatioas of the MIS algorithm. A growing number of parallel algorithms
use the MIS algorithm as a subroutine. Karp and Wigderson [KW] gave logspace
reductions from the Maximal Set Packing and the Maximal Matching problems to the
MIS problem, and a nondeterministic logspace reduction from the 2-Satisfiability
problem to the MIS problem. In this paper, it is shown that there is a logspace reduction
from the Maximal Coloring problem ( 6.1) to the MIS problem. Thus, using the results
of this paper, all of these problems are now known to be in NC2. However, Cook and
Luby [CL] previously showed that 2-Satisfiability is in NC2.

Lev [Le], previous to [KW], designed an algorithm for the Maximal Matching
problem with running time O((log n)4) on a P-RAM (and also established that the
problem is in NCS). Subsequently, Israeli and Shiloach [IS] found an algorithm for
Maximal Matching, implemented on a CRCW P-RAM, where the running time is
O((log n)3). More recently and independently of this paper, Israeli and Itai [II] found
a Monte Carlo algorithm for the Maximal Matching problem. The running time of
their algorithm implemented on a EREW P-RAM is EO((log tl)2) and implemented
on a CRCW P-RAM is EO(log n). The reduction of [KW] from the Maximal Matching
problem to the MIS problem together with the results in this paper establishes the
stronger results that there is a deterministic algorithm for Maximal Matching which
can be implemented on a EREW P-RAM with running time O((log tl)2), and that the
Maximal Matching problem is in NC2.

Karloff [Kfl] uses the MIS algorithm as a subroutine for the Odd Set Cover
problem. This algorithm can be used to convert the Monte Carlo algorithm for Maximum
Matching [KUW] into a Las Vegas algorithm. Also, [KSS] use both the MIS algorithm
and the Maximal Coloring algorithm to find a A vertex coloring of a graph when A is
O((log n) c) for some constant c, where A is the maximum degree of any vertex in the
graph.

3. Monte Carlo MIS algorithms.
3.1. A high level descriptioa of the algorithm. All of the MIS algorithms in this

paper adhere to the outline described below. The input to the MIS algorithm is an
undirected graph G (V, E). The output is a maximal independent set I

_
V. Let

G’-(V’, E’) be a subgraph of G. For all W_ V’, define the neighborhood of W to
be N( W) ( V’: :lj W, i, j) E’).

begin

’=(V’,E’)=(V,E)
while G’ do

begin
select a set I’_ V’ which is independent in G’
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IIL} I’
Y-I’UN(I’)
G’= (V’, E’) is the induced subgraph on V’-. Y.

end
end

It is easy to show that I is a maximal independent set in G at the termination of
the algorithm. The crux of" the algorithm is the design of the select step, which must
satisfy two properties:

1. The select step can be implemented on a P-RAM so that its execution time is
very small.

2. The number of executions of the body of the while loop before G’ is empty is
very small.

For each MIS algorithm presented in this paper only the description of the select
step will be given.

The analysis of the algorithms assumes that n IV[ and m [El are stored in the
first two common memory locations of the P-RAM, and that the edge descriptions
follow in consecutive memory locations. The body of the while loop, excluding the
select step, can be implemented on a CRCW P-RAM using O(m) processors, where
each execution takes time O(1). The same portion of the loop can be implemented on
a EREW P-RAM using O(rn) processors, where each execution takes time O(log n).
Here and throughout the rest of this paper the low level implementation details are
omitted.

3.2. Monte Carlo Algorithm A description. The simplest Monte Carlo algorithm
for the MIS problem is described in this section. Without loss of generality, assume
that V’= {1,. , n’}. For all V’, define adj (i) {j V’l(i,j) E’}. A very high level
description of the select step is:

1. Choose a random reordering (permutation) 7r of V’,
2. I’{i V’[zr(i)<min {,rr(j)ljadj (i)}}.

Here is a more detailed description ofthe select step. Define an algorithm to be executed
by each vertex i V’ as follows.

ALGVERTEX
begin

7r(i)--> a number randomly chosen from {1,..., n4}.
end

Define an algorithm to be executed by each edge (i,j) E’ as follows.

ALGEDGE (i, j)
begin

if zr(i) => r(j) then I’ <- I’- { i}
else I’- I’-{j}

end

The select step is:

begin
In parallel, Vie V’, execute ALGVERTEX (i)

In parallel, V(i, j) E’, execute ALGEDGE i, j)
end
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The random choices of the values of r(i) in ALGVERTEX (i) are mutually
independent. This is not literally an implementation of the high level description of
the algorithm because there is some chance that for some (i,j)e E’, r(i)= r(j).
However, since each pair of vertices receives the same r value with probability 1In4,
and there are at most (.) pairs of vertices from V’, r is a random reordering of the
vertices with probability at least 1-1/2n2.

The select step can be implemented on a CRCW P’RAM using O(m) processors,
where each execution takes time O(1) and consumes O(n log n) random bits. An
implementation on a EREW P-RAM uses O(m) processors, where each execution
takes time O(log n). In 3.4, the number of executions of the while loop before
termination of the algorithm is proven to be EO(log n). Thus, an implementation of
the algorithm on a CRCW (EREW) P-RAM uses O(m) processors, where the total
execution time is EO(log n) (EO((log n)2)).

3.3. Monte Carlo Algorithm B description. In this section a Monte Carlo algorithm
for the MIS problem is described which is slightly more complicated than Algorithm
A. Algorithm B is the basis for the deterministic algorithm presented in the following
sections.

The notation of 3.2 is retained. For each i V’, define d(i), the degree of i, to
be ladj(i)l. Define a collection of mutually independent (0, 1) valued random variables
(coin (i)lie V’) such that if d(i)-> 1 then coin (i) takes on value 1 with probability
1/2d(i) and if d(i)=0 then coin (i) is always 1. The select step is:

begin
In parallel, Vie V’, compute d (i)
X,-
In parallel, V V’ {choice step}

randomly choose a value for coin (i)
if coin (i) 1 then X - X U { i)

In parallel, V i, j) E’
if X and j X then

if d (i) _-< d (j) then I’ - I’- { i}
else I’ - I’-{j)

end

The select step can be implemented on a EREW P-RAM using O(m) processors,
where each execution takes time O(log n) and consumes EO(n) random bits. In 3.4,
the number of executions of the while loop before termination of the algorithm is
proven to be EO(log n). Thus, an implementation of the algorithm on a EREW P-RAM
uses O(m) processors, where the total execution time is O((log n)2).

3.4. Analysis of Algorithms A and B. Let tA and t be the number of executions
of the body of the while loop before G’ for Algorithms A and B, respectively. In
this section it is shown that E (tA) O(1og n) and E (ta) O(log n). The proof is very
similar for both algorithms. It is shown that on the average each execution of the body
of the while loop eliminates a constant fraction of the edges in E’.

Let Y and Y be the number of edges in E’ before the kth execution of the
body of the while loop for Algorithms A and B, respectively. The number of edges
eliminated from E’ due to the kth execution of the body of the while loop for A and
a is Y- Y+I and Yff- Y+I, respectively.

THEOREM 1.
(1) E[Y- Y+I]_-> Y-6.
(2) E[ Y- Y+I] >- " Y.
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From Theorem 1 it is easily shown that E(tA) O(log n) and that E(tB) O(log n).
One can make even stronger claims. For example,

Pr y+i <=]_gls y] => .
Thus, Pr[tB->700log n]<=2n-2. This can be shown using an inequality due to
Bernstein which is cited in R6nyi [R, p. 387]. From this it is easy to see that the bounds
on the running time and on the number of random bits used by Algorithms A and B
hold with high probability. These details are omitted from this paper.

For all i V’ such that d(i)_-> 1, let

1
sum(i) Z

jadj(i) d (j)"

Proof of Theorem 1. Let G’= (V’, E’) be the graph before the kth execution of
the body of the while loop. The edges eliminated due to the kth execution of the body
of the while loop are the edges with at least one endpoint in the set I’U N(I’), i.e.,
each edge (i,j) is eliminated either because e I’Ll N(I’) or because j e I’U N(I’).
Thus,

1
Z d(i). Pr[ieI’UN(I’)]E[Y Y+l] =>’, v’

1
>--" E d(i). Pr[iN(I’)].

2 iv’

The remaining portion of the proofs for part (1) and part (2) of Theorem 1 are based
upon Lemmas A and B, respectively. Here, only the proof for part (2) is given. (The
proof for part (1) is a consequence since Lemma A is strictly stronger than Lemma B
except for the 1-1/2n2 multiplicative factor.) Lemma B states that Pr[i N(I’)]=>-. min {sum (i)/2, 1}. Thus,

E[ Yf- Y+,] _-> . E d(i).sum(i)+ ., d(i))i V’ i V’
(i)2 (i)>2

1( Y. E 9 d(i]
d(i___) + E E 1)ieV’ jeadj(i).-.’..\j, ieV’ jeadj (i)

(i)2 (i)>2

1( (i,j)eE’ 2 (i,j)eE’
(i)-<:2 (i)=<2 (0>2
(j)<=2 (j)>2 (j)>2

1
’1

1>--.IE Y [3
-8

Lemmas A and B are crucial to the proof of Theorem 1. Lemma A, due to Paul Beame,
was proved after Lemma B and uses some ofthe same ideas as Lemma B. For expository
reasons, it is presented first.

LEMMA A (Beame). For Algorithm A, Vi V’ such that d(i)>- 1,

(1)Pr[ieN(I’)]->[ .min{sum(i),l}]. 1-n2
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Proof With probability at least 1-1/2n2, r is a random reordering of V’. Assume
that r is a random reordering of V’. Vj V’, let Ej be the event that

and let

Without loss of generality let

and let

7r(j) < min {Tr(k) k adj (j)}

pj Pr [E] d(j)+ 1"

adj (i)=(1,..., d(i)}

Pl >= >= Pd(i)"

Then, by the principle of inclusion-exclusion, for 1 -<_ =< d (i),

Pr[ieg(I’)]>-Pr >-_ , p-_, , Pr[EfqEk].
j=l j=l k=j+l

For fixed j, k such that 1 -<j < k_-< l, let E be the event that

7r(j) < min {r(u)l v adj (j) t_J adj

and let E be the event that

7r(k) < min {Tr(v)I v adj (j) t.J adj (k)}.

Let

Then,

d(j, k) ladj (j) U adj (k)l.

Pr [E fq Ek] <= Pr [Ej] Pr [Ekl Ej]+ Pr [E,] Pr [Ejl E

<-- <2 pj" pk.
d(j, k)+ l d(k)+ l d(j)+ l

__-d(i)Let a z--1 P. By the technical lemma which follows,

Pr[i N(I’)] =>1/2 min {a, 1/2}=>1/4 min {sum (i), 1}

when 7r is a random reordering of V’. [3

LEMMA B. For Algorithm B, Vi V’ such that d (i) >-_ 1,

Pr[i N(I’)]>. min {sum (i--2) 1}2

Proof. Vj V’, let E be the event that coin (j)= 1 and let

1
P3= Pr [EJ]

2 d(j)"

Without loss of generality let

adj (i)={1,..., d(i)}

and let

Pl >= >=pal(i).
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Let E be the event El, and for 2<=j<=d(i) let

E; -nE Ej.

Let

Then,

But

Aj N -E.
vadj (j)
d(v)>--_d(j)

a(i)

Pr[i g(I’)]=> E Pr[E]. Pr[AjlEj].
j=l

and

Pr [Aj Efi] >- Pr [Aj] >= 1- 1

veadj (j)
d(v)>--d(j)

E Pr[E;]=Pr C
j--1

For/ j, Pr [E n Ek] p’ pk. Thus, by the principle of inclusion-exclusion, for 1 =< =<
d(i),

Pr Ej >--_ Pr Ej - pj Pj Pl.
j= j= k=j+

vd()Let a =j= p. The technical lemma which follows implies that

Pr e.min{,l}e.min ,1
It follows that Pr[ie N(I’)]. rain {sum (i)/2, 1}.

TECHNICAL LEMMA. Letp p 0 be real-valued variables. For 1 N N n, let

where c > 0 is a constant. en

Proo It can be shown by induction that is maximized whenp p /l,
and consequently N. (l-I) Thus,. 1-c.. 2i
If N 1/c then /2. If 1/c then N 1/c. Otherwise, l, 1 < < n such that_

N 1/ c N N 1/ c. l/(l 1). The last inequality follows because p. p. Then,
1/2c.

4.1. Oee. This section outlines a general strategy for conveing fast parallel
Monte Carlo algorithms into fast parallel deterministic algorithms. Algorithm B is
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converted into a very simple and fast deterministic algorithm using this strategy. The
general strategy contains several ideas that were discovered and used by previous
authors. The relationship of the general strategy to other work is discussed in 5.

To use the general strategy to convert a specific parallel Monte Carlo algorithm
into a deterministic algorithm, it must be possible to describe the Monte Carlo algorithm
in the following way. All of the randomization is incorporated in one step of the
algorithm called the choice step (which may be executed more than once during the
course of the algorithm). In the choice step, values for random variables Xo," , Xn-1
are chosen mutually independently, such that on the average a set of values for these
random variables is good. The algorithm can determine very quickly whether or not a
set of values is good after the execution of the choice step. The analysis of the algorithm
shows that if at each execution of the choice step a good set of values are chosen, then
the algorithm outputs a correct output within a specified time bound.

To be able to convert a Monte Carlo algorithm which fits the above description
into a deterministic algorithm, the following additional criteria are sufficient.

1. Let r be a positive integer and let q->_ n be a prime number, such that both r
and q are bounded by a polynomial in n. The set of random variables Xo,’’ ", Xn-1
can be modified so that the range of random variable Xi is R (R1,’’ ", Rr), such
that Xi takes on value Rj with probability no q, where no is an integer greater than
or equal to zero and j__l nj- q.

2. The analysis of the algorithm can be modified to show that if Xo,’’ ", Xn_
are only pairwise independent [Fr] then with positive probability a random set of values
for Xo,’’’, X-I is good.

The deterministic algorithm is the same as the Monte Carlo algorithm except that
the choice step is simulated by the following: Construct the probability space described
in 4.2 with q2 sample points, where each sample point corresponds to a set of values
of Xo," , Xn-1. In parallel, spawn q2 copies of the algorithm, one for each sample
point, and test to see which sample points are good. Use the set of values for
Xo, , Xn_l corresponding to a good sample point as the output from the choice step.

Since the analysis shows that with positive probability a random sample point is
good, at least one of the sample points must be good. Since at each choice step a good
set of values for Xo, , X-I is used, the algorithm is deterministic and is guaranteed
to run within the specified time bound.

This strategy for converting a Monte Carlo algorithm into a deterministic algorithm
can be generalized by relaxing criterion 2 above to allow d-wise independence for any
integer constant d->_ 1.

4.2. Generating pairwise independent random variables. Let Xo, , X_ be a set
of random variables satisfying the first criterion stated in 4.1. In this section a
probability space of q2 sample points is generated, where the random variables are
pairwise independent. In contrast, the number of sample points in a probability space
where the random variables are mutually independent is 1"/(2"), assuming each random
variable takes on at least two values with a nonzero probability.

Consider an n by q matrix A. The .values in row of A correspond to the possible
values for random variable X. Row of A contains exactly no entries equal to Rj. Let
0 <_-x, y-< q- 1. The sample space is the collection of q2 sample points

where b Ai,(x+y. i)mod q is the value ofX at sample point bx’y. The probability assigned
to each sample point is 1/q2.
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LEMMA 1. Pr IX Rj] rio/q.
Proof. For fixed l, there are exactly q pairs of x, y such that (x + y. i) rood q I.

There are nq values of such that Ai, Rj. ]

LEMMA 2. Pr [Xi R7 and Xi,=Rj,]=(no no,)/q2.
Proof. For fixed and l’, there is exactly one x, y pair such that (x + y. i) mod q

and (x + y. i’) mod q l’ simultaneously. [3

Lemma 2 shows that the random variables Xo," , Xn-1 are pairwise independent
in the probability space.

4.3. Reanalysis of Algorithm B assuming pairwise independence. In this section
Algorithm B is analyzed assuming events are only pairwise independent. More
specifically, assume that the collection of random variables {coin (i)li V’} are only
pairwise independent. ’i V’, let E be the event that coin (i)= 1 and let

1
P, Pr Ei 2d

The analogue of Lemma B is the following.
LEMMA C. Pr[i N(I’)] >_- min {sum (i), 1}.
Proof. The notation introduced in the proof of Lemma B is retained. Let ao 0

and for 1 _-< _-< d (i), let al

__
pj. As in the proof of Lemma B,

a()

Pr[ie N(I’)] >= E Pr[Efi] Pr[AjlE;].
j=l

A lower bound is first derived on Pr [A EJ]. Pr [AI EJ] 1 Pr [-A E;]. But,

Pr [Aj E] <- Pr [EvlEJ]
vadj (j)
a(o)d(j)

and

Pr [Eo Ej]
Pr [Eo (q -E, fq... fq -]Ej_ Ej]

Pr [-qE ["1 ["1 "qEj_, [Ej]

The numerator is less than or equal to Pr [Eol E] po. The denominator is equal to

1-Pr EIEj -> 1- Pr[EIE]= 1--tXj_,.
l=l

Thus, Pr [Eo E] <= pv/ (1 aj_l). Consequently,

1PvPr [-aA E] <- E
oaa s) 1 s-1 2(1 s_)"
a(v)>=a(j)

Thus,

Pr [A Ej] >- 1
1 1 2tj_

1 (1 as_) 2(1 as_I)"
Now, a lower bound is derived on Pr [E].

Pr [E] Pr[Es] Pr [-IE1 ’’" Il --IEj_ Ej]

=p 1-Pr EI >-ps(1-%-).
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Thus, for -< <= d (v) and ai < 1/2,

Pr[ie N(I’)]>= P(1-2c9-)
j=l 2 "-’" j=lPj -2" E P" Pk

j=l k=j+l

By the technical lemma,

Pr[ie N(i’)]->1/4 min {aa(,,1/2}>= min {sum(i), 1}.

The analogue to Theorem 1 for Algorithm B when the random variables are only
pairwise independent is"

THEOREM 2. E[ Yg Y+] >= Y when the random variables {coin i) e V’} are
only pairwise independent.

Proof. Use Lemma C in place of Lemma B in the proof of Theorem 1.

This analysis shows that Algorithm B almost fulfills the criteria stated in 4.1.

The range of the set of random variables {coin (i)1 V’} is {0, 1 }. A good set of values
for {coin (i)li e V’} is a set of values such that when they are used in the choice step
at least 6 of the edges in E’ are eliminated. Theorem 2 implies that in any probability
space where the random variables {coin (i)[i e V’} are pairwise independent there is
at least one sample point which is good. To determine whether or not a set of values
for {coin (i)[i e V’} is good, the steps in the body of the while loop are executed using
these values and the number of edges eliminated is computed. The only reqtlirement
that is not fulfilled is criterion 1.

4.4. Algorithms C and D for the MIS problem. In this section, the deterministic
implementation of Algorithm B is presented. The only missing requirement is that the
set of random variables {coin (i)lie V’} as defined in 3.3 does not fulfill criterion 1
of 4.1. To fulfill this criterion there are two changes: (1) the probabilities assigned
to the random variables {coin (i)lie V’} are modified slightly, and (2) the algorithm
is modified slightly.

The probabilities are modified as follows. Let q be a prime number between n
and 2n. The probability that coin (i)= 1 is p’i [pi. qJ/q, where pi= 1/2d(i) is the
previous probability.

Here is a description of the choice step for Algorithm C.
Case 1. There is a vertex ie V’ such that d(i)>= nil6. The algorithm sets I’ to {i}.
Case 2. /ie V’, d(i)<n/16. The algorithm constructs the probability space

described in 4.2 and randomly chooses a sample point. The algorithm uses the values
for {coin (i)li e V’} corresponding to the sample point to choose I’ as before.

Here is the analysis for Algorithm C. Case 1 can occur at most 16 times, because
each time it occurs at least l of the vertices in the original graph G are eliminated.
In Case 2, fi e V’, d(i) < nil6, which implies q/2d(i)>- n/2d(i) > 8 and consequently
p >- 8/q. But this implies that [Pi" qJ / 8 -> 1. Thus, since [p, q] + 1)/q >- pi, p, <= p <= p.

LEMMA D. Let the set ofrandom variables {coin i) e V’} be pairwise independent
such that Pr [coin (i)= 1]=pl andsuch that Vie V’, d(i)<n/16. Then Pr[ie N(I’)] >
min {sum (i), 1).

Proof. The same proof as for Lemma C, except p is used as a lower bound and
p is used as an upper bound on Pr [coin (i)= 1].

THEOREM 3. Consider Algorithm B, where the random variables {coin (i)li e V’}
are as described in this section and where Vie V’, d(i)<n/16. Then E[Y- Yff+]>-
+/-Yg.18
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Proof. Use Lemma D in place of Lemma B in the proof of Theorem 1.
Thus, if Case 2 is true then Algorithm C eliminates at least 8 of the edges in E’

on the average. From this it is easy to see that the bounds on the running time and
on the number of random bits used by Algorithm C hold with high probability.

The code for Algorithm C follows. This algorithm is very practical because it is
simple, fast, uses a small number of processors and a small number of random bits.
Each execution of the body of the while loop can be implemented in O(log n) time
on a EREW P-RAM using O(m) processors, where the expected number of random
bits used is O(log n). The expected number of executions of the while loop before
termination of the algorithm is O(log n). Thus, the expected running time of the entire
algorithm on a EREW P-RAM is O((log n)2) using O(m) processors, where the
expected number of random bits used is O((log n)2).

Algorithm D is the same as Algorithm C, except that the choice step is executed
by testing in parallel all q2 sets of values for {coin (i)[ e V’} and using the set of values
which maximizes the number of edges eliminated from G’. Theorem 3 shows that the
best set will eliminate at least of the edges in the graph G’. This algorithm can be
implemented on a EREW P-RAM with O(mn2) processors with running time
O((log n)2). The number of executions of the while loop is guaranteed to be at
most

log n2)
log (18/17)

+ 16 _-< 25 log n + 16.

begin
I-
compute n IV]
compute a prime q such that n <_-q _<-2n

G’=(V’,E’)<--G=(V,E)
while G’ do
begin

In parallel, ’i e V’, compute d(i)
In parallel, Vie V’

if d(i)=0 then add to I and delete from V’.
find e V’ such that d(i) is maximum
if d(i)>= nil6 then add to I and let G’ be the

graph induced on the vertices V’-({i}LI N({i}))
else (Vie V’, d(i)<n/16)
begin

(choice) randomly choose x and y such that 0 -<_ x, y <= q 1
X-
In parallel, V e V’,
begin
compute n(i)= [q/2d(i)J
compute l(i) (x + y. i) mod q
if l(i)<= n(i) then add to X

end

In parallel, ’i e X, j e X,
if (i, j) e E’ then

if d (i) <- d (j) then I’ <-- I’- { i}
else I’<-- I’-{j}
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I’,-IUI’
Y- I’U N(I’)
G"-(V’, E’) is the induced subgraph on V’- Y.

end
end

end

5. A history of the ideas used in the general strategy. Some of the ideas outlined
in 4 have been developed in other contexts. The purpose of this section is threefold"

1. Give proper credit to previous researchers.
2. Indicate the innovations in 4 by contrasting this work with previous work.
3. Highlight techniques common to a large body of seemingly unrelated work.
The last point may be the most important: fragments of these techniques have

been used successfully many times in different contexts by many authors. By making
the connections between these techniques explicit, a more unified approach to problem
solving using these techniques may evolve.

Ther are many randomizing algorithms in the computer science literature. These
algorithms generally use random input bits to generate in a straightforward way a
number of mutually independent random variables. One of the general strategies used
in this paper consists of two parts"

(1) Prove that the necessary probability theorems still hold when the random
variables are pairwise independent instead of mutually independent (the proof
itself is not always straightforward, e.g. the proof in this paper).

(2) Construct a sample space with special structural properties where the random
variables are pairwise independent (constructing the same space with the
necessary structural properties is usually quite easy, given the plethora of
previous research in this area which is discussed in 5.1 and 5.2).

The reason for doing this is that the special structural properties of the sample space
can be used to great advantage. Previous papers which exploit this strategy are [ACGS],
[CW], [Si], [Sh]. In this paper, the special structural property of the sample space is
that all of the sample points can be constructed efficiently in parallel. This property
is used to deterministically find a good sample point quickly in parallel.

5.1. Generating d-wise independent random variables. The construction given in
4.2 was subsequently generalized to a probability distribution where the random

variables Xo," , X,_I are d-wise independent, where there are qd sample points for
any integer constant d >= 1. Credit for this generalization goes to Noga Alon [A1],
Richard Anderson [An] and Paul Beame [Be], each of whom found it independently.

Let 0 =< Xo, , xd_l =< q 1. The sample space is the collection of qa sample points

b’’’’’’’-’ (bo," ", b,_),

where b is the (i, (Yga__- x./) mod q) entry in matrix A. The probability assigned to
each sample point is 1/qa. It is possible to show that the random variables Xo, ,
are d-wise independent and that Pr[X= R]= nq/q. [CFGHRS] proves that any
probability space with n d-wise independent random variables must contain at least
n d/2 sample points.

5.2. History of d-wise independence constructions. The first person to give an
example ofrandom variables which are pairwise independent but not mutually indepen-
dent is Bernstein in 1945 (see [Fr, p. 126]). His example consists of three {0, 1} valued
random variables. Lancaster [La] generalizes this example to n 1 pairwise independent
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variables on n sample points, giving constructions involving the Hadamard matrix and
Latin squares. Jotie [Jo 1 ], [Jo2] gives a construction for generating d-wise independent
random variables which is exactly the same as the constructions given in 4.2 and
5.1, except as noted below. O’Brien [OB] discusses generating pairwise independent
random variables with additional properties. Incomplete Block Designs (see [Ha]) are
another way to generate pairwise independent random variables.

All of the work mentioned in the preceding paragraph concentrates solely on
constructions of pairwise (d-wise) independent random variables such that each value
of each random variable is equally likely. The constructions given in 4.2 and 5.1
generalizes this slightly: the random variables are allowed to take on different values
with different probabilities.The freedom to specify nonequal probabilities for different
values of the random variables is essential to the general strategy described in 4.

5.3. Techniques for analyzing d-wise independent random variables. One of the
important features of the general strategy given in 4 is the separation of the analysis
of d-wise independent random variables from the construction of the probability space.
The modularity of this approach allows the researcher to study the properties of d-wise
independent random variables without worrying about the details of the probability
space construction. A short list of techniques for analyzing d-wise independent random
variables is given here.

1. Markov’s inequality holds for random variables assuming no independence.
2. Chebyshev’s inequality holds for pairwise independent random variables.
3. Bonferroni bounds and stronger similar bounds ICE], [Ga] are useful. These

types of bounds are used extensively in the proof of the technical lemma, which is
similar to a lemma contained in ICE].

4. Use of the d-wise independence in a natural way to divide a complicated
expression into simpler expressions. For example, E[AIB] E[A] if A and B are
pairwise independent random variables.

5. The pigeon-hole principle. For example, if it can be proved that E[X]> c
assuming d-wise independent random variables, where X is a real-valued random
variable which is possibly a function of several of the original random variables and
c is a constant, then there must be a sample point where X > c.

The proofs of Lemmas A, B, C and D use a rich mixture of these techniques.

5.4. Other applications of d-wise independent random variables. In this section,
some of the uses of d-wise independent random variables are highlighted. A complete
history is beyond the scope of this paper.

Carter and Wegman [CW] use constructions for pairwise independent random
variables to generate hashing functions with certain desirable properties. One of the
constructions they use is very similar to that discussed in [Jo2], but not quite as general
as the construction given in 5.1. They are perhaps the first to separate the analysis
of the algorithm from the construction used to generate the probability space. The
techniques they use to analyze the algorithm include techniques 1, 3 and 4 from the
previous section. The work of [CW] is used by Sipser to simplify the proof in [Si] that
BPP is at the second level ofthe polynomial time hierarchy. Similar ideas appear in [St].

Alexi, Chor, Goldreich and Schnorr [ACGS] prove that RSA/Rabin bits are
secure. They use the same construction as given in [Jo2] to generate pairwise indepen-
dent random variables and they use Chebyshev’s inequality in their analysis. Chor and
Goldreich [CG] have a simple solution to a problem originally introduced and solved
in a more complicated way by Karp and Pippenger [KP]. The solution of [CG] uses
the same construction as given in [Jo2] to generate pairwise independent random
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variables and Chebyshev’s inequality in the analysis. Shamir [Sh] uses the construction
given in [Jo2] to distribute a secret among n people in such a way that no subset of
d people can determine anything about the secret, but any subset of d + 1 people can
completely determine the secret.

Karp and Wigderson [KW] are the first to introduce a special case of the strategy
given in 4. They use their strategy to convert their Monte Carlo MIS algorithm into
a deterministic algorithm. They use an incomplete block design to construct a probabil-
ity space with {0, 1 } valued pairwise independent random variables, where each random
variable takes on value with probability 1/2. Their analysis of the algorithm, which is
heavily dependent upon their particular construction of the probability space, is quite
complicated. There is a simpler analysis of their algorithm, which uses the techniques
in 5.3, which shows that the algorithm still works well on the average if the random
variables are only pairwise independent. This analysis, together with the construction
given in 4.2, where random variables can take on different values with different
probabilities, gives a much simpler and faster deterministic algorithm than the one
they give. However, the algorithm is still not as simple nor as fast as those presented
in this paper.

6. Generalizations of the MIS problem.
6.1. The Maximal Coloring problem. The Maximal Coloring problem generalizes

the MIS problem. The input to the Maximal Coloring problem is an undirected graph
G (V, E) and a set of colors Cv for each vertex v V. The output is a maximal
coloring. In a maximal coloring, each vertex v is either assigned a color from Cv or
is not assigned a color, subject to the restrictions that no two adjacent vertices are
assigned the same color and that if v is not assigned a color then each color in C
must be assigned to at least one neighbor of v. The MIS problem is a special case of
the Maximal Coloring problem where Cv {red} for each vertex v V. The set of
vertices colored red in any maximal coloring are a MIS.

Another problem which the Maximal Coloring problem generalizes is the A + 1VC
problem. The input to the A + 1VC problem is an undirected graph (3 (V, E). Let A
be the maximum degree of any vertex in V, let A’= A + 1 and let C {cl,. , CA’} be
a set of distinct colors. The output is an assignment of a color from C to each vertex
such that no two adjacent vertices are assigned the same color. The A + 1VC problem
is the special case of the Maximal Coloring problem where for each vertex v V,
C C. In any Maximal Coloring each vertex will be assigned some color from C
because A’ is larger than d(v). The obvious sequential algorithm for the A+ 1VC
problem follows: For v 1, , n, vertex v is assigned the smallest indexed color from
C which is not assigned to a smaller indexed adjacent vertex. One might hope to
devise a fast parallel algorithm for the A+ 1VC problem by emulating the sequential
algorithm. However, this is unlikely since

LEMMA 3. The problem of deciding what color vertex n is assigned by the above
sequential algorithm is NC complete for P.

Proof There is an easy reduction from the LFMIS problem (see 1) to this
problem. [3

Thus, as was the case for the MIS problem, the coloring algorithm cannot simply
emulate the sequential algorithm.

There is a logspace reduction from the Maximal Coloring problem to the MIS
problem. Given a Maximal Coloring problem with input G (V, E) and color sets
{C}, a new graph G’ is formed. The vertices in G’ are V’= {(v, c): v V and c C}.
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The edges in G’ are

E’= {((v, c,), (v, c)): ve V and 1, 2 e Cv}
{((v, c), (w, c)): (v, w) e E and ce Cf3 C}.

There is a one-to-one correspondence between maximal colorings in G and maximal
independent sets in G’. This reduction together with the MIS algorithm shows that
the Maximal Coloring problem is in NC2.

The AVC problem is to color all the vertices using only A distinct colors. Brooks’
theorem [Br] proves that all but very special graphs can be colored with A colors, and
implicitly gives a polynomial time sequential algorithm. Karloff, Shmoys and Soroker
[KSS] have found a NC parallel algorithm for the AVC problem when A is polylog
in the number of vertices. Their algorithm uses the algorithm for the A + 1VC problem
as a subroutine. The classification of the AVC problem with respect to parallel computa-
tion is still open for unrestricted A.

6.2. Binary coherent systems. Recently, researchers in Artificial Intelligence have
been actively investigating various connectionist models of the brain [Fe], [Go], [Hi],
[Ho]. Some of the basic features of the connectionist model are shared by knowledge
representation schemas [Ts].

One particular model of the brain is a binary coherent system [Ho], [Hi]. The
binary coherent system (BCS) problem, which is studied by Hopfield [Ho], can be
formally stated as follows. The input is an undirected graph G (V, E) together with
a real-valued weight We for each edge and a real-valued threshold tv for each vertex.
Each vertex v has a state sv which can be either -1 or 1. The state of the system is a
tuple (sl,..., Slvl). The energy of vertex v in a system state is

The output is a system state where all vertices have energy greater than or equal to
zero. The BCS problem has a polynomial time sequential algorithm if all of the weights
and thresholds are input in unary. The algorithm repeats the following step until all
vertices have energy greater than or equal to zero: find a vertex with negative energy
and flip its state. The running time of this algorithm is slow if the system is large.
Hopfield suggests a simple asynchronous parallel algorithm for this problem, but
provides no formal analysis of its running time, although he does give some empirical
evidence that it is fast. An open question is whether or not the BCS problem has an
NC algorithm.

The MIS problem is a special case of the BCS problem, where all edge weights
are -1 and for each v V, t =-d(v) + 1. Thus, Algorithm D shows that at least a
special case of the BCS problem is in NC, and Baruch Awerbuch has observed that
Algorithm A can be easily modified to run asynchronously in parallel.

Another natural problem which is a special case ofthe BCS problem is the Different
Than Majority Labelling (DTML) problem. The input to this problem is an undirected
graph G (V,/). The output is a label of-1 or 1 for each vertex v such that at least
half of the neighbors of v have the opposite label. The DTML problem is a BCS
problem where all thresholds are zero and all edge weights are -1. The DTML problem
may also be viewed as a graph partition problem: partition the vertices of an undirected
graph into two sets such that for each vertex v at least half of the edges out of v cross
the partition. (Using the techniques developed in this paper, there is a fast parallel
algorithm for an easier graph partition problem which can be stated as follows: partition
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the vertices of an undirected graph into two sets such that at least half of the edges
in the graph cross the partition.) Karloff [Kf2] has found a NC algorithm for this
problem when the input is a cubic graph, but the general problem is still open. However,
there is evidence that a different type algorithm than the MIS algorithm will have to
be found.

THEOREM 4. The problem of deciding whether there is a DTML for a graph such
that two specified vertices receive the same label is NP-complete.

This theorem gives evidence that no fast algorithm for the DTML problem can
permanently decide the labels of vertices in a local manner in the same way as is the
case for the MIS algorithm.

7. Open problems and further work.
1. Find other Monte Carlo algorithms for which the techniques developed in this

paper are applicable for converting the algorithm into a deterministic algorithm.
2. Develop probabilistic bounds on random variables that are d-wise independent.
3. Algorithm A has a local property which seems particularly well suited to

distributed computing networks where the processors can only communicate with
neighboring processors. Find applications for this algorithm in distributed computing
protocols.

4. There is no known lower bound on the parallel complexity of the MIS problem.
Either find a problem which is complete in some complexity class (like NL) and reduce
it to the MIS problem, or else find a faster MIS algorithm.
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