
Recommendation

Systems

Recommendation Systems

 Predicting user responses to options

 Offering news articles based on users interests

 Offering suggestions on what the user might like to buy/consume

 News, Movies, music, books, products

 Physical stores/services

 Not tailored to individual customer

 Governed by aggregate numbers

 Online systems

 Wider variety available  long tail

 Need to recommend items

 Ideally tailored to users

Items 

P
o

p
u

la
ri
ty

 

Utility Matrix

 Users (rows) & Items (columns)

 Matrix entries are scores/ratings by user for the item

 Boolean

 Ordered set

 Real

 Matrix is sparse

 Goal of recommendation systems

 Predict the blank entries of the utility matrix

 Not necessary to predict every entry

 predict some high entries

Populating the Utility Matrix

 Ask users to rate items

 Not everyone wants to rate

 Biased – within and across users

 Make inference from users behavior

 Boolean choice – likes, watched, bought

 providers like google, amazon have an advantage

 Quality of utility matrix determines the kind of recommendation

algorithms that get used

Recommendation Systems

 Two major approaches

 Content based systems – similarity of item properties

 Depending on the properties of movies you have watched, suggest movies

with the same properties – genre, director, actors etc.

 Collaborative filtering – relationship between users and items

 Find users with a similar ‘taste’

 Recommend items preferred by similar users

Content-based Recommendations

 Identify user/item profiles and match them for recommendation

 In many cases profiles for items are easy to obtain

 Movies: genres, actors, director

 Product description, dimensions, weight

 Harder for others: news articles, blogs

 Example: Search ads

 Item profiles are categories & keywords for ads

 User profiles are the keywords user provided for search

Obtaining User profiles

 Probably the most valuable data are those that contain user

activities or behavior

 Direct: search keywords, filing out profiles/surveys

 Indirect:

 Blogposts, tweets

 Browsing history

Making recommendations

 Similarity between users and items profiles

 Jaccard, cosine, any other metric

 Use some bucketing technique to find items

 Trees, Hashing

 Classification algorithms

 Using users ratings, learn users ‘taste’

 Predict ratings for other items

Collaborative Filtering

 Instead of using an item-profile vector use the column in the utility

matrix

 Item defined by which users have bought/rated the item

 Instead of using an user-profile vector use the row in the utility matrix

 User defined by what items they have bought/liked

 Users similar if their vectors are close using some metric

 Jaccard, cosine

 Recommendations based on finding similar users and
recommending items liked by similar users

Measuring similarity

 Sparsity of utility matrix poses some challenges

 Rounding data

 Consider 3,4,5 as 1 and 1,2 as 0  same as unwatched

 Jaccard distance

 Normalizing ratings

 Subtract average user rating from each rating

 Convert low ratings into negative numbers

 Cosine distance

Duality of Similarity

 Two approaches estimate missing entries of the utility matrix

 Find similar users and average their ratings for the particular item

 Find similar items and average user’s ratings for those items

 Considerations

 Similar users: only find similar users once, generate rankings on demand

 Similar items: need to find similar items for all items

 Is more reliable in general

Clustering users and items

 In order to deal with the sparsity of the utility matrix

 Cluster items

 New utility matrix has entries with average rating that the user gave to

items in the cluster

 Use this utility matrix to …

 Cluster users

 Matrix entry  average rating that the users gave

 Recurse

 Until matrix is sufficiently dense

Estimating entries in the original

utility matrix

 Find to which clusters the user (𝑈) and item (𝐼) belong, say 𝐶 and 𝐷

 If an entry exists for row 𝐶 and column 𝐷, use that for the 𝑈𝐼 entry of

the original matrix

 If the 𝐶𝐷 entry is blank, then find similar item (clusters) and estimate

the value for the 𝐶𝐷 entry and consequently that for the 𝑈𝐼 entry of

the original matrix.

Dimensionality reduction

 Utility Matrix, 𝑀, is low rank  SVD, Sketching

 𝑀 → 𝑛 ×𝑚

 𝑀 = 𝑈𝑉

 𝑈 → 𝑛 × 𝑑, 𝑉 → 𝑑 ×𝑚

 How close is 𝑈𝑉 to 𝑀  Frobenius norm

 Sqrt of Sum of difference over all nonblank entries

Incremental computation of 𝑈𝑉

 Preprocess matrix 𝑀

 Start with an initial guess for 𝑈, 𝑉

 Iteratively update 𝑈, 𝑉 to minimize the norm of the error

 Optimization problem

Preprocessing 𝑀

 Normalize for user

 Subtract average user rating

 Normalize for item

 Subtract average item rating

 Both

 Subtract average of user and item rating from 𝑚𝑖𝑗

 Need to undo normalization while making predictions ...

Initializing 𝑈, 𝑉

 Need a good guess

 Some randomness helps

 Initialize all entries to the same value

 0 is a good choice if normalized

 Else,
𝑎

𝑑
is a good value, where 𝑎 is the avg. non-blank entry

 Ideally start with multiple initial guesses

 centered around 0

Optimizing

 Gradient descent

 First order approximation

 Update using steps proportional to the negative gradient of the
objective function (RMSE)

 Stop when gradient is zero

 Inefficient for large matrices

 Stochastic Gradient descent

 Randomized SVD

Gradient Descent

Given a multivariate function 𝐹(𝑥), at point 𝑥

then, 𝐹 𝑏 < 𝐹 𝑎 , where

𝑏 = 𝑎 − 𝛾𝛻𝐹(𝑎)

for some sufficiently small 𝛾

min 𝑀 − 𝑈𝑉

UV Decomposition

𝑀

𝑚

𝑛
≈ 𝑈 X

𝑉
𝑑

𝑑

UV Decomposition

𝑃 = 𝑈 X

𝑉𝑑

𝑟

𝑥

𝑟

𝑝𝑟𝑗 =

𝑘=1

𝑑

𝑢𝑟𝑘𝑣𝑘𝑗 =

𝑘≠s

𝑢𝑟𝑘𝑣𝑘𝑗 + 𝑥𝑣𝑠𝑗

𝑗 𝑗

UV Decomposition

 𝑀,𝑈, 𝑉, and 𝑃 = 𝑈𝑉

 Let us optimize for 𝑥 = 𝑢𝑟𝑠

𝑝𝑟𝑗 =

𝑘=1

𝑑

𝑢𝑟𝑘𝑣𝑘𝑗 =

𝑘≠s

𝑢𝑟𝑘𝑣𝑘𝑗 + 𝑥𝑣𝑠𝑗

𝒞 =

𝑗

𝑚𝑟𝑗 − 𝑝𝑟𝑗
2
=

𝑗

𝑚𝑟𝑗 −

𝑘≠𝑠

𝑢𝑟𝑘𝑣𝑘𝑗 − 𝑥𝑣𝑠𝑗

2

UV Decomposition

 First order optimality  𝜕𝒞/𝜕𝑥 = 0

𝒞 =

𝑗

𝑚𝑟𝑗 − 𝑝𝑟𝑗
2
=

𝑗

𝑚𝑟𝑗 −

𝑘≠𝑠

𝑢𝑟𝑘𝑣𝑘𝑗 − 𝑥𝑣𝑠𝑗

2

𝜕𝒞

𝜕𝑥
=

𝑗

−2𝑣𝑠𝑗 𝑚𝑟𝑗 −

𝑘≠𝑠

𝑢𝑟𝑘𝑣𝑘𝑗 − 𝑥𝑣𝑠𝑗 = 0

𝑥 =
 𝑗 𝑣𝑠𝑗 𝑚𝑟𝑗 − 𝑘≠𝑠 𝑢𝑟𝑘𝑣𝑘𝑗

 𝑗 𝑣𝑠𝑗
2

UV Decomposition

 Choose elements of 𝑈 and 𝑉 to optimize

 In order

 Some random permutation

 Iterate

 Correct way

 Use expression to compute 𝜕𝒞/𝜕𝒙 at current estimate

 Expensive when number of unknowns is large 2 𝑛 𝑑

 Use traditional gradient descent

Stochastic Gradient Descent

In cases where the objective function 𝒞 𝑤 can be written in terms of

local costs

𝒞 𝑤 =

𝑛

𝒞𝑖 𝑤

For the case of 𝑈𝑉 decomposition,

𝒞 =

𝑖,𝑗

𝒸(𝑀𝑖𝑗 , 𝑈𝑖∗, 𝑉∗𝑗)

Stochastic Gradient Descent

𝑃 = 𝑈 X

𝑉𝑑

𝑖𝑖

𝒸 𝑀𝑖𝑗 , 𝑈𝑖∗, 𝑉∗𝑗 = 𝑚𝑖𝑗 − 𝑝𝑟𝑗
2
= 𝑚𝑖𝑗 −

𝑘=1

𝑑

𝑢𝑖𝑘𝑣𝑘𝑗

2

𝑗 𝑗

Stochastic Gradient Descent

 Traditional gradient descent

𝑤 ← 𝑤 − 𝜆

𝑛

𝛻𝒞𝑖 𝑤

 In Stochastic GD, approximate true gradient by a single example:

𝑤 ← 𝑤 − 𝜆𝛻𝒞𝑖(𝑤)

Stochastic Gradient Descent

 Input: samples 𝑍, initial values 𝑼0, 𝑽0

 while not converged do

 Select a sample 𝑖, 𝑗 ∈ 𝑍 uniformly at random

 𝑼′𝑖∗ ← 𝑼𝑖∗ − 𝜆𝑛𝑁
𝜕

𝜕𝑼𝑖∗
𝒸 𝑴𝑖𝑗 , 𝑼𝑖∗, 𝑽∗𝑗

 𝑽∗𝑗 ← 𝑽∗𝑗 − 𝜆𝑛𝑁
𝜕

𝜕𝑽∗𝑗
𝒸 𝑴𝒊𝒋, 𝑼𝑖∗, 𝑽∗𝑗

 𝑈𝑖∗ ← 𝑈𝑖∗
′

Stochastic Gradient Descent

𝜕

𝜕𝑼𝑖∗
𝒸 𝑴𝑖𝑗 , 𝑼𝑖∗, 𝑽∗𝑗

𝜕

𝜕𝑼𝑖∗
𝑚𝑖𝑗 −

𝑘=1

𝑑

𝑢𝑖𝑘𝑣𝑘𝑗

2

𝜕𝒸

𝜕𝑼𝑖𝑘
= −2𝑣𝑘𝑗 𝑚𝑖𝑗 −

𝑘=1

𝑑

𝑢𝑖𝑘𝑣𝑘𝑗

𝜕𝒸

𝜕𝑼𝑖∗
= −2 𝑚𝑖𝑗 − 𝑼𝑖∗ ⋅ 𝑽∗𝑗 𝑽∗𝑗

