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Recommendation Systems

 Predicting user responses to options

 Offering news articles based on users interests

 Offering suggestions on what the user might like to buy/consume

 News, Movies, music, books, products 

 Physical stores/services 

 Not tailored to individual customer

 Governed by aggregate numbers 

 Online systems 

 Wider variety available  long tail

 Need to recommend items

 Ideally tailored to users 
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Utility Matrix

 Users (rows) & Items (columns)

 Matrix entries are scores/ratings by user for the item 

 Boolean

 Ordered set 

 Real

 Matrix is sparse

 Goal of recommendation systems

 Predict the blank entries of the utility matrix 

 Not necessary to predict every entry

 predict some high entries



Populating the Utility Matrix

 Ask users to rate items

 Not everyone wants to rate

 Biased – within and across users 

 Make inference from users behavior 

 Boolean choice – likes, watched, bought

 providers like google, amazon have an advantage

 Quality of utility matrix determines the kind of recommendation 

algorithms that get used



Recommendation Systems

 Two major approaches 

 Content based systems – similarity of item properties 

 Depending on the properties of movies you have watched, suggest movies 

with the same properties – genre, director, actors etc.

 Collaborative filtering – relationship between users and items 

 Find users with a similar ‘taste’ 

 Recommend items preferred by similar users  



Content-based Recommendations

 Identify user/item profiles and match them for recommendation

 In many cases profiles for items are easy to obtain

 Movies: genres, actors, director

 Product description, dimensions, weight

 Harder for others: news articles, blogs

 Example: Search ads

 Item profiles are categories & keywords for ads

 User profiles are the keywords user provided for search



Obtaining User profiles 

 Probably the most valuable data are those that contain user 

activities or behavior

 Direct: search keywords, filing out profiles/surveys

 Indirect:

 Blogposts, tweets

 Browsing history



Making recommendations

 Similarity between users and items profiles 

 Jaccard, cosine, any other metric 

 Use some bucketing technique to find items 

 Trees, Hashing

 Classification algorithms

 Using users ratings, learn users ‘taste’

 Predict ratings for other items 



Collaborative Filtering

 Instead of using an item-profile vector use the column in the utility 

matrix

 Item defined by which users have bought/rated the item

 Instead of using an user-profile vector use the row in the utility matrix

 User defined by what items they have bought/liked

 Users similar if their vectors are close using some metric

 Jaccard, cosine

 Recommendations based on finding similar users and 
recommending items liked by similar users 



Measuring similarity

 Sparsity of utility matrix poses some challenges

 Rounding data

 Consider 3,4,5 as 1 and 1,2 as 0  same as unwatched

 Jaccard distance

 Normalizing ratings

 Subtract average user rating from each rating 

 Convert low ratings into negative numbers

 Cosine distance 



Duality of Similarity

 Two approaches estimate missing entries of the utility matrix

 Find similar users and average their ratings for the particular item 

 Find similar items and average user’s ratings for those items

 Considerations

 Similar users: only find similar users once, generate rankings on demand

 Similar items: need to find similar items for all items

 Is more reliable in general 



Clustering users and items  

 In order to deal with the sparsity of the utility matrix

 Cluster items 

 New utility matrix has entries with average rating that the user gave to 

items in the cluster

 Use this utility matrix to …

 Cluster users 

 Matrix entry  average rating that the users gave

 Recurse

 Until matrix is sufficiently dense 



Estimating entries in the original 

utility matrix

 Find to which clusters the user (𝑈) and item (𝐼) belong, say 𝐶 and 𝐷

 If an entry exists for row 𝐶 and column 𝐷, use that for the 𝑈𝐼 entry of 

the original matrix

 If the 𝐶𝐷 entry is blank, then find similar item (clusters) and estimate 

the value for the 𝐶𝐷 entry and consequently that for the 𝑈𝐼 entry of 

the original matrix. 



Dimensionality reduction

 Utility Matrix, 𝑀, is low rank  SVD, Sketching 

 𝑀 → 𝑛 ×𝑚

 𝑀 = 𝑈𝑉

 𝑈 → 𝑛 × 𝑑, 𝑉 → 𝑑 ×𝑚

 How close is 𝑈𝑉 to 𝑀  Frobenius norm 

 Sqrt of Sum of difference over all nonblank entries



Incremental computation of 𝑈𝑉

 Preprocess matrix 𝑀

 Start with an initial guess for 𝑈, 𝑉

 Iteratively update 𝑈, 𝑉 to minimize the norm of the error

 Optimization problem 



Preprocessing 𝑀

 Normalize for user

 Subtract average user rating 

 Normalize for item

 Subtract average item rating

 Both

 Subtract average of user and item rating from 𝑚𝑖𝑗

 Need to undo normalization while making predictions ... 



Initializing 𝑈, 𝑉

 Need a good guess

 Some randomness helps

 Initialize all entries to the same value

 0 is a good choice if normalized 

 Else, 
𝑎

𝑑
is a good value, where 𝑎 is the avg. non-blank entry

 Ideally start with multiple initial guesses 

 centered around 0



Optimizing 

 Gradient descent 

 First order approximation

 Update using steps proportional to the negative gradient of the 
objective function (RMSE)

 Stop when gradient is zero 

 Inefficient for large matrices 

 Stochastic Gradient descent 

 Randomized SVD



Gradient Descent 

Given a multivariate function 𝐹(𝑥), at point 𝑥

then, 𝐹 𝑏 < 𝐹 𝑎 , where 

𝑏 = 𝑎 − 𝛾𝛻𝐹(𝑎)

for some sufficiently small 𝛾

min 𝑀 − 𝑈𝑉
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UV Decomposition
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UV Decomposition

 𝑀,𝑈, 𝑉, and 𝑃 = 𝑈𝑉

 Let us optimize for 𝑥 = 𝑢𝑟𝑠
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UV Decomposition

 First order optimality  𝜕𝒞/𝜕𝑥 = 0
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UV Decomposition

 Choose elements of 𝑈 and 𝑉 to optimize

 In order

 Some random permutation

 Iterate  

 Correct way

 Use expression to compute 𝜕𝒞/𝜕𝒙 at current estimate

 Expensive when number of unknowns is large 2 𝑛 𝑑

 Use traditional gradient descent 



Stochastic Gradient Descent

In cases where the objective function 𝒞 𝑤 can be written in terms of 

local costs

𝒞 𝑤 = 

𝑛

𝒞𝑖 𝑤

For the case of 𝑈𝑉 decomposition,

𝒞 = 

𝑖,𝑗

𝒸(𝑀𝑖𝑗 , 𝑈𝑖∗, 𝑉∗𝑗)



Stochastic Gradient Descent
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Stochastic Gradient Descent

 Traditional gradient descent 

𝑤 ← 𝑤 − 𝜆 

𝑛

𝛻𝒞𝑖 𝑤

 In Stochastic GD, approximate true gradient by a single example: 

𝑤 ← 𝑤 − 𝜆𝛻𝒞𝑖(𝑤)



Stochastic Gradient Descent

 Input: samples 𝑍, initial values 𝑼0, 𝑽0

 while not converged do

 Select a sample 𝑖, 𝑗 ∈ 𝑍 uniformly at random

 𝑼′𝑖∗ ← 𝑼𝑖∗ − 𝜆𝑛𝑁
𝜕

𝜕𝑼𝑖∗
𝒸 𝑴𝑖𝑗 , 𝑼𝑖∗, 𝑽∗𝑗

 𝑽∗𝑗 ← 𝑽∗𝑗 − 𝜆𝑛𝑁
𝜕

𝜕𝑽∗𝑗
𝒸 𝑴𝒊𝒋, 𝑼𝑖∗, 𝑽∗𝑗

 𝑈𝑖∗ ← 𝑈𝑖∗
′



Stochastic Gradient Descent
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