
Recommendation

Systems

Recommendation Systems

 Predicting user responses to options

 Offering news articles based on users interests

 Offering suggestions on what the user might like to buy/consume

 News, Movies, music, books, products

 Physical stores/services

 Not tailored to individual customer

 Governed by aggregate numbers

 Online systems

 Wider variety available long tail

 Need to recommend items

 Ideally tailored to users

Items

P
o

p
u

la
ri
ty

Utility Matrix

 Users (rows) & Items (columns)

 Matrix entries are scores/ratings by user for the item

 Boolean

 Ordered set

 Real

 Matrix is sparse

 Goal of recommendation systems

 Predict the blank entries of the utility matrix

 Not necessary to predict every entry

 predict some high entries

Populating the Utility Matrix

 Ask users to rate items

 Not everyone wants to rate

 Biased – within and across users

 Make inference from users behavior

 Boolean choice – likes, watched, bought

 providers like google, amazon have an advantage

 Quality of utility matrix determines the kind of recommendation

algorithms that get used

Recommendation Systems

 Two major approaches

 Content based systems – similarity of item properties

 Depending on the properties of movies you have watched, suggest movies

with the same properties – genre, director, actors etc.

 Collaborative filtering – relationship between users and items

 Find users with a similar ‘taste’

 Recommend items preferred by similar users

Content-based Recommendations

 Identify user/item profiles and match them for recommendation

 In many cases profiles for items are easy to obtain

 Movies: genres, actors, director

 Product description, dimensions, weight

 Harder for others: news articles, blogs

 Example: Search ads

 Item profiles are categories & keywords for ads

 User profiles are the keywords user provided for search

Obtaining User profiles

 Probably the most valuable data are those that contain user

activities or behavior

 Direct: search keywords, filing out profiles/surveys

 Indirect:

 Blogposts, tweets

 Browsing history

Making recommendations

 Similarity between users and items profiles

 Jaccard, cosine, any other metric

 Use some bucketing technique to find items

 Trees, Hashing

 Classification algorithms

 Using users ratings, learn users ‘taste’

 Predict ratings for other items

Collaborative Filtering

 Instead of using an item-profile vector use the column in the utility

matrix

 Item defined by which users have bought/rated the item

 Instead of using an user-profile vector use the row in the utility matrix

 User defined by what items they have bought/liked

 Users similar if their vectors are close using some metric

 Jaccard, cosine

 Recommendations based on finding similar users and
recommending items liked by similar users

Measuring similarity

 Sparsity of utility matrix poses some challenges

 Rounding data

 Consider 3,4,5 as 1 and 1,2 as 0 same as unwatched

 Jaccard distance

 Normalizing ratings

 Subtract average user rating from each rating

 Convert low ratings into negative numbers

 Cosine distance

Duality of Similarity

 Two approaches estimate missing entries of the utility matrix

 Find similar users and average their ratings for the particular item

 Find similar items and average user’s ratings for those items

 Considerations

 Similar users: only find similar users once, generate rankings on demand

 Similar items: need to find similar items for all items

 Is more reliable in general

Clustering users and items

 In order to deal with the sparsity of the utility matrix

 Cluster items

 New utility matrix has entries with average rating that the user gave to

items in the cluster

 Use this utility matrix to …

 Cluster users

 Matrix entry average rating that the users gave

 Recurse

 Until matrix is sufficiently dense

Estimating entries in the original

utility matrix

 Find to which clusters the user (𝑈) and item (𝐼) belong, say 𝐶 and 𝐷

 If an entry exists for row 𝐶 and column 𝐷, use that for the 𝑈𝐼 entry of

the original matrix

 If the 𝐶𝐷 entry is blank, then find similar item (clusters) and estimate

the value for the 𝐶𝐷 entry and consequently that for the 𝑈𝐼 entry of

the original matrix.

Dimensionality reduction

 Utility Matrix, 𝑀, is low rank SVD, Sketching

 𝑀 → 𝑛 ×𝑚

 𝑀 = 𝑈𝑉

 𝑈 → 𝑛 × 𝑑, 𝑉 → 𝑑 ×𝑚

 How close is 𝑈𝑉 to 𝑀 Frobenius norm

 Sqrt of Sum of difference over all nonblank entries

Incremental computation of 𝑈𝑉

 Preprocess matrix 𝑀

 Start with an initial guess for 𝑈, 𝑉

 Iteratively update 𝑈, 𝑉 to minimize the norm of the error

 Optimization problem

Preprocessing 𝑀

 Normalize for user

 Subtract average user rating

 Normalize for item

 Subtract average item rating

 Both

 Subtract average of user and item rating from 𝑚𝑖𝑗

 Need to undo normalization while making predictions ...

Initializing 𝑈, 𝑉

 Need a good guess

 Some randomness helps

 Initialize all entries to the same value

 0 is a good choice if normalized

 Else,
𝑎

𝑑
is a good value, where 𝑎 is the avg. non-blank entry

 Ideally start with multiple initial guesses

 centered around 0

Optimizing

 Gradient descent

 First order approximation

 Update using steps proportional to the negative gradient of the
objective function (RMSE)

 Stop when gradient is zero

 Inefficient for large matrices

 Stochastic Gradient descent

 Randomized SVD

Gradient Descent

Given a multivariate function 𝐹(𝑥), at point 𝑥

then, 𝐹 𝑏 < 𝐹 𝑎 , where

𝑏 = 𝑎 − 𝛾𝛻𝐹(𝑎)

for some sufficiently small 𝛾

min 𝑀 − 𝑈𝑉

UV Decomposition

𝑀

𝑚

𝑛
≈ 𝑈 X

𝑉
𝑑

𝑑

UV Decomposition

𝑃 = 𝑈 X

𝑉𝑑

𝑟

𝑥

𝑟

𝑝𝑟𝑗 =

𝑘=1

𝑑

𝑢𝑟𝑘𝑣𝑘𝑗 =

𝑘≠s

𝑢𝑟𝑘𝑣𝑘𝑗 + 𝑥𝑣𝑠𝑗

𝑗 𝑗

UV Decomposition

 𝑀,𝑈, 𝑉, and 𝑃 = 𝑈𝑉

 Let us optimize for 𝑥 = 𝑢𝑟𝑠

𝑝𝑟𝑗 =

𝑘=1

𝑑

𝑢𝑟𝑘𝑣𝑘𝑗 =

𝑘≠s

𝑢𝑟𝑘𝑣𝑘𝑗 + 𝑥𝑣𝑠𝑗

𝒞 =

𝑗

𝑚𝑟𝑗 − 𝑝𝑟𝑗
2
=

𝑗

𝑚𝑟𝑗 −

𝑘≠𝑠

𝑢𝑟𝑘𝑣𝑘𝑗 − 𝑥𝑣𝑠𝑗

2

UV Decomposition

 First order optimality 𝜕𝒞/𝜕𝑥 = 0

𝒞 =

𝑗

𝑚𝑟𝑗 − 𝑝𝑟𝑗
2
=

𝑗

𝑚𝑟𝑗 −

𝑘≠𝑠

𝑢𝑟𝑘𝑣𝑘𝑗 − 𝑥𝑣𝑠𝑗

2

𝜕𝒞

𝜕𝑥
=

𝑗

−2𝑣𝑠𝑗 𝑚𝑟𝑗 −

𝑘≠𝑠

𝑢𝑟𝑘𝑣𝑘𝑗 − 𝑥𝑣𝑠𝑗 = 0

𝑥 =
 𝑗 𝑣𝑠𝑗 𝑚𝑟𝑗 − 𝑘≠𝑠 𝑢𝑟𝑘𝑣𝑘𝑗

 𝑗 𝑣𝑠𝑗
2

UV Decomposition

 Choose elements of 𝑈 and 𝑉 to optimize

 In order

 Some random permutation

 Iterate

 Correct way

 Use expression to compute 𝜕𝒞/𝜕𝒙 at current estimate

 Expensive when number of unknowns is large 2 𝑛 𝑑

 Use traditional gradient descent

Stochastic Gradient Descent

In cases where the objective function 𝒞 𝑤 can be written in terms of

local costs

𝒞 𝑤 =

𝑛

𝒞𝑖 𝑤

For the case of 𝑈𝑉 decomposition,

𝒞 =

𝑖,𝑗

𝒸(𝑀𝑖𝑗 , 𝑈𝑖∗, 𝑉∗𝑗)

Stochastic Gradient Descent

𝑃 = 𝑈 X

𝑉𝑑

𝑖𝑖

𝒸 𝑀𝑖𝑗 , 𝑈𝑖∗, 𝑉∗𝑗 = 𝑚𝑖𝑗 − 𝑝𝑟𝑗
2
= 𝑚𝑖𝑗 −

𝑘=1

𝑑

𝑢𝑖𝑘𝑣𝑘𝑗

2

𝑗 𝑗

Stochastic Gradient Descent

 Traditional gradient descent

𝑤 ← 𝑤 − 𝜆

𝑛

𝛻𝒞𝑖 𝑤

 In Stochastic GD, approximate true gradient by a single example:

𝑤 ← 𝑤 − 𝜆𝛻𝒞𝑖(𝑤)

Stochastic Gradient Descent

 Input: samples 𝑍, initial values 𝑼0, 𝑽0

 while not converged do

 Select a sample 𝑖, 𝑗 ∈ 𝑍 uniformly at random

 𝑼′𝑖∗ ← 𝑼𝑖∗ − 𝜆𝑛𝑁
𝜕

𝜕𝑼𝑖∗
𝒸 𝑴𝑖𝑗 , 𝑼𝑖∗, 𝑽∗𝑗

 𝑽∗𝑗 ← 𝑽∗𝑗 − 𝜆𝑛𝑁
𝜕

𝜕𝑽∗𝑗
𝒸 𝑴𝒊𝒋, 𝑼𝑖∗, 𝑽∗𝑗

 𝑈𝑖∗ ← 𝑈𝑖∗
′

Stochastic Gradient Descent

𝜕

𝜕𝑼𝑖∗
𝒸 𝑴𝑖𝑗 , 𝑼𝑖∗, 𝑽∗𝑗

𝜕

𝜕𝑼𝑖∗
𝑚𝑖𝑗 −

𝑘=1

𝑑

𝑢𝑖𝑘𝑣𝑘𝑗

2

𝜕𝒸

𝜕𝑼𝑖𝑘
= −2𝑣𝑘𝑗 𝑚𝑖𝑗 −

𝑘=1

𝑑

𝑢𝑖𝑘𝑣𝑘𝑗

𝜕𝒸

𝜕𝑼𝑖∗
= −2 𝑚𝑖𝑗 − 𝑼𝑖∗ ⋅ 𝑽∗𝑗 𝑽∗𝑗

