
Frequent *
STREAMING ALGORITHMS FOR APPROXIMATIONS



Reminder 

 Please start testing your code on Elephant 

 Start thinking about your final project

 Teams

 Topics 

 Proposals due before fall break

 Review material

 Mid-term

 Review class 



Frequent Items

𝑛

𝑑

𝑓 = 4

Obtain the frequency 𝑓(𝑖) of each item in the stream 

What if 𝑑 is very large?

3 2     4     4     3



Think 
EXACT VS. APPROXIMATIONS



Frequent Items

Lets maintain less than 𝑙 < 𝑑 counters (Misra-Gries)

With at least 1 empty counter

𝑙



Frequent Items

𝑙

If an item has a counter,

add 1 to that counter



Frequent Items

𝑙

Otherwise, create a new

counter and set it to 1



Frequent Items

𝑙

But now we don’t have

less than 𝑙 counters



Frequent Items

𝑙

Let 𝛿 be the median 

counter value at time 𝑡



Frequent Items

𝑙

Decrease all counters by 𝛿



Frequent Items

𝑙

and continue …



Frequent Items

𝑙

The approximated counts are 𝑓′

𝑓′ = 0

𝑓′ = 1



Frequent Items

 We increase the count by only 1 for each item appearance

 Because we decrease each counter by at most 𝛿𝑡 at time 𝑡

 Calculating the total approximate frequencies:

 Setting 𝑙 = 2/𝜖 gives us



Frequent Items

 We increase the count by only 1 for each item appearance

𝑓′ 𝑖 ≤ 𝑓 𝑖

 Because we decrease each counter by at most 𝛿𝑡 at time 𝑡

𝑓′ 𝑖 ≥ 𝑓 𝑖 −  

𝑡

𝛿𝑡

 Calculating the total approximate frequencies:

0 ≤  

𝑖

𝑓′ 𝑖 ≤  

𝑡

1 −
𝑙

2
𝛿𝑡 = 𝑛 −

𝑙

2
 

𝑡

𝛿𝑡

 

𝑡

𝛿𝑡 ≤
2𝑛

𝑙

 Setting 𝑙 = 2/𝜖 gives us
𝑓 𝑖 − 𝑓′(𝑖) ≤ 𝜖𝑛



What about higher dimensions?



Matrix Sketching

 Data is usually represented as a matrix

 For most Big Data applications, this matrix is too large for one 

machine

 In many cases, the matrix is too large to even fit in distributed 

memory

 Need to optimize for data access

 Streaming algorithm

 Generate approximation by accessing (streaming) data once



Matrix Sketching 

 Efficiently compute a concisely representable matrix 𝐵 such that

B ≈ 𝐴 or 𝐵𝐵𝑇 ≈ 𝐴𝐴𝑇

 Working with 𝐵 is often “good enough” 

 Dimension reduction

 Classification

 Regression 

 Matrix Multiplication (approximate)

 Recommendation systems



Frequent Directions (Edo Liberty ‘13)

 Efficiently maintain a matrix 𝐵 with only 𝑙 = 2/𝜖 columns such that,

𝐴𝐴𝑇 − 𝐵𝐵𝑇
2 ≤ 𝜖 𝐴 𝑓

2

 Intuitive approach  extend frequent items

 How to estimate the frequency of (frequent) items in a streaming 

fashion?



Frequent Directions (Liberty 2013)

𝑑

𝑙

maintain a sketch of 

at most 𝑙 columns 

maintain the invariant 

that some columns are

empty (zero-valued)

1 2

3 7

1 4

9 2

3 5

4 8

8 1



Frequent Directions

𝑑

𝑙

1

2

5

6

9

2

3

Stream in matrix 𝐴 one column 

at a time

Input vectors are simply stored 

In empty columns

1 2

3 7

1 4

9 2

3 5

4 8

8 1



Frequent Directions

1 2 3 8 6

3 7 5 7 0

1 4 4 3 3

9 2 2 3 7

3 5 6 6 1

4 8 1 5 4

8 1 2 6 2

𝑑

𝑙

When the sketch is ‘full’ 

We need to zero out some 

columns



Singular Value Decomposition 
SWISS ARMY KNIFE OF LINEAR ALGEBRA



Goal: Given a 𝑚 × 𝑛 matrix 𝐴, 

𝐴 = 𝑈 Σ 𝑉∗ =  

𝑗=1

𝑛

𝜎𝑗𝒖𝑗𝒗𝑗
∗

𝑚 × 𝑛 𝑚 × 𝑛 𝑛 × 𝑛 𝑛 × 𝑛

𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝑛 ≥ 0 are the singular values of 𝐴
𝒖𝟏, 𝒖𝟐, … , 𝒖𝒏 are orthonormal, the left singular vectors of 𝐴, and

𝒗𝟏, 𝒗𝟐, … , 𝒗𝒏 are orthonormal, the right singular vectors of 𝐴.



Singular Value Decomposition

 Closely related problems:

 Eigenvalue decomposition  𝐴 ≈ 𝑉Λ𝑉∗

 Spanning columns or rows   𝐴 ≈ 𝐶 𝑈 𝑅

 Applications: 

 Principal Component Analysis: Form an empirical covariance matrix from some 
collection of statistical data. By computing the singular value decomposition of the 
matrix, you find the directions of maximal variance

 Finding spanning columns or rows: Collect statistical data in a large matrix. By finding a 
set of spanning columns, you can identify some variables that “explain” the data. (Say 
a small collection of genes among a set of recorded genomes, or a small number of 
stocks in a portfolio)

 Relaxed solutions to 𝒌-means clustering: Relaxed solutions can be found via the 
singular value decomposition

 PageRank: primary eigenvector 



Singular values, intuition

 Blue circles are 𝑚 data points in 2𝐷

 The SVD of the 𝑚 × 2 matrix

 𝑉1: 1st (right) singular vector: 
direction of maximal variance,

 𝜎1: how much of data variance is 
explained by the first singular vector

 𝑉2: 2nd (right) singular vector: 
direction of maximal variance, after 
removing projection of the data 
along first singular vector.

 𝜎2: measures how much of the data 
variance is explained by the second 
singular vector



SVD - Interpretation

𝑀 = 𝑈Σ𝑉∗ - example:

1 1 1 0 0

2 2 2 0 0

1 1 1 0 0

5 5 5 0 0

0 0 0 2 2

0 0 0 3 3

0 0 0 1 1

0.18 0

0.36 0

0.18 0

0.90 0

0 0.53

0 0.80

0 0.27

=
9.64 0

0 5.29
x

0.58 0.58 0.58 0 0

0 0 0 0.71 0.71
x

v1



SVD - Interpretation

1 1 1 0 0

2 2 2 0 0

1 1 1 0 0

5 5 5 0 0

0 0 0 2 2

0 0 0 3 3

0 0 0 1 1

0.18 0

0.36 0

0.18 0

0.90 0

0 0.53

0 0.80

0 0.27

=
9.64 0

0 5.29
x

0.58 0.58 0.58 0 0

0 0 0 0.71 0.71
x

variance (‘spread’) on the v1 axis

𝑀 = 𝑈Σ𝑉∗ - example:



SVD - Interpretation

𝑴 = 𝑼𝚺𝐕∗ - example:

 𝑈Σ gives the coordinates of the points in the projection axis

1 1 1 0 0

2 2 2 0 0

1 1 1 0 0

5 5 5 0 0

0 0 0 2 2

0 0 0 3 3

0 0 0 1 1

0.18 0

0.36 0

0.18 0

0.90 0

0 0.53

0 0.80

0 0.27

=
9.64 0

0 5.29
x

0.58 0.58 0.58 0 0

0 0 0 0.71 0.71x



Dimensionality reduction

set the smallest eigenvalues to zero:

1 1 1 0 0

2 2 2 0 0

1 1 1 0 0

5 5 5 0 0

0 0 0 2 2

0 0 0 3 3

0 0 0 1 1

0.18 0

0.36 0

0.18 0

0.90 0

0 0.53

0 0.80

0 0.27

=
9.64 0

0 5.29
x

0.58 0.58 0.58 0 0

0 0 0 0.71 0.71x



Dimensionality reduction

1 1 1 0 0

2 2 2 0 0

1 1 1 0 0

5 5 5 0 0

0 0 0 2 2

0 0 0 3 3

0 0 0 1 1

0.18

0.36

0.18

0.90

0

0

0

~
9.64

x 0.58 0.58 0.58 0 0x



Dimensionality reduction

1 1 1 0 0

2 2 2 0 0

1 1 1 0 0

5 5 5 0 0

0 0 0 2 2

0 0 0 3 3

0 0 0 1 1

~

1 1 1 0 0

2 2 2 0 0

1 1 1 0 0

5 5 5 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0



Frequent Directions (Liberty 2013)

𝑑

𝑙

maintain a sketch of 

at most 𝑙 columns 

maintain the invariant 

that some columns are

empty (zero-valued)

1 2

3 7

1 4

9 2

3 5

4 8

8 1



Frequent Directions

𝑑

𝑙

1

2

5

6

9

2

3

Stream in matrix 𝐴 one column 

at a time

Input vectors are simply stored 

In empty columns

1 2

3 7

1 4

9 2

3 5

4 8

8 1



Frequent Directions

1 2 3 8 6

3 7 5 7 0

1 4 4 3 3

9 2 2 3 7

3 5 6 6 1

4 8 1 5 4

8 1 2 6 2

𝑑

𝑙

When the sketch is ‘full’ 

We need to zero out some 

columns



Frequent Directions

-9.2 -0.4 -5.1 1.5 0.9

-10.4 -4.4 2.0 0.5 0.3

-6.5 -1.9 -1.1 -0.9 -1.9

-9.9 6.7 0.1 -1.1 -1.4

-9.6 -3.2 1.1 1.5 -1.4

-10.1 -0.8 0.3 -4.0 1.6

-9.0 3.8 2.1 2.7 1.3

𝐵𝑛𝑒𝑤 = 𝑈Σ 𝑉𝑇

𝐵 = 𝑈Σ𝑉𝑇

Using SVD, compute 

𝐵 = 𝑈Σ𝑉𝑇

And set

𝐵𝑛𝑒𝑤 = 𝑈Σ

𝐵𝐵𝑇 = 𝐵𝑛𝑒𝑤𝐵𝑛𝑒𝑤
𝑇



Frequent Directions

-9.2 -0.4 -5.1 1.5 0.9

-10.4 -4.4 2.0 0.5 0.3

-6.5 -1.9 -1.1 -0.9 -1.9

-9.9 6.7 0.1 -1.1 -1.4

-9.6 -3.2 1.1 1.5 -1.4

-10.1 -0.8 0.3 -4.0 1.6

-9.0 3.8 2.1 2.7 1.3

𝐵𝑛𝑒𝑤 = 𝑈Σ

The columns of 𝐵 are now orthogonal

and in decreasing magnitude
𝑑

𝑙



Frequent Directions

-9.2 -0.4 -5.1 1.5 0.9

-10.4 -4.4 2.0 0.5 0.3

-6.5 -1.9 -1.1 -0.9 -1.9

-9.9 6.7 0.1 -1.1 -1.4

-9.6 -3.2 1.1 1.5 -1.4

-10.1 -0.8 0.3 -4.0 1.6

-9.0 3.8 2.1 2.7 1.3

Let 𝛿 = 𝐵𝑙/2
2

𝑑

𝑙

𝛿 = 𝐵𝑙/2
2



Frequent Directions

-8.9 -0.3

-10.1 -3.5

-6.3 -1.5

-9.6 5.2

-9.3 -2.5

-9.8 -0.7

-8.7 2.9

Reduce column 𝑙2
2-norms by 𝛿

𝑑

𝑙



Frequent Directions

-8.9 -0.3

-10.1 -3.5

-6.3 -1.5

-9.6 5.2

-9.3 -2.5

-9.8 -0.7

-8.7 2.9Start aggregating columns again

𝑑

𝑙

1

2

5

6

9

2

3



Frequent Directions

Input: 𝑙, 𝐴 ∈ ℝ𝑑×𝑛

𝐵 ← all zeros matrix ∈ ℝ𝑑×𝑙

for 𝑖 ∈ 𝑛 do

Insert  𝐴𝑖 into a zero valued column of 𝐵

if 𝐵 has no zero valued columns then

𝑈, Σ, 𝑉 ← 𝑆𝑉𝐷(𝐵)

𝛿 ← 𝜎𝑙/2
2

 Σ ← max Σ2 − 𝐼𝑙𝛿, 0

𝐵 ← 𝑈 Σ

Return: 𝐵



Bounding the error

We first bound 𝐴𝐴𝑇 − 𝐵𝐵𝑇

sup
𝑥 =1

𝑥𝐴 2 − 𝑥𝐵 2 = sup
𝑥 =1

 

𝑡=1

𝑛

𝑥, 𝐴𝑡
2 + 𝑥𝐵𝑡−1 2 − 𝑥𝐵𝑡 2

= sup
𝑥 =1

 𝑡=1
𝑛 𝑥𝐶𝑡 2 − 𝑥𝐵𝑡 2

≤  𝑡=1
𝑛 𝐶𝑡𝑇𝐶𝑡 − 𝐵𝑡𝑇𝐵𝑡 ⋅ 𝑥 2

=  𝑡−1
𝑛 𝛿𝑡

Which gives,

𝐴𝐴𝑇 − 𝐵𝐵𝑇 ≤  

𝑡=1

𝑛

𝛿𝑡



Bounding the error

We compute the Frobenius norm of the final sketch,

0 ≤ 𝐵 𝑓
2 =  

𝑡=1

𝑛

𝐵𝑡
𝑓
2 − 𝐵𝑡−1

𝑓
2

=  

𝑡=1

𝑛

𝐶𝑡
𝑓
2 − 𝐵𝑡−1

𝑓
2 − 𝐶𝑡

𝑓
2 − 𝐵𝑡

𝑓
2

=  

𝑡=1

𝑛

𝐴𝑡
2 − 𝑡𝑟 𝐶𝑡𝑇𝐶𝑡 − 𝐵𝑡𝑇𝐵𝑡

≤ 𝐴 𝑓
2 −

𝑙

2
 

𝑡=1

𝑛

𝛿𝑡

Which gives, 

 

𝑡=1

𝑛

𝛿𝑡 ≤
2 𝐴 𝑓

2

𝑙



Bounding the error

We saw that:

𝐴𝐴𝑇 − 𝐵𝐵𝑇 ≤  𝛿𝑡

and,

 𝛿𝑡 ≤
2 𝐴 𝑓

2

𝑙

setting   𝑙 =
2

𝜖
gives us,

𝐴𝐴𝑇 − 𝐵𝐵𝑇 ≤ 𝜖 𝐴 𝑓
2



Divide & Conquer

 Sketching can be implemented in a divide & conquer fashion as 

well

 Let 𝐴 = [𝐴1; 𝐴2]

 Compute the sketches 𝐵1, 𝐵2 of matrices 𝐴1, 𝐴2

 Compute the sketch 𝐶 of the matrix 𝐵1; 𝐵2

 It can be shown that

𝐴𝐴𝑇 − 𝐶𝐶𝑇 ≤
2 𝐴 𝑓

2

𝑙


