
Frequent *
STREAMING ALGORITHMS FOR APPROXIMATIONS



Reminder 

 Please start testing your code on Elephant 

 Start thinking about your final project

 Teams

 Topics 

 Proposals due before fall break

 Review material

 Mid-term

 Review class 



Frequent Items

𝑛

𝑑

𝑓 = 4

Obtain the frequency 𝑓(𝑖) of each item in the stream 

What if 𝑑 is very large?

3 2     4     4     3



Think 
EXACT VS. APPROXIMATIONS



Frequent Items

Lets maintain less than 𝑙 < 𝑑 counters (Misra-Gries)

With at least 1 empty counter

𝑙



Frequent Items

𝑙

If an item has a counter,

add 1 to that counter



Frequent Items

𝑙

Otherwise, create a new

counter and set it to 1



Frequent Items

𝑙

But now we don’t have

less than 𝑙 counters



Frequent Items

𝑙

Let 𝛿 be the median 

counter value at time 𝑡



Frequent Items

𝑙

Decrease all counters by 𝛿



Frequent Items

𝑙

and continue …



Frequent Items

𝑙

The approximated counts are 𝑓′

𝑓′ = 0

𝑓′ = 1



Frequent Items

 We increase the count by only 1 for each item appearance

 Because we decrease each counter by at most 𝛿𝑡 at time 𝑡

 Calculating the total approximate frequencies:

 Setting 𝑙 = 2/𝜖 gives us



Frequent Items

 We increase the count by only 1 for each item appearance

𝑓′ 𝑖 ≤ 𝑓 𝑖

 Because we decrease each counter by at most 𝛿𝑡 at time 𝑡

𝑓′ 𝑖 ≥ 𝑓 𝑖 −  

𝑡

𝛿𝑡

 Calculating the total approximate frequencies:

0 ≤  

𝑖

𝑓′ 𝑖 ≤  

𝑡

1 −
𝑙

2
𝛿𝑡 = 𝑛 −

𝑙

2
 

𝑡

𝛿𝑡

 

𝑡

𝛿𝑡 ≤
2𝑛

𝑙

 Setting 𝑙 = 2/𝜖 gives us
𝑓 𝑖 − 𝑓′(𝑖) ≤ 𝜖𝑛



What about higher dimensions?



Matrix Sketching

 Data is usually represented as a matrix

 For most Big Data applications, this matrix is too large for one 

machine

 In many cases, the matrix is too large to even fit in distributed 

memory

 Need to optimize for data access

 Streaming algorithm

 Generate approximation by accessing (streaming) data once



Matrix Sketching 

 Efficiently compute a concisely representable matrix 𝐵 such that

B ≈ 𝐴 or 𝐵𝐵𝑇 ≈ 𝐴𝐴𝑇

 Working with 𝐵 is often “good enough” 

 Dimension reduction

 Classification

 Regression 

 Matrix Multiplication (approximate)

 Recommendation systems



Frequent Directions (Edo Liberty ‘13)

 Efficiently maintain a matrix 𝐵 with only 𝑙 = 2/𝜖 columns such that,

𝐴𝐴𝑇 − 𝐵𝐵𝑇
2 ≤ 𝜖 𝐴 𝑓

2

 Intuitive approach  extend frequent items

 How to estimate the frequency of (frequent) items in a streaming 

fashion?



Frequent Directions (Liberty 2013)

𝑑

𝑙

maintain a sketch of 

at most 𝑙 columns 

maintain the invariant 

that some columns are

empty (zero-valued)

1 2

3 7

1 4

9 2

3 5

4 8

8 1



Frequent Directions

𝑑

𝑙

1

2

5

6

9

2

3

Stream in matrix 𝐴 one column 

at a time

Input vectors are simply stored 

In empty columns

1 2

3 7

1 4

9 2

3 5

4 8

8 1



Frequent Directions

1 2 3 8 6

3 7 5 7 0

1 4 4 3 3

9 2 2 3 7

3 5 6 6 1

4 8 1 5 4

8 1 2 6 2

𝑑

𝑙

When the sketch is ‘full’ 

We need to zero out some 

columns



Singular Value Decomposition 
SWISS ARMY KNIFE OF LINEAR ALGEBRA



Goal: Given a 𝑚 × 𝑛 matrix 𝐴, 

𝐴 = 𝑈 Σ 𝑉∗ =  

𝑗=1

𝑛

𝜎𝑗𝒖𝑗𝒗𝑗
∗

𝑚 × 𝑛 𝑚 × 𝑛 𝑛 × 𝑛 𝑛 × 𝑛

𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝑛 ≥ 0 are the singular values of 𝐴
𝒖𝟏, 𝒖𝟐, … , 𝒖𝒏 are orthonormal, the left singular vectors of 𝐴, and

𝒗𝟏, 𝒗𝟐, … , 𝒗𝒏 are orthonormal, the right singular vectors of 𝐴.



Singular Value Decomposition

 Closely related problems:

 Eigenvalue decomposition  𝐴 ≈ 𝑉Λ𝑉∗

 Spanning columns or rows   𝐴 ≈ 𝐶 𝑈 𝑅

 Applications: 

 Principal Component Analysis: Form an empirical covariance matrix from some 
collection of statistical data. By computing the singular value decomposition of the 
matrix, you find the directions of maximal variance

 Finding spanning columns or rows: Collect statistical data in a large matrix. By finding a 
set of spanning columns, you can identify some variables that “explain” the data. (Say 
a small collection of genes among a set of recorded genomes, or a small number of 
stocks in a portfolio)

 Relaxed solutions to 𝒌-means clustering: Relaxed solutions can be found via the 
singular value decomposition

 PageRank: primary eigenvector 



Singular values, intuition

 Blue circles are 𝑚 data points in 2𝐷

 The SVD of the 𝑚 × 2 matrix

 𝑉1: 1st (right) singular vector: 
direction of maximal variance,

 𝜎1: how much of data variance is 
explained by the first singular vector

 𝑉2: 2nd (right) singular vector: 
direction of maximal variance, after 
removing projection of the data 
along first singular vector.

 𝜎2: measures how much of the data 
variance is explained by the second 
singular vector



SVD - Interpretation

𝑀 = 𝑈Σ𝑉∗ - example:

1 1 1 0 0

2 2 2 0 0

1 1 1 0 0

5 5 5 0 0

0 0 0 2 2

0 0 0 3 3

0 0 0 1 1

0.18 0

0.36 0

0.18 0

0.90 0

0 0.53

0 0.80

0 0.27

=
9.64 0

0 5.29
x

0.58 0.58 0.58 0 0

0 0 0 0.71 0.71
x

v1



SVD - Interpretation

1 1 1 0 0

2 2 2 0 0

1 1 1 0 0

5 5 5 0 0

0 0 0 2 2

0 0 0 3 3

0 0 0 1 1

0.18 0

0.36 0

0.18 0

0.90 0

0 0.53

0 0.80

0 0.27

=
9.64 0

0 5.29
x

0.58 0.58 0.58 0 0

0 0 0 0.71 0.71
x

variance (‘spread’) on the v1 axis

𝑀 = 𝑈Σ𝑉∗ - example:



SVD - Interpretation

𝑴 = 𝑼𝚺𝐕∗ - example:

 𝑈Σ gives the coordinates of the points in the projection axis

1 1 1 0 0

2 2 2 0 0

1 1 1 0 0

5 5 5 0 0

0 0 0 2 2

0 0 0 3 3

0 0 0 1 1

0.18 0

0.36 0

0.18 0

0.90 0

0 0.53

0 0.80

0 0.27

=
9.64 0

0 5.29
x

0.58 0.58 0.58 0 0

0 0 0 0.71 0.71x



Dimensionality reduction

set the smallest eigenvalues to zero:

1 1 1 0 0

2 2 2 0 0

1 1 1 0 0

5 5 5 0 0

0 0 0 2 2

0 0 0 3 3

0 0 0 1 1

0.18 0

0.36 0

0.18 0

0.90 0

0 0.53

0 0.80

0 0.27

=
9.64 0

0 5.29
x

0.58 0.58 0.58 0 0

0 0 0 0.71 0.71x



Dimensionality reduction

1 1 1 0 0

2 2 2 0 0

1 1 1 0 0

5 5 5 0 0

0 0 0 2 2

0 0 0 3 3

0 0 0 1 1

0.18

0.36

0.18

0.90

0

0

0

~
9.64

x 0.58 0.58 0.58 0 0x



Dimensionality reduction

1 1 1 0 0

2 2 2 0 0

1 1 1 0 0

5 5 5 0 0

0 0 0 2 2

0 0 0 3 3

0 0 0 1 1

~

1 1 1 0 0

2 2 2 0 0

1 1 1 0 0

5 5 5 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0



Frequent Directions (Liberty 2013)

𝑑

𝑙

maintain a sketch of 

at most 𝑙 columns 

maintain the invariant 

that some columns are

empty (zero-valued)

1 2

3 7

1 4

9 2

3 5

4 8

8 1



Frequent Directions

𝑑

𝑙

1

2

5

6

9

2

3

Stream in matrix 𝐴 one column 

at a time

Input vectors are simply stored 

In empty columns

1 2

3 7

1 4

9 2

3 5

4 8

8 1



Frequent Directions

1 2 3 8 6

3 7 5 7 0

1 4 4 3 3

9 2 2 3 7

3 5 6 6 1

4 8 1 5 4

8 1 2 6 2

𝑑

𝑙

When the sketch is ‘full’ 

We need to zero out some 

columns



Frequent Directions

-9.2 -0.4 -5.1 1.5 0.9

-10.4 -4.4 2.0 0.5 0.3

-6.5 -1.9 -1.1 -0.9 -1.9

-9.9 6.7 0.1 -1.1 -1.4

-9.6 -3.2 1.1 1.5 -1.4

-10.1 -0.8 0.3 -4.0 1.6

-9.0 3.8 2.1 2.7 1.3

𝐵𝑛𝑒𝑤 = 𝑈Σ 𝑉𝑇

𝐵 = 𝑈Σ𝑉𝑇

Using SVD, compute 

𝐵 = 𝑈Σ𝑉𝑇

And set

𝐵𝑛𝑒𝑤 = 𝑈Σ

𝐵𝐵𝑇 = 𝐵𝑛𝑒𝑤𝐵𝑛𝑒𝑤
𝑇



Frequent Directions

-9.2 -0.4 -5.1 1.5 0.9

-10.4 -4.4 2.0 0.5 0.3

-6.5 -1.9 -1.1 -0.9 -1.9

-9.9 6.7 0.1 -1.1 -1.4

-9.6 -3.2 1.1 1.5 -1.4

-10.1 -0.8 0.3 -4.0 1.6

-9.0 3.8 2.1 2.7 1.3

𝐵𝑛𝑒𝑤 = 𝑈Σ

The columns of 𝐵 are now orthogonal

and in decreasing magnitude
𝑑

𝑙



Frequent Directions

-9.2 -0.4 -5.1 1.5 0.9

-10.4 -4.4 2.0 0.5 0.3

-6.5 -1.9 -1.1 -0.9 -1.9

-9.9 6.7 0.1 -1.1 -1.4

-9.6 -3.2 1.1 1.5 -1.4

-10.1 -0.8 0.3 -4.0 1.6

-9.0 3.8 2.1 2.7 1.3

Let 𝛿 = 𝐵𝑙/2
2

𝑑

𝑙

𝛿 = 𝐵𝑙/2
2



Frequent Directions

-8.9 -0.3

-10.1 -3.5

-6.3 -1.5

-9.6 5.2

-9.3 -2.5

-9.8 -0.7

-8.7 2.9

Reduce column 𝑙2
2-norms by 𝛿

𝑑

𝑙



Frequent Directions

-8.9 -0.3

-10.1 -3.5

-6.3 -1.5

-9.6 5.2

-9.3 -2.5

-9.8 -0.7

-8.7 2.9Start aggregating columns again

𝑑

𝑙

1

2

5

6

9

2

3



Frequent Directions

Input: 𝑙, 𝐴 ∈ ℝ𝑑×𝑛

𝐵 ← all zeros matrix ∈ ℝ𝑑×𝑙

for 𝑖 ∈ 𝑛 do

Insert  𝐴𝑖 into a zero valued column of 𝐵

if 𝐵 has no zero valued columns then

𝑈, Σ, 𝑉 ← 𝑆𝑉𝐷(𝐵)

𝛿 ← 𝜎𝑙/2
2

 Σ ← max Σ2 − 𝐼𝑙𝛿, 0

𝐵 ← 𝑈 Σ

Return: 𝐵



Bounding the error

We first bound 𝐴𝐴𝑇 − 𝐵𝐵𝑇

sup
𝑥 =1

𝑥𝐴 2 − 𝑥𝐵 2 = sup
𝑥 =1

 

𝑡=1

𝑛

𝑥, 𝐴𝑡
2 + 𝑥𝐵𝑡−1 2 − 𝑥𝐵𝑡 2

= sup
𝑥 =1

 𝑡=1
𝑛 𝑥𝐶𝑡 2 − 𝑥𝐵𝑡 2

≤  𝑡=1
𝑛 𝐶𝑡𝑇𝐶𝑡 − 𝐵𝑡𝑇𝐵𝑡 ⋅ 𝑥 2

=  𝑡−1
𝑛 𝛿𝑡

Which gives,

𝐴𝐴𝑇 − 𝐵𝐵𝑇 ≤  

𝑡=1

𝑛

𝛿𝑡



Bounding the error

We compute the Frobenius norm of the final sketch,

0 ≤ 𝐵 𝑓
2 =  

𝑡=1

𝑛

𝐵𝑡
𝑓
2 − 𝐵𝑡−1

𝑓
2

=  

𝑡=1

𝑛

𝐶𝑡
𝑓
2 − 𝐵𝑡−1

𝑓
2 − 𝐶𝑡

𝑓
2 − 𝐵𝑡

𝑓
2

=  

𝑡=1

𝑛

𝐴𝑡
2 − 𝑡𝑟 𝐶𝑡𝑇𝐶𝑡 − 𝐵𝑡𝑇𝐵𝑡

≤ 𝐴 𝑓
2 −

𝑙

2
 

𝑡=1

𝑛

𝛿𝑡

Which gives, 

 

𝑡=1

𝑛

𝛿𝑡 ≤
2 𝐴 𝑓

2

𝑙



Bounding the error

We saw that:

𝐴𝐴𝑇 − 𝐵𝐵𝑇 ≤  𝛿𝑡

and,

 𝛿𝑡 ≤
2 𝐴 𝑓

2

𝑙

setting   𝑙 =
2

𝜖
gives us,

𝐴𝐴𝑇 − 𝐵𝐵𝑇 ≤ 𝜖 𝐴 𝑓
2



Divide & Conquer

 Sketching can be implemented in a divide & conquer fashion as 

well

 Let 𝐴 = [𝐴1; 𝐴2]

 Compute the sketches 𝐵1, 𝐵2 of matrices 𝐴1, 𝐴2

 Compute the sketch 𝐶 of the matrix 𝐵1; 𝐵2

 It can be shown that

𝐴𝐴𝑇 − 𝐶𝐶𝑇 ≤
2 𝐴 𝑓

2

𝑙


