
Randomized 

Algorithms



Parallelization 

 Two main strategies for parallelization 

 Divide & Conquer

 Randomization 

Ensure that processors can make local decisions which, 

with high probability, 

add up to good global decisions

Sampling  quicksort



Randomization

 Sampling

 Symmetry breaking

 Independent sets  today 

 Load balancing



Graph Algorithms

 Will be covered in detail later … 

 Graph 𝒢 = 𝑉, 𝐸 , vertices and edges

 Matrices  Graphs

 Adjacency graph of a matrix 𝐴

 Edge (𝑖, 𝑗) exists iff 𝐴𝑖𝑗 ≠ 0

 Edge weight, 𝑊𝑖𝑗, can be the 𝐴𝑖𝑗 value

 Graphs  Matrices

 Adjacency matrix of a weighted graph 

 Default weight 1, vertex value is in-degree

 Symmetric  undirected graphs 

 Unsymmetric  directed graphs 



Graph Algorithms

 Graph partitioning 

 NP Hard problem

 We will cover in detail

 Coloring

 Graph Laplacian & Eigenproblem

 Breadth First Search (BFS)

 Depth First Search (DFS)

 Connected components

 Spanning Trees





Sequential Greedy Algorithm

 𝑛 = 𝑉

 Choose a random permutation 𝑝 1 ,… , 𝑝(𝑛) of numbers 1,… , 𝑛

 𝑈 ← 𝑉

 for 𝑖 ← 1 to 𝑛

 𝑣 ← 𝑝 𝑖

 𝑆 ← {colors of all colored neighbors of 𝑣}

 𝑐 𝑣 ← smallest color ∉ 𝑆

 𝑈 ← 𝑈 ∖ {𝑣}

Bounds?



Sequential Greedy Algorithm
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Sequential Greedy Algorithm



(Maximal) Independent Set

Independent Set:      no two vertices share a common edge



Parallel Graph Coloring

 Any independent set can be colored in parallel

 𝑈 ← 𝑉

 while 𝑈 > 0 do in parallel

 Choose an independent set 𝐼 from 𝑈

 Color all vertices in 𝐼

 𝑈 ← 𝑈 ∖ 𝐼

 Optimal Coloring  color using smallest color

 Balanced Coloring  use all colors equally 



Maximal Independent Set (Luby)

 find largest MIS from graph

 Color all with the same color and remove from graph

 Recurse

𝐼 ← ∅

𝑉′ ← 𝑉

while 𝑉′ > 0 do

choose and independent set 𝐼′ from 𝑉′

𝐼 ← 𝐼 + 𝐼′

𝑋 ← 𝐼′ + 𝑁(𝐼′)

𝑉′ ← 𝑉′ − 𝑋



How to choose independent sets in 

parallel?

 Assign a random weight to each vertex

 Choose vertices that are a local maxima

 𝒪 𝑐 + 1 log 𝑉 algorithm 

 for sparse graphs  



Luby’s Algorithm
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Find MIS, color all the same color
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Luby’s Algorithm

repeat



Luby’s Algorithm

repeat



Jones-Plassmann Coloring

 Not necessary to create a new random permutation of vertices 

every time

 Use vertex number to resolve conflicts

 Does not find a MIS at each step

 Instead,

 Find independent set

 Not assigned the same color

 Color individually using smallest available color



Jones-Plassmann Coloring

 𝑈 ← 𝑉

 while 𝑈 > 0 do 

 for all vertices 𝑣 ∈ 𝑈 do in parallel 

 𝐼 ← 𝑣 𝑤 𝑣 > 𝑤 𝑢 ∀ 𝑢 ∈ 𝑁 𝑣 }

 for all vertices 𝑣′ ∈ 𝐼 do in parallel

 𝑆 ← colors of 𝑁 𝑣′

 𝑐 𝑣′ ← minimum color ∉ 𝑆

 𝑈 ← 𝑈 ∖ 𝐼



Jones-Plassmann Coloring
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Jones-Plassmann Coloring
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If local maxima, assign lowest color
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