Page Rank

CS 5965/6965 - Big Data Systems - Fall 2014

Webpage quality ranking

Inverted web indexes help locate matching pages of search words

- But there are too many matches and humans can't read all
- Both relevance and quality are important in web search
- What is a high-quality web page?
- How to identify a high-quality web page?
 - Hard to spam
- Related to identifying high-quality scientific publications
 - But much bigger dataset

Page Rank

Transition matrix

	F 0	1/2	1	ך 0
M =	1/3	0	0	1/2
	1/3	0	0	1/2
	1/3	1/2	0	0

 $v \rightarrow$ probability distribution for the location of a random surfer

 $\boldsymbol{v} \leftarrow \left\{\frac{1}{n}\right\}^n$ Iterate on $\boldsymbol{v} \leftarrow M\boldsymbol{v}$

Page Rank

Markov process

- Limiting distribution
- ▶ will converge if
 - Strongly connected
 - No dead ends
- Limiting v is an eigenvector of M
 - $\blacktriangleright \lambda \boldsymbol{v} = M \boldsymbol{v}$
 - \triangleright v is also the primary eigenvector
- ▶ Iterate a few times on $v \leftarrow Mv$ until $||v_{i+1} v_i|| < \epsilon$

Solving Linear Systems

$$Mx = y \Rightarrow x = M^{-1}y$$

- Gaussian Elimination $\rightarrow O(n^3)$
- ► Iterative approaches $\rightarrow O(kn^2)$
 - For sparse systems $\rightarrow O(kn)$
 - ▶ Use optimal solvers $\rightarrow k$ independent of n

Structure of the Web

Strongly In Out Connected Component Component Component

Dead Ends

Spider Traps

Dead Ends

Remove dead ends from the graph

- And incoming links
- Compute page-rank on strongly connected component
- Restore graph, retaining page ranks
- Use existing page ranks to compute ranks for dead-end nodes

Spider traps & Taxation

modify the calculation of PageRank by allowing each random surfer a small probability of teleporting to a random page

$$\boldsymbol{v}' = \beta M \boldsymbol{v} + \frac{(1-\beta)\boldsymbol{e}}{n}$$

- \triangleright β is a constant that represent the probability that the surfer follows a link on the page
- Approach will still be biased towards spider traps

Efficient Computation of PageRank

- Transition Matrix M is very sparse
- Store locations of non-zero entries
- In general for sparse matrices
 - ► $(i, j, M_{ij}) \rightarrow 4+4+8$ bytes
- Further compression possible for transition matrix
 - Store degree of column plus indices
 - Number of links on a page plus the indices of those pages

Topic Sensitive PageRank

- Weight certain pages more because of their topic
- Allows personalization of results to users
 - Ideally a separate page rank vector for each user
 - Not scalable
- Create one vector for each of a small set of topics
 - Basis vectors
 - Determine weights for each individual user
 - \blacktriangleright size \rightarrow number of basis vectors

Biased Random Walks

- Identify certain pages that represent a given topic
- (re) introduce random surfers to only topic specific pages
- Let S be the set of integers consisting of the indices of topic-specific pages, and e_S be a vector that is 1 in S and 0 elsewhere

Topic sensitive PageRank

$$\nu' = \beta M \nu + \frac{(1-\beta)e_S}{|S|}$$

Using topic-sensitive PageRank

Decide on the topics for which we shall create specialized PageRank vectors

- Manually
- From Data
- Pick the set S for each of these topics, and use that set to compute the topic-sensitive PageRank vector for that topic
- Determine which topics are of most interest to a particular user/query
- Use the PageRank vectors for those topics in ordering the results

How to cheat?

Link Spam

Techniques for artificially increasing the PageRank of a page

► Spam Farm

- ► β → taxation parameter
- ▶ $n \rightarrow$ total number of webpages
- Target t with m supporting pages
- Let x be the amount of PageRank contributed by accessible pages
- Let us compute y, the PageRank of t

PageRank of each supporting page

$$\frac{\beta y}{m} + \frac{1-\beta}{n}$$

$$y = x + \beta m \left(\frac{\beta y}{m} + \frac{1 - \beta}{n} \right) + \frac{1 - \beta}{n}$$

PageRank of each supporting page

$$\frac{\beta y}{m} + \frac{1-\beta}{n}$$

$$y = x + \beta^2 y + \beta (1 - \beta) \frac{m}{n}$$

PageRank of each supporting page

$$\frac{\beta y}{m} + \frac{1-\beta}{n}$$

$$y = \frac{x}{1 - \beta^2} + \frac{\beta}{1 + \beta} \frac{m}{n}$$

PageRank of each supporting page

$$\frac{\beta y}{m} + \frac{1-\beta}{n}$$

$$y = 3.6 x + 0.46 \frac{m}{n}$$

Combating Link Spam

TrustRank: variation of topic-sensitive PageRank

Spam mass: calculation that identifies spam farms

Trust Rank

- topic-sensitive PageRank, where the topic is a set of pages believed to be trustworthy
- Manually select trustworthy pages
- Avoid trustworthy sites where anyone can create links
 - Many websites prevent users from entering URLs in comments
- Domains where membership is controlled
 - ▶ .edu .gov etc ...

Spam Mass

Measure the fraction of the pagerank that comes from spam

• Compute the ordinary pagerank (r) and trustrank (t) of a page

Spam mass = $\frac{r-t}{r}$

Negative or small positive spam mass → not spam
Closer to 1 → spam

