
Map Reduce



Last Time …

 Parallel Algorithms

 Work/Depth Model

 Spark

 Map Reduce 

 Assignment 1

 Questions ?



Today …

 Map Reduce

 Matrix multiplication

 Similarity Join

 Complexity theory



MapReduce – word counting

 Input  set of documents

 Map: 

 reads a document and breaks it into a sequence of words
𝑤1, 𝑤2, … ,𝑤𝑛

 Generates (𝑘, 𝑣) pairs,
𝑤1, 1 , 𝑤2, 1 , … , (𝑤𝑛, 1)

 System: 

 group all 𝑘, 𝑣 by key

 Given 𝑟 reduce tasks, assign keys to reduce tasks using a hash function

 Reduce:

 Combine the values associated with a given key

 Add up all the values associated with the word  total count for that word



Matrix-vector multiplication

 𝑛 × 𝑛 matrix 𝑀 with entries 𝑚𝑖𝑗

 Vector 𝒗 of length 𝑛 with values 𝑣𝑗

 We wish to compute

𝑥𝑖 = 

𝑗=1

𝑛

𝑚𝑖𝑗𝑣𝑗

 If 𝒗 can fit in memory 

 Map: generate (𝑖,𝑚𝑖𝑗𝑣𝑗)

 Reduce: sum all values of 𝑖 to produce (𝑖, 𝑥𝑖)

 If 𝒗 is too large to fit in memory? Stripes? Blocks?

 What if we need to do this iteratively? 



Matrix-Matrix Multiplication

 𝑃 = 𝑀𝑁 𝑝𝑖𝑘 =  𝑗𝑚𝑖𝑗𝑛𝑗𝑘

 2 mapreduce operations

 Map 1: produce 𝑘, 𝑣 , 𝑗, 𝑀, 𝑖, 𝑚𝑖𝑗 and 𝑗, 𝑁, 𝑘, 𝑛𝑗𝑘

 Reduce 1: for each 𝑗  𝑖, 𝑘, 𝑚𝑖𝑗 × 𝑛𝑗𝑘

 Map 2: identity

 Reduce 2: sum all values associated with key 𝑖, 𝑘



Matrix-Matrix multiplication

 In one mapreduce step

 Map: 

 generate 𝑘, 𝑣  𝑖, 𝑘 , 𝑀, 𝑗,𝑚𝑖𝑗 & 𝑖, 𝑘 , 𝑁, 𝑗, 𝑛𝑗𝑘

 Reduce: 

 each key (𝑖, 𝑘) will have values 𝑖, 𝑘 , 𝑀, 𝑗,𝑚𝑖𝑗 & 𝑖, 𝑘 , 𝑁, 𝑗, 𝑛𝑗𝑘 ∀𝑗

 Sort all values by 𝑗

 Extract 𝑚𝑖𝑗 & 𝑛𝑗𝑘 and multiply, accumulate the sum



Complexity Theory for mapreduce



Communication cost

 Communication cost of a task is the size of the input to the task

 We do not consider the amount of time it takes each task to 

execute when estimating the running time of an algorithm

 The algorithm output is rarely large compared with the input or the 

intermediate data produced by the algorithm



Reducer size & Replication rate

 Reducer size 𝑞

 Upper bound on the number of values that are allowed to appear in 
the list associated with a single key

 By making the reducer size small, we can force there to be many reducers

 High parallelism  low wall-clock time

 By choosing a small 𝑞 we can perform the computation associated with a 
single reducer entirely in the main memory of the compute node 

 Low synchronization (Comm/IO)  low wall clock time

 Replication rate (𝑟)

 number of (𝑘, 𝑣) pairs produced by all the Map tasks on all the inputs, 
divided by the number of inputs

 𝑟 is the average communication from Map tasks to Reduce tasks



Example: one-pass matrix mult

 Assume matrices are 𝑛 × 𝑛

 𝑟 – replication rate

 Each element 𝑚𝑖𝑗 produces 𝑛 keys

 Similarly each 𝑛𝑗𝑘 produces 𝑛 keys

 Each input produces exactly 𝑛 keys  load balance

 𝑞 – reducer size

 Each key has 𝑛 values from 𝑀 and 𝑛 values from 𝑁

 2𝑛



Example: two-pass matrix mult

 Assume matrices are 𝑛 × 𝑛

 𝑟 – replication rate

 Each element 𝑚𝑖𝑗 produces 1 key

 Similarly each 𝑛𝑗𝑘 produces 1 key

 Each input produces exactly 1 key (2nd pass)

 𝑞 – reducer size

 Each key has 𝑛 values from 𝑀 and 𝑛 values from 𝑁

 2𝑛 (1st pass), 𝑛 (2nd pass)



Real world example: Similarity Joins

 Given a large set of elements 𝑋 and a similarity measure 𝑠(𝑥, 𝑦)

 Output: pairs whose similarity exceeds a given threshold 𝑡

 Example: given a database of 106 images of size 1MB each, find 
pairs of images that are similar

 Input: (𝑖, 𝑃𝑖), where 𝑖 is an ID for the picture and 𝑃𝑖 is the image

 Output: 𝑃𝑖, 𝑃𝑗 or simply 𝑖, 𝑗 for those pairs where 𝑠 𝑃𝑖 , 𝑃𝑗 > 𝑡



Approach 1

 Map: generate (𝑘, 𝑣)

𝑖, 𝑗 , 𝑃𝑖 , 𝑃𝑗

 Reduce: 

 Apply similarity function to each value (image pair)

 Output pair if similarity above threshold 𝑡

 Reducer size – 𝑞  2 (2MB)

 Replication rate – 𝑟 106 − 1

 Total communication from mapreduce tasks?

 106 × 106 × 106 bytes  1018 bytes  1 Exabyte (kB MB GB TB PB EB)

 Communicate over GigE  1010 sec  300 years 



Approach 2: group images

 Group images into 𝑔 groups with 
106

𝑔
images each

 Map: Take input element 𝑖, 𝑃𝑖 and generate

 𝑔 − 1 keys 𝑢, 𝑣 | 𝑃𝑖 ∈ 𝒢 𝑢 , 𝑣 ∈ {1, … , 𝑔} ∖ {𝑢}

 Associated value is (𝑖, 𝑃𝑖)

 Reduce: consider key (𝑢, 𝑣)

 Associated list will have 2 ×
106

𝑔
elements 𝑗, 𝑃𝑗

 Take each 𝑖, 𝑃𝑖 and 𝑗, 𝑃𝑗 where 𝑖, 𝑗 belong to different groups and 

compute 𝑠 𝑃𝑖 , 𝑃𝑗

 Compare pictures belonging to the same group 

 heuristic for who does this, say reducer for key 𝑢, 𝑢 + 1



Approach 2: group images

 Replication rate:   𝑟 = 𝑔 − 1

 Reducer size:  𝑞 = 2 × 106/𝑔

 Input size: 2 × 1012/𝑔 bytes

 Say 𝑔 = 1000,

 Input is 2GB

 Total communication: 106 × 999 × 106 = 1015 bytes  1 petabyte 



Graph model for mapreduce

problems
 Set of inputs

 Set of outputs

 many-many relationship between 
the inputs and outputs, which 
describes which inputs are necessary 
to produce which outputs.

 Mapping schema

 Given a reducer size 𝑞

 No reducer is assigned more than 𝑞
inputs

 For every output, there is at least one 
reducer that is assigned all input 
related to that output

𝑃1

𝑃4

𝑃2

𝑃3

𝑃1, 𝑃2

𝑃1, 𝑃3

𝑃1, 𝑃4

𝑃2, 𝑃3

𝑃2, 𝑃4

𝑃3, 𝑃4



Grouping for Similarity Joins

 Generalize the problem to 𝑝 images

 𝑔 equal sized groups of 
𝑝

𝑔
images

 Number of outputs is 
𝑝
2
≈
𝑝2

2

 Each reducer receives 
2𝑝

𝑔
inputs (𝑞)

 Replication rate 𝑟 = 𝑔 − 1

 𝑟 =
2𝑝

𝑞

 The smaller the reducer size, the larger the replication rate, and therefore higher 
the communication 

 communication ↔ reducer size

 communication ↔ parallelism 



Lower bounds on Replication rate

1. Prove an upper bound on how many outputs a reducer with 𝑞
inputs can cover. Call this bound 𝑔(𝑞)

2. Determine the total number of outputs produced by the problem

3. Suppose that there are 𝑘 reducers, and the 𝑖𝑡ℎ reducer has 𝑞𝑖 < 𝑞

inputs. Observe that  𝑖=1
𝑘 𝑔(𝑞𝑖)must be no less than the number of 

outputs computed in step 2

4. Manipulate inequality in 3 to get a lower bound on  𝑖=1
𝑘 𝑞𝑖

5. 4 is the total communication from Map tasks to reduce tasks. Divide 

by number of inputs to get the replication rate



Lower bounds on Replication rate

1. Prove an upper bound on how many outputs a reducer with 𝑞
inputs can cover. Call this bound 𝑔(𝑞)

2. Determine the total number of outputs produced by the problem

3. Suppose that there are 𝑘 reducers, and the 𝑖𝑡ℎ reducer has 𝑞𝑖 < 𝑞

inputs. Observe that  𝑖=1
𝑘 𝑔(𝑞𝑖)must be no less than the number of 

outputs computed in step 2

4. Manipulate inequality in 3 to get a lower bound on  𝑖=1
𝑘 𝑞𝑖

5. 4 is the total communication from Map tasks to reduce tasks. Divide 

by number of inputs to get the replication rate

𝑞
2
≈
𝑞2

2

𝑝
2
≈
𝑝2

2

 

𝑖=1

𝑘
𝑞𝑖
2

2
≥
𝑝2

2

𝑞 

𝑖=1

𝑘

𝑞𝑖 ≥ 𝑝
2

 

𝑖=1

𝑘

𝑞𝑖 ≥
𝑝2

𝑞
𝑟 ≥
𝑝

𝑞



Matrix Multiplication

 Consider the one-pass algorithm  extreme case

 Lets group rows/columns into bands  𝑔 groups  𝑛/𝑔 columns/rows 

=

𝑀 𝑁 𝑃

𝑛 × 𝑛



Matrix Multiplication

 Map: 

 for each element of 𝑀,𝑁 generate 𝑔 (𝑘, 𝑣) pairs

 Key is group paired with all groups

 Value is 𝑖, 𝑗, 𝑚𝑖𝑗 or 𝑖, 𝑗, 𝑛𝑖𝑗

 Reduce:

 Reducer corresponds to key (𝑖, 𝑗)

 All the elements in the 𝑖𝑡ℎ band of 𝑀 and 𝑗𝑡ℎ band of 𝑁

 Each reducer gets 𝑛
𝑛

𝑔
elements from 2 matrices

 𝑞 =
2𝑛2

𝑔
, 𝑟 = 𝑔  𝑟 =

2𝑛2

𝑞



Lower bounds on Replication rate

1. Prove an upper bound on how 
many outputs a reducer with 𝑞
inputs can cover. Call this bound 
𝑔(𝑞)

2. Determine the total number of 
outputs produced by the problem

3. Suppose that there are 𝑘 reducers, 
and the 𝑖𝑡ℎ reducer has 𝑞𝑖 < 𝑞
inputs. Observe that  𝑖=1

𝑘 𝑔(𝑞𝑖)must 
be no less than the number of 
outputs computed in step 2

4. Manipulate inequality in 3 to get a 
lower bound on  𝑖=1

𝑘 𝑞𝑖

5. 4 is the total communication from 
Map tasks to reduce tasks. Divide 
by number of inputs to get the 
replication rate

 Each reducer receives 𝑘 rows from 𝑀
and 𝑁  𝑞 = 2𝑛𝑘 and produces 𝑘2

outputs  𝑔 𝑞 =
𝑞2

4𝑛2

 𝑛2

  𝑖=1
𝑘 𝑞𝑖

2

4𝑛2
≥ 𝑛2

 

𝑖=1

𝑘

𝑞𝑖
2 ≥ 4𝑛4

  𝑖=1
𝑘 𝑞𝑖 ≥

4𝑛4

𝑞

𝑟 =
1

2𝑛2
 

𝑖=1

𝑘

𝑞𝑖 =
2𝑛2

𝑞



Matrix Multiplication 
LET US REVISIT THE TWO-PASS APPROACH



Matrix-Matrix Multiplication

 𝑃 = 𝑀𝑁 𝑝𝑖𝑘 =  𝑗𝑚𝑖𝑗𝑛𝑗𝑘

 2 mapreduce operations

 Map 1: produce 𝑘, 𝑣 , 𝑗, 𝑀, 𝑖, 𝑚𝑖𝑗 and 𝑗, 𝑁, 𝑘, 𝑛𝑗𝑘

 Reduce 1: for each 𝑗  𝑖, 𝑘, 𝑚𝑖𝑗 × 𝑛𝑗𝑘

 Map 2: identity

 Reduce 2: sum all values associated with key 𝑖, 𝑘



Grouped two-pass approach

=

𝑔2 groups of 
𝑛2

𝑔2
elements each

First pass: compute products of square 

(𝐼, 𝐽) of 𝑀 with square (𝐽, 𝐾) of 𝑁

Second pass: ∀𝐼, 𝐾 sum over all 𝐽



Grouped two-pass approach

 Replication rate for map1 is 𝑔 2𝑔𝑛2 total communication

 Each reducer gets  
2𝑛2

𝑔2
 𝑞 =

2𝑛2

𝑔2
 𝑔 = 𝑛

2

𝑞

 Total communication  2
2𝑛3

𝑞

 Assume map2 runs on same nodes as reduce1 
 no communication

 Communication  𝑔𝑛2 
2𝑛3

𝑞

 Total communication  3
2𝑛3

𝑞



Comparison 

𝑛4

𝑞

𝑛3

𝑞
𝑞 < 𝑛2<

If 𝑞 is closer to the minimum of 2𝑛, two pass is better by a factor of 𝒪 𝑛


