Map Reduce

CS 5965/6965 - Big Data Systems - Fall 2014

Last Time ...

- Parallel Algorithms
 - Work/Depth Model
- Spark
- ► Map Reduce
- Assignment 1
- ► Questions ?

Today ...

► Map Reduce

- ► Matrix multiplication
- Similarity Join
- Complexity theory

MapReduce – word counting

- $\blacktriangleright \text{ Input } \rightarrow \text{ set of documents}$
- ► Map:
 - reads a document and breaks it into a sequence of words w_1, w_2, \dots, w_n
 - Generates (k, v) pairs,

 $(w_1, 1), (w_2, 1), \dots, (w_n, 1)$

► System:

- group all (k, v) by key
- ▶ Given *r* reduce tasks, assign keys to reduce tasks using a hash function
- ► Reduce:
 - Combine the values associated with a given key
 - \blacktriangleright Add up all the values associated with the word \rightarrow total count for that word

Matrix-vector multiplication

- $n \times n$ matrix *M* with entries m_{ij}
- Vector \boldsymbol{v} of length n with values v_j
- We wish to compute

$$x_i = \sum_{j=1}^n m_{ij} v_j$$

- If v can fit in memory
 - Map: generate $(i, m_{ij}v_j)$
 - Reduce: sum all values of *i* to produce (i, x_i)
- ▶ If v is too large to fit in memory? Stripes? Blocks?
- What if we need to do this iteratively?

Matrix-Matrix Multiplication

- $\blacktriangleright P = MN \rightarrow p_{ik} = \sum_j m_{ij} n_{jk}$
- 2 mapreduce operations
 - ► Map 1: produce (k, v), $(j, (M, i, m_{ij}))$ and $(j, (N, k, n_{jk}))$
 - ▶ Reduce 1: for each $j \rightarrow (i, k, m_{ij} \times n_{jk})$
 - Map 2: identity
 - Reduce 2: sum all values associated with key (i, k)

Matrix-Matrix multiplication

- In one mapreduce step
- ► Map:
 - ► generate $(k, v) \rightarrow ((i, k), (M, j, m_{ij})) \& ((i, k), (N, j, n_{jk}))$
- ► Reduce:
 - ► each key (i, k) will have values $((i, k), (M, j, m_{ij})) \& ((i, k), (N, j, n_{jk})) \forall j$
 - Sort all values by j
 - Extract $m_{ij} \& n_{jk}$ and multiply, accumulate the sum

Complexity Theory for mapreduce

Communication cost

- Communication cost of a task is the size of the input to the task
- We do not consider the amount of time it takes each task to execute when estimating the running time of an algorithm
- The algorithm output is rarely large compared with the input or the intermediate data produced by the algorithm

Reducer size & Replication rate

▶ Reducer size (q)

- Upper bound on the number of values that are allowed to appear in the list associated with a single key
 - ▶ By making the reducer size small, we can force there to be many reducers
 - ► High parallelism \rightarrow low wall-clock time
 - By choosing a small q we can perform the computation associated with a single reducer entirely in the main memory of the compute node
 - ► Low synchronization (Comm/IO) \rightarrow low wall clock time
- Replication rate (r)
 - number of (k, v) pairs produced by all the Map tasks on all the inputs, divided by the number of inputs
 - \triangleright r is the average communication from Map tasks to Reduce tasks

Example: one-pass matrix mult

- $\blacktriangleright Assume matrices are n \times n$
- \blacktriangleright *r* replication rate
 - Each element m_{ij} produces n keys
 - Similarly each n_{jk} produces n keys
 - ▶ Each input produces exactly n keys → load balance
- ▶ q reducer size
 - Each key has n values from M and n values from N
 - ► 2n

Example: two-pass matrix mult

- ► Assume matrices are $n \times n$
- \blacktriangleright *r* replication rate
 - Each element m_{ij} produces 1 key
 - Similarly each n_{jk} produces 1 key
 - Each input produces exactly 1 key (2nd pass)
- ▶ q reducer size
 - Each key has n values from M and n values from N
 - ▶ 2n (1st pass), n (2nd pass)

Real world example: Similarity Joins

- Given a large set of elements X and a similarity measure s(x, y)
- Output: pairs whose similarity exceeds a given threshold t
- Example: given a database of 10⁶ images of size 1MB each, find pairs of images that are similar
- lnput: (i, P_i) , where *i* is an ID for the picture and P_i is the image
- Output: (P_i, P_j) or simply (i, j) for those pairs where $s(P_i, P_j) > t$

Approach 1

• Map: generate (k, v)

 $((i,j), (P_i, P_j))$

► Reduce:

- Apply similarity function to each value (image pair)
- Output pair if similarity above threshold t
- ▶ Reducer size $-q \rightarrow 2$ (2MB)
- ▶ Replication rate $r \rightarrow 10^6 1$
- ► Total communication from map \rightarrow reduce tasks?
 - ▶ $10^6 \times 10^6 \times 10^6$ bytes $\rightarrow 10^{18}$ bytes $\rightarrow 1$ Exabyte (kB MB GB TB PB EB)
 - ► Communicate over GigE \rightarrow 10¹⁰ sec \rightarrow 300 years

Approach 2: group images

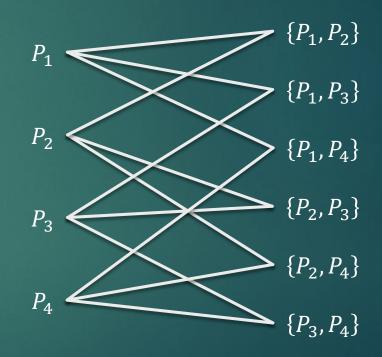
- Group images into g groups with $\frac{10^6}{g}$ images each
- Map: Take input element (i, P_i) and generate
 - ▶ (g-1) keys $(u, v) | P_i \in \mathcal{G}(u), v \in \{1, ..., g\} \setminus \{u\}$
 - Associated value is (i, P_i)
- Reduce: consider key (u, v)
 - ► Associated list will have $2 \times \frac{10^6}{a}$ elements (j, P_j)
 - ► Take each (i, P_i) and (j, P_j) where i, j belong to different groups and compute $s(P_i, P_j)$
 - Compare pictures belonging to the same group
 - ▶ heuristic for who does this, say reducer for key (u, u + 1)

Approach 2: group images

- ▶ Replication rate: r = g 1
- ▶ Reducer size: $q = 2 \times 10^6/g$
- Input size: $2 \times 10^{12}/g$ bytes
- Say g = 1000,
 - ► Input is 2GB
 - ► Total communication: $10^6 \times 999 \times 10^6 = 10^{15}$ bytes \rightarrow 1 petabyte

Graph model for mapreduce problems

- Set of inputs
- Set of outputs
- many-many relationship between the inputs and outputs, which describes which inputs are necessary to produce which outputs.
- Mapping schema
 - ▶ Given a reducer size q
 - No reducer is assigned more than q inputs
 - For every output, there is at least one reducer that is assigned all input related to that output



Grouping for Similarity Joins

- Generalize the problem to p images
- g equal sized groups of $\frac{p}{q}$ images
- Number of outputs is $\binom{p}{2} \approx \frac{p^2}{2}$
- Each reducer receives $\frac{2p}{q}$ inputs (q)
- Replication rate r = g 1

► $r = \frac{2p}{q}$

- The smaller the reducer size, the larger the replication rate, and therefore higher the communication
 - \blacktriangleright communication \leftrightarrow reducer size
 - \blacktriangleright communication \leftrightarrow parallelism

Lower bounds on Replication rate

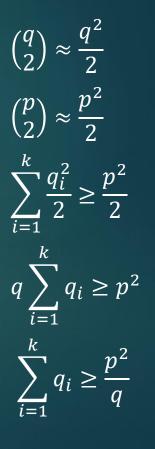
- 1. Prove an upper bound on how many outputs a reducer with q inputs can cover. Call this bound g(q)
- 2. Determine the total number of outputs produced by the problem
- 3. Suppose that there are k reducers, and the i^{th} reducer has $q_i < q$ inputs. Observe that $\sum_{i=1}^{k} g(q_i)$ must be no less than the number of outputs computed in step 2
- 4. Manipulate inequality in 3 to get a lower bound on $\sum_{i=1}^{k} q_i$
- 5. 4 is the total communication from Map tasks to reduce tasks. Divide by number of inputs to get the replication rate

Lower bounds on Replication rate

- 1. Prove an upper bound on how many outputs a reducer with q inputs can cover. Call this bound g(q)
- 2. Determine the total number of outputs produced by the problem
- 3. Suppose that there are k reducers, and the i^{th} reducer has $q_i < q$ inputs. Observe that $\sum_{i=1}^{k} g(q_i)$ must be no less than the number of outputs computed in step 2
- 4. Manipulate inequality in 3 to get a lower bound on $\sum_{i=1}^{k} q_i$

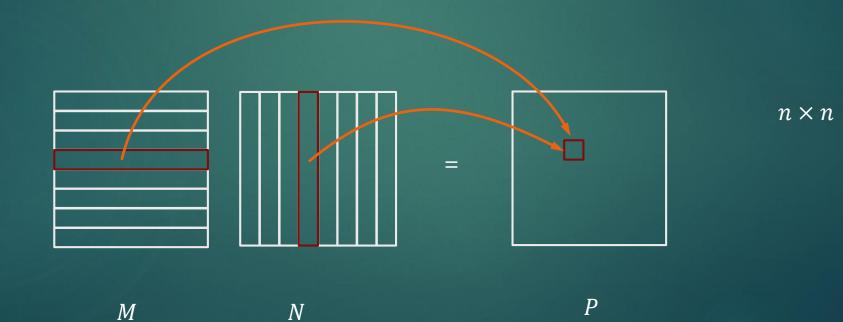
 $r \geq -$

5. 4 is the total communication from Map tasks to reduce tasks. Divide by number of inputs to get the replication rate



Matrix Multiplication

- \blacktriangleright Consider the one-pass algorithm \rightarrow extreme case
- Lets group rows/columns into bands $\rightarrow g$ groups $\rightarrow n/g$ columns/rows



Matrix Multiplication

► Map:

- for each element of M, N generate g(k, v) pairs
- Key is group paired with all groups
- ► Value is (i, j, m_{ij}) or (i, j, n_{ij})

► Reduce:

- Reducer corresponds to key (i, j)
- > All the elements in the i^{th} band of M and j^{th} band of N
- Each reducer gets $n\left(\frac{n}{g}\right)$ elements from 2 matrices

▶
$$q = \frac{2n^2}{g}$$
, $r = g$ → $r = \frac{2n^2}{q}$

Lower bounds on Replication rate

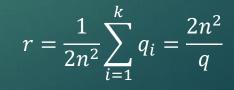
- 1. Prove an upper bound on how many outputs a reducer with q inputs can cover. Call this bound g(q)
- 2. Determine the total number of outputs produced by the problem
- 3. Suppose that there are k reducers, and the i^{th} reducer has $q_i < q$ inputs. Observe that $\sum_{i=1}^{k} g(q_i)$ must be no less than the number of outputs computed in step 2
- 4. Manipulate inequality in 3 to get a lower bound on $\sum_{i=1}^{k} q_i$
- 5. 4 is the total communication from Map tasks to reduce tasks. Divide by number of inputs to get the replication rate

► Each reducer receives k rows from M and $N \rightarrow q = 2nk$ and produces k^2 outputs $\rightarrow g(q) = \frac{q^2}{4n^2}$

$$n^2$$

$$\sum_{i=1}^{k} \frac{q_i^2}{4n^2} \ge n^2$$
$$\sum_{i=1}^{k} q_i^2 \ge 4n^4$$

$$\blacktriangleright \quad \sum_{i=1}^k q_i \ge \frac{4n^4}{q}$$



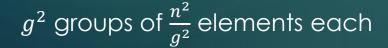
Matrix Multiplication Let us revisit the two-pass approach

Matrix-Matrix Multiplication

- $\blacktriangleright P = MN \rightarrow p_{ik} = \sum_j m_{ij} n_{jk}$
- 2 mapreduce operations
 - ► Map 1: produce (k, v), $(j, (M, i, m_{ij}))$ and $(j, (N, k, n_{jk}))$
 - ▶ Reduce 1: for each $j \rightarrow (i, k, m_{ij} \times n_{jk})$
 - Map 2: identity
 - Reduce 2: sum all values associated with key (i, k)

Grouped two-pass approach

First pass: compute products of square (I,J) of M with square (J,K) of N



Second pass: $\forall I, K$ sum over all J

=

Grouped two-pass approach

▶ Replication rate for map1 is $g \rightarrow 2gn^2$ total communication

 \sqrt{q}

• Each reducer gets
$$\frac{2n^2}{g^2} \rightarrow q = \frac{2n^2}{g^2} \rightarrow g = n\sqrt{\frac{2}{q}}$$

• Total communication $\rightarrow 2^{\sqrt{2}n^3}$

Assume map2 runs on same nodes as reduce1
no communication

ULTITUTICUTU

Comparison

 n^4

 \boldsymbol{q}

 $\frac{n^3}{\sqrt{q}}$

 $q < n^2$

000

If q is closer to the minimum of 2n, two pass is better by a factor of $\mathcal{O}(\sqrt{n})$