
Parallel Algorithms



Last time …

 Introduction to Big Data

 Assignment #0

Questions?



Today …

 Intro to Parallel Algorithms

 Map-Reduce

 Introduction to Spark



Parallel Thinking
THE MOST IMPORTANT GOAL OF TODAY’S LECTURE



Parallelism & beyond …

1 ox: single core performance 1024 chickens: parallelism

If you were plowing a field, which would you rather use? 

Two strong oxen or 1024 chickens?

Seymour Cray

tractor: better algorithms



Consider an array 𝐴 with 𝑛 elements, 

Goal: to compute,

𝑥 = 

1

𝑛

𝐴𝑖

Machine Model

Programming Model

Performance analysis



Von Neumann architecture 

 Central Processing Unit (CPU, Core)

 Memory

 Input/Output (I/O)

 One instruction per unit/time

 Sequential

Memory

Control

Unit

Arithmetic 

Logic Unit

Accumulator

Input Output



Characterizing algorithm 

performance

 𝑂-notation

 Given an input of size 𝑛, let 𝑇(𝑛) be the total time, and 𝑆 𝑛 the 

necessary storage

 Given a problem, is there a way to compute lower bounds on storage 
and time  Algorithmic Complexity

 𝑇 𝑛 = 𝑂 𝑓 𝑛 means

𝑇 𝑛 ≤ 𝑐𝑓(𝑛) , where 𝑐 is some unknown positive constant

compare algorithms by comparing 𝑓(𝑛).



Scalability

 Scale Vertically  scale-up

 Add resources to a single node

 CPU, memory, disks,

 Scale Horizontally  scale-out

 Add more nodes to the system



Parallel Performance

 Speedup

best sequential time/time on p processors

 Efficiency

speedup/𝑝,           (< 1)

Scalability



Amdahl’s Law

 Sequential bottlenecks: 

Let 𝑠 be the percentage of the overall work that is sequential 

 Then, the speedup is given by

𝑆 =
1

𝑠 +
1 − 𝑠
𝑝

≤
1

𝑠



Gustafson

Sequential part should be independent of the problem size

Increase problem size, with increasing number of processors 



Strong & Weak Scalability

Increasing number of cores

Strong (fixed-sized) scalability

Weak (fixed-sized) scalability

keep problem size fixed

keep problem size/core fixed



Work/Depth Models

 Abstract programming model

 Exposes the parallelism 

 Compute work 𝑊 and depth 𝐷

 𝐷 - longest chain of dependencies

 𝑃 = 𝑊/𝐷

 Directed Acyclic Graphs

 Concepts

 parallel for (data decomposition)

 recursion (divide and conquer) 𝐴1 𝐴2

+

+

+

+

+

+

+

𝐴3

𝐴4

𝐴8

𝐴7

𝐴6

𝐴5



Work/Depth Models

 Abstract programming model

 Exposes the parallelism 

 Compute work 𝑊 and depth 𝐷

 𝐷 - longest chain of dependencies

 𝑃 = 𝑊/𝐷

 Directed Acyclic Graphs

 Concepts

 parallel for (data decomposition)

 recursion (divide and conquer) 𝐴1 𝐴2

+
𝐴3 𝐴4

+
𝐴5 𝐴6

+
𝐴7 𝐴8

+

+ +

+



Parallel vs sequential for

 Dependent statements

 𝑊 =  𝑊𝑖

 𝐷 =  𝐷𝑖

 Independent statements

 𝑊 =  𝑊𝑖

 𝐷 = max(𝐷𝑖)





Map Reduce



MapReduce programming 

interface

 Two‐stage data processing

 Data can be divided into many chunks

 A map task processes input data & generates local results for one or a 

few chunks

 A reduce task aggregates & merges local results from multiple map 

tasks

 Data is always represented as a set of key‐value pairs

 Key helps grouping for the reduce tasks

 Though key is not always needed (for some applications, or for the input

data), a consistent data represention eases the programming interface



Motivation & design principles

 Fault tolerance

 Loss of a single node or an entire rack

 Redundant file storage

 Files can be enormous 

 Files are rarely updated

 Read data, perform calculations

 Append rather than modify

 Dominated by communication costs and I/O

 Computation is cheap compared with data access

 Dominated by input size



Dependency in MapReduce

 Map tasks are independent from each other, can all run in parallel

 A map task must finish before the reduce task that processes its 

result

 In many cases, reduce tasks are commutative

 Acyclic graph model



Applications that don’t fit

 MapReduce supports limited semantics

 The key success of MapReduce depends on the assumption that the 

dominant part of data processing can be divided into a large number 

of independent tasks

 What applications don’t fit this?

 Those with complex dependencies – Gaussian elimination, k-means 

clustering, iterative methods, n-body problems, graph problems, …



MapReduce

 Map: chunks from DFS  (key, value)

 User code to determine (𝑘, 𝑣) from chunks (files/data)

 Sort: (𝑘, 𝑣) from each map task are collected by a master controller 

and sorted by key and divided among the reduce tasks

 Reduce: work on one key at a time and combine all the values 

associated with that key

 Manner of combination is determined by user code 



MapReduce – word counting

 Input  set of documents

 Map: 

 reads a document and breaks it into a sequence of words
𝑤1, 𝑤2, … ,𝑤𝑛

 Generates (𝑘, 𝑣) pairs,
𝑤1, 1 , 𝑤2, 1 , … , (𝑤𝑛, 1)

 System: 

 group all 𝑘, 𝑣 by key

 Given 𝑟 reduce tasks, assign keys to reduce tasks using a hash function

 Reduce:

 Combine the values associated with a given key

 Add up all the values associated with the word  total count for that word



Node failures

 Master node fails

 Restart mapreduce job 

 Node with Map worker fails

 Redo all map tasks assigned to this worker

 Set this worker as idle

 Inform reduce tasks about change of input location

 Node with Reduce worker fails

 Set the worker as idle 



Spark



Spark

 Spark is a distributed in memory computational framework

 Attempts to provide a single platform for various data analytics 

scenarios  replace several specialized and fragmented solutions

 Specialized modules available in the form of libraries

 SQL, Streaming, Graph Algorithms (GraphX), Machine Learning(MLLib)

 Introduces an abstract common data format that is used for 

efficient data sharing across processes – RDD 



Spark

RDD HDFS

Mesos

Yarn

HadoopSpark

Mahout Hive PigStreaming MLLib MahoutSQL



General flow

files transformations actions valueRDD RDD



Resilient Distributed Datasets

 Write programs in terms of transformation on distributed 

datasets

 RDD: collections of objects spread across a cluster, 

stored in RAM or on Disk

 Built through parallel transformations

 Automatically rebuilt on failure 



RDD Operations

 Transformations

 New RDDs from an existing one(s) 

 map, filter, groupBy

 Actions

 Compute a result based on an RDD & return to driver or save to disk

 count, collect, save 

 Lazy evaluation  the first time used in an action

 Persistence  recomputed each time you run an action

 use data.persist()



Spark Examples


