
Parallel Algorithms

Last time …

 Introduction to Big Data

 Assignment #0

Questions?

Today …

 Intro to Parallel Algorithms

 Map-Reduce

 Introduction to Spark

Parallel Thinking
THE MOST IMPORTANT GOAL OF TODAY’S LECTURE

Parallelism & beyond …

1 ox: single core performance 1024 chickens: parallelism

If you were plowing a field, which would you rather use?

Two strong oxen or 1024 chickens?

Seymour Cray

tractor: better algorithms

Consider an array 𝐴 with 𝑛 elements,

Goal: to compute,

𝑥 =

1

𝑛

𝐴𝑖

Machine Model

Programming Model

Performance analysis

Von Neumann architecture

 Central Processing Unit (CPU, Core)

 Memory

 Input/Output (I/O)

 One instruction per unit/time

 Sequential

Memory

Control

Unit

Arithmetic

Logic Unit

Accumulator

Input Output

Characterizing algorithm

performance

 𝑂-notation

 Given an input of size 𝑛, let 𝑇(𝑛) be the total time, and 𝑆 𝑛 the

necessary storage

 Given a problem, is there a way to compute lower bounds on storage
and time  Algorithmic Complexity

 𝑇 𝑛 = 𝑂 𝑓 𝑛 means

𝑇 𝑛 ≤ 𝑐𝑓(𝑛) , where 𝑐 is some unknown positive constant

compare algorithms by comparing 𝑓(𝑛).

Scalability

 Scale Vertically  scale-up

 Add resources to a single node

 CPU, memory, disks,

 Scale Horizontally  scale-out

 Add more nodes to the system

Parallel Performance

 Speedup

best sequential time/time on p processors

 Efficiency

speedup/𝑝, (< 1)

Scalability

Amdahl’s Law

 Sequential bottlenecks:

Let 𝑠 be the percentage of the overall work that is sequential

 Then, the speedup is given by

𝑆 =
1

𝑠 +
1 − 𝑠
𝑝

≤
1

𝑠

Gustafson

Sequential part should be independent of the problem size

Increase problem size, with increasing number of processors

Strong & Weak Scalability

Increasing number of cores

Strong (fixed-sized) scalability

Weak (fixed-sized) scalability

keep problem size fixed

keep problem size/core fixed

Work/Depth Models

 Abstract programming model

 Exposes the parallelism

 Compute work 𝑊 and depth 𝐷

 𝐷 - longest chain of dependencies

 𝑃 = 𝑊/𝐷

 Directed Acyclic Graphs

 Concepts

 parallel for (data decomposition)

 recursion (divide and conquer) 𝐴1 𝐴2

+

+

+

+

+

+

+

𝐴3

𝐴4

𝐴8

𝐴7

𝐴6

𝐴5

Work/Depth Models

 Abstract programming model

 Exposes the parallelism

 Compute work 𝑊 and depth 𝐷

 𝐷 - longest chain of dependencies

 𝑃 = 𝑊/𝐷

 Directed Acyclic Graphs

 Concepts

 parallel for (data decomposition)

 recursion (divide and conquer) 𝐴1 𝐴2

+
𝐴3 𝐴4

+
𝐴5 𝐴6

+
𝐴7 𝐴8

+

+ +

+

Parallel vs sequential for

 Dependent statements

 𝑊 = 𝑊𝑖

 𝐷 = 𝐷𝑖

 Independent statements

 𝑊 = 𝑊𝑖

 𝐷 = max(𝐷𝑖)

Map Reduce

MapReduce programming

interface

 Two‐stage data processing

 Data can be divided into many chunks

 A map task processes input data & generates local results for one or a

few chunks

 A reduce task aggregates & merges local results from multiple map

tasks

 Data is always represented as a set of key‐value pairs

 Key helps grouping for the reduce tasks

 Though key is not always needed (for some applications, or for the input

data), a consistent data represention eases the programming interface

Motivation & design principles

 Fault tolerance

 Loss of a single node or an entire rack

 Redundant file storage

 Files can be enormous

 Files are rarely updated

 Read data, perform calculations

 Append rather than modify

 Dominated by communication costs and I/O

 Computation is cheap compared with data access

 Dominated by input size

Dependency in MapReduce

 Map tasks are independent from each other, can all run in parallel

 A map task must finish before the reduce task that processes its

result

 In many cases, reduce tasks are commutative

 Acyclic graph model

Applications that don’t fit

 MapReduce supports limited semantics

 The key success of MapReduce depends on the assumption that the

dominant part of data processing can be divided into a large number

of independent tasks

 What applications don’t fit this?

 Those with complex dependencies – Gaussian elimination, k-means

clustering, iterative methods, n-body problems, graph problems, …

MapReduce

 Map: chunks from DFS  (key, value)

 User code to determine (𝑘, 𝑣) from chunks (files/data)

 Sort: (𝑘, 𝑣) from each map task are collected by a master controller

and sorted by key and divided among the reduce tasks

 Reduce: work on one key at a time and combine all the values

associated with that key

 Manner of combination is determined by user code

MapReduce – word counting

 Input  set of documents

 Map:

 reads a document and breaks it into a sequence of words
𝑤1, 𝑤2, … ,𝑤𝑛

 Generates (𝑘, 𝑣) pairs,
𝑤1, 1 , 𝑤2, 1 , … , (𝑤𝑛, 1)

 System:

 group all 𝑘, 𝑣 by key

 Given 𝑟 reduce tasks, assign keys to reduce tasks using a hash function

 Reduce:

 Combine the values associated with a given key

 Add up all the values associated with the word  total count for that word

Node failures

 Master node fails

 Restart mapreduce job

 Node with Map worker fails

 Redo all map tasks assigned to this worker

 Set this worker as idle

 Inform reduce tasks about change of input location

 Node with Reduce worker fails

 Set the worker as idle

Spark

Spark

 Spark is a distributed in memory computational framework

 Attempts to provide a single platform for various data analytics

scenarios  replace several specialized and fragmented solutions

 Specialized modules available in the form of libraries

 SQL, Streaming, Graph Algorithms (GraphX), Machine Learning(MLLib)

 Introduces an abstract common data format that is used for

efficient data sharing across processes – RDD

Spark

RDD HDFS

Mesos

Yarn

HadoopSpark

Mahout Hive PigStreaming MLLib MahoutSQL

General flow

files transformations actions valueRDD RDD

Resilient Distributed Datasets

 Write programs in terms of transformation on distributed

datasets

 RDD: collections of objects spread across a cluster,

stored in RAM or on Disk

 Built through parallel transformations

 Automatically rebuilt on failure

RDD Operations

 Transformations

 New RDDs from an existing one(s)

 map, filter, groupBy

 Actions

 Compute a result based on an RDD & return to driver or save to disk

 count, collect, save

 Lazy evaluation  the first time used in an action

 Persistence  recomputed each time you run an action

 use data.persist()

Spark Examples

