
Big Data Systems
CS 5965/6965 – FALL 2015

Today …

 General course overview

 Expectations from this course

 Q&A

 Introduction to Big Data

 Assignment #1

General Course Information

 Course Web Page

 http://www.cs.utah.edu/~hari/teaching/fall2015.html

 also on canvas

 Text & References

 Mining of Massive Datasets, Leskovec, Rajaraman, Ullman

 will use online resources and papers

 CHPC accounts fill this form asap http://goo.gl/forms/nT8TkFtiJq

 TA – Vairavan Sivaraman

 Email – vairavan.sivaraman@utah.edu

 Office hours

http://www.cs.utah.edu/~hari/teaching/fall2015.html
http://www.mmds.org/
http://goo.gl/forms/nT8TkFtiJq
mailto:vairavan.sivaraman@utah.edu

Class Interaction …

 I strongly encourage discussions & interactions

 10% for class interaction and online participation

Academic conduct

Adherence to the CoE and SoC academic guidelines is expected.

Please read the following.

 College of Engineering Academic Guidelines from their web page

 School of Computing Misconduct Policy Please Read

TL;DR

NO CHEATING

http://www.coe.utah.edu/wp-content/uploads/pdf/faculty/semester_guidelines.pdf
http://www.cs.utah.edu/graduate/cheating_policy

Exams, Assignments & Projects

 Assignment 0 – Due in 1 week

 Assignments 1-2

 one every week

 Simple spark problems

 Assignments 3,4

 Larger problems

 2 weeks each

 Final Project submit proposal before start of fall break

 Default project

 2-3 students per group

 Mid-term exam after fall break

Things you should know

 No formal prerequisite

 Good Programming Skills (any language)

 Python/Scala/Java

 Make a case if you would like to use any other language

 Be prepared to learn new programming tools & techniques

 Linear Algebra

 Sequential algorithms, complexity analysis

What will we cover ?

 Hadoop & Spark

 MapReduce

 Parallel Algorithms

 Searching & Sorting in Parallel

 Randomized Algorithms - Graph Coloring

 PageRank

 Clustering Data

 Recommendation Systems

 Matrix Factorization

 Social Networks

 Graph Algorithms

 Large-Scale Machine Learning

Expectations

 The focus will be on understanding Big data algorithms and ensuring

scalability for large scale problems

 While we will use Spark/Python, the skills acquired should be

transferable to other platforms/frameworks

 While I will show you code examples, this is not a course to take if

you want to learn to program in Java/Python/Scala/….

 Programming assignments will be frequent and hard. Additionally,

the cluster is unreliable, so do not wait until the last evening to test

your code.

 Choose the default project if you

Where to look for help

 Course website / Canvas

 Email

 TA office hours MEB 3XXX

 My office hours MEB 3454 Tue,Thu 2-3pm

Questions?

What is Big Data ?

What is Big Data?

 Volume

 Variety

 Veracity

 Velocity

The recognition that data is at the center of our

digital world and that there are big challenges in

collecting, storing, processing, analyzing, and

making use of such data.

What is Big depends on the application domain

Kinds of Data

 Web data & web data accesses

 Emails, chats, tweet

 Telephone data

 Public databases – Gene banks, census records, …

 Private databases – medical records, credit card transactions, …

 Sensor data – camera surveillance, wearable sensors, seismograms

 Byproduct of computer systems operations – power signal, CPU

events, …

 … … …

Data is valuable

 Google & facebook make money by mining user data

 for revenue from advertisements

 Financial firms analyze financial records, real-time transactions and

current events for profitable trades

 Medical records can be processed for better – and potentially

cheaper – health care

 Roadways are monitored for traffic analysis and control

 Face detection in airports

Collection of Big Data

 The amount of data available is increasing exponentially

 But, it is still challenging to collect it

 Difficult to get access

 Redundancy

 Noise

Processing & Analysis of Big Data

 Large datasets do not fit in memory

 Processing large datasets is time consuming

 Parallel processing is necessary challenging

 Message Passing Interface (MPI) – (1991)

 Low(er) level C/Fortran API for communication

 Powerful, hard(er) to code, !fault tolerant

 Mapreduce – Google (2004)

 Originated from web data processing

 ease of programming, fault tolerant

 limited semantics

 Spark, GraphLab, Storm, ……

Storage & I/O

 Storage and I/O are critical for big data performance and reliability

 Hardware: disks, Flash, SSD, nonvolatile memory, 3D memory

 Parallelism: RAID, parallel data storage, DFS

 Data durability and consistency

Data privacy & protection

 Misuse of big data is a big concern

 A person’s online activities can reveal all aspects of the person’s life

 Systems need to provide clear guidelines on data privacy and

protection

 Sensitive clinical information

 Understand how the big data world operates

 as an user

 as a developer

Parallel Thinking
THE MOST IMPORTANT GOAL OF TODAY’S LECTURE

Parallelism & beyond …

1 ox: single core performance 1024 chickens: parallelism

If you were plowing a field, which would you rather use?

Two strong oxen or 1024 chickens?

Seymour Cray

tractor: better algorithms

Credit: Phillip Stanley-Marbell

Consider an array 𝐴 with 𝑛 elements,

Goal: to compute,

𝑥 =

1

𝑛

𝐴𝑖

Machine Model

Programming Model

Performance analysis

Von Neumann architecture

 Central Processing Unit (CPU, Core)

 Memory

 Input/Output (I/O)

 One instruction per unit/time

 Sequential

Memory

Control

Unit

Arithmetic

Logic Unit

Accumulator

Input Output

Characterizing algorithm

performance

 𝑂-notation

 Given an input of size 𝑛, let 𝑇(𝑛) be the total time, and 𝑆 𝑛 the

necessary storage

 Given a problem, is there a way to compute lower bounds on storage
and time Algorithmic Complexity

 𝑇 𝑛 = 𝑂 𝑓 𝑛 means

𝑇 𝑛 ≤ 𝑐𝑓(𝑛) , where 𝑐 is some unknown positive constant

compare algorithms by comparing 𝑓(𝑛).

Scalability

 Scale Vertically scale-up

 Add resources to a single node

 CPU, memory, disks,

 Scale Horizontally scale-out

 Add more nodes to the system

Parallel Performance

 Speedup

best sequential time/time on p processors

 Efficiency

speedup/𝑝, (< 1)

Scalability

Amdahl’s Law

 Sequential bottlenecks:

Let 𝑠 be the percentage of the overall work that is sequential

 Then, the speedup is given by

𝑆 =
1

𝑠 +
1 − 𝑠
𝑝

≤
1

𝑠

Gustafson

Sequential part should be independent of the problem size

Increase problem size, with increasing number of processors

Strong & Weak Scalability

Increasing number of cores

Strong (fixed-sized) scalability

Weak (fixed-sized) scalability

keep problem size fixed

keep problem size/core fixed

Parallel Programming

 Partition Work

 Determine Communication

 Agglomeration to number of available processors

 Map to processors

 Tune for architecture

Data & Tasks

Problem
partition

communicate

agglomerate

map

Consider an array 𝐴 with 𝑛 elements,

Goal: to compute,

𝑥 =

1

𝑛

𝐴𝑖

Work/Depth Models

 Abstract programming model

 Exposes the parallelism

 Compute work 𝑊 and depth 𝐷

 𝐷 - longest chain of dependencies

 𝑃 = 𝑊/𝐷

 Directed Acyclic Graphs

 Concepts

 parallel for (data decomposition)

 recursion (divide and conquer) 𝐴1 𝐴2

+

+

+

+

+

+

+

𝐴3

𝐴4

𝐴8

𝐴7

𝐴6

𝐴5

Work/Depth Models

 Abstract programming model

 Exposes the parallelism

 Compute work 𝑊 and depth 𝐷

 𝐷 - longest chain of dependencies

 𝑃 = 𝑊/𝐷

 Directed Acyclic Graphs

 Concepts

 parallel for (data decomposition)

 recursion (divide and conquer) 𝐴1 𝐴2

+
𝐴3 𝐴4

+
𝐴5 𝐴6

+
𝐴7 𝐴8

+

+ +

+

Sequential vs Parallel for

 Dependent statements

 𝑊 = 𝑊𝑖

 𝐷 = 𝐷𝑖

 Independent statements

 𝑊 = 𝑊𝑖

 𝐷 = max(𝐷𝑖)

Parallel Sum – language model

// Recursive implementation

Algorithm SUM(a, n)

// Input: array a of length 𝑛 = 2𝑘 , 𝑘 = log 𝑛

parallel_for i ← [0,n/2)

b(i) ← a(2i) + a(2i+1)

return SUM(b); // 𝑊
𝑛

2
, 𝐷
𝑛

2

Complexity:

𝐷 𝑛 = 𝐷
𝑛

2
+ 𝑂 1 = 𝑂(log 𝑛)

𝑊 𝑛 = 𝑊
𝑛

2
+ 𝑂 𝑛 = 𝑂 𝑛

Questions?

