
Big Data Systems
CS 5965/6965 – FALL 2015

Today …

 General course overview

 Expectations from this course

 Q&A

 Introduction to Big Data

 Assignment #1

General Course Information

 Course Web Page

 http://www.cs.utah.edu/~hari/teaching/fall2015.html

 also on canvas

 Text & References

 Mining of Massive Datasets, Leskovec, Rajaraman, Ullman

 will use online resources and papers

 CHPC accounts  fill this form asap http://goo.gl/forms/nT8TkFtiJq

 TA – Vairavan Sivaraman

 Email – vairavan.sivaraman@utah.edu

 Office hours

http://www.cs.utah.edu/~hari/teaching/fall2015.html
http://www.mmds.org/
http://goo.gl/forms/nT8TkFtiJq
mailto:vairavan.sivaraman@utah.edu

Class Interaction …

 I strongly encourage discussions & interactions

 10% for class interaction and online participation

Academic conduct

Adherence to the CoE and SoC academic guidelines is expected.

Please read the following.

 College of Engineering Academic Guidelines from their web page

 School of Computing Misconduct Policy Please Read

TL;DR

NO CHEATING

http://www.coe.utah.edu/wp-content/uploads/pdf/faculty/semester_guidelines.pdf
http://www.cs.utah.edu/graduate/cheating_policy

Exams, Assignments & Projects

 Assignment 0 – Due in 1 week

 Assignments 1-2

 one every week

 Simple spark problems

 Assignments 3,4

 Larger problems

 2 weeks each

 Final Project  submit proposal before start of fall break

 Default project

 2-3 students per group

 Mid-term exam after fall break

Things you should know

 No formal prerequisite

 Good Programming Skills (any language)

 Python/Scala/Java

 Make a case if you would like to use any other language

 Be prepared to learn new programming tools & techniques

 Linear Algebra

 Sequential algorithms, complexity analysis

What will we cover ?

 Hadoop & Spark

 MapReduce

 Parallel Algorithms

 Searching & Sorting in Parallel

 Randomized Algorithms - Graph Coloring

 PageRank

 Clustering Data

 Recommendation Systems

 Matrix Factorization

 Social Networks

 Graph Algorithms

 Large-Scale Machine Learning

Expectations

 The focus will be on understanding Big data algorithms and ensuring

scalability for large scale problems

 While we will use Spark/Python, the skills acquired should be

transferable to other platforms/frameworks

 While I will show you code examples, this is not a course to take if

you want to learn to program in Java/Python/Scala/….

 Programming assignments will be frequent and hard. Additionally,

the cluster is unreliable, so do not wait until the last evening to test

your code.

 Choose the default project if you

Where to look for help

 Course website / Canvas

 Email

 TA office hours  MEB 3XXX

 My office hours  MEB 3454  Tue,Thu 2-3pm

Questions?

What is Big Data ?

What is Big Data?

 Volume

 Variety

 Veracity

 Velocity

The recognition that data is at the center of our

digital world and that there are big challenges in

collecting, storing, processing, analyzing, and

making use of such data.

What is Big depends on the application domain

Kinds of Data

 Web data & web data accesses

 Emails, chats, tweet

 Telephone data

 Public databases – Gene banks, census records, …

 Private databases – medical records, credit card transactions, …

 Sensor data – camera surveillance, wearable sensors, seismograms

 Byproduct of computer systems operations – power signal, CPU

events, …

 … … …

Data is valuable

 Google & facebook make money by mining user data

 for revenue from advertisements

 Financial firms analyze financial records, real-time transactions and

current events for profitable trades

 Medical records can be processed for better – and potentially

cheaper – health care

 Roadways are monitored for traffic analysis and control

 Face detection in airports

Collection of Big Data

 The amount of data available is increasing exponentially

 But, it is still challenging to collect it

 Difficult to get access

 Redundancy

 Noise

Processing & Analysis of Big Data

 Large datasets do not fit in memory

 Processing large datasets is time consuming

 Parallel processing is necessary  challenging

 Message Passing Interface (MPI) – (1991)

 Low(er) level C/Fortran API for communication

 Powerful, hard(er) to code, !fault tolerant

 Mapreduce – Google (2004)

 Originated from web data processing

 ease of programming, fault tolerant

 limited semantics

 Spark, GraphLab, Storm, ……

Storage & I/O

 Storage and I/O are critical for big data performance and reliability

 Hardware: disks, Flash, SSD, nonvolatile memory, 3D memory

 Parallelism: RAID, parallel data storage, DFS

 Data durability and consistency

Data privacy & protection

 Misuse of big data is a big concern

 A person’s online activities can reveal all aspects of the person’s life

 Systems need to provide clear guidelines on data privacy and

protection

 Sensitive clinical information

 Understand how the big data world operates

 as an user

 as a developer

Parallel Thinking
THE MOST IMPORTANT GOAL OF TODAY’S LECTURE

Parallelism & beyond …

1 ox: single core performance 1024 chickens: parallelism

If you were plowing a field, which would you rather use?

Two strong oxen or 1024 chickens?

Seymour Cray

tractor: better algorithms

Credit: Phillip Stanley-Marbell

Consider an array 𝐴 with 𝑛 elements,

Goal: to compute,

𝑥 =

1

𝑛

𝐴𝑖

Machine Model

Programming Model

Performance analysis

Von Neumann architecture

 Central Processing Unit (CPU, Core)

 Memory

 Input/Output (I/O)

 One instruction per unit/time

 Sequential

Memory

Control

Unit

Arithmetic

Logic Unit

Accumulator

Input Output

Characterizing algorithm

performance

 𝑂-notation

 Given an input of size 𝑛, let 𝑇(𝑛) be the total time, and 𝑆 𝑛 the

necessary storage

 Given a problem, is there a way to compute lower bounds on storage
and time  Algorithmic Complexity

 𝑇 𝑛 = 𝑂 𝑓 𝑛 means

𝑇 𝑛 ≤ 𝑐𝑓(𝑛) , where 𝑐 is some unknown positive constant

compare algorithms by comparing 𝑓(𝑛).

Scalability

 Scale Vertically  scale-up

 Add resources to a single node

 CPU, memory, disks,

 Scale Horizontally  scale-out

 Add more nodes to the system

Parallel Performance

 Speedup

best sequential time/time on p processors

 Efficiency

speedup/𝑝, (< 1)

Scalability

Amdahl’s Law

 Sequential bottlenecks:

Let 𝑠 be the percentage of the overall work that is sequential

 Then, the speedup is given by

𝑆 =
1

𝑠 +
1 − 𝑠
𝑝

≤
1

𝑠

Gustafson

Sequential part should be independent of the problem size

Increase problem size, with increasing number of processors

Strong & Weak Scalability

Increasing number of cores

Strong (fixed-sized) scalability

Weak (fixed-sized) scalability

keep problem size fixed

keep problem size/core fixed

Parallel Programming

 Partition Work

 Determine Communication

 Agglomeration to number of available processors

 Map to processors

 Tune for architecture

Data & Tasks

Problem
partition

communicate

agglomerate

map

Consider an array 𝐴 with 𝑛 elements,

Goal: to compute,

𝑥 =

1

𝑛

𝐴𝑖

Work/Depth Models

 Abstract programming model

 Exposes the parallelism

 Compute work 𝑊 and depth 𝐷

 𝐷 - longest chain of dependencies

 𝑃 = 𝑊/𝐷

 Directed Acyclic Graphs

 Concepts

 parallel for (data decomposition)

 recursion (divide and conquer) 𝐴1 𝐴2

+

+

+

+

+

+

+

𝐴3

𝐴4

𝐴8

𝐴7

𝐴6

𝐴5

Work/Depth Models

 Abstract programming model

 Exposes the parallelism

 Compute work 𝑊 and depth 𝐷

 𝐷 - longest chain of dependencies

 𝑃 = 𝑊/𝐷

 Directed Acyclic Graphs

 Concepts

 parallel for (data decomposition)

 recursion (divide and conquer) 𝐴1 𝐴2

+
𝐴3 𝐴4

+
𝐴5 𝐴6

+
𝐴7 𝐴8

+

+ +

+

Sequential vs Parallel for

 Dependent statements

 𝑊 = 𝑊𝑖

 𝐷 = 𝐷𝑖

 Independent statements

 𝑊 = 𝑊𝑖

 𝐷 = max(𝐷𝑖)

Parallel Sum – language model

// Recursive implementation

Algorithm SUM(a, n)

// Input: array a of length 𝑛 = 2𝑘 , 𝑘 = log 𝑛

parallel_for i ← [0,n/2)

b(i) ← a(2i) + a(2i+1)

return SUM(b); // 𝑊
𝑛

2
, 𝐷
𝑛

2

Complexity:

𝐷 𝑛 = 𝐷
𝑛

2
+ 𝑂 1 = 𝑂(log 𝑛)

𝑊 𝑛 = 𝑊
𝑛

2
+ 𝑂 𝑛 = 𝑂 𝑛

Questions?

