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Nonrigid 2D/3D Registration of Coronary Artery
Models With Live Fluoroscopy for Guidance

of Cardiac Interventions
David Rivest-Hénault*, Hari Sundar, and Mohamed Cheriet

Abstract—A 2D/3D nonrigid registration method is proposed
that brings a 3D centerline model of the coronary arteries into
correspondence with bi-plane fluoroscopic angiograms. The reg-
istered model is overlaid on top of interventional angiograms to
provide surgical assistance during image-guided chronic total
occlusion procedures, thereby reducing the uncertainty inherent
in 2D interventional images. The proposed methodology is divided
into two parts: global structural alignment and local nonrigid
registration. In both cases, vessel centerlines are automatically
extracted from the 2D fluoroscopic images, and serve as the basis
for the alignment and registration algorithms. In the first part,
an energy minimization method is used to estimate a global affine
transformation that aligns the centerline with the angiograms. The
performance of nine general purpose optimizers has been assessed
for this problem, and detailed results are presented. In the second
part, a fully nonrigid registration method is proposed and used to
compensate for any local shape discrepancy. This method is based
on a variational framework, and uses a simultaneous matching
and reconstruction process to compute a nonrigid registration.
With a typical run time of less than 3 s, the algorithms are fast
enough for interactive applications. Experiments on five different
subjects are presented and show promising results.

Index Terms—Chronic total occlusions, computed tomography,
image-guided interventions, interventional cardiology, X-ray fluo-
roscopy, 2D/3D Registration.

I. INTRODUCTION

X -RAY fluoroscopy is the modality of choice for the
guidance of percutaneous coronary interventions (PCI)

of chronic total occlusions (CTO). During these procedures,
crossing CTOs using a guidewire is particularly hazardous,
since the occlusion blocks the propagation of the contrast agent,
and makes the occluded portion of the vessel invisible under
fluoroscopy. In addition to the contrast issue, the projective
nature of fluoroscopy results in ambiguities in the interpretation
of 3D structures that further complicates the interventional
procedure. Similar challenges arise in a vast array of minimally
invasive procedures [28], [27].
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Current preinterventional planning routinely includes the ac-
quisition of a computed tomography angiography (CTA), or
other 3D imaging modality, which is used to reduce visual un-
certainty. The performance characteristics of CTA with blood
pool contrast injection enables the calcifications causing the
CTOs to be clearly distinguished, as opposed to what can be per-
ceived with interventional X-ray fluoroscopy with direct con-
trast agent injection. This makes CTA a highly valuable tool
at the planning stage, but establishing correspondence between
these data and the interventional images can prove difficult.
To address this issue, a 3D model can be extracted prepro-

cedure from the acquired volume, aligned with the 2D fluoro-
scopic views, and overlaid on top of the live images, thereby
augmenting the interventional images. However, achieving this
alignment is a challenge in itself, mainly because finding inter-
modal correspondence is a nontrivial problem, and also because
of the nonlinear aspect of the underlying optimization problem.
Furthermore, a simple rigid transformation might not be suffi-
cient to provide a satisfying 2D/3D registration. Since the 3D
planning image is acquired under a breathold, there are signifi-
cant shape changes as compared to the intraoperative images ac-
quired under free breathing. This makes it extremely important
to use a nonrigid registration method while aligning the preop-
erative model with the live intraoperative images. This is, how-
ever, a difficult ill-posed inverse problem. Nevertheless, 2D/3D
registration methods have the potential to greatly reduce the un-
certainty relative to interventional X-ray angiography, and to do
so with only minimal modification to the existing clinical flows.
The development of such methods is the main objective of this
paper, and its most significant contribution.
From a broader perspective, 2D/3D registration methods

have numerous applications in fields such as neurology [16],
orthopaedics [2], and cardiology [35]. The associated body of
literature is expanding rapidly, as is apparent in the thorough
review of techniques recently published by Markelj et al. [22].
Below, the techniques most closely related to the one presented
in this paper are discussed.
The maximal precision that can potentially be achieved by a

registration process is directly linked to the complexity of the
transformation model involved. Many 2D/3D registration ap-
proaches consider only a rigid transformations model [11], [45],
[43], [35], or a slightly more flexible affine model [44]. In gen-
eral, this is appropriate for rigid structures, such as bones, or to
provide an initial alignment of the modalities, but might prove
insufficient to account for the shape changes of flexible struc-
tures. Consequently, nonrigid deformation models have been
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proposed for 2D/3D registration [13], [23], [21]. In [13], the
transformation model is strongly constrained by a length con-
servation term. The method has mostly been demonstrated on
synthetic examples, and its computational complexity, resulting
in a computational time of around 5 min, makes it impractical
in an interventional setting. The approach by Metz et al. [23]
requires the acquisition of 4D CTA, that allows for the use of
a model for cardiac motion. However, it does not ac-
count for shape changes occurring through respiratory move-
ment, and the acquisition of a 4D CTA is not possible in most
interventions, which is a major shortcoming of this approach.
Interesting results are presented in the paper by Liao et al. [21],
but their technique makes use of features specific to the abdom-
inal aorta.
In a clinical setting, one or two fluoroscopic planes are used

for intervention guidance. Some authors [7], [13], [9] have in-
vestigated the monoplane scenario, but the reported errors are
large in the out-of-plane direction. This lack of accuracy seri-
ously limits confidence in the registration process. Biplane ac-
quisition greatly reduces the ambiguity associated with these in-
terventions, which is why this paper focuses on the alignment
and registration of a 3D model with two fluoroscopic images.
In our experience of five vastly different clinical sites located in
Canada, Germany, and the Netherlands, we have observed that
biplane acquisitions are now performed on a daily basis for com-
plex cardiac interventions. Thus, the proposed methodology is
practical in many clinical situations.
The method presented in this paper is designed to nonrigidly

align a preoperative 3D centerline model of the coronary arteries
with two intraoperative fluoroscopic images to visually aug-
ment the interventional images. It is composed of two steps: 1)
a global transformation model is calculated to provide an initial
rigid or affine alignment, and 2) a fully nonrigid model is used
to compute the final registration. To estimate the global align-
ment parameters, a formulation derived from [42] is used. This
formulation benefits from distance maps [10], [25] to measure
the discrepancies between the projections of the 3D model and
features automatically extracted from the 2D images. Such for-
mulations have less computational complexity than those based
on point matching approaches [40], [43] or on digitally recon-
structed radiographs [33], [39]. A contribution of this paper is
to generalize the cost function defined in [42] to cover the affine
and biplane case.
The optimization surface in 2D/3D registration problems can

be highly nonlinear for several reasons: the discretization of
the image, the complexity of the structures to be registered,
and the use of a rigid or affine transformation model. As a re-
sult, the minimization of the cost function is challenging. As
we know that no single optimization method outperforms all
the others, it is hard to understand why only one or two opti-
mization algorithms have been evaluated in most related works
[45], [42], [35]. In addition, work published by Lau and Chung
[20] suggests that global optimizers might perform better than
the more popular local optimizers for a related 2D/3D regis-
tration problem. An important contribution of this work is thus
to present a rigorous comparison between seven local and two
global optimizers. The data were gathered using one realistic
simulated case and five clinical cases; 2D and 3D errors are re-

ported as well as runtime measurements. The results presented
here can help implementers choose the best algorithm for their
application. A similar study, but for intensity-based 2D/3D reg-
istration, is presented in [5].
Work recently published by Ruijters et al. [35] shares some

similarities with the proposed 2D/3D alignment method. Their
registration method makes use of the distance transform of the
projection of a 3D centerline and of the output of the Frangi ves-
selness filter [12] to compute the cost associated with a certain
pose. The optimization is carried out with either a Powell opti-
mizer or a stochastic optimizer. There are, however, a few im-
portant differences between the approaches. While they specif-
ically avoid 2D segmentation, we propose using a very recent
2D segmentation algorithm [37]. By doing so, it is possible to
precompute the distance transform on the 2D images, instead
of computing the distance transform of the projection of the 3D
centerline for a certain pose at each iteration. This can lead to
an improvement of up to two orders of magnitude in registra-
tion time. Nonetheless we acknowledge that computing the au-
tomatic 2D segmentation incurs some small overhead. We also
make use of the affine transformation model in addition to the
rigid one, and present a more thorough evaluation using addi-
tional optimizers. Finally, [35] does not consider nonrigid reg-
istration.
The 2D/3D registration method can also be used to capture

the motion of the structure of interest across a sequence of
frames [3], [44]. The demonstration of the suitability of the pro-
posed global registration method in this multiframe setting is
another contribution of this work. With respect to the nonrigid
registration method, our main contribution is the formulation
of this problem as a simultaneous matching, reconstruction and
registration problem, that can, on modern hardware, be solved
fast enough to be used intraoperatively during CTO procedures.
The rest of this paper is organized as follows. Section II

presents the practical system considered here and other back-
ground information. The global alignment method is described
in Section III. The proposed nonrigid registration method is
introduced in Section IV. Experiments with both the global
alignment method and the nonrigid registration method are
presented in Section V. Finally, a discussion and the conclusion
are presented in Section VII.

II. BACKGROUND INFORMATION

A 3D centerline representation of a coronary artery tree,
segmented [14] from a preoperative CTA volume, is to be
nonrigidly registered to two simultaneous fluoroscopic images.
Starting from the default 3D location, computed from the
calibration of the apparatus, the 3D alignment of the centerline
is progressively refined using translation-only motions, a rigid
transformation, and an affine transformation. Lastly, a nonrigid
transformation is computed and provides the final registration.
The geometry of the system under consideration is repre-

sented schematically in Fig. 1 and is described using five coor-
dinate systems (CS). The 3D centerline representing the coro-
nary tree is described with respect to , and a CS is cen-
tered at the reference point of the 3D imaging device. The 3D
centerline itself is described by using a set of segments com-
posed of control points forming an undirected
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Fig. 1. Geometry of the imaging system. Labeled frames represent coordinate
systems. Dashed lines and bold symbols represent transformation matrixes.

acyclic graph. In term of 2D angiography, is the reference
CS of the biplane C-arm, and CSs and are centered on
the 2D imaging planes. The transformations between and ,
and between and , are known from the calibration
of the apparatus, and are encoded in the rigid transformation
matrixes and , respectively. The projective geometry
of the two X-ray planes is also assumed to be available, and
is encoded in the projection operators and that map a
3D point in homogeneous coordinates to a 2D
point on the corresponding fluoroscopic plane.
The vessels are automatically segmented from the input fluo-

roscopic images, using the method proposed in [37], and repre-
sented as a binarization of the input image.
, if the input image pixel at location

corresponds to some structure of interest,
and otherwise. It is assumed that the two fluoro-
scopic images are the same size . For the sake
of completeness, the automatic segmentation method in [37]
is briefly outlined here: 1) an input fluoroscopic image is pro-
cessed using the Hessian-based Sato vesselness filter [36]; 2)
seed points are generated by sparsely sampling a thresholding
of the vesselness measure; 3) starting from those points, fibers
are generated by integrating along the first eigenvector of the
Hessian matrix computed at each pixel location; and 4) the fiber
bundles are iteratively thinned to extract the centerlines of the
vessels. The default parameters of this method have been used
without modification throughout this paper. Examples of out-
puts are presented in Fig. 2.1

III. TRANSLATIONAL, RIGID, AND AFFINE ALIGNMENT

In a typical clinical setting, the transformation that aligns the
3D coronary centerlines from the CTA acquisition to the images
of the same structures on the biplane fluoroscopy can only be
measured approximately, since the position of the patient cannot
be controlled with a high degree of accuracy. A transformation
, that is a mapping between the two imaging modality coor-

dinate systems, can be estimated by a calibration of the appa-
ratus, and refined by taking into account the geometry of the
structures of interest. Starting from the initial conditions, the

1All 3D centerline projections presented in this work are color-coded as fol-
lows: if the 3D centerline is locally parallel to the view plane, it is green; if it is
perpendicular, it is red. A linear interpolation is used for intermediary situations.

improved alignment transformation is computed using a mini-
mization process to estimate the parameters of a global transla-
tional or rigid transformation model. From that point, an affine
transformation model can also be used to deform the 3D center-
line in order to compensate for the shape discrepancy between
the CTA and the biplane X-rays. A technique, inspired by [42],
but extended to cover the biplane case and the use of affine trans-
formations, is proposed for this purpose.
Formally, the total distance between the projection of the 3D

centerline and the vessel centerlines segmented on each fluoro-
scopic plane is to be minimized. Let be an affine
transformation operator that maps a point ,
relative to , to the coordinate system. Also, let

be a projection that maps a point from to the flu-
oroscopic plane . We define the energy

(1)

as the quantity that needs to be minimized. Here, is
the distance between a 2D point and the closest point where

. The distance for each image position
is computed beforehand, by creating the distance transform of
each segmentation, as presented in Fig. 2.
Optimizing the 12 values of directly is both ineffective and

inefficient, and so a parametric approach has been used. The
translation-only, rigid, or affine transformations , and

are represented using the parameter sets
, respectively. The mappings from the parametric to

the matrix representations of the s are defined as follows [38]:

and

(2)

where is the subset containing the elements with indexes
of and

and

(3)

where and . The transformation ma-
trixes , and are recentered in such a way that any
change in the rotation parameters induces a motion that appears
to occur around the origin of the coordinate system, as op-
posed to the origin of . This operation does not influence the
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Fig. 2. Input data: (a) curved slice from a CT volume; (b) 3D centerlines; (c) and (d) fluoroscopic angiograms from two different points of view; (e) and (f)
segmentation of the fluoroscopic images; and (g) and (h) distance transforms of the segmentations.

energy function (1), but is usually beneficial for the optimizers.
Intuitively, this is because such recentering reduces the distance,
in parameter space, associated with a rotation or a scaling op-
eration that appears to occur at the centroid of the CT volume.
The final definition of is then

(4)

where is the transformation from to , and ,
depending on the transformation model chosen.
Any nonderivative general purpose optimization algorithm

can be used to minimize (1). In this work, seven local and
two global algorithms have been tested for this purpose.
These algorithms are briefly described here.
Best Neighbor (L): At each iteration, a step in all principal

directions of the parameter space is considered. The best move
is applied, and a new iteration begins. When no move improves
the solution, the step is halved.
Nelder-Mead2 (L): A classic numerical optimization method

that minimizes an -dimensional function by evaluating the
function value at the vertices of a general simplex (or
polytope). At each iteration, the vertex with the worst value is
replaced by another one using a reflection operation followed
by either an expansion or a contraction operation [24].
Sbplx3 (L): This method decomposes the problem in a low-

dimensional subspace, and uses the Nelder-Mead algorithm to
perform the search [34].
Cobyla (L): The Constrained Optimization BY Linear Ap-

proximation method works by constructing linear-approxima-
tions of the cost function and constraints using vertex
simplexes, and minimizes this approximation. The radius of the

2Also known as Downhill Simplex.
3The name of the original author’s implementation is Subplex, the name of

the NLopt [17] implementation is Sbplx.

simplex is progressively reduced, while maintaining a regular
shape [30], [31].
Bobyqa (L): Each iteration of the Bound Optimization BY

Quadratic Approximation method use a quadratic approxima-
tion of the cost function constructed, typically by considering

interpolation point. The trust region is progressively re-
duced until there is no further improvement [32].
Powell-Brent (L): At each iteration, a succession of exact 1D

line optimizations is performed using Brent’s method. The so-
lution is updated using Powell’s method of conjugate search di-
rections [29], [8].
Praxis (L):Brent’s PRincipal-AXISmethod is a refinement of

Powell’s method of conjugate search directions [8].
Differential Evolution (G): This is a population-based sto-

chastic global optimization method, the main feature of which
is the use of the vector of the difference between pairs of indi-
viduals as the basis for the population evolution [41].
Direct (G): This global optimization algorithm is designed

for problems with finite bound constraints, as is the case here.
The parameter space is systematically and deterministically
searched by dividing it into smaller and smaller hyperrectan-
gles [18].
The free parameters of each algorithm have been adjusted in

accordance with the recommendations of their original author or
implementer. The implementations of the following algorithms
are taken from the NLopt library [17]: Praxis, SBPLX, Cobyla,
Bobyqa, andDirect. The performance of these optimizers is dis-
cussed in detail in Section V. In order not to change the nature of
the problem, generous bounds have been fed to the optimizers:

mm for the translation parameters, deg for the rota-
tion parameters, [0.5, 1.5] for the scale parameters, and
deg for the scale-rotation parameters [ in (2)].
The same set of stopping criteria was used for all the op-

timizers, except Differential Evolution. Specifically, the opti-
mizers were allowed to run until, after one optimization step:
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1) the value of the cost function was reduced by less than ;
or 2) the value of the optimized parameter changed less than

mm for the translation parameters, rad for the rotation
parameters, and for the scaling parameters. The parameter
tolerances have an intuitive interpretation. For example, a dif-
ference in translation of mm corresponds to a maximal
displacement of 1/2000 of a pixel on an image plane. As to the
Differential Evolution optimizer, since the convergence of sto-
chastic algorithms is not regular, we decided to let the optimizer
run until it had evaluated the cost function 100 000 times4, that
corresponds to a median run of approximately 10 s.
Starting from the default patient position, the alignment is

progressively refined by considering 1) translations only, 2)
rigid transformations, and 3) affine transformations.

A. Multi Frame Alignment

The global alignment method can be expanded to cover the
multi-frame scenario. In this case, the crucial hypothesis is that
because of the temporal continuity, the estimated alignment
transformation would only change little from one frame to the
other. The global energy function can then be redefined for a
sequence of biplane frames

(5)

where is a free parameter, and is defined in a way sim-
ilar to , but with a different transformation matrix for each
time point. The most delicate part of this energy function is the
definition of the inter-frame distance since it is
well known that the space of rigid, and affine, transformation
matrixes is not linear. The rigid transformation space can be lo-
cally linearized for small changes in orientation [4], [26], as is
assumed to be the case here. Using this framework, a rigid trans-
formation is represented by a translation vector and a rotation
vector , defined as the product of a unit vector and a rotation
angle , such that . The translation vector simply cor-
responds to the translational part of the transformation matrix,
and the mapping between the rotation matrix and the rotation
vector is given by [4]

and

Using this representation, the inter-frame distance is defined as
follows [4]:

(6)

41 000 000 times, in the case of simulation.

with

(7)

Here, the transformations have the same meaning as the
transformations defined in the previous section. Also, is
a real number that balances the respective contributions of the
rotation and translation parts. It was set to 0.05, in accordance
with the recommendation in [4].
Defining a linear distance between affine transformation ma-

trixes is more involved and requires complex computation [1].
Since it is assumed in this work that rigid transformations cap-
ture the major part of the transformation, we decided to regu-
larize only the rigid part of the transformation and leave the re-
maining affine parameters unconstrained. Formally, in the case
of affine transformations, the transformations in the regu-
larizer definition are composed using the parameters only,
whereas the full set of 12 parameters is used to compose the
transformations in the energy definition.
This energy function can be useful for tracking the alignment

transformation over a sequence of frames, or, if , for
computing an average transformation using, for example, three
adjacent frames. As with the single frame energy, the transfor-
mations are progressively refined by sequentially increasing
the complexity of the transformation models.

IV. NONRIGID REGISTRATION

Global affine transformation models cannot entirely compen-
sate for the inter-modal shape discrepancy caused by breathing
and by the beating of the heart. A nonrigid registration method
is now introduced, that can greatly improve the visual corre-
spondence between the 3D coronary tree centerlines and the two
calibrated fluoroscopic images. The aim of this method is to be
automatic, in the sense that it does not require the user to iden-
tify correspondences.
The nonrigid transformation is represented as a set of

3D translation vectors that are to be applied to the corre-
sponding centerline points in CS . Thus, a registered
point is computed using . An energy
function is defined to measure the quality of a solution

(8)

An iterative minimization process is used to minimize (8), and,
starting from the position , the transfor-
mations are progressively refined by following a gradient
descent approach. This results in a smooth motion of the regis-
tered centerline, as can be seen in Fig. 3.

A. Image Energy

A matching and reconstruction process is used to calculate a
reconstructed point for every point in the 3D centerline
model. The matching is performed on each fluoroscopic plane
separately. Starting from the projection of on an image
plane , a search on the corresponding segmentation image
is performed in the directions that are perpendicular to the pro-
jection of the centerline—see Fig. 4(a) for an illustration. This
direction is computed, at every location, based on the partial
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Fig. 3. Progression of a nonrigid registration. From left to right: sample input image, and position of the centerline after 0, 50, 350, and 1200 iterations. This
corresponds to subject 4 in Table III. See also the related video file, as described in Section VI.

Fig. 4. (a) Matching of a point from the centerline with a point from the 2D
structure. Points and are identified as potential candidates. (b) Creation
of three myocardium constraints ( , and ) at a junction.

derivatives . As a result, at most two
matching points, and , are identified on each fluoro-
scopic plane . The pair that best
satisfies the epipolar constraint is kept. For this purpose, the fol-
lowing quantity is considered:

(9)

where is the Euclidean distance between point
and the epipolar line induced by , with

. The pair minimizing (9) is then used to calculate a
reconstructed 3D point using the projective geometry of
the system [15]. If only one point is found on an image
plane, it is retained by default.
Searching for matching points in directions that are locally

perpendicular to the projection of the centerline is an important
aspect of this process. Since it is known a priori that the global
alignment of the structures is correct, the perpendicular search
direction prevents many unrealistic matches, compared to a
nearest-point approach. This is especially important when the
2D automatic segmentation is not perfect. For example, when
the 3D projection results in a curve that is longer that the 2D
curve that has been automatically segmented, taking the nearest
point would result in a significant shortening of the curve from
its tip. In contrast, considering the perpendicular direction
considerably reduces this effect, because no match would be
found at the tip of the 3D centerline projection.
The quality of the reconstruction cannot be guaranteed and

an indicator function is used to reject out-
liers. if: 1) no matching point is found in any
image planes; 2) the 2D distance between and is greater
than ; and 3) the 3D distance between and is
greater than . Otherwise, . Here,
and are thresholding functions. More complex kernels,
such as Huber functions, could be integrated in the proposed

scheme, but this possibility has not been explored. Their values
were fixed to pixels and mm.
The image energy in (8) is defined as the sum of the squared

error between the reconstructed points and the centerline
point, for all valid points, as follows:

(10)

This energy is at its minimum when all the registered centerline
points are at the same position as the reconstructed points.

B. Internal Energy

Regularizers are used to keep the registered centerline visu-
ally coherent and geometrically plausible. The following three
internal energy terms are considered for this purpose:

(11)

where , and are energy-balancing free parameters. The
first term, , is minimal when the displacement owing
to the nonrigid transformations is small. This regularizer is
necessary to minimize 3D out-of-plane motions that are only
poorly constrained by a pair of 2D angiograms. The second,

, is used to ensure smoothness over each vessel
segment. In this section, and represent, respectively,
the first and second derivatives of the translation vector
for the position with respect to the segment param-
eter. At segment junctions, Neumann boundary conditions,

, are assumed.
With only the first two internal energy terms, the centerline

model is flexible, and the motions of the vessels are indepen-
dent of each other, except at junction nodes. In reality, the vessel
motions are mechanically constrained not only by their own
specific rigidity, but also because they are attached to the my-
ocardium. In this respect, is intended to act as a
minimalist model of the myocardium constraint, and is used to
ensure a certain degree of rigidity at the vessel branches as it
prevents small segments from collapsing onto bigger ones. This
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Fig. 5. Total displacement of the centerline as a function of the number of it-
erations—see Section IV-C for details.

constraint is modeled by using artificial links around the junc-
tion of three segments, as depicted in Fig. 4(b). Let be a
distance parameter, with its value set to three times the average
diameter of the vessels present at the junction. The node on each
segments that is at a distance from the junction is joined to
the corresponding node of the other segments. In a way that is
analogous to a mechanical spring, with each link generating a
force that is proportional to its displacement ratio if it is either
expanded or compressed during the registration process. In (11),
is defined as the set of all pairs of node that have been

linked together.

C. Energy Minimization

The complete energy function is defined using (8), (10), and
(11), and it is minimized by computing its Euler–Lagrange
equations and following a gradient descent approach. Starting
from the point where at iteration

, the resulting discretized update equation is

(12)

where the numerical step is a small constant and
is the possibly empty set of constraints acting on node .
Equation (12) is evaluated iteratively until the total displace-
ment stagnates.More formally, the total displacement is denoted

, and the stopping criterion is defined, for
, as . An example of the progres-

sion of is shown in Fig. 5. As we can deduce from the shape
of the curve, the final result is not very sensitive to the specific
values of and . In practice, we used and .

D. Parameter Selection

The three parameters , and govern the behavior of (12)
and must be selected for a specific task. Starting from a certain
parameter set , some insight
about the behavior of method can be acquired by varying each
value individually, and by computing the mean 2D projection

Fig. 6. Illustration of the behavior of parameter in the nonrigid registration
method: (left) , (right) .

error and the 3D error (described in Section V). This method-
ology has been applied to the patient 4 of the clinical dataset, fol-
lowing an affine alignment, and also to a dateset with synthetic
deformations (see Section V-A). The former depicts a RCA, and
the latter, a LCA. The results are presented in Fig. 7.
Parameter constrains the overall displacement, and the 2D

error curves suggest that the computed error increases with its
value. However, the 3D error curve clearly indicates a minimum
when has a value in the 0.05–0.10 range. In addition, we found
that the convergence rate increases with . For example, the reg-
istration used to produce the graph in Fig. 7(top left) converged
in 4880, 3320, and 1100 iterations with ,
respectively. Parameter controls the rigidity of the model.
In this case, the 2D projection error suggests using a value in
the 0.50–2.00 range. However, the 3D error curve shows that
higher values might result in more accurate registration.We thus
choose to use a values of , which appears to be a good
trade-off between the 2D and 3D error curves. Parameter bal-
ances the myocardium constraint, and helps to preserve the gen-
eral integrity of the global shape. With the clinical RCA dataset,
it was found that high value can overly constrain the motion,
which results in increased errors. However, with the simulated
LCA dataset, the situation appears almost inversed, as values
of up to 10.0 are clearly beneficial. We believe that this situ-
ation can be explained by the differences in the nature of the
deformations that affects the LCA and RCA datasets. A value

was selected because it represents a good trade-off in
the error measures, and because it improves the visual appear-
ance in many cases, as depicted in Fig. 6. It might be better to
use a different value for LCA and RCA datasets, but this idea
was not pursued here. Finally, the parameters were thus fixed to
the following values in all subsequent experiments:

, and , unless stated otherwise.

V. EXPERIMENTAL RESULTS

The algorithms were implemented in C++ within a pro-
prietary prototyping environment that allows us to show an
overlay of the 3D centerline model on the live fluoroscopy
images during interventions. All global optimizers are single
threaded. The nonrigid registration method is partly multi-
threaded using OpenMP. Run time given are for an i7 Q820
Quad Core Intel CPU. Presented run times do not account for
2D image segmentation. On average, this operation has a run
time 0.200 s per image, with a standard deviation of 0.088 s.
Experiments on both simulated and clinical data are presented.
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Fig. 7. Mean 2D and 3D error after nonrigid registration. For each graph, one of the parameters was varied, while the others two were kept fixed. The default
parameter values are: , and . The x-axis scales are logarithmic.

A. Simulations

The proposed alignment and registration methods have been
tested on a set of simulations. This has allowed us to characterize
the performance of the various algorithms in a somewhat ideal
scenario, and also to evaluate the 3D registration error, which is
not possible using clinical data. The centerline was registered
with a pair of digitally reconstructed radiographs (DRR), of
size 512 512 pixels with a resolution of 0.345 pixel/mm, that
were generated as follows: 1) the coronary arteries segmented in
the CT volume were projected onto the simulated fluoroscopic
planes using the technique presented in [19], and 2) the inverse
of the resulting projections was subtracted from the reference
background images. This process is illustrated in Fig. 8, and is
similar to that proposed in [45]. The simulations were used in the
three scenarios described below. Since all the transformations
are known during the simulation, all the 3D errors presented in
this section are exact point-to-point errors. It should be noted
that this style of error will penalize the compression or expan-
sion of a segment, even when this produces no visual effect. It
is thus more strict than most TRE formulations. The 2D error is
computed as described in Section V-B, using the projection of
the true centerline as the reference segmentation.
1) Dependence on the Initial Solution: The centerline is

registered with a pair of DRRs, starting from different initial
positions. This serves to quantify the sensitivity of the global
alignment methods to a perturbation of the initial position, and
equally, to a miscalibration of the , or rigid trans-
formation matrixes. The selected initial positions are as follows.
Let be the transformation given by the calibration of the

Fig. 8. Creation of the DRRs: The coronaries segmented in the CT volume are
projected onto a simulated radiographic plane (a); this image is then substracted
from a real contrast-free angiography (b) to produce the final DRR (c). In one
experiment, Gaussian noise is added (d), here with .

apparatus. Then, the 12 initial points are displaced by
mm along the three principal axes, and rotated by deg
around the three principal axes. We used:
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Fig. 9. Performance of the optimizers with respect to a perturbation of the ini-
tial position. Bottom row: missing points represent rms error mm.

mm, and deg. The rms error was
computed for all results with the same level of perturbation
(translation or rotation). The results depicted in Fig. 9 show that
all algorithms presented are satisfactory when the rotational
perturbation is less than 10 deg. Except for the Neder-Mead and
the Differential Evolution algorithms, the error level increases
rapidly past this threshold. All the algorithms in Fig. 9 seem
to be able to recover from perturbations of up to 30 mm in
translation. At higher level, only the Differential Evolution and
the Best Neighbor algorithms give consistent results, although
the latter is less accurate. The Neder-Mead algorithm is more
accurate and has a capture range of 50 mm, which makes it
a practical choice. The error curves for the Cobyla, Bobyqa,
Praxis, and Direct algorithms were removed, because they
were significantly higher, which impaired the interpretation of
the graphs.
2) Robustness to Image Noise: Various amounts of Gaussian

noise with variance were added to the fluo-
roscopic images, in order to assess the impact of image quality
on the performance of the method. Each optimizer was run from
13 initial positions for each noise level (as above, with
mm, and deg, plus ). For each noise level, the rms
errors are presented in Fig. 10. The results of this test tend to
demonstrate that the proposed methodology is not really sen-
sitive to the presence of Gaussian noise in the fluoroscopies.
The 2D and 3D error level shows very little correlation with the
amount of added noise, even at levels as high as that
are seldom observed in a clinical setting. This is an indication
of the good performance of the selected 2D segmentation al-
gorithm. In this test, the Neder-Mead and the Differential Evo-
lution algorithms gave the most accurate and most consistent
results. Again, the error curves for the Cobyla, Bobyqa, Praxis,
and Direct algorithms were removed, because they were signif-
icantly higher.
3) Nonrigid Deformation: In these simulations, the center-

line was deformed using a 3 3 3 node thin plate spline (TPS)

Fig. 10. Performance of the optimizers with respect to the standard deviation
of the input DRR noise. Gaussian white noise model with .

Fig. 11. Sample nonrigid registration with simulated data. Top row: initial po-
sition; bottom row: final position.

deformation model [6] covering the CT-scanned region. Each
TPS node is moved toward the center node by a factor de-
pending on the deformation parameter . The nine left nodes
were shifted by a factor of , the nine center nodes, by ,
and the nine right nodes by . Sample images are shown in
Fig. 11. The nonrigid registration algorithm was tested for de-
formation levels , which resulted
in mean and maximum 3D displacements of the centerline of

mm and mm respectively. The
nondeformed centerline curve was used as the initial solution,
and no global alignment was performed before applying the
nonrigid registration algorithm. A quantitative evaluation is pre-
sented in Fig. 12. It was found that this algorithm gives good
results up to the level . At this point, it reduces the
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Fig. 12. Residual 3D error with respect to the simulated nonrigid deformation
level. Baseline correspond to the initial solution error.

average 3D error from 2.721 mm to 1.198 mm, which is qualita-
tively significant (Fig. 11). As will be demonstrated in the next
sections, this level of performance is appropriate in a clinical
scenario.

B. Clinical Data

Five datasets were used for the experiments presented in
the following sections. Each dataset includes one CTA scan
acquired at end-diastole (datasets 1 and 3) or end-systole
(datasets 2, 4, and 5), and one biplane X-ray fluoroscopy
recording. The two modalities are temporally aligned using
ECG gating, and the coronary arteries were semi-automatically
segmented in the CTA by a specialist using the technique
described in [14]. The mean 3D inter-point distances of the
segmented centerlines were in the mm range.
The angiograms image the left coronary arteries (LCA) in three
cases and the right coronary artery (RCA) in the other two. The
image size is 512 512 in all cases, and the image resolution
is mm/pixel for dataset
1 to 5, respectively. The acquisition rate is 15 fps. Standard
Siemens C-Arm calibration matrixes were used. Although this
is not a requirement of the method, matrixes and were
kept constant during acquisition (they are different for each
dataset). The CTA and fluoroscopy exams had been prescribed
to the patient for the treatment of a coronary disease.
The assessment of the performance of the alignment and reg-

istration algorithm was quantified using the mean 2D projection
error

(13)

where is the total number of points in the 3D centerline
model. Also, is the distance transform of the reference 2D
segmentation , which was obtained by manual tracing on top
of the corresponding fluoroscopy image.

C. Global Alignment: Evaluation of the Performance of the
Optimizers

The performance of the nine optimizers in minimizing the
global alignment energy (1) and in producing good quality
2D/3D alignment, were assessed using the following experi-
mental setup. For each of the five patient datasets, three pairs
of fluoroscopic images were considered: the images temporally
aligned with the CTA acquisition, and the previous and next
adjacent frames. Temporal alignment helps to minimize the
observable differences between the two modalities, thereby

reducing the risk of failing a registration. This is reasonable
clinically, as it would allow the registration matrix to be updated
approximately once every second, in order to improve surgical
guidance. Also, to test the robustness of the optimizers, 13
different initial points were used for the initialization. Let
be the transformation given by the calibration of the apparatus.
The 13 initial points are displaced by mm along
the three principal axes, and rotated by deg around the
three principal axes. A total of experiments
were thus conducted for each optimizer tested. As discussed
in Section III, (1) is minimized by successively using: 1)
translation-only transformation, 2) rigid transformation, and 3)
affine transformation.
The mean residual energies left after minimizing with each of

the three transformation models are presented in Table I, along
with the measured mean 2D projection error. In addition, per pa-
tient box-and-whisker plots of the mean 2D error are displayed
in Fig. 14, and sample results are shown in Fig. 13.
The total computational time needed to successively estimate

the translational, rigid, and affine alignments is reasonable for
all local optimizers with median values of 105 ms or less, as
can be seen in Fig. 15. In all cases, the total time was under
1 s. The method is thus suitable for an interactive application
with any of the local optimizers since the alignment appears to
be computed almost instantaneously at the push of a button. In
addition, the very short computational time of the Neder-Mead
optimizer allows us to envision real time application. The com-
putational time is much higher with the two global optimizers,
as presented in Table II. This means that they are only usable in
an offline low-interaction setting.
A look at the average values of Table I reveals that the best

algorithms for minimizing the energy function with the affine
transformation model are the following: Differential Evolution,
Neder-Mead, Powell-Brent, Best Neighbor, Sbplx, and Direct.
When the mean 2D projection error is considered, the order
changes slightly: Differential Evolution, Powell-Brent, Best
Neighbor, Sbplx, Neder-Mead, and Direct. The difference can
probably be attributed to the discrepancy between the automatic
segmentation used in the alignment process, and the manual
segmentation used for computing the error. Nevertheless,
the performance of the top ranking algorithms appears to be
satisfying. The relatively poor performance of the Bobyqa and
Cobyla algorithms might be an indication that the shape of
the energy function is not well represented by their quadratic
and linear models, respectively. The Praxis method appears to
be the least appropriate local optimizer for this problem. The
box-and-whisker plots in Fig. 14 indicate that the performance
of the optimizers varies from one dataset to another, even
though the previously discussed observation hold. Thus, the
alignment results can probably be boosted by using two or
more optimizers in parallel.
The Differential Evolution algorithm was found to be the

best performer in term of both the residual energy and the
mean 2D error. However, the gains in mean 2D error were
marginal for a computational time that is about 100 times
that of the local algorithms. Still, the median value of the
computational time of that optimizer, just under 11 s, might be
reasonable for applications that are not time critical. In general,
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Fig. 13. Sample output obtained with the affine transformation model using nine different optimizers on the Patient 3 dataset. The values in brackets indicate the
residual energy of (1). (a) Best Neighbor [31.86], (b) Differential Evolution [29.87], (c) Neder-Mead [30.70], (d) Direct [31.69], (e) Bobyqa [34.90], (f) Cobyla
[36.21], (g) Praxis [59.68], (h) Sbplx [31.39], and (i) Powell-Brent [30.65]. Note that, although only one fluoroscopy plane is shown, the biplane pair was used.
The arrows indicate some regions of interest.

it can be noted that the global optimizers only rarely lead to
lower energy or error figures than the best-performing local
optimizers. This is an indication that the latter actually finds
solutions that are close to the global optimum. It is also worth
noting that Fig. 14 shows an interesting characteristic of the
global optimizers, in that they generally succeed in avoiding
the worst solutions. However, because the computational time
of the global optimizers is several orders of magnitude larger
than that of the local optimizers, we found that they are less
appropriate in our setting.

The sample image in Fig. 13 shows that there is a good
correlation between the residual energy and the perceived
visual correspondence. Nevertheless, even with the best align-
ment with the affine transformation model, a relatively large
discrepancy exists between the projected centerline and the 2D
fluoroscopies. This can probably be attributed to the presence
of nonaffine deformation in the dataset due to the inaccuracy
of the temporal alignment between the modalities, and to the
shape change induced by the patient’s position change during
the various acquisitions steps.
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Fig. 14. Mean 2D error, per optimizer, and per patient, after alignment with the affine transformation model. Each box-and-whisker point correspond to the results
of 39 experiments. The boxes represent the first, second, and third quartiles. The whiskers indicate the 5th and the 95th percentiles.

Fig. 15. Total computational time, inmillisecond, for all local optimizers, when
aligning the 3D centerline using the translation only, rigid, and affine transfor-
mation models, successively. The boxes represent the first, second, and third
quartiles. The whiskers indicate the 5th and the 95th percentiles.

D. Comparison of the Global Alignment Method With
Nonrigid Registration

In this section, detailed global alignment results obtained
using the Best Neighbor optimizer are presented and compared
with those obtained after nonrigid registration. In all cases,
the centerline model was registered with the fluoroscopic
frames that are gated in the same cardiac phase used for the
CT reconstruction. The results after translational, rigid, affine,

TABLE I
rmsRESIDUAL ENERGY AND RESULTING 2D ERROR, IN FUNCTION

OF THE TRANSFORMATION MODEL

TABLE II
TOTAL COMPUTATIONAL TIME FOR THE TWO GLOBAL OPTIMIZERS

and nonrigid registration are shown for the dataset from three
patients in Figs. 3 and 16. The mean projection error of the
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Fig. 16. From left to right: input image, rigid alignment, affine alignment, and nonrigid registration. Both biplane images are shown in all cases. Top and bottom
rows correspond to Patients 1 and 2 in Table III, respectively. The arrows indicate some regions of interest.

TABLE III
MEAN RESIDUAL 2D PROJECTION ERROR, IN MM, CALCULATED AFTER RIGID, AFFINE, AND NONRIGID REGISTRATION FOR FIVE PATIENTS

centerline on the two fluoroscopic planes with respect to 2D
manual segmentations has also been calculated (in millime-
ters). Results are presented in Table III. The computational
times needed for the nonrigid registration were in the range

– ms, with an average of 1 591 ms.
The mean 2D projection errors and their standard deviations

decrease, or stay approximately constant, as the complexity of
the model increases. However, the relative contribution of the

rigid, affine, and nonrigid transformation model varies from one
dataset to another. This can be explained by the nature of the de-
formation presented by each individual case, which is linked to
the patient’s position, the interval between the CTA and 2D flu-
oroscopy acquisitions, and the acquisition protocol. Also, pa-
tient respiration can cause significant nonrigid heart deforma-
tion. The accuracy of the temporal alignment by ECG gating
is also important, since the beating of the heart is a significant
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Fig. 17. Registration over a sequence of frames. Top row) rigid transformation model [ ]; middle row) affine transformation model
[ ]; and bottom row) affine transformation model ]. The arrows indicate some regions
of interest, corresponds to the first righthand term of (5).

source of nonrigid deformation. The maximal error also tends to
decrease with model complexity, but it sometimes stays stable.
In those cases, the performance of the registration algorithm
might be limited by an incomplete 2D segmentation, as com-
puted by the automatic segmentation method [37]. In fact, in
regions where little or no information is available, the nonrigid
registration method should alter the centerline as little as pos-
sible. This characteristic is desirable in situations where parts
of the structure are poorly visible on the X-ray fluoroscopic im-
ages, as is sometimes the case with CTO. For an example, see
Fig. 16(bottom) rows: the centerline is well aligned over and
under the CTO, but there is little deformation where the con-
trast is poor.

E. Global Alignment in the Multi Frame Scenario

Another potentially useful scenario, beyond the alignment of
a centerline with a biplane pair, is the alignment of a center-
line with a temporal sequence of frames from biplane angiog-
raphy. The performance of the global alignment method in the
multi-frames scenario is demonstrated using a sequence of 11
biplane frames from the Patient 1 LCA dataset. Global align-
ments were computed using the rigid and affine transforma-
tion models. The inter-frame regularization parameters in (5)
varied between 0.0 and 1.0. The Best Neighbor optimizer was
used in this case since it was found to be the most effective at
minimizing the cost function (5). Sample results obtained are
shown in Fig. 17. Computational times were 39 s, 89 s, and 91 s,
for the experiments presented in the top, middle, and bottom row

respectively. As anticipated, it was found that using the affine
transformation model led to better qualitative results than using
the rigid one. Using regularization also improved the
results when using the affine transformation model. With large
regularization values, , the stiffness of the model in-
creases, and the optimizers cannot find a local minima that is far
from the initial position. Preliminary investigation suggests that
domain specific optimizers might achieve better results, e.g.,
by allowing the parameters to change in a coordinated manner.
Nevertheless, we found that the current setup was appropriate
for tracking the alignment transformations of the LCA during
most of the cardiac cycle. Experiments on the RCA datasets did
not lead to convincing results. In fact, even though the global
alignment procedure works, the amount of nonrigid deforma-
tion sustained by the RCA during the cardiac cycle renders the
affine model ineffective except when the CTA and X-ray acqui-
sition are in close temporal alignment.

F. Semiautomatic Tracking of the Right Coronary Artery

In this experiment, a semiautomatic procedure based on the
proposed nonrigid registration method has been used to track
the RCA. Starting from the gated frame, global alignment and
nonrigid registration are performed. This deformed centerline
model is then used by the operator as the initial model and po-
sition for the next pair of fluoroscopic frames. This process is
repeated for all frames over one cardiac cycle, as presented in
Fig. 18 and in the attached video. As can be seen, this proce-
dure permits successful tracking of the RCA during one cardiac
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Fig. 18. Tracking the RCA. From left to right: at the gated frame, and at and frames. The initial curve is green/red, and the registered curve is
blue.

cycle. Because this experiment has been conducted before the
simulation study, a slightly different set of parameters was used:

, and . The required amount of time
is about 15 min, which is reasonable in an offline setting.

VI. MULTIMEDIA MATERIAL

Three videos illustrating the method are available online.5

They present: 1) an iterative update of the nonrigid registra-
tion; 2) the full alignment and registration progress; and 3) the
tracking of an RCA artery using nonrigid registration.

VII. DISCUSSION AND CONCLUSION

A new 2D/3D registration method has been proposed, and
applied to the problem of registering a 3D centerline model of
the coronary arteries with a pair of fluoroscopic images. The
methodology is divided into two main parts: 1) global align-
ment, and 2) nonrigid registration.
In the first part, an energy depending on a global transforma-

tionmodel (translation-only, rigid, or affine) is defined.Ninegen-
eral purposeoptimization algorithmshavebeenused tominimize
this energy, which results in an estimation of the 2D/3D align-
ment transformation parameters. Based on the experiments on
clinical data, it appears that the following local optimizers give
good results in a short time (median ms, max ms):
Neder-Mead, Powell-Brent, Best Neighbor, and Sbplx. Consid-
ering also the simulation results, theNeder-Mead algorithm was
the best overall performer. The two global optimizers only rarely
led to major improvements in the result and required a compu-
tational time orders of magnitude higher. Disregarding compu-
tational time, the Differential Evolution algorithm generally re-
turned the best solution.When using a local optimizer, the align-
ment time was consistently under 1 s, which makes the method
suitable for use during an intervention.The advantage of using an
affine transformation instead of a rigid transformation is depen-
dent on the nature of the dataset and can be significant in some
cases. Overall, it was found that the global alignment procedure
is appropriate for use on both LCA and RCA datasets, when the
3D and 2Dmodalities are temporally aligned using ECG gating.
The experiment on the dataset from a CTO patient demonstrates
the benefit of the proposed method when applied to similar clin-
ical cases. The proposed method can also help with intervention
guidance by augmenting the 2D imagery with the 3D geometry
segmented from a CTA acquisition, thereby greatly reducing the
ambiguities inherent in the interpretation of the 2D images.

5http://www.synchromedia.ca/reg2D3D

As for nonrigid registration, the proposed method uses a
robust reconstruction strategy to compute the forces used to
deform the 3D model. Regularization terms limit the total
displacement of the segments, ensure that the displacements
are smooth, and help preserve the relative orientation of the
branches, making the nonrigid registration results plausible.
The regularizers included in the deformation model enable the
elegant management of regions with missing data (e.g., Patient
2 in Fig. 16) by deforming the centerline a minimum amount
to ensure coherence with the rest of the structure. No excessive
deformation or straightening will occur. Experiments on five
different patients were presented with promising results. The
total computational time, which was generally below 3 s, is
acceptable for interactive applications. Nonetheless, better
numerical algorithms with faster computational time will be
researched. The proposed nonrigid registration method will
make the centerline snap to adjacent 2D structures when started
from an appropriate initial point, making interpretation of the
2D images easier, especially for difficult low contrast CTO
cases. This also makes it possible to present an updated 3D
model alongside the operational images to provide an improved
perception of the 3D space.
Finally, experiments using multiple X-ray biplane angiog-

raphy frames have also been presented. It was found that
the multiframe global alignment method works well on LCA
datasets, and the proposed interframe regularizer leads to im-
proved results. A nonrigid semiautomatic tracking procedure
has been devised to handle cases with more nonrigid defor-
mation, such as with nontemporally aligned RCA datasets,
and applied to one such dataset. The semi-automatic method
required approximately 15 min of interaction for a sequence
covering one heart beat, which seems reasonable for practical
offline applications. Future work will focus on automating this
nonrigid method for tracking coronary arteries.
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