
Low-constant Parallel Algorithms for Finite Element
Simulations using Linear Octrees

Hari Sundar
Department of Bioengineering

University of Pennsylvania
Philadelphia, PA

hsundar@seas.upenn.edu

Rahul S. Sampath
Department of MEAM

∗

University of Pennsylvania
Philadelphia, PA

rahulss@seas.upenn.edu

Santi S. Adavani
Department of MEAM

University of Pennsylvania
Philadelphia, PA

adavani@seas.upenn.edu

Christos Davatzikos
Department of Radiology
University of Pennsylvania

Philadelphia, PA
christos@rad.upenn.edu

George Biros
Department of MEAM

University of Pennsylvania
Philadelphia, PA

biros@seas.upenn.edu

ABSTRACT
In this article we propose parallel algorithms for the con-
struction of conforming finite-element discretization on lin-
ear octrees. Existing octree-based discretizations scale to
billions of elements, but the complexity constants can be
high. In our approach we use several techniques to mini-
mize overhead: a novel bottom-up tree-construction and 2:1
balance constraint enforcement; a Golomb-Rice encoding for
compression by representing the octree and element connec-
tivity as an Uniquely Decodable Code (UDC); overlapping
communication and computation; and byte alignment for
cache efficiency. The cost of applying the Laplacian is com-
parable to that of applying it using a direct indexing reg-
ular grid discretization with the same number of elements.
Our algorithm has scaled up to four billion octants on 4096
processors on a Cray XT3 at the Pittsburgh Supercomput-
ing Center. The overall tree construction time is under
a minute in contrast to previous implementations that re-
quired several minutes; the evaluation of the discretization
of a variable-coefficient Laplacian takes only a few seconds.

1. INTRODUCTION
In this article we propose parallel linear octree algorithms for
tree construction, two-one balancing, and discretization of
partial differential equations using conforming trilinear finite
elements. Typical approaches for large-scale discretizations
include logically structured grids, block structured and over-
lapping grids, unstructured grids, and octrees. All methods
have advantages and disadvantages. For example, struc-
tured grids are relatively easy to implement, have low mem-

∗Mechanical Engineering and Applied Mechanics

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SC07 November 10-16, 2007, Reno, Nevada, USA
(c) 2007 ACM 978-1-59593-764-3/07/0011. . . $5.00

ory requirements, and avoid indirect memory references. Struc-
tured grids however, limit adaptivity; for certain problems
this limitation can result in excessively large systems of
equations. Although unstructured meshes can conform to
complex geometries and enable non-uniform discretizations,
they incur the overhead of having to explicitly store element-
node connectivity information and in general being cache
inefficient because of random access [3, 12, 25]. Octrees
offer a good balance between adaptivity and efficient perfor-
mance. Optimal complexity scalable implementations have
been developed [22], but certain parts of the existing algo-
rithms have high constants. In this article we propose novel
algorithms for octree based meshing that achieve lower wall-
clock running times.

Related work. There is a large literature on large-scale fi-
nite element (FEM) calculations. Here we review recent
work that has scaled to thousands of processors. One of
the largest calculations was reported in [6]. The authors
proposed a scheme for conforming discretizations and multi-
grid solvers on semi-structured meshes. Their approach is
highly scalable for nearly structured meshes and for constant
coefficient PDEs. However, it does not support adaptive
discretizations, and its computational efficiency diminishes
in the case of variable coefficient operators. Examples of
scalable approaches for unstructured meshes include [1] and
[16]. In those works multigrid approaches for general ellip-
tic operators were proposed. The associated constants for
constructing the mesh and performing the calculations how-
ever, are quite large: setting up the mesh and building the
associated linear operators can take thousands of seconds.
A significant part of CPU time is related to the multigrid
scheme (we do not consider multigrid in this paper); even in
the single grid cases however, the run times are quite large.

The high-costs related to partitioning, setup, and access-
ing generic unstructured grids, has motivated the design of
octree-based data structures. Such constructions have been
used in sequential and modestly parallel adaptive finite ele-
ment implementations [5, 11, 14, 17], and many-body algo-
rithms [10, 13, 26, 27]. State-of-the-art in-core and out-of-

core implementations for finite elements can be found in [2,
20, 21, 22, 23]. In these papers the authors propose a top-
down octree construction resulting in a Morton-ordered tree,
followed by a 2:1 balance constraint using a novel algorithm
(the parallel prioritized ripple propagation). Once the tree
is constructed, a finite-element framework is built on top of
the tree structure. Evaluating the discrete Laplacian oper-
ators (a matrix-free matrix-vector multiplication) requires
three tree traversals, one traversal over the elements, and
two traversals to apply projection over the so-called “hang-
ing nodes”, to enforce a conforming discretization [14].

Contributions. Our goal is to significantly improve the con-
struction, balancing, and discretization performance of octree-
based algorithms. In our recent work [19], we present novel
algorithms for bottom-up construction and 2:1 balance re-
finement of large linear octrees on distributed memory ma-
chines. In the present work, we build upon these algorithms
and develop efficient data structures that support trilinear
conforming finite element calculations on linear octrees. We
focus on reducing (1) the time to build these data struc-
tures; (2) the memory overhead associated in storing them;
and (3) the time to perform finite element calculations using
these data structures.

We avoid using multiple passes (projections) to enforce con-
formity; instead, we perform a single traversal by mapping
each octant/element to one of eight pre-computed element
types, depending on the configuration of hanging nodes for
that element. Our data structure does not allow efficient
random queries in the octree, but such access patterns are
not necessary for FEM calculations.

The memory overhead associated with unstructured meshes
arises from the need to store the element connectivity infor-
mation. In regular grids such connectivity is not necessary
as the indexing is explicit. For general unstructured meshes
of trilinear elements one has to directly store eight indices
defining the element nodes. In octrees we still need to store
this information, but it turns out that instead of storing
eight integers (32 bytes), we need to store only 12 bytes.
We use the Golomb-Rice encoding scheme to compress the
element connectivity information and to represent it as a
Uniquely Decodable Code (UDC) [15]. In addition, the lin-
ear octree is stored in a compressed form that requires only
one byte per octant (the level of the octant).

Finally, we employ overlapping of communication and com-
putation to efficiently handle octants shared by several pro-
cessors or“ghost”octants.1 In addition, the Morton-ordering
offers reasonably good memory locality. The cost of apply-
ing the discretized Laplacian operator using our approach
is comparable to that of a discretization on a regular grid
(without stored indexing). Thus, our approach offers signifi-
cant savings (over structured grids and general unstructured
grids) in the case of non-uniform discretizations.

1Every octant is owned by a single processor. However, the
values of unknowns associated with octants on interpoces-
sor boundaries need to be shared among several processors.
We keep multiple copies of the information related to these
octants and we term them “ghost” octants.

In a nutshell, our contributions are the following: we present
(1) a bottom-up algorithm to construct a linear octree from
a given set of randomly partitioned points or leaf-octants;
(2) a 2:1 balancing algorithm; (3) an algorithm to build
element-to-nodal connectivity information efficiently; (4) a
compression scheme for the octree and the element connec-
tivity that achieves a three-fold compression (a total of four
words per octant); and (5) a lookup table based conform-
ing discretization scheme that requires only a single traver-
sal for the evaluation of a partial differential operator. All
five stages are parallel. Our approach results in symmetric,
second-order accurate discretizations of self-adjoint opera-
tors. Our algorithms have O(n log n) work and O(n) storage
complexity. For typical distributions of octants (and work
per octant), the parallel time complexity of our scheme is
O(n/np log(n/np) + np log np), where n is the final number
of leaves and np is the number of processors. In contrast to
existing implementations, our methods avoid iterative com-
munications and thus, achieve low absolute runtime and ex-
cellent scalability.

Our algorithm has scaled to four billion octants on 4096 pro-
cessors on a Cray XT3 (“Big Ben”) at the Pittsburgh Super-
computing Center. The overall time for octree construction,
balancing, and meshing is slightly over a minute; a second-
order accurate evaluation of the discrete Laplacian takes only
a few seconds. Our experiments demonstrate that the algo-
rithms proposed in this paper achieve a significantly lower
running time compared to previous implementations.

Organization of the paper. The rest of this paper is or-
ganized as follows: in Section 2 we summarize definitions
related to octrees; in Section 3 we summarize our previous
work on octree construction and balancing, which lays the
foundation for the present work. In Section 4 we describe
octree meshing, and the octree and mesh compression. In
Section 5 we describe how we perform the finite element
computation. In Section 6 we present performance results
that demonstrate the efficiency of our implementation.

2. BACKGROUND
Octrees are trees in which every node has a maximum of
eight children. They are analogous to binary trees (maxi-
mum of 2 children per node) in 1-D and quadtrees (maxi-
mum of 4 children per node) in 2-D. A node of an octree is
called an octant. An octant with no children is called a leaf.
The only octant with no parent is the root. Octants that
have the same parent are called siblings. An octant’s chil-
dren, grandchildren and so on and so forth are collectively
referred to as the octant’s descendants and this octant will
be an ancestor of its descendants. The depth of an octant
from the root is referred to as its level. As shown in Figure
1(a), the root of the tree is at level 0 and the children are
one level higher than the parent.

Octrees and quadtrees can be used to partition cuboidal
and rectangular regions, respectively (Figure 1(b)). These
regions are referred to as the domain of the tree. A set of
octants is said to be complete if the union of the regions
spanned by them covers the entire domain. To reduce stor-
age costs, only the complete list of leaf nodes is stored, i.e.,
as a linear octree. To use a linear representation, a locational

root

nl

a nl

b c d e

f g

h i nl

j k l m

0

1

2

3

le
v
el

(a)

a
b c
d e

f g

h

i
j k

l m

(b)

a
b c
d e

f g

h1 h2

h3 h4

i
j k

l m

(c)

Figure 1: (a) Tree representation of a quadtree and
(b) decomposition of a square domain using the
quadtree, superimposed over a uniform grid, and
(c) a balanced linear quadtree: result of balancing
the quadtree.

code is needed to identify the octants. A locational code is a
code that contains information about the position and level
of the octant in the tree. In this article we use the Morton
encoding [8]. In the rest of the paper the terms lesser and
greater are used to compare octants based on their Morton
ids, and coarser and finer to compare them based on their
relative sizes, i.e., their levels in the octree.

3. CONSTRUCTION AND BALANCING
In this section we descibe our algorithms for the parallel
construction and balancing of linear octrees. In sections 3.1
and 3.2 we describe two algorithms, which serve as building
blocks for the other algorithms described in this paper. In
sections 3.3 and 3.4, we give a brief overview of our parallel
construction and balancing algorithms, which are described
in greater detail in [19].

3.1 Constructing complete linear octrees from
a partial set of octants

In order to construct a complete linear octree from a par-
tial set of octants (e.g. Figure 2(c)), the octants are initially
sorted based on the Morton ordering and overlaps are re-
moved.2 Two additional octants are added to complete the
domain; the first one is the coarsest ancestor of the least
possible octant (the smallest descendant of the root octant
at level Dmax), which does not overlap the first given oc-
tant, and the second is the coarsest ancestor of the greatest
possible octant (the largest descendant of the root octant at
level Dmax), which does not overlap the last given octant.

2We have implemented an in-house parallel sort based on a
hybrid sample/biotonic sort.

(a) (b)

(c) (d)

Figure 2: (b) The minimal number of octants be-
tween the cells given in (a), and (d), the coarsest
possible complete linear quadtree containing all the
cells in (c)

The octants are distributed across the processors to get a
uniform load distribution. The local complete linear octree
is subsequently generated by completing the region between
every consecutive pair of octants. The region between two
octants, a and b > a, is completed by first calculating the
nearest common ancestor of the octants a and b. This octant
is split into its eight children. Out of these, only the octants
that are either greater than a and lesser than b or ancestors
of a are retained and the rest are discarded. The ancestors
of either a or b are split again and we iterate until no fur-
ther splits are necessary. Each processor is also responsible
for completing the region between the first octant owned
by that processor and the last octant owned by the previous
processor, thus ensuring that a global complete linear octree
is produced. Figures 2(b) and 2(d) illustrate the result of
completing the morton-space between 2 given octants and
the result of using this idea to produce the coarsest possi-
ble complete linear octree containing all of a given list of
octants.

3.2 Partitioning Linear Octrees
Two desirable qualities of any partitioning strategy are load
balancing, and minimization of overlap between the proces-
sor domains. In [19] we proposed a heuristic partitioning
scheme based on the intuition that a coarse grid partition is
more likely to have a smaller overlap between the processor
domains as compared to a partition computed on the under-
lying fine grid. This algorithm comprises of 3 main stages:
(1) Constructing a coarse complete linear octree that is rep-
resentative of the underlying data distribution. (2) Assign-
ing weights to each octants in the coarse octree and parti-

a
b c

d
e

f g
h

(a) (b) (c)

Figure 3: (a) A minimal list of quadrants covering
the local domain on some processor, and (b) A Mor-
ton ordering based partition of a quadtree across 4

processors, and (c) the coarse quadrants and the fi-
nal partition produced using the quadtree shown in
(b).

tioning the same to achieve almost uniform load across the
processors and (3) Projecting the partitioning computed in
step 2 onto the original (fine) linear octree.

We sort the leaves according to their Morton ordering and
then distribute them uniformly across the processors. We
select the least and the greatest octant at each processor
(e.g., octants a and h from Figure 3(a)) and complete the
region between them, as described in Section 3.1, to obtain a
list of coarse octants. We then select the coarsest cell(s) out
of this list (octant e in Figure 3(a)). We use the selected
octants at each processor and construct a complete linear
octree as described in Section 3.1. This gives us a global
coarse complete linear octree that is based on the underlying
data distribution. We compute the load of each of these
coarse blocks by computing the number of original octants
that lie within it. The blocks are then distributed across
the processors such that the total weight on each processor
is roughly the same. Note that the domain occupied by the
blocks and the original octants on any given processor is not
the same, but it does overlap to a large extent. The overlap
is guaranteed by the fact that both are sorted according to
the Morton ordering and that the partitioning was based
on the same weighting function (i.e., the number of original
octants). The original octants are then partitioned to align
with the coarse block boundaries.

3.3 Constructing linear octrees in parallel
We use a bottom-up approach for constructing complete lin-
ear octrees in parallel from a distributed set of points such
that the octree satisfies the constraint that no octant should
contain more than (Np

max) number of points. The crux of
the algorithm is to distribute the data across the processors
in such a way that there is uniform load distribution across
processors and the subsequent operations to build the octree
can be performed by the processors independently, i.e., re-
quiring no additional communication. Given a set of points
and a user-specified maximum level, Dmax, we convert all
points into octants at the maximum depth and then we par-
allel partition them using the algorithm described in Section
3.2. This produces a contiguous set of coarse blocks (with
their corresponding points) on each processor. The complete
linear octree is generated by iterating through the blocks and
by splitting them based on number of points per block. This
process is continued until no further splits are required.

3.4 2:1 balancing of linear octrees in parallel
Balance refinement is the process of refining (subdividing)
octants in a complete linear octree, which fail to satisfy the
balance constraint defined below:

Definition 1. A linear d-dimensional tree is k-balanced
if and only if, for any l ∈ [1, Dmax), no leaf at level l shares
an m-dimensional face3 (m ∈ [k, d)) with another leaf, at
level greater than l + 1.

We refer to octrees that are balanced across faces as being
2-balanced, those that are balanced across edges and faces
as 1-balanced, and those that are balanced across corners,
edges and faces as 0-balanced. An example of a 0-balanced
quadtree is shown in Figure 1(c)4.

The octants are refined until all their descendants, which
are created in the process of subdivision, satisfy the bal-
ance constraint. These subdivisions could in turn introduce
new imbalances and so the process has to be repeated it-
eratively. The fact that an octant can affect octants not
immediately adjacent to is known as the ripple effect. The
following property allows us to decouple the problem of bal-
ancing and“contain”the ripple effect. This allows us to work
on only a subset of nodes in the octree and yet ensure that
the entire octree is balanced.

Definition 2. For any octant, N , we refer to the union
of the domains occupied by its potential neighbor’s at the
same level as N as the insulation layer around octant N .

Property 1. No octant outside the insulation layer around
octant N can force N to split (Figure 4(a)).

The partitioning algorithm described in Section 3.2 also forms
the back-bone of our balancing algorithm. The partitioning
algorithm was developed with parallel balancing of linear oc-
trees in mind and is tailored for that purpose. The balancing
algorithm consists of two stages, intra-block and inter-block
balancing. Intra-block balancing is sequential, and is per-
formed using a variant of the search-free algorithm for bal-
ancing quatrees described in [7]. However, unlike [7] which
produces upto 8 times the optimal number of leaves, our
algorithm produces the optimal number of leaves. In [19],
we show that this search-free approach performs better than
the search-based“Prioritized Ripple Propagation”algorithm
(PRP) [20, 22] for intra-block balancing.

Property 2. At the end of the intra-block balancing, the
decendants of a block that do not touch any of its faces are
stable. These octants do not participate in the rest of the bal-
ancing process as they will neither be split by another octant
nor force any octant to split.

3A corner is a 0-dimensional face, an edge is a 1-dimensional
face and a face is a 2-dimensional face.
4The balance algorithm used in this work is capable of k-
balancing a given complete linear octree; we report all results
for the 0-balance case, which is the hardest.

The inter-block boundary is also balanced in two stages:
intra-processor, inter-block boundary first and then followed
by the balancing across the inter-processor boundaries. A
straightforward implementation of the PRP can be used to
balance across the intra-processor, inter-block boundaries.
In this work we use a variant of the PRP algorithm to bal-
ance across the intra-processor, inter-block boundaries. The
main difference in our implementation of the PRP is that we
do not require a pointer-based representation of the octree.
Besides lower storage costs, this also allows us to work on
incomplete domains including domains that are not simply
connected. Parallel PRP can also be used to balance the
inter-processor boundaries. However, this entails the use
of parallel searches. The scalability of the parallel PRP is
demonstrated in [22]. In [19] we described a way to create
an insulation layer around each inter-processor boundary oc-
tant and thus avoid the iterative communication associated
with the parallel PRP.

Property 3. The only octants that need to be refined af-
ter the local balancing stage are those whose insulation layer
is not contained entirely within the same processor. These
octants are referred to as inter-processor boundary octants5.

The construction of the insulation layer is done in two stages
(Figure 4(b)): First, every local octant on the inter-processor
boundary is communicated to processors that overlap with
its insulation layer. These processors can be determined
by comparing the local boundary octants against the global
coarse blocks. In the second stage of communication, all
the local inter-processor boundary octants that overlap with
the insulation layer of a remote octant received from another
processor are communicated to that processor. Octants that
were communicated in the first stage are not communicated
to the same processor again. After this two-stage commu-
nication, each processor balances the union of the local and
remote boundary octants using a sequential ripple propaga-
tion method. Upon termination only the octants spanning
the original domain spanned by the processors are retained.
Although there is some redundancy in the work, it is com-
pensated by the fact that we avoid iterative communications.
In [19], we show that the number of octants communicated is
lower than that needs to be communicated in parallel-search
based approaches.

4. OCTREE MESHING
By octree meshing we refer to the construction of a data
structure on top of the linear octree that allows FEM type
calculations. In this section, we describe how we construct
the support data structures in order to perform the matrix-
vector multiplications (MatVec) efficiently. The data struc-
ture is designed to be cache efficient by using a Morton or-
dering based element traversal, and by reducing the mem-
ory footprint using compressed representations for both the
octree and the element-node connectivity tables. The algo-
rithm for generating the mesh given a distributed, sorted,
complete, balanced linear octree is outlined in Algorithm 1.

5This is a bit of a misnomer since not all of these octants
actually touch an inter-processor boundary.

Algorithm 1. Octree Meshing And Compression

Input: A distributed sorted complete balanced linear octree, L
Output: Compressed Octree Mesh and Compressed Octree.

1. Embed L into a larger octree, O, and add boundary octants.
2. Identify ‘hanging’ nodes.
3. Exchange ‘Ghost’ octants.
4. Build lookup tables for first layer of octants. (Section 4.1.1)
5. Perform 4-way searches for remaining octants.

(Section 4.1.2)
6. Store the levels of the octants and discard the anchors.
7. Compress the mesh (Section 4.2).

4.1 Computing the Element to Node Mapping
The nodes (vertices) of a given element are numbered ac-
cording to the Morton ordering. An example is shown in
Figure 5(a). The 0-node of an element, the node with the
smallest index in the Morton ordering, is also referred to
as the “anchor” of the element. An octant’s configuration
with respect to its parent is specified by specifying the node
that it shares with its parent. Therefore, a 3-child octant is
the child that shares its third node with its parent. Nodes
that exist at the center of a face of another octant are called
face-hanging nodes. Nodes that are located at the center of
an edge of another octant are called edge-hanging nodes.

Since all nodes, except for boundary nodes, can be uniquely
associated with an element (the element with its anchor at
the same coordinate as the node) we use an interleaved rep-
resentation where a common index is used for both the el-
ements and the nodes. Because of this mapping, the input
balanced octree does not have any elements corresponding
to the positive boundary nodes. To account for this we em-
bed the input octree in a larger octree with maximum depth
Dmax + 1, where Dmax is the maximum depth of the input
octree. All elements on the positive boundaries in the in-
put octree add a layer of octants, with a single linear pass
(O(n/p)), and a parallel sort (O(n/p log n/p))).

The second step in the the computation of the element-to-
node mapping is the identification of hanging nodes. All
nodes which are not hanging are flagged as being nodes.
Octants that are the 0 or 7 children of their parent (a0, a7)
can never be hanging; by default we mark them as nodes
(see Figure 5(a)). Octants that are 3, 5, 6 children of their
parent (a3, a5, a6) can only be face hanging, and their status
is determined by a single negative search.6 The remaining
octants (1, 2, 4 children) are edge hanging and identifying
their status requires three searches.

After identifying hanging nodes, we repartition the octree
using the algorithm described in Section 3.2 and all octants
touching the inter-processor boundaries are communicated
to the neighbouring processors. On the processors that re-
ceive such octants, these are the ghost elements, and their
corresponding nodes are called ghost nodes. In our imple-

6By “negative” searches we refer to searches in the −x or
−y or −z directions. We use “positive searches” to refer to
searches along the positive directions.

NInsulation
Zone

(a)

p1

p2 p3

p4

N Insulation
Zone

Stage 1

Stage 2

(b)

Figure 4: (a) Illustration of Property 1: No octant outside the layer of insulation can force a split on N . (b)
Communication for inter-processor balancing is done in two stages: First, every octant on the inter-processor
boundary (Stage 1) is communicated to processors that overlap with its insulation layer. Next, all the local
inter-processor boundary octants that lie in the insulation layer of a remote octant received from another
processor(N) are communicated to that processor (Stage 2).

mentation of the MatVec, we do not loop over ghost elements
recieved from a processor with greater rank and we do not
write to ghost values. This framework gives rise to a subtle
special case for singular blocks. A singular block is a block
(output of the partition algorithm), which is also a leaf in
the underlying fine octree (input to the partition algorithm).
If the singular block’s anchor is hanging, it might point to
a ghost node and if so this ghost node will be owned by
a processor with lower rank. This ghost node will be the
anchor of the singular block’s parent. We tackle this case
while partitioning by ensuring that any singular block with
a hanging anchor is sent to the processor to which the first
child of the singular block’s parent is sent. We also send any
octant that lies between (in the Morton ordering) the sin-
gular block and its parent to the same processor in order to
ensure that the relative ordering of the octants is preserved.

After exchanging ghosts, we perform independent sequen-
tial searches on each processor to build the element-to-node
mappings. We present two methods for the same, an ex-
haustive approach (Section 4.1.1) that searches for all the 8
nodes for each element, and a more efficient approach that
utilizes the mapping of its negative face neighbours (Section
4.1.2) to construct its own mapping.

4.1.1 Exhaustive searches to compute mapping
The simplest approach to compute the element-to-node map-
ping would be to search for the nodes explicitly using a paral-
lel search algorithm, followed by the computation of global-
to-local mappings that are necessary to manage the dis-
tributed data. However, this would incur expensive commu-
nication and synchronization costs. To reduce these costs,
we chose to use a priori communication of “ghost” octants7

followed by independent local searches on each processor
that require no communication. A few subtle cases that can
not be identified easily during a priori communication are
identified during the local searches and corrected for later.

For any element, all its nodes are in the positive direction
(except the anchor). The exhaustive search strategy is as

7The use of blocks makes it easy to identify “ghost” octants.

follows: Generate search keys at the location of the eight
nodes of the element at the maximum depth and search for
them in the linear octree. Since the linear octree is sorted,
the search can be performed in O(log n). If the search result
is a node, then the lookup table is updated. If we discover a
hanging node instead, then a secondary search is performed
to recover the correct (non-hanging) node index. As can be
seen from Figure 5(a), hanging nodes are always mapped
to the corresponding nodes of their parent8. Unfortunately,
secondary searches can not be avoided despite the identifi-
cation of hanging nodes prior to searching. This is because
only the element whose anchor is hanging knows this infor-
mation and the other elements that share this vertex must
first search and find this element in order to learn this in-
formation.

Using exhaustive searches we can get the mapping for most
elements, but certain special cases arise for ghost elements.
This case is illustrated in Figure 5(b), where the ghost el-
ements are drawn in red and the local elements are drawn
in blue. Consider searching for the +z neighbor of element
a. Since a is a ghost, and we only communicate a single
layer of ghost octants across processor boundaries, the node
b will not be found. In such cases, we set the mapping to
point to one of the hanging siblings of the missing node (c
or d in this case). The most likely condition under which b
in not found is when the +z neighbor(s) is smaller. In this
case, we know that at least one of the siblings will be hang-
ing. Although the lookup table for this element is incorrect,
we make use of the fact that the lookup table points to a
non-existent node, and the owner of the true node simply
copies its data value to the hanging node locations, thereby
ensuring that the correct value is read. This case can only
happen for ghost elements and need not be done for local
elements. In addition, we occasionally observe cases where
neither the searched node nor any of its siblings is found.
Such cases are flagged and at the end of the lookup table
construction, a parallel search is done to obtain the missing
nodes directly from the processors that own them.

8The 2:1 balance constraint ensures that the nodes of the
parent can never be hanging.

z

x

y

p1

p4

p2

p3

p5

p6

a4 a5

a7

a6

a0

a1

a2 a3

(a)

z

x
a

b c
d

(b)

Figure 5: (a) Illustration of nodal-connectivities required to perform conforming FEM calculations using a
single tree traversal. Every octant has at least 2 non-hanging nodes, one of which is shared with the parent
and the other is shared amongst all the siblings. The octant shown in blue (a) is a child 0, since it shares
its zero node (a0) with its parent. It shares node a7 with its siblings. All other nodes, if hanging, point to
the corresponding node of the parent octant instead. Nodes, a3, a5, a6 are face hanging nodes and point to
p3, p5, p6, respectively. Similarly a1, a2, a4 are edge hanging nodes and point to p1, p2, p4. (b) The figure explains
the special case that occurs during exhaustive searches of ghost elements. Element anchored at a, when
searching for node b, will not find any node. Instead, one of the hanging siblings of b, (c, d) which are hanging
will be pointed to. Since hanging nodes do not carry any nodal information, the nodal information for b will
be replicated to all its hanging siblings during update for the ghosts.

4.1.2 Four-way searches to compute mapping
The exhaustive search explicitly searches for all nodes and
in many cases is the only way to get the correct element to
node mapping. However, it requires a minimum of 7 and
a maximum of 13 searches per element. All searches are
performed on a sorted list, and can be done in O(log n). In
order to reduce the constants associated with the exhaustive
search, we use the exhaustive search only for the first layer of
octants (octants that do not have neighbours in the negative
x, y and z directions). For all other octants, the lookup
information can be copied from the elements in the negative
directions. Each element in the negative x, y and z directions
that shares a face with the current element, also shares 4
nodes. Therefore, by performing negative searches along
these directions, we can obtain the lookup information for 7
out of the 8 nodes of an element. Only the last node, labeled
a7 in Figure 5(a), cannot be obtained using a negative search
and a positive search is required.

In order to get the mapping information using negative searches,
we perform the search in the negative direction and check if
the current element is a sibling of the element obtained via
the negative search. If the element found by the search is not
a sibling of the current element, then the lookup informa-
tion can be copied via a mapping. For the example shown in
Figure 6(a), given the element b and searching in the −y di-
rection, we find a, then the node mapping is (b0, b1, b4, b5) =
(a2, a3, a6, a7). Corresponding mappings are (b0, b2, b4, b6) =
(a1, a3, a5, a7), and (b0, b1, b2, b3) = (a4, a5, a6, a7), for neg-
ative searches along the x and z axes, respectively. Unfor-
tunately, the mapping is a bit more complex if the negative

search returns a sibling of the current element. If the node
in question is not hanging, then we can copy its value ac-
cording to the above mentioned mapping. However, if the
node in question is hanging, then instead of the mapping,
the corresponding node indices from element a are copied.
This case is explained in Figure 6(b), where we observe that
if node a1, b0 is hanging, we need to use b0 = a0 and use
b0 = a1 if it is a node.

4.2 Mesh Compression
One of the major problems with unstructured meshes is the
storage overhead. In the case of the octree, this amounts
to having to store both the octree and the lookup table. In
order to reduce the storage costs associated with the octree,
we compress both the octree and the lookup table. The
sorted, unique, linear octree can be easily compressed by
retaining only the offset of the first element and the level
of subsequent octants. Storing the offset for each octant
requires a storage of three integers (12 bytes) and a byte
for storing the level. Storing only the level represents a 12x
compression as opposed to storing the offset for every octant.

It is much harder to compress the element to node mapping,
which requires eight integers for each element. In order to
devise the best compression scheme, we first estimate the
distribution of the node indices. The following lemma helps
us analyze the distribution of the indices of the nodes of a
given element.

Lemma 1. The Morton ids of the nodes of a given ele-

z

x

y

b1

b4

b5

a2, b0
a3

a7

a6

(a)

z

x

y

b1, p1

p4

p2

p3

p5

a4

a5, b4

a7, b6

a0

a1, b0

a2
a3, b2

(b)

Figure 6: Computing element to node mapping using negative searches. (a) If the found octant (a) is not a
sibling of the current octant (b), then the element to node mapping can be copied via the mapping b0 ← a2,
b1 ← a3, b4 ← a6, and b5 ← a7. (b) In case the found octant (a) is a sibling of the current octant (b), then the
mapping depends on whether or not the node in question is hanging. If the node is not hanging, then the
same mapping as used in (a) can be applied. If the node is hanging, then the corresponding node indices for
the found element are directly copied. For the case shown, (b0, b2, b4, b6)← (a0, a2, a4, a7) = (p0, p2, p4, a7).

ment are greater than or equal to the Morton id of the ele-
ment.

Proof. Let the anchor of the given element be (x, y, z)
and let its size be h. In that case the anchors of the 8
nodes of the element are given by (x, y, z), (x+h, y, z), (x, y+
h, z), (x + h, y + h, z) · · · . By the definition of the Morton
ordering all of these except (x, y, z) are greater than the
Morton id of the element. The node at (x, y, z) is equal to
the Morton id of the element.

Corollary 1. Given a sorted list of Morton ids corre-
sponding to the combined list of elements and nodes of a
balanced linear octree, the indices of the 8 nodes of a given
element in this list are strictly greater than the index of the
element. Moreover, if the nodes are listed in the Morton
order, the list of indices is monotonically increasing. If we
store offsets in the sorted list, then these offsets are strictly
positive.

Based on these observations we can estimate the expected
range of offsets. Let us assume a certain balanced octree,
O, with n octants (elements and hanging-nodes) and with
maximum possible depth Dmax. Consider an element in the
octree, oi, whose index is i, 0 6 i < n. The offset of the
anchor of this element is either i (if the anchor is not hang-
ing) or n0 < i. The indices for the remaining 7 nodes do
not depend on octants with index less than i. In addition
since the indices of the 7 nodes are monotonically increas-
ing, we can store offsets between two consecutive nodes.
That is, if the indices of the 8 nodes of an element, oi, are
(n0, n1, n2, n3, n4, n5, n6, n7), we only need to store (n0 −
i, n1−n0, n2−n1, n3−n2, n4−n3, n5−n4, n6−n5, n7−n6).

To efficiently store these offsets, we need to estimate how
large these offsets can be. We start with a regular grid, i.e.,
a balanced octree with all octants at Dmax. Note that any
octree that can be generated at the same value of Dmax can
be obtained by applying a series of local coarsening opera-
tions to the regular grid. Since we only store the offsets it
is sufficient to analyze the distribution of the offset values
for one given direction, say for a neighbor along the x-axis.
The expression for all other directions are similar.

For Dmax = 0, there is only one octant and correspondingly
the offset is 1. If we introduce a split in the root octant,
Dmax becomes 1, the offset increases by 2 for one octant.
On introducing further splits, the offset is going to increase
for those octants that lie on the boundaries of the original
splits, and the general expression for the maximum offset
can be written as offset = 1 +

∑Dmax
i=1 2d·i−1, for a d-tree. In

addition, a number of other large offsets are produced for
intermediate split boundaries. Specifically for a regular grid
at maximum depth Dmax, we shall have 2d·(Dmax−x) octants
with an offset of 1+

∑x
i=1 2d·i−1 . As can be clearly seen from

the expression, the distribution of the offsets is geometric.
With the largest number of octants having small offsets.

For the case of general balanced octrees, we observe that any
of these can be obtained from a regular grid by a number
of coarsening operations. The only concern is whether the
coarsening can increase the offset for a given octant. The
coarsening does not affect octants that are greater than the
current octant (in the Morton order). For those which are
smaller, the effect is minimal since every coarsening opera-
tion reduces the offsets that need to be stored.

Golomb-Rice coding [9, 18] is a form of entropy encoding
that is optimal for geometric distributions, that is, when

small values are vastly more common than large values.
Since, the distribution of the offsets is geometric, we expect
a lot of offsets with small values and fewer occurrences of
large offsets. The Golomb coding uses a tunable parameter
M to divide an input value into two parts: q, the result of
a division by M , and r, the remainder. In our implemen-
tation, the remainder is stored as a byte, and the quotient
as a short. On an average, we observe one large jump in
the node indices, and therefore the amortized cost of stor-
ing the compressed lookup table, is 8 bytes for storing the
remainders, 2 bytes for the quotient, one byte for storing
a flag to determine which of the 8 nodes need to use a quo-
tient, and one additional byte for storing additional element
specific flags. Storing the lookup explicitly would require 8
ints, and therefore we obtain a 3x compression in storing
the lookup table.

5. FINITE ELEMENT COMPUTATION ON
OCTREES

In this section, we describe the evaluation of a MatVec with
the global finite element ‘stiffness’ matrix. The MatVec refers
to a function that takes a vector and returns another vec-
tor, the result of applying the discretized PDE operator to
the the input vector. A key difference between our MatVec

and earlier approaches [22] is that the “hanging nodes9” are
not stored explicitly. A method to eliminate hanging nodes
in locally refined quadrilateral meshes and yet ensure inter-
element continuity by the use of special bilinear quadrilat-
eral elements was presented in [24]. We have extended that
approach to three dimensions. All the stencils were derived
for the reference element shown in Figure 5(a). We reduce
the number of possible stencils using the following property:
No octant can have more than 6 hanging nodes and an oc-
tant can have a face hanging node only if the remaining
nodes on that face are one of the following: (a) edge hang-
ing nodes, (b) the node common to both this octant and its
parent, and (c) the node common to this octant and all its
siblings. A direct extension of the approach used in [24] to
three dimensions along with the use of the above properties
will result in 18 different configurations for the reference el-
ement. However, these 18 different types can be obtained
from eight different types by simple linear transformations.
Any other element in the mesh can also be obtained using a
simple rotation and scaling of the reference element. Hence,
we only store eight element matrices and the integration over
any element in the mesh can be performed by mapping the
element in question to the reference element and using one
of the eight stored matrices.

The MatVec can be evaluated either by looping through the
elements or by looping through the nodes. Due to the sim-
plicity of the elemental loop, we have chosen to support el-
emental loops over nodal loops. We first loop over the el-
ements in the interior of the processor domain since these
elements do not share any nodes with the neighboring pro-
cessors. While we perform this computation we communi-
cate the values of the ghost nodes in the background. At
the end of the first loop, we use the ghost values from other
processors and loop over the remaining elements.

9Hanging nodes are nodes that exist at the center of a face or
an edge of some octant. They do not represent independent
degrees of freedom in a FEM solution.

Problem Regular Octree Mesh
Size Grid Uniform Gaussian

MatVec Meshing MatVec Meshing MatVec
256K 1.08 4.07 1.62 4.34 1.57
512K 2.11 8.48 3.18 8.92 3.09
1M 4.11 17.52 6.24 17.78 6.08
2M 8.61 36.27 11.13 37.29 12.33
4M 17.22 73.74 24.12 76.25 24.22

Table 1: The time to construct (Meshing) and per-
form 5 matrix-vector multiplications (MatVec) on
a single processor for increasing problem sizes. Re-
sults are presented for Gaussian distribution and for
uniformly spaced points. We compare with matrix-
vector multiplication on a regular grid (no indexing)
having the same number of elements and the same
discretization (trilinear elements). We discretize a
variable coefficient (isotropic) operator. All wall-
clock times are in seconds. The runs took place on
a 2.2 GHz, 32-bit Xeon box. The sustained per-
formance is approximately 400 MFlops/sec for the
structured grid. For the uniform and Gaussian dis-
tribution of points, the sustained performance is ap-
proximately 280 MFlops/sec.

6. PERFORMANCE EVALUATION
In this section we present numerical results for the tree con-
struction, balancing, meshing and matrix vector multiplica-
tion for a number of different cases. The algorithms were
implemented in C++ using the MPI library. PETSc [4] was
used for profiling the code. We consider two point distri-
bution cases: a regular grid one, to directly compare with
structured grids; and a Gaussian distribution which resem-
bles a generic non-uniform distribution. In all examples we
discretized a variable-coefficient linear elliptic operator. We
used piecewise constant coefficients for both the Laplacian
and Identity operators. Material properties for the element
were stored in an independent array, rather than within the
octree data structure.

First we test the performance of the code on a sequential
machine. We compare with a regular grid implementation
with direct indexing (the nodes are ordered in lexicographic
order along the coordinates). The results are presented in
Table 1. We report construction times, and the total time
for 5 matrix vector multiplications. Overall the code per-
forms quite well. Both the meshing time and the time for
performing the MatVecs are not sensitive to the distribution.
The MatVec time is only 50% more than that for a regular
grid with direct indexing, about five seconds for four million
octants.

In the second set of experiments we test the isogranular
scalability of our code. Again, we consider two point dis-
tributions, a uniform one and a Gaussian. The size of the
input points, the corresponding linear and balanced octrees,
the number of vertices, and the runtimes for the two dis-
tributions are reported in Figures 7 and 8. All the runs
took place on a Cray XT3 MPP system equipped with 2068
compute nodes (two 2.6 GHz AMD Opteron and 2 GBytes
of RAM per node) at the Pittsburgh Supercomputing Cen-
ter. We observe excellent scalability for the construction and
balancing of octrees, meshing and the matrix-vector multi-

p

seconds

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

Octree Construction

Octree Balancing

Meshing

MatVec (5)

Points

Unbalanced Octants

Balanced Octants

Independent Vertices

0

25

50

75

100

0.99

5.34

16.01

18.61

1.41

8.39

23.57

20.72

1.32

8.75

23.19

21.09

1.40

10.55

25.15

20.59

1.44

11.94

26.77

23.29

1.60

12.57

28.99

27.79

1.51

13.52

27.03

25.78

1.65

13.62

29.52

27.65

1.72

14.67

34.91

33.01

1.75

15.99

35.56

31.12

2.17

18.53

36.63

32.40

2.92

25.42

38.23

33.24

6.68

34.44

41.14

28.27

180K

607K

996K

660K

361K

1.2M

2M

1.3M

720K

2.4M

4M

2.7M

1.47M

4.9M

8M

5.2M

2.89M

9.7M

16M

10.5M

5.8M

19.6M

31.9M

21.5M

11.7M

39.3M

64.4M

42M

23.5M

79.3M

131M

87.8M

47M

158M

257M

172M

94M

315M

519M

339M

188M

635M

1.04B

702M

376M

1.26B

2.05B

1.36B

752M

2.52B

4.16B

2.72B

Figure 7: Isogranular scalability for Gaussian distribution of 1M octants per processor. From left to right, the
bars indicate the time taken for the different components of our algorithms for increasing processor counts.
The bar for each processor is partitioned into 4 sections. From top to bottom, the sections represent the
time taken for (1) performing 5 Matrix-Vector multiplications, (2) Construction of the octree based mesh,
(3) balancing the octree and (4) construction from points .

plication operation. For example, in Figure 7 we observe
the expected complexity in the construction and balancing
of the octree (there is a slight growth due to the logarithmic
factor in the complexity estimate) and we observe a roughly
size-independent behavior for the matrix-vector multiplica-
tion.The results are even better for the uniform distribution
of points in Figure 8, where the time for 5 matrix-vector
multiplications remains nearly constant at approximately 20
seconds.

Finally, we compare the meshing time for the two search
strategies presented in Section 4.1. The improvement in
meshing time as a result of using the 4-way search is shown
in Figure 9, for the Gaussian distribution. As can be seen,
there is a significant improvement in meshing time at all
processor counts.

7. CONCLUSIONS AND FUTURE WORK
We have presented a set of algorithms for the parallel con-
struction, balancing, and meshing of linear octrees. Our
mesh data structure is interfaced with PETSc [4], thus al-
lowing us to use its linear and non-linear solvers. Our target
applications include elliptic, parabolic, and hyperbolic par-
tial differential equations. We presented results that verify
the overall scalability of our code. The overall meshing time
is in the order of one minute for problems with up to four bil-
lion elements. Thus, our scheme enables efficient execution
of applications which require frequent remeshing.

There are two important extensions: multigrid schemes, and
higher-order discretizations. For the former, restriction and
prolongation operators need to be designed, along with re-
finement and coarsening schemes. Higher-order schemes will
require additional bookkeeping and longer lookup tables as
the inter-element connectivity will increase.

8. ACKNOWLEDGMENTS
This work was supported in part by Siemens Corporate Re-
search, Princeton, NJ, the U.S. Department of Energy under
grant DE-FG02-04ER25646, and the U.S. National Science
Foundation grants CCF-0427985, CNS-0540372, and DMS-
0612578. Computing resources on the TeraGrids HP Alpha-
Cluster system at the Pittsburgh Supercomputing Center
were provided under the MCA04T026 award.

9. REFERENCES
[1] M. F. Adams, H.H. Bayraktar, T.M. Keaveny, and

P. Papadopoulos. Ultrascalable implicit finite element
analyses in solid mechanics with over a half a billion
degrees of freedom. In Proceedings of SC2004, The
SCxy Conference series in high performance
networking and computing, Pittsburgh, Pennsylvania,
2004. ACM/IEEE.

[2] Volkan Akcelik, Jacobo Bielak, George Biros, Ioannis
Epanomeritakis, Antonio Fernandez, Omar Ghattas,
Eui Joong Kim, Julio Lopez, David R. O’Hallaron,
Tiankai Tu, and John Urbanic. High resolution
forward and inverse earthquake modeling on terascale

p

seconds

1 2 4 8 16 32 64 128 256 512 1024 2048

Octree Construction

Octree Balancing

Meshing

MatVec (5)

Points

Unbalanced Octants

Balanced Octants

Vertices

0

15

30

45

60

2.01

7.21

18.21

17.19

3.44

7.06

23.12

20.25

4.15

12.46

26.91

17.02

3.47

11.64

25.72

20.16

3.42

8.46

25.11

19.77

3.83

12.57

25.74

20.07

3.52

12.86

25.93

20.14

3.42

12.65

26.85

20.94

3.62

18.78

25.94

19.56

4.16

13.83

29.21

18.88

3.93

13.03

31.64

18.06

4.67

14.31

27.94

17.97

1M

1.06M

1.06M

1.07M

2.05M

2.09M

2.09M

2.15M

3.94M

4.14M

4.14M

4.14M

8M

8.29M

8.29M

8.29M

15.8M

16.1M

16.1M

16.1M

31.8M

32.3M

32.3M

32.3M

63.5M

64.3M

64.3M

64.3M

127.3M

128M

128.5M

128.5M

248.8M

250.5M

250.5M

250.5M

504.5M

505.6M

505.6M

505.6M

1B

1B

1B

1B

1.96B

2B

2B

2B

Figure 8: Isogranular scalability for uniformly spaced points with 1M octants per processor. From left to
right, the bars indicate the time taken for the different components of our algorithms for increasing processor
counts. The bar for each processor is partitioned into 4 sections. From top to bottom, the sections represent
the time taken for (1) performing 5 Matrix-Vector multiplications, (2) Construction of the octree based mesh,
(3) balancing the octree and (4) construction from points.

p

seconds

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

4-way

Exhaustive

0

10

20

30

40

50

16.01

23.14

23.57

31.99

23.19

30.58

25.16

33.36

26.77

35.15

28.99

38.60

27.03

36.04

29.52

38.99

34.91

42.34

35.56

42.75

36.63

43.80

38.23

46.77

41.14

51.56

Figure 9: Comparison of meshing times using exhaustive search with using a hybrid approach where only the
first layer of octants uses exhaustive search and the rest use the 4-way search to construct the lookup tables.
The test was performed using a Gaussian distribution of 1 million octants per processor. It can be seen that
the 4-way search is faster than the exhaustive search and scales upto 4096 processors.

computers. In SC ’03: Proceedings of the 2003
ACM/IEEE conference on Supercomputing. ACM,
2003.

[3] WK Anderson, WD Gropp, DK Kaushik, DE Keyes,
and BF Smith. Achieving high sustained performance
in an unstructured mesh CFD application.
Supercomputing, ACM/IEEE 1999 Conference, pages
69–69, 1999.

[4] Satish Balay, Kris Buschelman, William D. Gropp,
Dinesh Kaushik, Matthew G. Knepley, Lois Curfman
McInnes, Barry F. Smith, and Hong Zhang. PETSc
Web page, 2001. http://www.mcs.anl.gov/petsc.

[5] R. Becker and M. Braack. Multigrid techniques for
finite elements on locally refined meshes. Numerical
Linear Algebra with applications, 7:363–379, 2000.

[6] B Bergen, F. Hulsemann, and U. Rude. Is 1.7× 1010

Unknowns the Largest Finite Element System that
Can Be Solved Today? In SC ’05: Proceedings of the
2005 ACM/IEEE conference on Supercomputing,
page 5, Washington, DC, USA, 2005. IEEE Computer
Society.

[7] Marshall W. Bern, David Eppstein, and Shang-Hua
Teng. Parallel construction of quadtrees and quality
triangulations. International Journal of Computational
Geometry and Applications, 9(6):517–532, 1999.

[8] Paul M. Campbell, Karen D. Devine, Joseph E.
Flaherty, Luis G. Gervasio, and James D. Teresco.
Dynamic octree load balancing using space-filling
curves. Technical Report CS-03-01, Williams College
Department of Computer Science, 2003.

[9] S.W. Golomb. Run-length encodings. IEEE
Transactions on Information Theory, 12(3):399–401,
1966.

[10] Leslie Greengard and William Gropp. A parallel
version of the fast multipole method-invited talk. In
Proceedings of the Third SIAM Conference on Parallel
Processing for Scientific Computing, pages 213–222,
Philadelphia, PA, USA, 1989. Society for Industrial
and Applied Mathematics.

[11] M. Griebel and G. Zumbusch. Parallel multigrid in an
adaptive PDE solver based on hashing. In E. H.
D’Hollander, G. R. Joubert, F. J. Peters, and
U. Trottenberg, editors, Parallel Computing:
Fundamentals, Applications and New Directions,
Proceedings of the Conference ParCo’97, 19-22
September 1997, Bonn, Germany, volume 12, pages
589–600, Amsterdam, 1998. Elsevier, North-Holland.

[12] W.D. Gropp, D.K. Kaushik, D.E. Keyes, and B.F.
Smith. Performance modeling and tuning of an
unstructured mesh CFD application. Proc. SC2000:
High Performance Networking and Computing
Conf.(electronic publication), 2000.

[13] Bhanu Hariharan, Srinivas Aluru, and
Balasubramaniam Shanker. A scalable parallel fast
multipole method for analysis of scattering from
perfect electrically conducting surfaces. In
Supercomputing ’02: Proceedings of the 2002
ACM/IEEE conference on Supercomputing, pages
1–17, Los Alamitos, CA, USA, 2002. IEEE Computer
Society Press.

[14] E. Kim, J. Bielak, O. Ghattas, and J. Wang.
Octree-based finite element method for large-scale

earthquake ground motion modeling in heterogeneous
basins. AGU Fall Meeting Abstracts, pages B1221+,
December 2002.

[15] Debra A. Lelewer and Daniel S. Hirschberg. Data
compression. ACM Comput. Surv., 19(3):261–296,
1987.

[16] Dimitri J. Mavriplis, Michael J. Aftosmis, and Marsha
Berger. High resolution aerospace applications using
the nasa columbia supercomputer. In SC ’05:
Proceedings of the 2005 ACM/IEEE conference on
Supercomputing, page 61, Washington, DC, USA,
2005. IEEE Computer Society.

[17] S. Popinet. Gerris: a tree-based adaptive solver for the
incompressible euler equations in complex geometries.
Journal of Computational Physics, 190:572–600(29),
20 September 2003.

[18] R. F. Rice. Some practical universal noiseless coding
techniques. Technical Report JPL Publication 79-22,
Jet Propulsion Laboratory, Pasadena, California, 1979.

[19] Hari Sundar, Rahul S. Sampath, and George Biros.
Bottom-up construction and 2:1 balance refinement of
linear octrees in parallel. University of Pennsylvania
Technical Report, MS-CIS-07-05, 2007.

[20] Tiankai Tu and David R. O’Hallaron. Balance
refinement of massive linear octree datasets. CMU
Technical Report, CMU-CS-04(129), 2004.

[21] Tiankai Tu and David R. O’Hallaron. Extracting
hexahedral mesh structures from balanced linear
octrees. In 13th International Meshing Roundtable,
pages 191–200, Williamsburg, VA, Sandia National
Laboratories, September 19-22 2004.

[22] Tiankai Tu, David R. O’Hallaron, and Omar Ghattas.
Scalable parallel octree meshing for terascale
applications. In SC ’05: Proceedings of the 2005
ACM/IEEE conference on Supercomputing, page 4,
Washington, DC, USA, 2005. IEEE Computer Society.

[23] Tiankai Tu, Hongfeng Yu, Leonardo Ramirez-Guzman,
Jacobo Bielak, Omar Ghattas, Kwan-Liu Ma, and
David R. O’Hallaron. From mesh generation to
scientific visualization: an end-to-end approach to
parallel supercomputing. In SC ’06: Proceedings of the
2006 ACM/IEEE conference on Supercomputing,
page 91, New York, NY, USA, 2006. ACM Press.

[24] Weigang Wang. Special bilinear quadrilateral elements
for locally refined finite element grids. SIAM Journal
on Scientific Computing, 22:2029–2050, 2001.

[25] Brian S. White, Sally A. McKee, Bronis R.
de Supinski, Brian Miller, Daniel Quinlan, and Martin
Schulz. Improving the computational intensity of
unstructured mesh applications. In ICS ’05:
Proceedings of the 19th annual international
conference on Supercomputing, pages 341–350, New
York, NY, USA, 2005. ACM Press.

[26] Lexing Ying, George Biros, and Denis Zorin. A
kernel-independent adaptive fast multipole algorithm
in two and three dimensions. J. Comput. Phys.,
196(2):591–626, 2004.

[27] Lexing Ying, George Biros, Denis Zorin, and Harper
Langston. A new parallel kernel-independent fast
multipole method. In SC ’03: Proceedings of the 2003
ACM/IEEE conference on Supercomputing, page 14,
Washington, DC, USA, 2003. IEEE Computer Society.

	Introduction
	Background
	Construction and Balancing
	Constructing complete linear octrees from a partial set of octants
	Partitioning Linear Octrees
	Constructing linear octrees in parallel
	2:1 balancing of linear octrees in parallel

	Octree Meshing
	Computing the Element to Node Mapping
	Exhaustive searches to compute mapping
	Four-way searches to compute mapping

	Mesh Compression

	Finite Element Computation on Octrees
	Performance evaluation
	Conclusions and future work
	Acknowledgments
	References

