Parallel Geometric-Algebraic Multigrid on Unstructured Forests of Octrees

<u>Hari Sundar</u> George Biros, Carsten Burstedde, Johann Rudi Omar Ghattas, Georg Stadler

Institute for Computational Engineering & Sciences

asymptotically optimal parallel solvers for elliptic PDEs

- variable coefficients
- adaptive discretizations
- arbitrary geometries

asymptotically optimal parallel solvers for elliptic PDEs

- variable coefficients
- adaptive discretizations
- arbitrary geometries

Parallel Geometric Multigrid

$$\mathcal{O}\left(rac{N}{p} + \log N
ight)$$
 for elliptic PDEs with smooth coefficients

Solve Au = f using two grids

Multigrid

- Geometric multigrid for arbitrary meshes
 - graph based partitioning (ParMETIS SC'98, SC'00)
 - scalability is challenging

- Geometric multigrid for arbitrary meshes
 - graph based partitioning (ParMETIS SC'98, SC'00)
 - scalability is challenging
- Octrees
 - Dendro (Sampath et al., SC'08)
 - limited to cubic domains

- Geometric multigrid for arbitrary meshes
 - graph based partitioning (ParMETIS SC'98, SC'00)
 - scalability is challenging
- Octrees
 - Dendro (Sampath et al., SC'08)
 - limited to cubic domains
- Two-tier meshes, macromesh + regular grid
 - HHG (Bergen et al., SC'05)
 - Imited adaptivity

- Geometric multigrid for arbitrary meshes
 - graph based partitioning (ParMETIS SC'98, SC'00)
 - scalability is challenging
- Octrees
 - Dendro (Sampath et al., SC'08)
 - limited to cubic domains
- Two-tier meshes, macromesh + regular grid
 - HHG (Bergen et al., SC'05)
 - limited adaptivity
- Algebraic Multigrid
 - Adams et al., SC'04
 - Hypre(CHPC'10), trilinos::ML
 - graph based coarsening
 - need assembled matrix

Key Contributions

- GMG for complex geometries with adaptivity (macromesh + octrees)
- excellent strong and weak scalability
- Iow setup cost
- matrix-free implementation using non-blocking MPI calls
- 262K cores with single MPI process per core

Key Contributions

- GMG for complex geometries with adaptivity (macromesh + octrees)
- excellent strong and weak scalability
- Iow setup cost
- matrix-free implementation using non-blocking MPI calls
- 262K cores with single MPI process per core

Conforming macromesh of adaptive octrees

forest of octrees

Hari Sundar

Overall algorithm

$$-\mathrm{div}(\mu(x)\nabla u(x))=f(x),\qquad Au=f.$$

Input: fine mesh (forest), $\mu(x)$, f(x)Output: u(x)

Overall algorithm

$$-\mathrm{div}(\mu(x)\nabla u(x))=f(x),\qquad Au=f.$$

Input: fine mesh (forest), $\mu(x)$, f(x)Output: u(x)

setup : build multigrid hierarchy

for $i \leftarrow 1$: number of GMG levels surrogate \leftarrow coarsen (fine)

fine \leftarrow coarse

Overall algorithm

$$-\mathrm{div}(\mu(x)\nabla u(x))=f(x),\qquad Au=f.$$

Input: fine mesh (forest), $\mu(x)$, f(x)Output: u(x)

solve : iterate till convergence,

 $u \leftarrow$ v-cycle (grid, u, A, f)

 $u \leftarrow \text{smooth } (u, A, f)$

$$f \leftarrow f - Au$$

 $r_c \quad \leftarrow \quad Rr$ (restriction)

$$e_c ~ \leftarrow$$
 v-cycle (grid.coarse, e_c, A, r_c)

$$e \hspace{0.1in} \leftarrow \hspace{0.1in} Pe_c$$
 (prolongation)

- $u \leftarrow u + e$
- $u \leftarrow \text{smooth } (u, A, f)$

Overall algorithm

$$-\mathrm{div}(\mu(x)\nabla u(x))=f(x),\qquad Au=f.$$

 $\mathcal{O}(N/p)$ $\mathcal{O}(N/p)$

 $\mathcal{O}(N/p)$

Input: fine mesh (forest), $\mu(x)$, f(x)Output: u(x)

solve : iterate till convergence,

 $u \leftarrow$ v-cycle (grid, u, A, f)

$$\mu \leftarrow \omega$$
-jacobi (u, A, f)

$$f \leftarrow f - Au$$

 $r_c \quad \leftarrow \quad Rr$ (restriction)

$$e_c ~ \leftarrow$$
 v-cycle (grid.coarse, e_c, A, r_c)

$$e \hspace{0.1in} \leftarrow \hspace{0.1in} Pe_c$$
 ($extsf{prolongation}$)

- $u \leftarrow u + e$
- $u \hspace{0.1in} \leftarrow \hspace{0.1in} \omega ext{-jacobi} (u, \hspace{0.1in} A, f)$

Overall algorithm

$$-\mathrm{div}(\mu(x)\nabla u(x))=f(x),\qquad Au=f.$$

Input: fine mesh (forest), $\mu(x)$, f(x)Output: u(x)

setup : build multigrid hierarchy

for $i \leftarrow 1$: number of GMG levels surrogate \leftarrow coarsen (fine)

fine \leftarrow coarse

Coarsening

for regular grids: replace 2^d siblings with parent

Coarsening

for regular grids: replace $2^d \ {\rm siblings} \ {\rm with} \ {\rm parent}$

Coarsening

for regular grids: replace $2^d \ {\rm siblings} \ {\rm with} \ {\rm parent}$

1	
1	

Coarsening

for octrees: if all siblings exist, replace with parent

Coarsening

for octrees: if all siblings exist, replace with parent

Coarsening

for octrees: preserve 2:1 balance at all grids

Coarsening

for forests: cannot coarsen beyond first-tier macromesh

Coarsening

Complexity: $\mathcal{O}(N/p)$

Partitioning & load balancing

Partitioning & load balancing

partitioning & load balancing

partitioning & load balancing

Multigrid Solve

Inter-grid transfer operators

prolongation (coarse to fine)

preserve every coarse-grid vector on the fine-grid,

$$Pv = v \quad \forall v \in V_c \in V_f.$$

matrix entries: coarse grid shape functions evaluated at the fine grid points,

$$P(i,j) = \phi_j^c(f_i).$$

restriction (fine to coarse)

transpose of prolongation

- matrix-free implementation
- performed between fine and surrogate meshes
- no intergrid element searches or look-up tables are needed
- single simultaneous traversal over both meshes

Multigrid Solve

Inter-grid transfer operators

prolongation (coarse to fine)

preserve every coarse-grid vector on the fine-grid,

$$Pv = v \quad \forall v \in V_c \in V_f.$$

matrix entries: coarse grid shape functions evaluated at the fine grid points,

$$P(i,j) = \phi_j^c(f_i).$$

restriction (fine to coarse)

transpose of prolongation

- matrix-free implementation
- performed between fine and surrogate meshes
- no intergrid element searches or look-up tables are needed

ullet single simultaneous traversal over both meshes $\,$ -- ${\cal O}(N/p)$

Multigrid Solve

Simultaneous traversal over coarse and fine meshes

Hari Sundar

Multigrid Solve

Coarse grid solver

- smoothed aggregation algebraic multigrid (trilinos::ML)
- GMG-AMG approach matches our two-tier geometric decomposition of the domain
- AMG is used for small problem sizes on small process counts

Hari Sundar

Multigrid Solve

Coarse grid solver

- smoothed aggregation algebraic multigrid (trilinos::ML)
- GMG-AMG approach matches our two-tier geometric decomposition of the domain
- AMG is used for small problem sizes on small process counts

Test problem

$$-\operatorname{div}(\mu(x)
abla u(x)) = f(x) \qquad \forall x \in \Omega, \qquad u(x) = 0 ext{ on } \partial\Omega.$$

$$\mu(\mathbf{x}) = 10^{6} (1 + e^{-(x-x_{1})^{2}/2\sigma_{1}^{2}} + e^{-(x-x_{2})^{2}/2\sigma_{2}^{2}})$$

- 3D Poisson problem
- Dirichlet boundary conditions
- isotropic spatially varying coefficient
- forest of 24 Octrees

Strong scaling

time(sec)-

124M elements 5 GMG levels AMG* for Coarse solve 1 MPI process per core Jaguar XK6

 $^{\ast}\,$ smoothed aggregation (ML)

Hari Sundar

Weak scaling

time(sec)→

215K elements per process AMG for Coarse solve 1 MPI process per core Jaguar XK6

Weak scaling : Antarctica mesh

45K Octrees 400K elements per process constant coefficient Poisson

Cores	64	512	4096	32768	262144
Setup	2.97	2.64	3.1	3.76	8.6
Smoother	289.7	301.5	336.3	391.3	409.1
Transfer	7.45	8.47	11.5	11.35	15.88
Coarse Setup	1.85	2.13	0.82	1.27	1.63
Coarse Solve	24.3	30.8	18.47	30.1	26.01
Total Time	326.3	345.5	370.2	437.8	461.2

Weak scaling : Antarctica mesh

45K Octrees 400K elements per process constant coefficient Poisson

Cores	64	512	4096	32768	262144
Setup	2.97	2.64	3.1	3.76	8.6
Smoother	289.7	301.5	336.3	391.3	409.1
Transfer	7.45	8.47	11.5	11.35	15.88
Coarse Setup	1.85	2.13	0.82	1.27	1.63
Coarse Solve	24.3	30.8	18.47	30.1	26.01
Total Time	326.3	345.5	370.2	437.8	461.2

100 Billion unknowns on 262K cores while sustaining 272 TFlops/sec.

Limitations

- limitations of the macromesh
 - limited to unstructured hexahedral meshes
 - scalability of coarse solver
- anisotropy
 - parallel plane and line smoothers
 - harder to identify in octrees
- jumping coefficients
 - coefficient aware inter-grid operators
- extend to higher-order discretizations

Summary

- parallel, matrix-free multigrid method on geometry-conforming unstructured forests of octrees
- v-cycle implementation uses only non-blocking point-to-point communications
- demonstrated strong scalability from 512 to 131K cores
- demonstrated weak scalability up to 262K cores using one MPI process per core
- largest solve was on a mesh with 45K octrees with 100 billion unknowns on 262K cores sustaining 272 TFlops/s

Thank you !