Chapter 2: Prognosticating of Prostate Cancer via Multimodal Data Integration

Therapy-Agnostic Prognostication of Prostate Cancer via MR Imaging and Clinical Data Integration. Haocheng Dai, Geoff Nelson, Glen Morrell, Jonathan Tward, Sarang Joshi. In submission.

What is cancer prognostication?

Prognostication refers to the process of **predicting the future outcome** of a medical condition.

Instead of determining whether a patient has cancer, prognostication focuses on patients who have already been diagnosed, predicting **how their disease will progress**, the risk of recurrence, or their survival prospects.

Personalize treatment

Categorize patients into risk groups

Treatment adjustments

Previous work

NCCN is a traditional clinical practice, a structured, algorithmic decision-making pathway:

- Less accurate in predicting outcomes
- Discriminatory performance

Previous work

Clinical outcome	NCCN AUC estimates (95% CI)	MMAI AUC (95% CI)
Biochemical Failure (5-year)	0.61 (0.57–0.64)	0.69 (0.65–0.73)
Biochemical Failure (10-year)	0.62 (0.58–0.66)	0.68 (0.63–0.72)

MMAI is a more recent histopathology-based method that uses histopathology and clinical score to make prognostication score, however :

- Struggle to reach better performance;
- Micro-level investigation

Esteva et al. 2022

Workflow

Pure image model always shows a big generalization gap between the training and testing set.

ConvNeXt

ViT

53.03%

50.31%

54.13%

51.61%

50.80%

ResNet34

ResNet50

ResNet101

Workflow

Image Branch

Clinical Feature Branch

ROC curves under the different data splits

We did 60 random splits on the dataset and calculate the ROC for each split.

Apparent Diffusion Coefficient (ADC) is a measure derived from diffusion-weighted MRI that quantifies the rate at which water molecules diffuse through tissue. Diffusion reflects how freely water moves within tissue, and ADC provides a numerical value of this movement.

29

Ablation study

Top 10 mean SHAP values

$$\phi_i = \sum_{S \subseteq F \setminus \{i\}} \frac{|S|!(|F| - |S| - 1)!}{|F|!} \left[f_{S \cup \{i\}}(x_S) \right]$$

F is the full feature set,S is the feature subset,x is the input feature,f is the model to be evaluated.

Grad-CAM Visualization

We show the Grad-CAM activation maps corresponding to the most significant image features identified by SHAP values.

*Grad-CAM highlights the regions in the image that are most influential or sensitive in determining the model's prediction.

Conclusions

- Integrating MR images with clinical variables results in prognostication performance that matches or exceeds traditional risk classifiers and genomic classifiers for prostate cancer.
- The highest PSA level before treatment and the secondary Gleason score significantly enhance the prognostication model when combined with imaging analysis.
- MR image features alone are insufficient for accurate prediction; reliable prognostication requires combining both imaging features and clinical data.