The Silent Majority: Demystifying Memorization Effect in the Presence of Spurious Correlations

Chenyu You*, Haocheng Dai*, Yifei Min*, Jasjeet Sekhon, Sarang Joshi, James Duncan. (*equal contribution)

The baby pacifier class in ImageNet Classification Outcome

The baby pacifier class in ImageNet is spuriously correlated with the presence of babies.

When trying to identify hair color

The blond hair class in CelebA is spuriously correlated with

Liu et al. 2015

When trying to identify bird type

Sagawa et al. 2019

The bird class in Waterbird is spuriously correlated with background.

When trying to identify pneumothorax

The pneumothorax-free class in CXR-14 is spuriously correlated with no chest

When trying to identify pneumonia

CNN has learned to identifying [pneumonia by detecting a metal](https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1002683) token that radiology technicians place on the patient.

Zech et al. 2018

Even the most advanced models trained with ERM* can develop

systematic biases from these spurious attributes in the data.

**Empirical Risk Minimization (ERM) represents conventional training often focus on minimizing average training error, without any procedures for improving worst-group accuracies.*

How previous work resolve this?

Without knowing group label

[Just Train Twice \(JTT\)](https://arxiv.org/pdf/2107.09044.pdf) Liu et al., 2021

1. 2. Upweighting
\n
$$
E = \{(x_i, y_i) \text{ s.t. } f_{\text{id}}(x_i) \neq y_i\}. \quad J_{\text{up-ERM}}(\theta, E) = \left(\lambda_{\text{up}} \sum_{(x, y) \in E} \ell(x, y; \theta) + \sum_{(x, y) \notin E} \ell(x, y; \theta)\right),
$$

[Correct-n-Contrast \(CnC\)](https://arxiv.org/pdf/2203.01517.pdf) Zhang et al., 2022

How previous work resolve this? With knowing group label

Group DRO [Sagawa et al.,](https://arxiv.org/pdf/1911.08731.pdf) 2019

[Deep Feature Reweighting \(DFR\)](https://arxiv.org/pdf/2204.02937.pdf) Izmailov et al., 2022

$$
\boxed{\hat{\theta}_{\text{DRO}} := \underset{\theta \in \Theta}{\arg \min} \Big\{ \hat{\mathcal{R}}(\theta) := \underset{g \in \mathcal{G}}{\max} \, \mathbb{E}_{(x,y) \sim \hat{P}_g}[\ell(\theta; (x,y))]\Big\}}
$$

Minority groups manifest a significant gap in accuracy

Are minority group samples memorized by neural network?

Deep learning algorithms are well-known to have a propensity for fitting the training data very well and often fit even outliers and mislabeled data points.

Such fitting requires memorization of training data labels.

Feldman & Zhang, 2020

[Definition of memorization, Feldman 2021](https://arxiv.org/pdf/1906.05271.pdf)

Formally, for a dataset $S = (x_i, y_i)_{i \in [n]}$ and $i \in [n]$ define

$$
\texttt{mem}(\mathcal{A}, S, i) := \Pr_{h \sim \mathcal{A}(S)}[h(x_i) = y_i] - \Pr_{h \sim \mathcal{A}(S^{\setminus i})}[h(x_i) = y_i],
$$

[Feldman & Zhang, 2020](https://arxiv.org/pdf/2008.03703.pdf)

We formulate the spurious correlation problem as the memorization effect of the neural networks.

Question 2: Can we find a way to cancel out the memorization effect caused by these neurons?

Preliminaries

Datasets and Models

Identification Criterion of Critical Neurons

$$
\begin{aligned} \text{Magnitude-based: } \ \|\mathbf{z}_i\|_2 \qquad & \text{Gradient-based: } \|\mathbf{v}(i,j)\|_2 \\ \text{where } \qquad \pmb{\theta} = \{\mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_M\} \quad & \mathbf{v}(i,j) = \frac{\partial \mathcal{L}_{\text{CE}}(f(\pmb{\theta}, \mathcal{D}_j))}{\partial \mathbf{z}_i} \end{aligned}
$$

Definition of Neurons and Layers Convolutional Layer: 256×256×3×3 Neuron Layer Linear Layer: 768×2304×1 Neuron Layer

Stage 1: Proving the Existence of Critical Neurons

Zero-out Top-k Global Largest Neurons

1. Train the model by **ERM** for 40 epochs

Result after Zero-out Top-k Global Largest Neurons

Neurons Distribution by Gradient and Magnitude

In the top, we show the global magnitude ranking for the neurons with top 0.01% global largest gradient.

In the bottom, we show the global gradient ranking for the neurons with top 0.01% global largest magnitude.

In both histograms, there is a noticeable clustering in the rightmost two bins (ranging from 95% to 100%).

This suggests that the neurons with the highest magnitudes tend to exhibit large gradients, and the neuron with the largest gradient often coincides with a high weight magnitude.

Random-initialize Top-k Global Largest Neurons

1. Train the model by **ERM** for 40 epochs

2. Find the top-k global largest neurons by calculating
\nGradient norm
\n(group variant)
\n
$$
\|v(i,j)\|_2 \quad \text{where} \quad v(i,j) = \frac{\partial \mathcal{L}_{CE}(f(\theta, \mathcal{D}_j))}{\partial z_i}, i \in \{1, \cdots, M\}; j \in \{0, \cdots, 3\}
$$
\n
$$
\text{Magnitude} \quad \|z_i\|_2
$$
\n
$$
\text{from} \quad \text{(group invariant)}
$$
\n(group invariant)

3. Random-initialize the identified neurons b replace the neuron weight z_i with ϵ_i where $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$

4. Calculate the group accuracy change by

$$
\Delta_{\text{acc}}(j) = |\text{acc}(\mathcal{D}_j, f(\boldsymbol{\theta}, \cdot)) - \text{acc}(\mathcal{D}_j, f(\widetilde{\boldsymbol{\theta}}, \cdot))|,
$$

where $\widetilde{\boldsymbol{\theta}} = {\mathbf{z}_i}_{i \notin \mathcal{I}_j} \cup {\mathbf{\widetilde{z}_i}_{i \in \mathcal{I}_j}}$.

Result after Random-initialize Top-k Global Largest Neurons

- 1) The results from random initialization closely resemble those from the pruning method.
- 2) The accuracy changes in minority groups still surpass those in majority groups.
- 3) All the results visualized here are the average of 10 independent runs.

Random-noise Top-k Global Largest Neurons

1. Train the model by **ERM** for 40 epochs

2. Find the top-k global largest neurons by calculating
\nGradient norm
$$
||\mathbf{v}(i,j)||_2
$$
 where $\mathbf{v}(i,j) = \frac{\partial \mathcal{L}_{CE}(f(\boldsymbol{\theta}, \mathcal{D}_j))}{\partial \mathbf{z}_i}, i \in \{1, \cdots, M\}; j \in \{0, \cdots, 3\}$ where \mathcal{D}_j comprises examples only from group \mathcal{G}_j (group invariant) (group invariant) (group invariant).

3. Random-noise the identified neurons by add the neuron weight z_i with ϵ_i where $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$

4. Calculate the group accuracy change by

$$
\Delta_{\text{acc}}(j) = |\text{acc}(\mathcal{D}_j, f(\boldsymbol{\theta}, \cdot)) - \text{acc}(\mathcal{D}_j, f(\widetilde{\boldsymbol{\theta}}, \cdot))|,
$$

where $\widetilde{\boldsymbol{\theta}} = {\mathbf{z}_i}_{i \notin \mathcal{I}_j} \cup {\widetilde{\mathbf{z}}_i}_{i \in \mathcal{I}_j}.$

Result after Random-noise Top-k Global Largest Neurons

- 1) The extent of accuracy change with random noise is much smaller than that observed with random initialization and pruning.
- 2) With random noise added, the accuracy changes in minority groups still surpass those in majority groups.
- 3) All the results visualized here are the average of 10 independent runs.

Zero-out Top-k Largest Neurons within a Layer

1. Train the model by **ERM** for 40 epochs

2. Find the top-k largest neurons within a layer by calculating

Gradient norm where (group variant) where \mathcal{D}_i comprises examples only from group \mathcal{G}_i $\|\mathbf{z}_i\|_2$ Magnitude norm (group invariant)

3. Zero-out the identified neurons

4. Calculate the group accuracy change by $\Delta_{\text{acc}}(j) = |\operatorname{acc}(\mathcal{D}_j, f(\theta, \cdot)) - \operatorname{acc}(\mathcal{D}_j, f(\mathbf{m}_j \odot \theta, \cdot))|$

21

Binary Mask

Result of Zero-out Top-k Largest Neurons within a Layer

Zero-out Top-1 Neuron with Largest Magnitude

Zero-out Top-3 Neurons with Largest Magnitude

Result of Zero-out Top-1 Largest Neurons within a Layer

30

35

40

45

 \blacksquare 10.0

Zero-out Top-1 Neuron with Largest Gradient by Group 3 samples

Result of Zero-out Top-3 Largest Neurons within a Layer

Zero-out Top-3 Neuron with Largest Gradient by Group 0 samples

Rewind Layer

1. Train the model by **ERM** for 40 epochs, save every checkpoint during training

2. Replace the layer with the corresponding parameters 5/10/20/30/40 epochs earlier, keep all the other parameters unchanged

3. Calculate the group accuracy change by

$$
\Delta_{\rm acc}(j) = |\mathrm{acc}(\mathcal{D}_j, f(\boldsymbol{\theta}, \cdot)) - \mathrm{acc}(\mathcal{D}_j, f(\widetilde{\boldsymbol{\theta}}, \cdot))|,
$$

Result of Rewind Layer

A sensitive layer is defined as the layer rewinding on which can bring $+1\%$ change in corresponding group accuracy.

Minority groups tend to have a higher count of sensitive layers compared to majority groups. This suggests that majority groups exhibit greater resilience when it comes to rewinding layers.

For any given group, a larger number of layers influence group accuracy when rewound to earlier checkpoints.

Group accuracy change by pruning non-critical neuron (control group)

We found that all pruning actions had minimal impact on the accuracy of all groups.

Stage 2: Mitigating the spurious correlation via pruning

- 1. Train the model by **ERM** for 40 epochs
- 2. Find the critical

neurons

- 3. Prune the critical neurons in auxiliary model
- 4. Finetune the model by this framework for 20 more epochs by contrastive learning

Stage 2: Mitigating the spurious correlation via pruning

How do we decide which neurons to prune?

Gradient-based: prune 0.01% neurons with largest gradient

Magnitude-based : prune 0.01% neurons with largest magnitude

How do we calculate the gradient for gradient-based pruning?

loss

1. Calculate the crossentropy loss for each sample 2. Select the top 256 samples with the highest 3. Randomly sample 128 out to form the batch for gradient computation

Our finetuning strategy does not rely on group labels!

Conclusions

- 1. Our comprehensive study verifies the presence of spurious memorization, a mechanism involving critical neurons significantly influencing the accuracy of minority examples while having minimal impact on majority examples.
- 2. Building upon these key findings, we demonstrate that by intervening with these critical neurons, we can effectively mitigate the influence of spurious memorization and enhance the performance on the worst group.