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What is brain connectome?

A comprehensive map of neuronal connections

A Map of Anatomical Connectivity B Specific Fiber Tracts C Map of Functional Connectivity

Tractography

Fox MD, 2018


Presenter Notes
Presentation Notes
So what is brain connectome? The brain connectome is where our memories, personality and intelligence encoded in.

It is the connection resides in the white matter of the brain that connects different areas of grey matter. The fiber tracts we saw here is namely the connectome.

Structural connectivity tells you the physical existence of white matter tracts which interconnects different parts of the brain. It’s important because the structure and function of the human brain are interlinked. The foundation of human cognition lies in the pattern of interactions shaped by the connectome.
And we use tractography to represent the structural connectivity, it can be any method for estimating the trajectories of the fiber tracts in the white matter. 


How do we infer tractography?
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Then how do we infer the tractography? Diffusion-weighted MRI been extensively used to study the brain connections. It measures the diffusion of water molecules, which would be largely constrained by the directions of the neurons.

Once we have the diffusion MRI, we can infer a vector field through a lot of modern technique, such as HARDI, Q-Ball, and DSI.

This vector fields would serve as the tangent vector of the tractography, then by using the deterministic or probabilistic tractography, we can have the final representation of the human connectome.


How do we statistically analyze
a population of connectomes?

Construct connectome Riemannian manifold atlas from tractography data to
statistically quantify the geometric variability of structural connectivity across
a population.

Zhangetal. 2018
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But here comes the question, what if we want to statistically analyze a population of connectomes? Neither deterministic nor probabilistic tractography can offer us a solution. (Why?) As …

Luckily, constructing a Riemannian manifold for the connectome is a very ideal tool for later statistical analysis. There are a lot of tools we can utilize to calculate an average brain connectome, which quantifies the geometric variability over a population.


Geodesic Tractography

= Tractography Geodesic

Diffusion MRI Tractography Riemannian Manifold
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And geodesic tractography is a method endeavored to estimate a Riemannian manifold, such that the geodesic path follow the given tractography precisely.

The right figure is the visualization of the Riemannian metric, black line represents the tractography, and indigo line represents geodesic. If the geodesic matches the given tractography perfectly, then we can call this manifold is a good estimation


Related Work

Matrix Inverse

O’Donnell L et al., 2002

Diffusion Tensor Metric Tensor
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In the previous work of Odonnell et al, they took the inverse of the diffusion tensor as the metric tensor, 

The rationale behind it is that, as we move in the major axis of the diffusion tensor, the time cost is low;

as we move in the minor axis of the diffusion tensor, the cost is high, so aligns with our goal


Pros and Cons of Geodesic Tractography

O &
Advantage of geodesic tractography Disadvantage of previous geodesic tractography
* (Canfind tracts between two endpoints; * Easy deviation in high-curvature area (does not
* Atool of studying geometry of the brain. take neighbor metric variation into consideration);

* Unable to characterize crossing fibers
Haoetal, 2011
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The pros of the geodesic tractography include it enables us find tracts between two endpoints and it’s a perfect tool for the study of brain geometry.

But what’s the problem of the previous geodesic tractography method? As we can see in the right panel, the magenta geodesic using the inverse tensor field as metric could not follow the blue tractography. And the red shortest path under the Euclidean metric is also far from ground truth.

The previous methods are also not designed for characterizing crossing fibers, which widely exists in human brains.


What is a metric tensor?

Metric tensor defines how we calculate the inner
product under a given space.

glu,v) = ul gv,
gw,v) =|lv|]| =vlgv,

where g € R™ " n is the dimension of the space.

Euclidean metric g=1

Riemannian metric g can be any SPD matrix

Visualization of metric tensor

Length: A,, Direction: v,,
where gv, = 1,v,

Length: A4, Direction: v,
where gv; = 4114

The axis of the ellipsoid is regulated by
the eigenvector and eigenvalue of the
metric tensor.
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The foundation of geodesic tractography is the Riemannian metric. It basically tells us how to calculate the inner product under a given space, then we can calculate the length from one point to another by the integration. In the Euclidean space, the metric is an identity matrix. In a Riemannian manifold, it can be any symmetric positive definite matrix. 

This ellipsoid on the right-hand side demonstrates how we visualize a metric tensor: the shorter the axis is, the lower cost when it travels. The lengths and directions of the axis correspond to eigenvalues and eigenvectors of the metric.


What is a geodesic?

A Geodesic fromP toQ Q

’i/

Knisley JR, 2001

The speed of a geodesic on a Riemannian manifold is constant, i.e.
the tangential acceleration of a geodesic is zero.

To compute geodesic curves, we need to find curves where the
acceleration vector is normal to the space, namely

holds along the curve y, where V is called covariant derivative, or
Levi-Civita connection.
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So what is a geodesic? Geodesic is the path that locally minimize the length between two points. Besides this property, the speed of a geodesic on a Riemannian manifold is also constant, that means the tangential acceleration of a geodesic is zero. 

If we want to compute geodesic curves, we need to find curves where the acceleration vector is normal to the space, 

namely  ∇  𝛾    𝛾  equals to 0 holds along the curve, where the nabla is called covariant derivative, or Levi-Civita connection.


What is covariant derivative?

Intuitively, covariant derivative

V,u

e q y _ o Lo
L= - \u@ is a rate of change vector at u of a vector field in the direction of w,
| taking changes of the coordinate system into account.

Covariant derivative is the generalization of the directional
derivative. It provides a connection between tangent spacesin a
curved space.

LiuBetal, 2016
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So what is covariant derivative? 

It tells us the rate of change vector at 𝑢 of a vector field in the direction of 𝑤. 

It is the generalization of the directional derivative and provides a connection between tangent spaces in a curved space.


Estimating Riemannian Metrics from Geodesics

Explicitly, covariant derivative V%V can be written as

VIV = 5 (S0 25 + 5, Thv'v) e (@)

A vector field V is called a geodesic vector field if and only if it satisfies the equations

V)V = 0, (unit)
V]‘%V = oV, (hon-unit)

: _ vyvTY
where V = v'e; withe; = F being the i-th basis vector,and o = ]177Tv :
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Explicitly, covariant derivative  ∇ 𝒱 𝑔 𝒱 can be written as equation 4. 

A vector field 𝒱 is called a geodesic vector field if and only if it satisfies nabla gvv =0 for unit speed geodesic, and nabla gvv=sigma v for non unit speed geodesic.

Where sigma is a scalar can be calculated by this equation.


How is geodesic related to Riemannian metric?

As shown by Spivak, a critical curve for

L) = [ Ily®l2dt @)

is also a critical curve for

L) = [ Ily@®lldt. @)

The only difference is that the geodesic that minimizes (1) has a
constant speed.

Spivak M. A comprehensive introduction to differential geometry. Publish or Perish, Incorporated; 1970.
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As shown by Spivak, a critical curve of unit speed geodesic (eq (1)) is also a critical curve for the Eq. (2), which is a non-unit speed geodesic. 

The only difference is that the geodesic that minimizes (1) has a constant speed. 
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So here comes a bigger pictures of our work:

First you can get the tangent vector of tractography from the DWMRI through any state of the art tractography method. Here, we performed eigen decomposition of the diffusion tensor for simplicity.

Once the tangent vector field is given, we use deep neurol networks to estimate a Riemannian metric


Estimating Riemannian Metrics from Geodesics

Objective function: Given vector fields V; € X(M),i € {1, ..., m} find the
Riemannian metric g on M that minimizes the energy functional

E(g) = Z |5, -

T
vy ViV
vIv, -

where g; =
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Given vector field living in the manifold M, our objective becomes to find the Riemannian metric g on M that minimize the energy function. 

The summation allows us to have a metric to accommodate multiple tangent vector fields, which essentially represents the crossing fibers. And a regularization term is also added to prevent overfitting.


Physics-Informed Neural Networks (PINNs)

Leverage AutoGrad in PyTorch or TensorFlow to calculate derivative

PDE (v)
NN (x, t: &) i d
: o a : ot
a a
d du du d’u
it + U - v
ax ot ox ox?
a a
o a i
o ox’
L S&) N Encode the inverse problem into loss function
<:/{ e?-.mx e
Done [‘f

Karniadakis GE, 2021
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To solve this objective function, physics-informed neural networks (abbreviated as PINNs) is the best candidate to help, 

It leverages the universal approximation ability of deep neural networks to estimate the solution of a PDE, by encoding the inverse problem into the loss function. 

The automatic differentiation module embedded in most machine learning frameworks, such as PyTorch and TensorFlow, automates the process of finding the solution efficiently and mesh-freely.


Baseline MLP

itecture:
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Presenter Notes
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In the first stage, we adopt an multi layer perceptron as the architecture.

We sampled tens of thousands point over the geodesic vector field, sending the spatial coordinates into the network. The network would then generate a 7-dimensional vector serving as the distinct entries for later metric matrix construction. 

We leverage the eigen composition and Rodrigues rotation formula to turn the seven entries to a 3 by 3 symmetric positive definite matrix, which is final metric tensor at the corresponding location. In order to calculate the objective function, we need the vector field itself (which is given), the derivative of vector field regarding spatial coordinate, which can be derived by central finite difference, and the derivative of the metric w.r.t. spatial coordinate, which can be derived by autograd.

However, we found severe limitation of MLPs in our experiments: the predictive ability and accuracy of MLPs decayed drastically as the dimension and complexity of the solution increased. 
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To overcome the inherent limitation of the vanilla MLPs, we switch to use a convolutional encoder-decoder neural network to construct the multi-scale features from high-dimensional input. 

The main workflow is analogous to the previous formulation, except that this time we are sending the whole vector fields into the CNN, concatenated by multiple vector field describes crossing fiber, and the output is a 7 channel 3d volume. 

Then we use these 7 channel to construct a 3d matrix field. It is the final estimated metric which can accommodates multiple crossing fibers. 

Since the input of the network is no longer spatial coordinates, the derivative of the metric can no longer be derived by autograd. Likewise, we adopt the central finite difference to get the derivative. Hence, all the ingredients of the objective function are ready, and the network can learn the mapping from vector field to the Riemannian manifold by optimizing the objective function.


SPD Metric Matrix Composition

Matrix Exponential

1
S _ _ck
¢ _Zk!s
k=0

Uy Uz Us
S=|Ux Uy Us

Uz Us Ug

*In implementation, eigen composition is
5 times faster than matrix exponential.

Eigen Composition

Orthogonal —‘
g = RART
)
Positive eigenvalues

We formulate orthogonal matrix through Rodrigues rotation formula:

R =1+sin(8) K + cos(1 — 0) K?

1=[o 1 o], K=1|u 0 —usz|,
0 0 1 —U, Us 0

0 = uy, A= 0 exp(ug) 0

0 0 exp(u,)

exp(us) 0 0 ‘
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To construct symmetric positive definite matrix, we initially used a matrix exponential strategy. The new eigenvalue would basically be the exponential of the original one, which guarantees the positive definiteness.

However, we found that the backpropagation of matrix exponential is the bottle neck of the training process. We then switch to an eigen composition strategy to construct symmetric positive definite matrix from the seven entries, which needs a diagonal matrix, and an orthogonal matrix follows the Rodrigues rotation formula. 

This formulation expedites the training speed by 5 folds, compared to the built-in torch.matrix_exp.


Geodesic Shooting

Algorithm 1 Geodesic Shooting
Require: Vector field v : M — R™; Christoffel symbol Ffj : M — R based on metric g : M — R™*";

starting point ~y (%) € M; proper step size €, 1.

g (%) =V (7 (%)) > Linearly interpolate v
v(7) =7(7) + e (7)
fort=2:7T do
Wk (%) = —Ffj (7 (% ) v (%) - A (%) +o- ﬁk (%) > Linearly interpolate Ffj
V(7)) =3 () +0-4 ()
v(7)=v(F) e 9 (F)
end for
return -y

Geodesic equation (non-unit) recap: % + Iy'y/ = o - y*
1 (agik 09jk agij)
2 \ dxJ oxt  dxk

Christoffel symbol recap: Fi’j- =
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Once the estimated Riemannian metric is ready, we need to run the geodesic to verify whether the metric is a good one. 

We choose a starting point and an initial shooting direction, as the red dot and grey arrow indicate. Then we iteratively march forward, calculating the acceleration via geodesic equation, updating the velocity at the new point, so on and so forth, we can derive a geodesic.
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In our first experiment, we compared the geodesic-tractography alignment of both previous and our new methods: the inverted means it takes the inverse of the diffusion tensor as metric, the adjugate means it takes the adjugate of the diffusion tensor as metric, and the conformal means it applies scalar field modulation to inverted diffusion tensor. 

To quantitatively measure the alignment over these methods, we test these algorithms on brain slices from 38 HCP brain subjects. On each brain slice, we uniformly cast 400 seed points in the genu of corpus callosum region. 

all the seed points are chosen to be non-grid points with the corresponding vectors being obtained by bi-linear interpolation, in other words these vectors have never been seen by the network.

As you can see in the visualization, the background is the tangent vector of tractography representing the water diffusion. Both the black tractography and the colorful geodesics are shooting from the black star in the same direction. Yellow, red, green and indigo curves represent the geodesic running on the inverted, adjugate, conformal and our metric. It is very clear that our geodesic characterize the tractography most precisely, while all the other geodesic deviate from the tractography in the end.


Experiment 1: 2D Brain Slices

Mean min errors:

Error(P,Q) =

where P denotes a tractography and

1

|P]

pep MiNgeqllp — qll2,

curve starting at the same seed point.

q1: closest pointtop; ®

q,,: closest point to p,, %

.
o
.

101
Table 1: Mean and median of

8. mean min errors across different
methods over 38 HCP subjects.

4 Methods Mean Median

o . Inverted 4.2660 4.5393

Adjugate 5.3153 5.4906
2] Conformal 3.2658 3.1915
1 l &1 Proposed 0.5172 0.2388

Inverted Adju‘gate Conformal Propbsed

A mean of the mean min errors distribution
median of the mean min errors distribution
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To calculate the distance between two curve, we view P, Q as finite point sets, and consider the mean min error between these two sets by the shown equation. P denotes a ground truth tractography and Q denotes a geodesic tractography curve starting at the same seed point. 

The boxplot visualizes the distribution of 15,200  error across 38 HCP subjects. The boxplot demonstrates that, our method outperforms the other three methods in terms of both mean and median of the errors, by a large margin.


ICES

2D Brain S

Experiment 1

A\ N\ —_ / INN NSNS~ ~—— -~
MN\N\N~— \\““““\///, NSNS ——— e~
W\ NN~ ___ "~ 7° SSNNNBSNSN~—
\ NNe— AR LD
\ AN~
|
I\
| ”
/ \\
7 A
M (Y
VD
VD
|
IBEEE
R
R
(I
[
111177z
11177
L1177
[117
11177
117
(O]
>
-
T 5 O
©
- o= O g
IIIII Q ®m & n ©
IIIIII £ o0 O 5
IIIIIIII = “w /5 O
S e 77 - m.w.n o m
SN AN ~ Cc c
e 7 SSaw\y ( ffpoo =S o s
WY =
4 P
s o -0 0 o
\\“Q\_~\\\\ o
_— NSNNNNNSNSNSN—— —_———

/7

B — —

—~—————

s \\\\\\\\\

NN~
NN NN~

/ / NN~

A\ /

/NN Sm 2

—_—— —_———

\\Il///
- SN

\/// NNNN~—

r~———T -

NN~ ———— e S

NN ————

Inverted
Adjugate

P

Inverted
Adjugate

aSNSNN————

—— s
s
-7/

SN
SNNNNST

NS NN~—
NN g

—_—_——— e ——

—_—————— e —

—_————— e ———

Conformal
Proposed

Proposed

—~————————

Integral curve

B —

—~—~———— e —

————

~~

Integral curve

100206

100610

101006


Presenter Notes
Presentation Notes
Here are more examples demonstrate our method’s advantage over the previous one.
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Experiment 2: 2D Synthetic “Braid”
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Presenter Notes
Presentation Notes
To test the ability of characterizing crossing fibers, we synthesized two vector fields in a “braid” pattern of two intertwining pathways.

The metric fields gP and gC estimated by MLP and CEDNN are shown on the right-hand side. Both the baseline MLP and CEDNN use around 0.7 million parameters.

The geodesics on the metric gC align notably closer to the tractographies than the one on gP . In addition to the excellent geodesic-tractography alignment, the CEDNN-estimated metric behaves as expected even at the crossing region — the geodesics are not confounded at all.


Experiment 2: 2D Synthetic “Braid”
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Presenter Notes
Presentation Notes
In addition, we configured the MLPs with Fourier embedding and Siren activation functions, which boosted the performance of the MLP in a considerable magnitude, yet still underperforming CEDNN by orders of magnitudes. 

It is noticeable that the CEDNN converges much faster to a significantly lower residual loss, despite the fact that the MLP enjoys about the same amount of parameters as the CEDNN


Experiment 3: 3D Brains



Presenter Notes
Presentation Notes
We also validated our method’s ability to estimate 3D HCP subjects. We first reconstructed the vector fields through the GQI method in DSI Studio with a diffusion sampling length ratio of 1.25.

A whole-brain Riemannian metric was estimated by a CEDNN featuring 40, 30, and 40 dense layers in each dense block. And it took less than 30 minutes (10,000 iterations) for convergence on a single Nvidia Titan RTX GPU.

There were 138,732 seed points cast in the white matter region for the generation of the geodesics.

We showcase the ability of geodesic tractography with our estimated metric to successfully distinguish two crossing fibers: the forceps minor and frontal projection tracts. 

We stress that the previous approaches to geodesic tractography do not handle multiple fiber directions in a voxel, and thus cannot correctly handle crossing-fiber regions such as these.



Conclusions

1. We proposed to estimating a Riemannian metric of the brain manifold via
deep neural network for the first time.

2. We show that our proposed method outperforms any of the previously
proposed methods in geodesic tractography by a large margin.

3. In addition, our approach solves the long-standing issue of these previous
methods: the inability to recover crossing fibers with high fidelity.

4. One limitation of the proposed method is that the generalization ability of
the trained model to the unseen data is relatively weak.


Presenter Notes
Presentation Notes
So in this work, for the first time the deep neural network is used in estimating a Riemannian metric to characterize human connectome

Our proposed method outperforms any of the previous geodesic tractography method by a large margin

And the long-standing problem of the inability to recover the crossing fiber is also overcome by our method

However, our method need to solve from scratch for each new coming brain, though it only takes half an hour to converge, it is still in our hope that the generalization ability can be strengthened in the future.


Future Work

With the ability to robustly and efficiently model the white matter of the brain as a Riemannian
manifold, one can directly apply geometrical statistical techniques such as statistical atlas

construction, principal geodesic analysis to precisely study the variability and differences in white
matter architecture.

Campbell KM, DaiH et al., 2021



Presenter Notes
Presentation Notes
With the ability to robustly and efficiently model the brain connectome as a Riemannian manifold, one can directly apply geometrical statistical techniques such as statistical atlas construction, principal geodesic analysis to precisely study the variability and differences in white matter architecture.
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Presentation Notes
If you are interested in our work, please scan the QR code to find more details in our project page. Thank you!
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Presenter Notes
Presentation Notes
When we interpret it in a covariant derivative way, for non-unit speed geodesic, it means there’s no restriction on the norm of the geodesic vector field. 

So, it is equivalent to making nabla v normed v equals to zero. 

Then, we can have the expression of sigma.
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