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How to statistically analyze a population of connectomes" Inputs: Inputs:
) source and target metric g, g sample metric fields list ¢
Initialize: Initialize:
learning rate e: weight parameter A\; max iteration Maxlter TIPSR S ¥ T, M

o, B+ 1id, 0
for iteration = 0 : Maxlter do

2 g1 < (dp)" (g1 0 9)(dp)
F <+ EbinEnergv(¢©* g1, go, \)

for iteration = 0 : MaxlIter do
Jmean < FréchetMean(G)
for i =0 :len(G) do

e \We propose a method of analyzing connectomes by representing tractography fibers as geodesics of a ’ ey 5+ MetricMatching (gumean G1i])
Riemannian metric, that is, as points on an infinite-dimensional manifold. v .—A (E. grad) F’H oG] S>\Jmean
e We equip the Riemannian manifold with diffeomorphism-invariant Ebin metric to compute distances and Y« 1d+ev djf[ Pl
geodesics between connectomes. P~ Yo ena ior
e \We develop a Diffeomorphic Metric Registration framework to register connectomes end for end for
return ¢ return ¢, can

e \We apply object-oriented statistical analysis to define an atlas as the Frechet mean of a population of

Riemannian metrics.
RESULTS
M ETH O DS Hypothesis: The geodesic on atlas metric field should be the average of the geodesics on sample metric fields.

1. Estimate a locally-invariant metric, g.. — a(x) 5 conformal to the inverse-diffusion tensor metric. § = D () Data: Generated vector fields whose central integral curves are a family of parameterized cubic functions; a subset
y HasSCaE Y g () of subjects from the Human Connectome Project Young Adult (HCP) dataset.

and whose geodesics match the tractography as defined by a vector field, 17, by minimizing [2]:

F(a) = / lgrad a — 2Vy V||Zdz Evaluation: We first estimated the adaptive metric conformal to the inverse-tensor metric. After finding the
- connectome metric for each subject, we ran atlas building Algorithm 2 to estimate the atlas shown in right column of
by solving Az = 2 divy(Vy/ V) for a. each figure. Then, we map the geodesics of the individual connectome metrics to atlas space and compare with the
2. Equip the infinite-dimensional space of all Riemannian metrics with a diffeomorphism-invariant Riemannian atlas geodesic.

metric, called the Ebin metric [3], which is the integral of point-wise metrics on SPD:

GE (h, k) = / Tr (g~ Lhg~'k) vol(g), Conclusion: The atlas geodesic is nicely centered in the middle of the undeformed individual geodesics as

M expected.
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3. Define “distance” of diffeomorphism ¥ to the identity, Ebin metric induces right-invariant distance on Diff(M):
*undeformed geodesics of sample metrics. **geodesics of sample metrics deformed into atlas space.

distpg (id, ) = distyzes (9, 9% 9)
4. Register two connectomes by finding ¢ that minimizes £(y):

E(p) = int dist%iﬂc (id, ¢) + A diSt12\/[et (g0, ¥ g1) (Algorithm 1) [1] Zhang, F.,.Wu, Y., Norton, l., Rigolo, L., Rat.hi, Y., Makris, N O’Donnell, L.J.: An anatomically curated fiber clustering white matter
peDift (M) atlas for consistent white matter tract parcellation across the lifespan. Neurolmage 179, 429-447 (2018)
[2] Hao,X.,Zygmunt,K.,Whitaker,R.T.,Fletcher,P.T.. Improved segmentation of white matter tracts with adaptive riemannian metrics.

5. Build atlas, g, of metrics g1, ..., gy by finding g and ¥1, - ... ¥~ that minimize: Medical image analysis 18(1), 161—175 (2014)
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j = ar mmz disthig (id, ©;) + A distye (9, 07 gs) (Algorithm 2) - i i i i i i i i i
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V - vector field, div - Riemannian divergence, A- Laplace-Beltrami operator, id - identity mapping, g - metric, E - energy function, n - Acknowledgements: This work was funded by NSF DMS-1912030, DMS-1912037, DMS-1953244, NIH/NIAAA R01-AA026834.

metric dimension, * - pull back operation Data provided by the Human Connectome Project (HCP), WU-Minn Consortium.



