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● We propose a method of analyzing connectomes by representing tractography fibers as geodesics of a 
Riemannian metric, that is, as points on an infinite-dimensional manifold. 

● We equip the Riemannian manifold with diffeomorphism-invariant Ebin metric to compute distances and 
geodesics between connectomes.

● We develop a Diffeomorphic Metric Registration framework to register connectomes
● We apply object-oriented statistical analysis to define an atlas as the Fréchet mean of a population of 

Riemannian metrics. 

1. Estimate a locally-invariant metric,                    , conformal to the inverse-diffusion tensor metric,                ,
 and whose geodesics match the tractography as defined by a vector field,    , by minimizing [2]:

4. Register two connectomes by finding     that minimizes        :

5. Build atlas,   , of metrics                    by finding    and                    that minimize:

3. Define “distance” of diffeomorphism     to the identity, Ebin metric induces right-invariant distance on Diff(M):

V - vector field, div - Riemannian divergence,     - Laplace-Beltrami operator, id - identity mapping, g -  metric, E - energy function, n - 
metric dimension, * - pull back operation

Hypothesis: The geodesic on atlas metric field should be the average of the geodesics on sample metric fields.

Data: Generated vector fields whose central integral curves are a family of parameterized cubic functions; a subset 
of subjects from the Human Connectome Project Young Adult (HCP) dataset.

Evaluation: We first estimated the adaptive metric conformal to the inverse-tensor metric. After finding the 
connectome metric for each subject, we ran atlas building Algorithm 2 to estimate the atlas shown in right column of 
each figure. Then, we map the geodesics of the individual connectome metrics to atlas space and compare with the 
atlas geodesic. 

Conclusion: The atlas geodesic is nicely centered in the middle of  the undeformed individual geodesics as 
expected.
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orange: geodesic of altas metric; other colors: geodesics of sample metrics. 
*undeformed geodesics of sample metrics. **geodesics of sample metrics deformed into atlas space.

Distance is integral of point-wise distances on SPD:
where the induced volume density of the metric g.

(Algorithm 2)

(Algorithm 1)

2. Equip the infinite-dimensional space of all Riemannian metrics with a diffeomorphism-invariant Riemannian 
metric, called the Ebin metric [3], which is the integral of point-wise metrics on SPD:

Geodesic            between                    :
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