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ABSTRACT

Prostate cancer is one of the most common malignancies and
a leading cause of cancer-related mortality among men world-
wide. Accurate prognostication is crucial for guiding clinical
decision-making and optimizing patient outcomes. However,
current methods often rely solely on clinical features and fail
to integrate advanced imaging data effectively. In this study,
we develop a progression prognostication model that com-
bines clinical variables with magnetic resonance (MR) imag-
ing analysis. Our model aims to provide therapy-agnostic pre-
dictions, enabling a more nuanced understanding of patient
prognosis to facilitate treatment intensification decisions. We
also analyze the impact of multimodal data integration and
clinical variables within our framework to enhance prognos-
tic accuracy and guide clinical decision-making.

Index Terms— prostate cancer, multi-modality, random
forest, prognostication, magnetic resonance (MR) imaging

1. INTRODUCTION

Prostate cancer is one of the most prevalent malignancies af-
fecting men globally, posing a significant public health chal-
lenge. It is also a leading cause of cancer-related mortality
among men, with incidence rates continuing to rise world-
wide [1]. Beyond its physical impact, prostate cancer signifi-
cantly affects the quality of life and psychological well-being
of patients and their families, underscoring the need for ef-
fective prognostic tools. Uncertainty regarding the potential
benefit of a particular therapy can hinder clinicians and pa-
tients from confidently selecting the optimal initial course of
treatment, which may result in reduced patient adherence and
increased stress for both patients and healthcare providers.
Thus, accurate prognostication of prostate cancer is essential
for optimizing patient management, guiding clinical decision-
making, and ultimately improving patient outcomes.

Despite the critical importance of accurate prognosti-
cation, existing methods face several challenges, such as
variability in clinical presentation and the complex nature
of tumor progression. Many conventional prognostic ap-
proaches [2] are limited by their reliance on clinical features
alone and fail to adequately integrate the wealth of infor-
mation available from advanced imaging modalities. Wang

et al. [3] identified potential multi-omics biomarkers for the
early detection of prognostic recurrence in prostate adeno-
carcinoma (PRAD) patients and constructed multi-omics
panels based on the intersected biomarkers from different
models. Esteva et al. [4] introduced a multimodal deep learn-
ing approach for personalizing prostate cancer therapy by
predicting long-term outcomes using clinical data and digi-
tal histopathology from micro-scale, demonstrating superior
prognostication compared to traditional approaches, such
as the National Comprehensive Cancer Network (NCCN)
guidelines, which have repeatedly shown limited discrimina-
tory performance.

In this study, we aim to address these limitations by de-
veloping a comprehensive prognostication model for prostate
cancer that integrates clinical variables with macro perspec-
tive magnetic resonance (MR) imaging features, focusing on
therapy-agnostic prediction of disease outcomes. By leverag-
ing both clinical and imaging data, our model aims to provide
a more nuanced understanding of prostate cancer prognosis,
ultimately enhancing individualized patient care and enabling
more informed clinical decisions. Furthermore, we inves-
tigate the contributions of different components within our
framework, including multimodal data and various clinical
variables, in order to provide a more comprehensive under-
standing of how to achieve accurate prognostication.

2. METHODS

Our framework integrates two machine learning models: a
convolutional neural network (CNN) for MR image encoding
and random forests for prognosis scoring. For each patient,
we input their MR images (either T2 or diffusion-weighted)
and clinical variables. The MR images are first resampled
to achieve a voxel spacing of 0.3mm × 0.3mm and a slice
thickness of 3mm using bilinear interpolation. After resam-
pling, we apply symmetric central padding or cropping to
standardize the volume to a size of 32 × 128 × 128 vox-
els (corresponding to 96mm × 96mm × 96mm in physical
space, a size can cover the whole prostate under most cases).
This volume is then subjected to data augmentation, which in-
cludes random horizontal flipping along the transverse plane,
followed by random rotation with angles uniformly sampled
within ±90◦. The probability of applying these augmenta-



Fig. 1. Overview of the proposed framework.

tions is set to 80%. To reduce the influence of outlier values
during normalization, we clip the top and bottom 1% of inten-
sity values, after which we scale the pixel values to the range
[0, 1]. Finally, intensity normalization is performed using the
mean and standard deviation.

Instead of using a 3D CNN, we chose a standard 2D
ResNet as our image encoding backbone because MRI is
acquired in slices rather than as a continuous volume. The
spacing between transverse slices is much larger than be-
tween coronal or sagittal planes, making linear interpolation
between transverse slices unnecessary. We did not observe
significant performance gains with a 3D architecture, which
also comes with increased computational costs. To effectively
leverage the 3D volumetric data, we treat the first dimension
(of size 32) as the channel dimension and the remaining
dimensions (of size 128) as the spatial dimensions for the
ResNet convolutional layers. We trained the ResNet with
two different objectives: standard binary classification and
contrastive learning. In the contrastive learning approach,
we generate two augmented versions of the same image and
minimize the distance between their respective features us-
ing a contrastive loss. However, we found no substantial
performance difference between the two types of image fea-
tures between the conventional classification and contrastive
learning strategies. Therefore, we opted for a standard binary
classification task with binary cross-entropy loss to generate
the image features. We did not rely solely on the binary clas-
sification results from CNNs because CNNs tend to overfit
the training set in prostate cancer prognostication, even when
using the smallest architectures, strong data augmentation,
and early stopping techniques. By employing a multimodal
framework, we can effectively incorporate detailed clinical
variables alongside imaging features, providing a more nu-
anced and comprehensive understanding compared to using
raw imaging data alone.

Our framework’s clinical variables consist of categorical
and numerical data. The categorical variables include Clini-

cal AJCC-derived T/N/M stage, primary/secondary Gleason
scores prior to the first definitive treatment, and International
Society of Urological Pathology (ISUP) grade group at the
first definitive treatment. These are encoded into one-hot
vectors. The numerical variables include the percentage of
positive biopsy cores, patient age at first definitive treat-
ment, highest PSA level prior to first definitive treatment,
and prostate width/depth/height. The numerical variables are
standardized by subtracting the corresponding mean and scal-
ing to unit variance. The one-hot encoded categorical vectors
and the normalized numerical vectors are then concatenated
to form the clinical variable feature.

We then prepare one random forest, RF , comprising 190
decision trees with a maximum depth of 5 and a maximum
feature count of 1. The image features, vimage, are then con-
catenated with the clinical features, vclinical, before sending
through the random forest. The thresholded prediction will
be treated as the final outcome. For more straight forward
illustration, see Figure 1.

3. RESULTS

To validate the performance of our framework, we collected
a dataset comprising 200 patients, with each patient having
one T2-weighted MRI, one diffusion-weighted MRI (b1500),
one apparent diffusion coefficient (ADC) map, and a set of
clinical variables. We performed 60 random splits of the
dataset, ensuring a balanced distribution of failed and non-
failed classes within each split. For each split, 80% of the
data was used for training, while the remaining 20% was
reserved for testing and validation.

To evaluate the effectiveness of different imaging modal-
ities, we use Figure 2 (a) to illustrate the distribution of AUC
scores under different data splits, with ResNet-10 used as the
image encoder for different MR modalities. The AUC scores
range from 0.61 to 0.83 for diffusion-weighted MRI, 0.66 to
0.87 for the ADC map, and 0.61 to 0.85 for T2-weighted
MRI. Among these, the ADC-based framework achieved the
highest median AUC of 0.77, followed by 0.75 for diffusion-
weighted MRI and 0.73 for T2-weighted MRI.

To further investigate the impact of different image en-
coders, we compared the ViT (tiny) and ResNet-10 models,
as shown in Fig. 2 (b). Despite the minimum AUC scores
being similar between the two image encoders, the mean and
median AUC scores of ResNet are substantially higher than
those of ViT, with ResNet outperforming ViT by 0.04 in me-
dian AUC. This trend remains consistent across different con-
figurations of the two types of image encoders.

Next, we sought to understand the contribution of com-
bining both image and clinical features in the random forest
classification, as presented in Fig. 2 (c). Using only image
features resulted in an average and median AUC score of ap-
proximately 0.60, which was only slightly better than using
a trained linear projection matrix. In contrast, using clini-



Fig. 2. Box plots of our framework’s AUC scores by different image modalities (a), different image encoders (b), and different
feature types used in random forest. (d) ROC curves under the different data splits. The water-shedded curve are the ROC of
individual experiments under different data split.

cal features alone significantly improved the classification ac-
curacy, with average and median AUC scores reaching 0.71.
Notably, combining both image and clinical features led to
further improvements in performance, surpassing the use of
either feature type alone.

Fig. 2 (d) presents the ROC curves for individual data
splits (represented by transparent curves) along with the av-
erage ROC curve (represented by the darker curve) across the
experiments. In these experiments, we used the ADC map as
input with ResNet-10 as the image encoder, and both clini-
cal and image features were employed in the random forest
classification. This combined approach consistently demon-
strated superior performance across all data splits.

To better understand the significance of each clinical
variable, Fig. 3 and Fig. 4 present two complementary per-
spectives. In Fig. 3, we use a model-agnostic approach
to assess feature importance by evaluating the change in
prediction accuracy when the values of a feature are ran-
domly shuffled (permuted). Fig. 4 shows the mean SHAP
values across all clinical variables, highlighting the aver-
age impact of each variable on the model’s output magni-
tude. Only the top 10 most influential variables are visual-
ized. Both evaluations indicate that the greatest PSA prior
to the first definitive treatment (greatest psa1) 1 and
whether the secondary Gleason score at the first definitive
treatment is 3 (sgs1=3) play critical roles in the final pre-
diction. Additionally, alterations in the physical dimensions
of the prostate (prostate width, prostate depth,
and prostate max axis) can significantly degrade the
performance of our framework.

To gain more insights into where the image encoder de-
rives information for its decision-making process, in Fig. 5,

1ct: CT stage of record; cm: CM stage of record; cn: CN stage of record;
pgs1: primary gleason score at first definitive treatment; sgs1: secondary
gleason score at first definitive treatment; ug1: isup grade group at first
definitive treatment; pbs1: percentage of positive biopsy cores at first defini-
tive treatment; age1: age at first definitive treatment; greatest psa1:
greatest prostate-specific antigen (PSA) prior to first definitive treatment

Fig. 3. Feature importance using permutation on full model.

Fig. 4. Top 10 mean SHAP values of different features.



Fig. 5. GradCAM visualization on transversal MRI slice
across different subjects. Top row: transversal prostate slice,
bottom row: corresponding prostate slice overlaid with acti-
vation map.

we show the Grad-CAM activation maps corresponding to
the most significant image features identified by SHAP val-
ues [5]. The activation maps align precisely with the prostate
region, highlighting the ability of our framework to capture
the most relevant features for the task.

3.1. Ablation Study

We conducted a series of ablation studies to evaluate the im-
pact of the number of estimators, maximum depth, and maxi-
mum features on the random forest model’s performance. We
found that both the F1-score and accuracy increase mono-
tonically with the number of estimators, plateauing when the
number of estimators reaches 190. Regarding the maximum
depth and maximum features, we found that optimal perfor-
mance was achieved when these parameters were set to 5 and
1, respectively.

Additionally, we explored the use of alternative classifica-
tion models within the same framework. Our results indicate
that the random forest consistently outperforms other binary
classification models, including SVM, AdaBoost, and a sin-
gle decision tree. We attribute the random forest’s significant
performance margin to its ensemble nature, which is particu-
larly beneficial given the relatively small size of our dataset.

4. CONCLUSIONS

In this study, we investigated effective methods for prostate
cancer prognostication from multiple perspectives. By inte-
grating macro-level MR images with carefully selected clin-
ical variables, we achieved prognostication performance that
is equivalent to or surpasses conventional risk classifiers and
commercially available genomic classifiers. Our analysis re-
vealed that when combined with imaging analyses, the high-

est PSA level prior to the first definitive treatment and the
secondary Gleason score at the time of treatment are signif-
icantly inform the prognostication model. Furthermore, we
demonstrated that MR image features alone are insufficient
for accurate prediction; we can only achieve a reliable prog-
nostic outcome by combining imaging features with clinical
data with the current methodology.
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