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1 Overview

Image registration is a key component for medical image analysis to provide spatial correspondences. The

goal is to achieve the best possible agreement between a source(moving) image and a target(fixed) image,

subject to transformation constraints.

Applications. Atlas building for segmentation, data augmentation, image guidance, image fusion, motion

tracking, etc.

Definition 1. Diffeomorphism f : M → N is a bijective function between two smooth manifolds M,N ,

such that f and f−1 are both smooth functions.

Remark 1. The key properties summarized from the definition of diffeomorphism above: both itself and its

inverse are smooth and one-to-one(bijective).

• Parametric transformation models make use of a relateively low-dimension parameterization of the

transformation, which include rigid(preserves the Euclidean distance between every pair of points),

similarity or affine(preserves lines and parallelism) transformation.

• Non-parametric1(deformable) registration parameterize a transformation locally, with a parameter (or

parameter vector) for each voxel. The most direct non-parametric approach is to represent voxel

displacements u(x) = φ(x)− x.

1The reason why it is called non-parametric is that given nonlinear and nonconvex objective functions, in general, no closed-

form solutions exist to estimate the registration parameters.
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2 Large Deformation

2.1 Landmark Matching[1, 2, 3]

2.1.1 Problem formulation

Assuming that there is a set of landmarks {(xn, yn)}, where xn and yn are our approach is to construct

diffeomorphisms φ : Ω→ Ω, such that

v̂(x, t) = arg min
v

E(v) +D(φ(·, 1)) (1)

= arg min
v

∫ 1

0

N∑
n=1

‖Lv(xn, t)‖2L2dt+

N∑
n=1

[yn − φ(xn, 1)]TΣ−1
N [yn − φ(xn, 1)],

where

φ(x, 0) = x

φ(x, 1) = x+

∫ 1

0

φ̇(x, t)dt

φ̇(x, t) =
dφ(x, t)

dt
= v(φ(x, t), t) = vt ◦ φt

The final time diffeomorphism φ(·, 1) is controlled via the velocity field v(·, t), t ∈ [0, 1]. Diffeomorphic

landmark transformations are constructed by forcing the velocity fields to minimize quadratic energetic on

Ω× [0, 1], as shown below

E(v) =

∫ 1

0

∫
Ω

‖Lv(x, t)‖2L2dxdt

=

∫ 1

0

∫
Ω

d∑
q=1

|(−∇2 + c)vq(x, t)|2dxdt

since L is in form of L = I · (−∇2 + c), where I is the identity matrix, d is the dimension of v and c is a

constant.

The squared error distance for landmark matching is given by

D(φ(·, 1)) =

N∑
n=1

[yn − φ(xn, 1)]TΣ−1
n [yn − φ(xn, 1)],

where ΣN is the error covariance.

2.1.2 Inexact Landmark Matching

L is a constant coefficient matrix differential operator with d × d matrix Green’s function G(x, y) which is

continuous in both x and y. Let K(x, y) = GG†(x, y) = (2/
√

2πc)e−
√
c‖x−y‖, where K is a d × d matrix

function. K is the Green’s kernel[?]. Given N pairs of landmarks {φ(xi, 1), xi}, we are going to generate the

vector field in form of

v̂(x, t) =

N∑
i

K(φ(xi, t), x) · wi

2



under the N constraints that

v̂(x1, t) =

N∑
i

K(φ(xi, t), x1) · wi

...

v̂(xN , t) =

N∑
i

K(φ(xi, t), xN ) · wi

Incorporating all the constraints above in a matrix form, we can have the equation below
K(φ(x1, t), φ(x1, t)) · · · K(φ(x1, t), φ(xN , t))

...
. . .

...

K(φ(xN , t), φ(x1, t)) · · · K(φ(xN , t), φ(xN , t))


︸ ︷︷ ︸

K

·


w1

...

wN


︸ ︷︷ ︸

W

=


φ(x1, t)− x1

...

φ(xN , t)− xN


︸ ︷︷ ︸

D

Therefore, we can derive the vector field in form of

v̂(x, t) =
(
K(φ(x1, t), x) · · · K(φ(xN , t), x)

)
·


w1

...

wN



=
(
K(φ(x1, t), x) · · · K(φ(xN , t), x)

)
︸ ︷︷ ︸

d×Nd

·


K(φ(x1, t), φ(x1, t)) · · · K(φ(x1, t), φ(xN , t))

...
. . .

...

K(φ(xN , t), φ(x1, t)) · · · K(φ(xN , t), φ(xN , t))


−1

︸ ︷︷ ︸
Nd×Nd

·


φ(x1, t)

...

φ(xN , t)


︸ ︷︷ ︸

Nd×d

where the minimized velocity fields
˙̂
φ(xn, t) can be expressed as below

˙̂
φ(xn, t) = arg min

φ̇(xn,·)

∫ 1

0

N∑
ij=1

φ̇(xi, t)K(φ(t))−1
ij φ̇(xj , t)dt+

N∑
n=1

[yn − φ(xn, 1)]TΣ−1
N [yn − φ(xn, 1)] (2)

Assuming velocities are constant within the quantized time intervals, for t ∈ [tm−1, tm), we have

φ̇(xn, t) ≈
φ(xn, tm)− φ(xn, tm−1)

ε

where ε is the fixed time step size, such that tm = mε.

So the Eq.(2) can have the new form of

φ̂(xn, tm) = arg min
1

ε2

M∑
m=1

N∑
ij=1

[φ(xi, tm)− φ(xi, tm−1)]T

(∫ tm

tm−1

K(φ(t))−1
ij dt

)
[φ(xj , tm)− φ(xj , tm−1)]

(3)

+

N∑
n=1

[yn − φ(xn, 1)]TΣ−1
N [yn − φ(xn, 1)]
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2.1.3 Gradient Algorithm

The update rule for minimizing Eq.(3) is shown as below

φ(l+1)(xn, tm) =


φ

(l)
1 (xn, tm)

φ
(l)
2 (xn, tm)

φ
(l)
3 (xn, tm)

−∆×


∂

∂φ1(xn,tm)P (φ(l)(1)) + ∂
∂φ1(xn,tm)D(φ(l)(1))

∂
∂φ2(xn,tm)P (φ(l)(1)) + ∂

∂φ2(xn,tm)D(φ(l)(1))

∂
∂φ3(xn,tm)P (φ(l)(1)) + ∂

∂φ3(xn,tm)D(φ(l)(1))


where q = 1, 2, 3 and ∆ is the step size, rather than Laplacian operator. More explicitly,

∂P (φ(1))

∂φq(xn, tm)
= 2

N∑
j=1

(∫ tm+1

tm

K(φ(t))−1
nj dt[φ(xj , tm)− φ(xj , tm+1)]

)
q

+ 2

N∑
j=1

(∫ tm

tm−1

K(φ(t))−1
nj dt[φ(xj , tm)− φ(xj , tm−1)]

)
q

+

N∑
j=1

[φ(xj , tm+1)− φ(xj , tm)]T
∂
∫ tm+1

tm
K(φ(t))−1

nj dt

∂φq(xj , tm)
[φ(xj , tm+1)− φ(xj , tm)]

∂D(φ(1))

∂φq(xn, tm)
= δ(tm − 1)(2Σ−1

n [yn − φ(xn, 1)])q

where
∂
∫ tm+1

tm
K(φ(t))−1

nj dt

∂φq(xj , tm)
=

∫ tm+1

tm

(
K(φ(t))−1 ∂K(φ(t))

∂φq(xj , tm)
K(φ(t))−1

)
nj

dt

and δ(·) is the Dirac delta function.

2.2 Image Matching

2.2.1 Problem formulation

We view a image as a function I(x) from a domain Ω : R3 → R, so that I(x) is the intensity value of the

image at the point of x ∈ Ω. Then the deformation fied can be expressed as a function φ : Ω→ Ω. We find

φ(x) by approximately minimizing the energy function

E(φ) =

∫
Ω

(I0(x)− I1(φ(x)))2dx,

where I0, I1 are source and target images, respectively.

We decompose the solution into two components, a global rigid transformation followed by a deformation

that allows soft tissue to align.

2.2.2 Rigid Registration

In the case of translation, we want to minimize the energy E subject to the condition that φ(x) = x + b,

where b is the translation vector. Thus we have

E(φ) =

∫
Ω

(I0(x)− I1(φ(x)))2dx

⇒ E(b) =

∫
Ω

(I0(x)− I1(x+ b))2dx
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We use a quasi-Newton algorithm2 to minimize E(b), constructing a sequence {bk} such that E(b) converge

to a local minimum. Let bk+1 = bk + ∆bk

E(bk+1) ≈
∫

Ω

(I0(x)− [I1(φ(x))−∇I1(φ(x)) ·∆bk])2dx

≈
∫

Ω

(I0(x)− I1(φ(x)) +∇I1(φ(x)) ·∆bk)2dx

≈
∫

Ω

(I0(x)− I1(φ(x)))2 + 2(I0(x)− I1(φ(x)))(∇I1(φ(x)) ·∆bk) + (∇I1(φ(x)) ·∆bk)2dx

Taking partial derivative on both side of the equation above, we derived

∂E(bk+1)

∂∆bk
≈ ∂

∂∆bk

∫
Ω

(I0(x)− I1(φ(x)))2dx

+
∂

∂∆bk

∫
Ω

2(I0(x)− I1(φ(x)))(∇I1(φ(x)) ·∆bk)dx

+
∂

∂∆bk

∫
Ω

(∇I1(φ(x)) ·∆bk)2dx

∂E(bk+1)

∂∆bk
≈ 0 +

∫
Ω

2(I0(x)− I1(φ(x)))∇I1(φ(x))dx+

∫
Ω

2(∇I1(φ(x)) ·∆bk) · ∇I1(φ(x))T dx

Setting the gradient to 0, we get

0 =

∫
Ω

2(I0(x)− I1(φ(x))) · ∇I1(φ(x))dx+ 2

∫
Ω

(∇I1(φ(x)) ·∆bk) · ∇I1(φ(x))T dx

0 =

∫
Ω

(I0(x)− I1(φ(x))) · ∇I1(φ(x))dx+ ∆bk

∫
Ω

∇I1(φ(x)) · ∇I1(φ(x))T dx

∆bk =

(∫
Ω

∇I1(φ(x))∇I1(φ(x))T dx

)−1 ∫
Ω

(I0(x)− I1(φ(x)))∇I1(φ(x))dx

In a more general case, we consider φ(x) = Ax+ b, and list all these parameters in a single vector

a =
(
A11 A12 A13 A21 · · · A32 A33 b1 b2 b3

)T
Still letting ak+1 = ak + ∆ak, we can find that

∆ak =

(∫
Ω

∇aI1(φa(x))∇aI1(φa(x))T dx

)−1 ∫
Ω

(I0(x)− I1(φa(x)))∇aI1(φa(x))dx

We then define the x = (x1, x2, x3)T in another form of

X =


x1 x2 x3 0 0 0 0 0 0 1 0 0

0 0 0 x1 x2 x3 0 0 0 0 1 0

0 0 0 0 0 0 x1 x2 x3 0 0 1


so that Ax + b = Xa. With this convention, ∇aI1(φa(x)) = (∇I1|φa(x))

TX. ∇I1(·) is calculated first, with

the result simply evaluated at φa(x). Finally, we have

∆ak =

(∫
Ω

(∇I1|φa(x))
TX(∇I1|φa(x))X

T dx

)−1 ∫
Ω

(I0(x)− I1(φa(x)))(∇I1|φa(x))
TXdx

2https://en.wikipedia.org/wiki/Quasi-Newton_method
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2.2.3 Deformable Registration

E(φ) =

∫
Ω

(I0(x)− I1(φ(x, 1)))2dx+

∫ 1

0

∫
Ω

‖Lregv(x, t)‖2dxdt

The idea is to introduce a time parameter t and define a function φ(x, t) such that φ(x, 0) = x and φ(x, 1)

is the desired deformation field that aligns I0 and I1. We construct φ as the integral of a time-varying

velocity-field

φ(x, t) = x+

∫ t

0

v(φ(x, s), s)ds

where Lreg is a suitable differential operator and v is the velocity vector field. With proper conditions on

Lreg, the algorithm produces a diffeomorphism, a differentiable with a differentiable inverse.

E(φ) =

∫
Ω

(
I0(x)− I1

(
x+

∫ 1

0

v(φ(x, s), s)ds

))2

dx+

∫ 1

0

∫
Ω

‖Lregv(x, t)‖2dxdt

We find that v must satisfy the differential equation

(I0(x)− I1(φ(x, t)))∇I1(φ(x, t)) = Lv(x, t)

where L is a differential operator proportional to L†regLreg. We choose the operator Lv = α∇2v+β∇(∇·v)+γv,

a choice motivated by the Navier-Stokes equations for compressible fluid flow with negligible inertia.
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3 LDDMM[5, 4]

3.1 Introduction

LDDMM is an elegant mathematical formulation shows that the velocity field over time generates diffeomor-

phisms for large deformation diffeomorphic image registration. This framework introduced a distance metric

on the space of diffeomorphisms between images, which gave rise to a variational principle that expresses the

optimal image registration as a geodesic flow. The advantages of having a distance metric are

1. it formulates a statistical model of the least square problem via minimization of the sum-of-squared

residual distance

2. because this distance between images encodes the information of geometric variability, a number of

theoretical methods related to LDDMM.

3.2 Problem Formulation

A image I0 is deformed by a diffeomorphism φ as I0 ◦ φ−1. Given a source image I0 and a target image I1,

we minimize the energy function

E(v) =

∫ 1

0

‖Lv(t)‖2L2dt+
1

2σ2
‖I0 ◦ φ−1 − I1‖2L2

which is consisted of a regularization term and a sum-of-squared distance function to estimate diffeomorphic

transformation. σ2 represents image noise variance. ‖ · ‖2L2 is equivalent to | · |2.

Figure 1: Deform an axial of a 3D brain MRI image by φ

3.3 Gradient Algorithm

To ensure that the solution lies in the space of diffeomorphisms, smoothness is achieved by defining the

operator L as L = −α∇2 + γI. In LDDMM, steepest gradient descent approach is used to perform the
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minimization in energy function and the velocity field at each gradient descent iteration k is updated with

vk+1(t) = vk(t)− ε∇vk(t)E(t),

where ∇vE(t) as shown below, is the gradient of the energy function

∇vE(t) = 2v(t)−K ∗
(

1

σ2
|Dφvt,1|∇J0

t (J0
t − J1

t )

)
(4)

where J0
t = I0 ◦ φt,0, J1

t = I1 ◦ φt,1, φs,t = φt ◦ φ−1
s ,K = (L†L)−1 and ∗ is the convolution.

Let the velocity v be perturbed by an ε amount along direction h. The Gateaux variation ∂hE(v) of the

energy functional is related to its Frechet derivative ∇vE by

∂hE(v) = lim
ε→0

E(v + εh)− E(v)

ε

=

∫ 1

0

〈∇vE(t), h(t)

The variation of E1(v) =
∫ 1

0
‖vt‖2V dt =

∫ 1

0
‖Lvt‖2L2dt is given by:

∂hE1(v) = 2

∫ 1

0

〈vt, ht〉V dt.

The variation of E2(v) = 1
σ2 ‖I0 ◦ φv1,0 − I1‖2L2 is

∂hE2(v) =
2

σ2
〈I0 ◦ φv1,0 − I1, DI0 ◦ φv1,0 · ∂hφv1,0〉L2

=
2

σ2

〈
I0 ◦ φv1,0 − I1, DI0 ◦ φv0,1 ·

(
−Dφv1,0

∫ 1

0

(Dφv1,t)
−1ht ◦ φv1,tdt

)〉
L2

Lemma(1)

= − 2

σ2

∫ 1

0

〈(I0 ◦ φv1,0 − I1, D(I0 ◦ φv1,0) · (Dφv1,t)−1 · ht ◦ φv1,t〉L2dt

Lemma 1. The variation of mapping φvs,t when v ∈ L2 is perturbed along h ∈ L2 is given by

∂hφ
v
s,t = lim

ε→0

φv+εh
s,t − φvs,t

ε

= Dφvs,t

∫ t

s

(Dφvs,t)
−1hu ◦ φvs,udu

∂hE2(v) = − 2

σ2

∫ 1

0

〈|Dφvt,1|(I0 ◦ φvt,0 − I1 ◦ φvt,1), D(I0 ◦ φvt,0)ht〉L2dt

= − 2

σ2

∫ 1

0

〈|Dφvt,1|(J0
t − j1

t )∇J0
t , ht〉L2dt

= −
∫ 1

0

〈
K

(
2

σ2
|Dφvt,1|(J0

t − J1
t )∇J0

t

)
, ht

〉
V

dt

where the subscript V indicates the gradient is in the space V .

Collecting terms, the gradient of the energy functional is thus

∇vEt = 2vt −K
(

2

σ2
|Dφvt,1|∇J0

t (J0
t − J1

t )

)
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The optimizing velocity field satisfies the Euler-Lagrange equation

∂hE(v̂) =

∫ 1

0

〈
2v̂t −K ·

(
2

σ2
|Dφv̂t,1|∇|J

0
t (J0

t−J
1
t )

)
, tt

〉
V

dt = 0,

since h is arbitrary in L2([0, 1], V ) we get Eq.(4).

In the numerical implementation of LDDMM, the time parameter t of the flow is discretized with a fixed

total number of time steps T , where T = 10 is selected as the default descent to terminate with a higher final

mismatch error ‖I0 ◦ φ−1 − I1‖2L2 between the registered atlas image and the target image.

The convolution operation in Eq.(4) is calculated in Fourier domain. The operator K acts as a low pass

filter at each iteration of gradient descent and the parameters α and γ controls the amount of smoothing

and the elasticity of the deformation. Selection of these parameters depends on the size of the deformation

necessary to register the features of the atlas image to the features of the target image.

4 Metric Matching

4.1 Dewitt metric and Ebin metric

Definition 2. The DeWitt metric is a one-parameter family of metrics defined on Met(Ω) as follows:

• The split metric on Met(M):

Gλg (u, v) =

∫
Ω

(
tr(g−1u0g

−1v0) + λtr(g−1u)tr(g−1v)
)
µg,

where g ∈ Met(Ω), u, v ∈ TgMet(Ω), λ > 0, u0 = u − 1
2 tr(g−1u)g, v0 = v − 1

2 tr(g−1v)g are called the

traceless part of u, v and µg is the volume form on Ω induced by g.

• The split metric on Sym+(M):

〈U, V 〉A = tr(A−1U0A
−1V0)

√
detA+ λtr(A−1U)tr(A−1V )

√
detA,

where A ∈ Sym+(n), U, V ∈ TASym+(n), and U0 = U − 1
n tr(A−1U)A, V0 = V − 1

n tr(A−1V )A are called

the traceless part of U, V and
√

detA is the volume form induced by A.

When λ = 1
n , this metric gives exactly the induced Ebin metric on Sym+(n), which means Ebin metric

is a special case of DeWitt metric.

Definition 3. The Ebin metric is the Riemannian metric on Sym+(n) given by

〈U, V 〉A = tr(A−1UA−1V )
√

det(A),

where A ∈ Sym+(n) and U, V ∈ TASym+(n) = Sym+(n).
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Proof.

〈U, V 〉A = tr(A−1U0A
−1V0)

√
detA+

1

n
tr(A−1U)tr(A−1V )

√
detA

= tr

(
A−1

(
U − 1

n
tr(A−1U)A

)
A−1

(
V − 1

n
tr(A−1V )A

))√
detA+

1

n
tr(A−1U)tr(A−1V )

√
detA

= tr

((
A−1U − 1

n
tr(A−1U)I

)(
A−1V − 1

n
tr(A−1V )I

))√
detA+

1

n
tr(A−1U)tr(A−1V )

√
detA

=

[
tr(A−1UA−1V )− 1

n
tr(A−1U)tr(A−1V )− 1

n
tr(A−1V )tr(A−1U) +

1

n2
tr(A−1U)tr(A−1V )n

]√
detA

+
1

n
tr(A−1U)tr(A−1V )

√
detA

=

[
tr(A−1UA−1V )− 1

n
tr(A−1U)tr(A−1V )

]√
detA+

1

n
tr(A−1U)tr(A−1V )

√
detA

= tr(A−1UA−1V )
√

detA

4.2 Inexact density matching

For inexact metric matching, given two Riemannian metrics g0 and g1 in Met(Ω), we are aiming to find the

optimal diffeomorphism φ ∈ Diff(Ω) that minimizes the following energy functional w.r.t. the information

metric GIφ(U,U) =
∫

Ω
〈−∆u, u〉:

E(φ) = σdist2(φ∗f0, f1) + dist2(φ∗g0, g1)

where σ > 0 is a constant, f0, f1 are called the regularization parameters, dist is the distance function for

the DeWitt metric on the space of metrics Met(Ω) and φ∗ denotes the push-forward group action given by

φ∗g0 = (φ−1)∗g0 = (Dφ−1)T (g0 ◦ φ−1)(Dφ−1)

The gradient of E at φ transported to the identity with respect to the information metric GIφ(U,U) =∫
Ω
〈−∆u, u〉 is given as follows:

v = −∆−1(∇E(φ) ◦ φ−1)

where ∇E(φ) ◦φ−1 is the usual gradient of E at φ transported to the identity w.r.t. the standard L2 metric.

Remark 2. We aim to use the geodesic distance of the Ebin metric as a similarity measure for diffeomorphic

Riemannian metric registration. Therefore, we fix a background metric ḡ with corresponding volume density

µ̄ on our parameter domain Ω. Using ḡ, we can express any Riemannian metric g on Ω as a field of

matrices A(x) and we can express both the Ebin metric and the geodesic distance of the Ebin metric using

this representation.

Note that these terms are in fact independent of the choice of background metric, due to the invariance

of the Ebin metric.
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For A,B ∈ Sym+(n), the space of symmetric, positive definite, n by n matrices, the Riemannian distance

w.r.t. the Ebin metric is given by

distE(A,B) =

√∫
Ω

d(A(x), B(x))2µ̄(x)

where d denotes the geodesic distance on the space of symmetric matrices defined below:

d(A,B)2 =
16

n

(√
det(A)− 2 4

√
det(A) 4

√
det(B) cos θ +

√
det(B)

)
,

where θ = min

{
π,

√
n tr(K2

0 )

4

}
,K = log(A−1B) and K0 = K − 1

n tr(K)I .

Remark 3. Below is the reason why K0 = K − 1
n tr(K)I is call traceless part of K:

K0 = K − 1

n
tr(K)I

tr(K0) = tr(K − 1

n
tr(K)I)

tr(K0) = tr(K)− tr(
1

n
tr(K)I)

tr(K0) = tr(K)− 1

n
tr(K) tr(I) . I is a n× n identity matrix

tr(K0) = tr(K)− 1

n
tr(K)n

tr(K0) = tr(K)− tr(K)

tr(K0) = 0

Remark 4. Given K0 = K − 1
n tr(K)I,K = log (A−1B), tr(K2

0 ) is given by

K2
0 = K2 − 2

n
tr(K)K +

1

n2
tr2(K)I

tr(K2
0 ) = tr(K2)− 2

n
tr(K)tr(K) +

1

n2
tr2(K)tr(I)

tr(K2
0 ) = tr(K2)− 2

n
tr(K)2 +

1

n2
tr2(K)n

tr(K2
0 ) = tr(K2)− 1

n
tr2(K)

tr(K2
0 ) = tr(K2)− 1

n
log2(det(A−1B)) . tr(log(K)) = log(det(K))[9]

Remark 5. The energy function is given by

E(φ) = dist2
E(φ∗A,B)

By introducing some additional notation, we can write d(A,B)2 as

d(A,B)2 =
16

n
(α2 − 2αβ cos(θ) + β2),

where α = 4
√

det(A), β = 4
√

det(B), θ = min

{
π,

√
n tr(K2

0 )

4

}
.
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In order to perform this minimization numerically, we need to calculate the gradient of this functional at

φ = id, which is given by

δ
(
d(A,B)2

)
(δA) =

16

n
(2αδ(α(A))(δA)− 2δ(α(A))(δA)β cos(θ) + 2αβ sin(θ)δ(θ(A))(δA)),

where δ is the differential operator. The δ
(
d(A,B)2

)
(δA) above can give us the directional derivative in the

direction of δA.

Replacing A with φ∗A, we can have

δ
(
d(φ∗A,B)2

)
(δφ∗A) =

16

n
(2αδ(α(φ∗A))(δφ∗A)−2δ(α(φ∗A))(δφ∗A)β cos(θ)+2αβ sin(θ)δ(θ(φ∗A))(δφ∗A)).

(5)

As for δ(α(A))(δA), it’s given by

δ(α(A))(δA) = δ(det(A)
1
4 )(δA)

=
1

4
det(A)−

3
4 · δ(det(A))(δA)

=
1

4
det(A)−

3
4 · tr(adj(A))(δA) . Jacobi’s formula

=
1

4
det(A)−

3
4 · det(A) · tr(A−1)(δA)

=
1

4
det(A)

1
4 · tr(A−1)(δA)

Replacing A with φ∗A, we can have

δ(α(φ∗A))(δφ∗A) =
1

4
det(φ∗A)

1
4 · tr((φ∗A)−1)(δφ∗A). (6)

As for δφ∗A, it’s given by

δ(φ∗A)(δφ)

∣∣∣∣
φ=id

= LXA =

LXA11 LXA12

LXA21 LXA22

 . (7)

More specifically,

LXAij = Xk∂k(Aij) + ∂i(X
j)Akj + ∂j(X

i)Aik

where X = δφ is induced by φ.

For the 2D case, we can have the these expressions:

LXA11 = X1∂1(A11) +X2∂2(A11) + ∂1(X1)A11 + ∂1(X1)A21 + ∂1(X1)A11 + ∂1(X1)A12

LXA12 = X1∂1(A12) +X2∂2(A12) + ∂1(X2)A12 + ∂1(X2)A22 + ∂2(X1)A11 + ∂2(X1)A12

LXA21 = X1∂1(A21) +X2∂2(A21) + ∂2(X1)A11 + ∂2(X1)A21 + ∂1(X2)A21 + ∂1(X2)A22

LXA22 = X1∂1(A22) +X2∂2(A22) + ∂2(X2)A12 + ∂2(X2)A22 + ∂2(X2)A21 + ∂2(X2)A22

By substituting Eq.(6,7) into Eq.(5), we can have the final expression of δ
(
d(φ∗A,B)2

)
δ(φ∗A).
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δ(θ(A))(δA) =

d

(√
n tr(K2

0 )

4

)
d(n tr(K2

0 ))
· d(n tr(K2

0 ))

d(tr(K2
0 ))

· δ(tr(K2
0 ))(δA)

=
1

4
· 1

2
(n tr(K2

0 ))−
1
2 · n · δ(tr(K2

0 ))(δA)

=

√
n

8
tr−

1
2 (K2

0 ) · δ(tr(K2
0 ))(δA)

δ(tr(K2
0 ))(δA) = δ

(
tr(K2)− 1

n
log2(det(A−1B))

)
(δA)

= δ

(
tr(log2(A−1B))− 1

n
log2(det(A−1B))

)
(δA)

= δ(tr(log2(A−1B)))(δA)− 1

n
δ
(
log2(det(A−1B))

)
(δA)

δ(tr(log2(A−1B)))(δA) =
d tr(log2(A−1B))

d log2(A−1B)
· d log2(A−1B)

d log(A−1B)
· d log(A−1B)

d(A−1B)
· d(A−1B)

dA−1
· δ(A−1)(δA)

= I · 2 log(A−1B) · ·B · (−A−1A−1)(δA)

δ
(
log2(det(A−1B))

)
(δA) =

d(log2(det(A−1B))

d(log(det(A−1B))
· d(log(det(A−1B))

ddet(A−1B)
· ddet(A−1B)

dA−1B
· dA

−1B

dA−1
· δ(A−1)(δA)

= 2 log(det(A−1B)) · 1

det(A−1B)
· det(A−1B)((A−1B)−1)T ·B · (−A−1A−1)(δA)

= 2 log(det(A−1B)) · ((A−1B)−1)T ·B · (−A−1A−1)(δA)

= 2 log(det(A−1B)) · (B−1A)T ·B · (−A−1A−1)(δA)

= 2 log(det(A−1B)) ·AT (B−1)T ·B · (−A−1A−1)(δA)

= 2 log(det(A−1B)) ·AT (BT )−1 ·B · (−A−1A−1)(δA)

= 2 log(det(A−1B)) ·AB−1 ·B · (−A−1A−1)(δA)

= −2 log(det(A−1B)) ·A−1(δA)

log(A) =

∞∑
k=1

(−1)k+1 (A− I)k

k

= (A− I)− (A− I)2

2
+

(A− I)3

3
− · · ·

d log(A)

dA
=
d(A− I)

dA
− 1

2
· d(A− I)2

d(A− I)
· d(A− I)

dA
+

1

3
· d(A− I)3

d(A− I)
· d(A− I)

dA
− · · ·

= I − 1

2
· 2(A− I) · I +

1

3
· 3(A− I) · I − · · ·

=

∞∑
k=0

(−1)k(A− I)k

13



5 Appendix

5.1 Geodesic Shooting

Given an initial velocity v0 ∈ V , the geodesic path t→ φt ∈ Diff∞(Ω) under the right-invariant Riemannian

metric is uniquely determined by the Euler-Poincare equations(EPDiff)

∂v

∂t
= −ad†vv = −Kad∗vm = −K[(Dv)Tm+Dmv +mdivv], (8)

where D denotes the Jacobian matrix, and the operator ad∗ is the dual of the negative Lie bracket of vector

fields,

advw = −[v, w] = Dvw −Dwv.

By integrating equation (4) forward in time, we generate a time-varying velocity vt : [0, 1] → V , which

itself is subsequently integrated in time by rule dφ(x, t)dt = vt ◦φt(x) to arrive at the geodesic path, φ(x, t) ∈

Diffs(Ω).
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