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1 Mathematical Background

1.1 Riemannian Manifold

Definition 1. A Riemannian manifold is a differentiable manifold equipped with a Riemannian metric.
In a differentiable manifold, each point has a neighborhood that is equivalent to the Euclidean space. In
differential geometry, for each point p on a manifold M, there is a vector space attached to each point. The

vector space is called tangent space and is usually denoted as T, M.

Definition 2. A Riemannian metric on a differential manifold M is a smooth function that associates to

each point p of M an inner product (-,-) on the tangent space T, M.

The Riemannian metric can be equated with a smoothly varying positive-definite symmetric matrix
g, called the metric tensor, defined at each point. For two vectors v,w € T,M, given local coordinates

(x',22,--- | 2™) in a neighborhood of p, the entry in g (n x n matrix) can be expressed like below

gij = (E;, Ej),

where F; = % are the coordinate basis vectors at p.
With this definition, we can compute the inner product (v,w) as vTgw. Also, for a vector v, we can
compute the length of the vector as (v, v>%7 which is the L? norm.

Sometimes, people utilize the inverse of the diffusion tensor, D!, to define a local cost function as
(v,w) = vT D™ w,

where v,w € T, M.

In this case, since the inverse of the diffusion tensor are positive-definite symmetric and they are also
Riemannian metric, a DTT is actually wrapped into a Riemannian manifold.

The inverse tensor cost function makes sense, as shown in Figure 1. As we move in the major axis of the

diffusion tensor, the time cost is low; as we move in the minor axis of the diffusion tensor, the cost is high.



Figure 1: Inverse diffusion tensor as Riemannian metric

To connect nearby tangent spaces (see Figure 2) on a Riemannian manifold, we need the Riemannian

connection VxY, which is the derivative of a vector field Y in the direction of a vector field X. The

Riemannian connection is given by

VxY = f: > d ZZI: +> Thad'V | B
k 1,3
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where X =Y a'E; and Y = > b Ej, o and b’ are smooth coefficient functions.

Figure 2: Tangent Space

1.2 Geodesic on Riemannian Manifold

On a Riemannian manifold M, the geodesic between two points p,q € M is defined by the minimization of
the length functional

u(y) = / (), A1)t (1)

where v : [0,1] — M is a curve with fixed endpoints v(0) = p,¥(1) = ¢. The inner product between two

tangent vectors v, w € T, M is given by (v,w) = v¥g(z)w, where g(x) is the Riemannian metric at point .



Obviously, a critical curve for Eq.(1) is also a critical curve for

1
po) = [ G sar )
which is easier to work on. The only difference is that the geodesic that minimizes E(vy) has a constant speed.
We can use the Euler-Lagrange equation to find critical point of Eq.(2), which is in form of F(f) =
f: L(t, f(t), f'(t))dt. So by computing the Euler-Lagrange equation of Eq.(2), a critical curve for E satisfies

the following geodesic equation o
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which is equivalent to
Vv =0,
where V is the Riemannian connection. V¥ measures how the vector field X bends along its integral curves.

In addition, it also means that tangent vectors 4 remain parallel if they are transported along the geodesic.

1.3 Euler Lagrange Deviation of Energy Functiona]ﬂ

The Euler-Lagrange equation is defined as
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where F = 1d%g;;47 and L(z) = f:f F(t,z,3)dt.
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Now we define g"7 = (g;x) ™1, T, = g™ T, then we have
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Namely the geodesic equation.

1.4 Euler Lagrange Deviation of Arc Length Functional

The Euler-Lagrange equation is defined as
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where F = (i'g;;i7)2 and L(z) = fttlz F(t,z,2)dt.
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2 Finding the Adaptive Riemannian Metrics

2.1 Introduction

Previous approaches have used the inverse diffusion tensor field as a Riemannian metric and constructed

white matter tracts as geodesics on the resulting manifold. This makes intuitive sense: traveling along the



large axis of the diffusion tensor results in shorter distances, while traveling in the direction of the small axes
results in longer distances.

These geodesics have the desirable property that they tend to follow the main eigenvectors of the tensors
yet still have the flexibility to deviate from these directions when it results in lower costs. While this makes
such methods more robust to noise, it also has the serious drawback that geodesics tend to deviate from the
major eigenvectors in high-curvature areas in order to achieve the shortest path. That is, in high-curvature
regions, the incremental cost of following the tensor field is overcome by the cost associated with the longer
(more curved) path.

Our proposed solution to this problem is to develop a new Riemannian metric that is a modulated version
of the inverse diffusion tensor field. This metric is able to adaptively correct the geometry of geodesic curves

in high-curvature regions so that they more closely follow the principal eigenvectors of the tensors.

2.2 Metric Modulating Function

On a Riemannian manifold, M , the geodesic between two points p,q € M is defined by the minimization of

the energy functional .
B() = [ @70
0

where 7 : [0,1] — M is a curve with fixed endpoints v(0) = p,y(1) = ¢,T =% = d~/dt.

Ea(7) = /0 1 *OONT (1), T(t))dt

We call the function e® the metric modulating function because it scales the Riemannian metric at each
point. The exponentiation of « is to ensure that this scaling factor is positive and to make the solution to the
variational problem come out simpler in the end. We choose to modify the metric in this fashion for three

reasons.

1. The shape of the diffusion tensor provides information about the relative preference in diffusion direc-

tions, and a scaling operation allows us to keep this information intact.

2. The modification above is sufficient to correct for the effects of curvature. In other words, if the tensors
are following a curved path, but not changing shape, the metric modulating function can be chosen in

such a way that the resulting geodesics perfectly follow the principal eigenvector.

3. On a Riemannian manifold M, if there exist two Riemannian metrics g1, go satisfying g1 = fgo for
some positive function f on M, we call these two metrics conformally equivalent and the function f a

conformal factor.

Vx X measures how the vector field X bends along its integral curves. Let W be a vector field

defined along the curve v that represents an arbitrary perturbation of 7, keeping the endpoints fixed, i.e.,



W(0) = W(1) = 0. Notice that W and T are partial derivatives of the variation of v, and therefore they

commute, i.e., ViyT = VpW.

1
Vi Ba(y) = Vv / ¢ (T, Tt
0
1
= / Ve (T, T)dt
0
1
= / (Ve - (T,T) 4+ e*Vw (T, T))dt > Product Rule
0
1
= / (W, grad e®y - (T, T) + e*Vw (T, T)dt
0
1
= / (W, grad e®) - | T||* + 2e*(Vw T, T)dt
0
1
= [ (Wegade®) |77 + 2V T Ty
0
1
= / (W, grad e®) - | T||*> + 2(V W, e*T)dt > Commutative Property
0
1
:/ (W, e®||T|1? grad ) + 2(Vo W, e*T)dt
0
1
— [ W.enI TP grad ) — 200, V(e D))
0
1
= / (W, e||T||? grad o — 2TV pe® — 2V T)dt
0
1
= / (W, e||T||? grad o — 2T(T, grad e®) — 2e*VT)dt
0

1
:/ (W, e||T||? grad o — 2Te* (T, grad o) — 2e*V7T)dt
0

Setting this last line to zero and dividing through by e® results in the geodesic equation below. If we
assume, without loss of generality, that geodesics have unit-speed parameterization, i.e., | T|| = 1, then V1T

will be normal to T'. Taking inner product on both side we have:
e“||T||? grad o = 2Te*(T, grad ) + 2e*V T
|T|? grad o = 2T(T, grad o) + 2V 7T
(|IT|? grad o, T) = (2T(T, grad a), T) + (2V 7T, T)
(grad o, T) = 2(T, grad o) > |7 =1,(VsT,T) =0

(grad o, T) =0

grada =2V T

The tangent vector T follow the unit principal eigenvector directions, V. Satisfying this property directly

would result in the equation grad o = 2V V', which we would need to solve for a.



2.3 Implementation

We find that the computation of div(Vy V) is sensitive to noise. So instead of using these differences, we
use the noise-robust differentiator [91] as our finite-difference approximation of the first derivative, which
suppresses the high frequencies of the noise signal, is precise on low frequencies, and is particularly beneficial
for noisy data.

After the discretization of the Poisson equation with the Neumann boundary condition, we will get a
sparse linear system Ax = b to solve. The Laplace-Beltrami operator A on the left-hand side is asymmetric

—! and the computation of Ve in different neighborhoods, so we

due to the asymmetric interaction between g
have to use other solvers that can be applied to asymmetric linear systems, such as the generalized minimal
residual method (GMRES)[I] 2] and biconjugate gradient method (BICG).

However, the amount of memory usage and computing time depend on the number of iterations, and we

can reduce the number of iterations by using a good initialization of «.
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Figure 3: Tangent vectors of the geodesics (blue) of the generated noise-free data (left column) and noisy
data at a SNR of 15 (right column) under the inverse-tensor metric without modulation (top row), sharpened
tensor metric (middle row), and with our modulation (bottom row). The red vectors are the principal
eigenvectors of the diffusion tensors. We subsample the vector field by a factor of 4 both horizontally and

vertically in order to visualize it.



3 2D Laplace-Beltrami Operator
A(u) = V- (gVu) is the Laplace-Beltrami operator on M, defined as
1 0 . Ou
T ij %
) \/m; o (\/9|zj:9 Zw) : (3)
where z° is the coordinate basis.

3.1 Formula Derivation

-1

g is the Riemannian metric, where ¢g*/ denotes the entries of g, gi; denotes the entries of g~*, namely inverse

metric.
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For discrete function, we can just represent the partial differential terms in Eq.(4) by approximation, as

shown in Eq.(5) and Eq.(6).

00~ gt 4 1at) - " @' — 1Y) @
589;12 ~ %[gm(xl +1,2%) — g"23(z* — 1,2%)]
aai; ~ %[912(551, 2*+1) - gzt 2% - 1))
%f; ~ %[922(:51, 22 +1) — g%(z!, 2% — 1))

aa{;?l ~ %WWW +1,2%) = Vgl(a' = 1,2%)]
Nl VI 2 1) = Vgl a? - 1)

2

ou 1
Pt i[u(xl +1,2%) —u(z! —1,27%)) (8)
ou 1
@%i[u(xl,aﬂ—l—l)—u(xl,ﬁ—l)]
Ou 1 2 1 2 1.2
(1)’ ~u(z' + 1L,z%) +ul(z —1,2%) — 2u(z, z°)
u 1,2 1,2 1,2
FEE ~ulx o+ 1) +u(z,z® —1) — 2u(a’, z)
0*u 1 1 2 1 2 1 2 1 2
W%§[u(x +Lz+ ) +ulz —1,2°=1) —u(z" + 1,2° = 1) —u(z’ —1,2° + 1)]

Therefore, the value at (x',2?) after the operation can be represent as two vectors’ inner product.
A(u) =< &1 > (9)

And € and @ can be written as Eq.(8), after simplification.
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Eq.(9) shows € ’s every components in the form of g:
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Finally, with € in the form of g, we’ll obtain a more specific expression of A(u) = V - (gVu).

(11)

(12)

4 Calculating Scaling Field for Adaptive Riemannian Metrics[3]

4.1 Using Inverse Tensor Field as the Metric

We want to find a metric § = €2®g on M such that
VyV =0
VxY is the affine connection

S iﬁbk k _iri |
VxY =) a@JrZrijabf E,
k 7 1,7
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where n is the dimension of the vector field X,Y and E, = %k are the basis vectors. So basically, VxY is
a vector field. ?71:‘@ are the affine connection and the Christoffel symbols with respect to g. To be more

specifical, we can have the T expressed as below

f‘fj = %gkl (0igi; + 0;9i — O1Gi;) (15)
= %e‘mg“(@(emgu) +0;(e**git) — Ai(e**9i5))
- %e_hgkl(gu@iez" + €2 0,g15 + gud;ie** + €29 gi — gijOie” — **Digij)
= %e‘mg’“l(gu@ie?"‘ + gu0;€** — gi;0,€** + 2% 0ig15 + €209 — €**1g:;)

1
9" gi;0ia + gud;a — gi;0a) + 59“ [0ig1; + 059u — O194j]

Since g is the Euclidean metric, we can have the final expression

= 5{“810 + 5f3ja — gijgklala + Ffj
Substituting Eq.(13) into Eq.(11), we then obtain
v 008 + (07 dia + 6F 00 — gijg™ Ora + Ffj)vivj =0 (16)
which can be simplified further as

VvV + 2VV(OZ)V —Va=0 (17)
2<Vyu(@)V,V >, —<Va,V>,=0
Va =VyV

Let X =Y =V, expand the VyV expression completely, we can have

[ 1401 29 1 1 ,1,1 1,1,2 1,21 1,22
vioivt +ve0vt + I'ijvtot + Diovtv® + 5,00t + I'sov?v

R 11 12 21 22 (18)
v101v? + v2020? + T2 it + Tvte? + T3, 020! + T2,0%0?

1o vl + 020! + ThHote! + 2T vte? + Ti,0?0?

v101v? + 02002 + T3 vto! + 2T vte? + T3,02%0?

11



To be more specific, the Christoffel symbol I‘fj in 2D space would be
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where g is the metric, and the Christoffel symbols are only related to the metric.
While, the relationship between g with subscript and superscript is
nooae ]
gun g12 | | g g o
o 21 22 =9 (20)

921  g22 g

If the original g is an Euclidean metric, then all the Christoffel symbols above will equal to 0.

ot + v20!
VvV = ' ? (21)
v1010v? 4 v20,02

However, the metric we use here is not Euclidean metric, so the V V is still like Eq.(16).

The « satisfies the equation that Aa = div(Vy V) is the scaling field we want.

4.2 Conformal Simple Metric

If we want to find conformally flat metric

12



We can yield the respective Christoffel symbols as below

_ 1 B _ _
Ffj = igkl (0ig1j + 059 — 1Gij) 2
1
— §e—2a5kz (81;0:€%* + €**0i01; + 610;€>* + €206 — 6;;01€>* — €**0,5;)

1
= 56_2a6kl (5lj8i€2a + 6Z-l8j62°‘ — 5ij(“)l<32"‘)
= oM (5lj6‘ia + 51‘13]‘0[ — 51‘]‘8101)
= 6]’“8104 + 5583‘@ — 5@'8}4)&.
Further more, we can have the simplified expressions of the Christoffel symbols:
f%l = 6104, fiQ = f‘%l = 820&, f%Q = 781@ (24)
f%l = 782057 f%2 = f‘gl = 81a, l:ng = 820(.
What we want is in the metric g, every integral curve of V' is a geodesic, which is equivalent to say that
VyV =0.

VoV vio1vt + 0200t + THvto! + Thvle? + Tiv?et + Tl v?e? 0 (25)
V = _ _ _ _ =
v101v? + v20pv% + T3 vlo! + Tv'v? 4+ T 020! + T3,0%0? 0

Substituting the given Christoffel symbols in Eq.(22) into Eq.(24), we can yield
(vlvl - vzvz) A+ 20 2050 + v vt + 120t =0 (26)
201020 + (U21)2 — vlvl) Ay + v 010% + 120502 = 0

Finally, we get

O« -1 vlol — 22 20102 Ovt Oyl vl
= 1,1 2,212
Dacr (vio! +v2?) 20192 202 — plol! 002 Oyv? 02
-1 vl —o? vl 0? vt Oyt vl (27)
= i1 2,212
(vlv! +v20?) 02 ol v2 —pl 010 Oyv? v?

The div operator used below is the Riemannian divergence, and the divergence of V on M is defined in

coordinates as

(V) = = 3 Gl (29)

where a’ is the corresponding component of vector field V. The metric g used is also the original Euclidean

metric.

4.3 Geodesics and Christoffel Symbol

In curved space, a straight path has zero tangential acceleration when we travel along it at constant speed.

To compute geodesic curves, we need to find curves where the acceleration vector is normal to the space. In

13



this section, all the computations are conducted in 2D situation.

: dR OR du  OR dv
Velocity Vector: F ou dt + 90 dt (29)

@R d (0R du OR dv
Accelerati : =
cceleration Vector e ( B @ + 5 dt) (30)

CR_Pu OR v OR (du\® PR (d\® PR du dv O°R - dv du O°R (31)
dt ) ou? dt ov?  dt dt Oudv dt dt Oudv

= .4 .=
dt? dt? Ou  dt? Ov
By using Einstein Notation, and making 2 = u, 22 = v, we can denote the acceleration vector like

PR d%x’ R da' da?  O’R

el g Rk el el 39
dt? dt?2  Oxt + dt dt  Oxidxd (32)
Assuming that 57 B;j is consist of three components, so we can express it like
R L OR ., OR .
dioas gt T g Tl (33)
where the Christoffel symbol I‘”, gives us the tangential component of ag’?ai = and the second fundamental
form L;j, gives us the normal components of 57 é‘; .
Also by using Einstein Notation, we can have a more concise form of 57 0;] .
R . OR .
Orioxi Y oxk + Ligtt (34)

As 71 is perpendicular to the tangent vectors, therefore, by multiplying ai;’ on both side of Eq.(33), we
can yield that

027027 Dl od T Liigek gl (35)

R  OR . OR \ 0R _, OR OR
(F Lijn) ozl 7 oxk  Oxl

Since intrinsic metric tensor is

oR  OR  OR  0R

9z 9zl Bz 0xZ | _ | 911 912 (36)
OR  oR 9R  oR | ’
9z2 " 9z 922 dx? 921 922
we can rewrite Eq.(34) by substituting 8871?0 . 3—5 with gg;. Then we get
R OR
0xi0xi Ozl F”gkl (37)

The summation of metric tensor components with the inverse metric tensor components gives us the

Kronecker delta
gk - g™ = o (38)
Therefore, with Kronecker delta cancellation rule, we can have

0?R  OR
ozidri Oxl

m

=Tfgmg™ =T}00 = (39)

We get the final expression of Christoffel symbol like below

ok _ 0*R_ OR

W 9xidyd  Oxl (40)
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Likewise, by multiplying 7 at both side of Eq.(33), we can yield the final expression of second fundamental

form
PR
Lij = dzidzi (41)
Finally, we can have acceleration vector like this
2R (d2zF L de'  da?\ OR N da'  da? (42)
— .. D — —_— Z - — e —— . n
dt2 dt? Yodt  dt ) Oxk Joodt dt
tangential part normal part
To make the acceleration vector normal to the surface, we need to make
d?xk dz’  da?
43
a Vi @ ' (43)

which is namely Geodesic Equation.

4.4 Geodesic Shooting

4.4.1 Hamilton

Let H(v,p) = 2p(t)Tg~*(v(t))p(t) be our Hamiltonian. Then the geodesic equation is equivalent to the

cogeodesic flow on T x M, given by:

,Y(t) — %7]]—;[ — 85 'p(f) ga_p (’Y(t»p(t) _ gil("y(t))p(t)
1T g1
o) = 90 = 22 P9 OO _ L7957 (et

|
—_
—~
2
—~
~+
~—
~—
i}
—~
~
~—

e+ A1) = (1) + Dt 3(8) = (1) + At
()" Vg (v (t)p(t)
p)TVg T (v (t+ AL))p(t)

)TV (v (t) +y(t + At))/2)p(t)

i-1: p(t + At) = p(t) + At - p(t) = p(t) — At -
i p(t+ At) = p(t) + At - p(t) = p(t) — At -

mean: p(t+ At) = p(t) + At - p(t) = p(t) — At -

N~ NN~ g

4.4.2 Euler Method

~(1), v(t), 'y(t) are the position vector, velocity vector and acceleration vector, respectively, where

i) = F(y(0),7(8)) (44)
o (t) ’n(t)
() = 18 () = 3:() () = BZ“ (45)
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Explicitly, the %(¢)’s corresponding components can be expressed by Eq.(47), where the u,v,w € {1,2},

representing the two base directions in 2D space.

w Yu(t) dyo(t)
STLLT T ()

More specifically, the acceleration vector’s two components (distinguished by subscript) can be written in

matrix form, as Eq.(48) and Eq.(49) show.

ﬁ/l(t) _ [ %(t) %(t) :| F11 F12 "Yl(t) (47)

|3 T || e

rf Th Y1(¢)
REERY? Y2(t)

The update rules are given below.

Y(t+ At) = ~(t) + At - (1) (49)
F(t+ At) = (t) + At - 5(1)

The algorithm below illustrates the process more specifically.

Algorithm 1 Geodesic Shooting
Require: Vector field v : M — R"; Christoffel symbol Ffj : M — R based on metric g : M — R™*";

starting point y ( ) € M; proper step size €, 1.

¥ (%) =V ('Y (%)) > Linearly interpolate v

A (ER) 4 (FR) + o - AR () > Linearly interpolate I'};
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Algorithm 2 Integral Curve Shooting

Require: Vector field v : M — R"™; starting point ~y (%) € M; proper step size e.
Y (2)=v(v(2)) > Linearly interpolate v
fort=1:T do
7(7) =7 (F) +e1 ()
(7)) =v(r (1)
end for

return vy

4.4.3 RK4

For 2D cases, &, f(Z) € R™, where & indicates the location and f(Z) is the derivative at location Z, we can

have
o = f(Z(t))
. B At -
ko —f(x(t)+7~k1)
N . At -
kig = f(l‘(t) + 7 . k?g)
k= f(E@(t) + At - k)
) Ut
Zt+1)=2() + f(kl + 2ko + 2k3 + kyq)
[ ]
Yo =4t —1)
Y1 =t — 1) + At - A
Yer = y(t — 1) + At - G
[ ]
ke = (el [Tra] [Vi1]
. . At
Yk2 Z’Y(f—1)+7'7k2
t .
V2 :V(f—1)+7'%2
[ )

ks = [Yr2][Cre][Vi2]

) ) t .
Wk:s:’)’(t—l)-#?'%g

At

%3:7@—1)4'7'%3
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Yra = [Vr3][Tra] Vi3]
Yra =Yt — 1) + At Ypa

Yea =Yt — 1) + At - Ypq

Algorithm 3 Geodesic Integrating

~v(0) «+ coordinate of starting point

70

+ vector at v(0)

H(0) « (4(0)*

for t = 1 : MaxIter do

)
I'(0) + Christoffel symbols matrix at (0)
) < -T(0) - 4(0)

Fe1 (= 1)
Yk Yt —1) + At - i
Vi1 = Yt = 1) + At Fra
Ak = (Yk1)" - Th1 - A
Y2 < (= 1) + At Ao
e < Yt —1) + At - Yi2
A3 < (e2)” - Thz - Yio
Y < (= 1) + At Fys
i3 < Yt —1) + At - i3
Aka < (Ye3)” - Ths - Vi3
Fra = (= 1) + At - pq
Yra = Y — 1) + At pa
() =4t — 1)+ F - (G + 29k2 + 29k3 + Fra)
1)

( &
V() =t = 1) + 2L - (e + 292 + 293 + Tra)

end for

40 =3 - 1) + 5

A1) = (- 1)+

18
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4.4.4 Proof

ViV, V:R2Z 3 R%vy,4:R—=R%EDV,TV:R? - R?*2; 0,6 : R2 5 R

T 1
VVVOE) = DY) Vi) + | |00 T D)
VO T20(0) - V)
. T 711 >
vyt Vi) + | OO OO0 ) v @) + o)
ST T2(0) - 1)
vt ov? [Flﬁ ISP
where DV = "= -0
nV: V2 I, T,

V(y(t)) = #(t) holds only when t = 0.
Geodesic shooting
()T T A((1) ]
A ()T -T2 A1)
[ veeyr v
| VO T2 V()
At + At) = A(t) + At - H(t)
v(t + At + At)

t+ At) + At - 5(t + At)

(
(t+ At) + At - (3(t) + At - 5(t))

(t) + At - 4(t) + At - 5(t) + At* - 5(1)
(t) +2- At -5(t) + At? - 5(t)

Y
Y
v
Y

= () +2- At - V(y(t)) + At - (DV(4(1) - V(4(t)) = s(v()V (v(1)) — e(+(1)))

Integral curve shooting

Y(t+ At + At) = y(t + At) + At - V(y(t + At))

)
Yt + At) + At - V(y(t) + At - V(4(t)))
Yt + AL + At - (V((1) + (AL-V(1(D))) - t))

(

(

( DV (y(
Yt + At + At - (V(y(1) + At - DV(y(2) - V(7(1)))

(

(

(

Vi(y

V() +AL-A(E) + AL (V(y(1) + At - DV(y(t) - V(v(1)))
V() + AL V(1) + At - (V(y(1) + At - DV (y(t)) - V(v(1)))
Y(t) +2- At V() + At? - DV (y(1)) - V(4(1)))

as
flz+ Az) = f(z) + Az - Df,, when Az — 0.

Hence, 0 = 07
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5 Deviation of o

flo) = (Vv —ov)?
f(o) = (VIv)TVIv —2(VIiv)Tov + o?vTv

fl(o) = =2(VIv)Tv + 20vTv

_ (Viv)'v
vy
ve Y ey, 1 gy.ve L
[vllg 1vllg vllg
Viv 1
RETRASAAC
g
Viv 1 _3
= ™. +v- <—2) (v, V)g 2 - VI(v,V)
9
Viv 1 _3
= 2Y Ve (Vv £ (v VE),)
g
_Viv -
- ||V||g -V <V7v>9 ’ <VVV,V>g
=0
Viv -3 9
m =V (v,v)? - (V{v,v)g

Viv=v- (v,v>g_1 A(Viv,v),

(V{v,v)g .

vl

Viv =

v

v

6 Loss Function

f(x) = (Az —b)?
= (Az — b)T(Az —b)
= (2T AT — b7 (Az — b)
= 2T AT Ax — b7 Az — 2T AT+ b7)

Vi(z) = AT Az — ATh
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7 Parallel transport of orientation distribution function (ODF)

We formulate the ODF in form of spherical harmonics as

o l
F(0,6)=> > "V"(0,9) (50)
=0 m=—1
where
Y6, 6) = ¢ ) A cos(0)e ™ G1)

We define the parallel transport of the ODF as follow:
Foin(vi+ Vivy) = Fi(vy) (52)

where v; + V{ v; is the parallel transported v; along direction h w.r.t. metric g.

In practice, we may minimize the following objective function

DO M Fain, (vi+ Vi Vi) = Fa(vi)2 (53)

i=1 j=1
where m is the total number of sampling direction in ODF, n is the dimension of the manifold and h; is the

base vector and v; can be easily transformed to (6, ¢).

Fon(VRvi) = Fu(vi) (54)
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