
Solving Large Systems of Linear Equations∗

Haocheng Dai

1 Quadratic Form

Given A (positive-definite and symmetric) and b, our target is to find a x∗ such that

Ax∗ = b. (1)

If we want to find the solution of Eq.(1), we can just try to minimize the convex function f(x):

f(x) =
1

2
xTAx− xT b, where ∇f(x) =

1

2
ATx+

1

2
Ax− b. (2)

As A is symmetric, the gradient reduces to

∇f(x) = Ax− b

Because A is positive-definite, the surface defined by f(x) is shaped like a paraboloid bowl, which is illustrated

by Figure 1. Only if f(x) is a convex function, we can find a stationary point.

Gradient is the direction in which the function rises. And here are another two definitions we should

memorize through out the note:

• Error ei = xi − x∗ is a vector indicates how far we are from the solution x∗.

• Residual ri = b−Axi = −∇f(xi) is a vector indicates how far we are form the correct value b.

And the relationship between error and residual is

ri = −Aei. (3)

Remember whenever we read residual, think “direction of steepest descent”; whenever read gradi-

ent , think “direction of steepest ascent”.

∗Figure 1,4,3,2,6,5 credit to [1]

1

Figure 1: (a) Quadratic form for a positive-definite matrix. (b) For a negative-definite matrix. (c) For a

singular (and positive-indefinite) matrix. A line that runs through the bottom of the valley is the set of

solutions. (d) For an indefinite matrix. Because the solution is a saddle point, Steepest Descent and CG will

not work. In three dimensions or higher, a singular matrix can also have a saddle.

2 Iterative Methods for Optimization

2.1 Steepest Descent Method

In the method of steepest descent, we start at an arbitrary point x0 and slide down to the bottom of the

paraboloid. When we take a step, we choose the direction in which f decreases most quickly, which is the

direction −∇f(xi) = b−Axi.

For example, we will choose a point

x1 = x0 + α0r0 (4)

And the question is how big a step we should take? The line search is a procedure that chooses α to

minimize f along the line, as Figure 2(c) shows. On the search line, f is minimized where the gradient is

orthogonal to the search line, then we know how to determine α:

rTk+1rk = 0

(b−Axk+1)T rk = 0

(b−A(xk + αkrk))T rk = 0

(b−Axk)T rk − αk(Ark)T rk = 0

αk(Ark)T rk = (b−Axk)T rk

αkr
T
k Ark = rTk rk

αk =
rTk rk
rTk Ark

(5)

2

In summary, the whole process can be described below:

1. Set k = 0, select an initial point xk ∈ Rn.

2. Set rk = b−Axk. If rk = 0, stop.

3. Update αk =
rTk rk
rTk Ark

.

4. Update xk+1 = xk + αkrk.

5. Set k = k + 1, then go to step 2.

Figure 2: The method of Steepest Descent. (a) Starting at [−2,−2]T , take a step in the direction of steepest

descent of f . (b) Find the point on the intersection of these two surfaces that minimizes f . (c) This parabola

is the intersection of surfaces. The bottom most point is our target. (d) The gradient at the bottom most

point is orthogonal to the gradient of the previous step.

3

Figure 3: The gradient ∇f is shown at several locations along the search line (solid arrows). Each gradient’s

projection onto the line is also shown (dotted arrows). The gradient vectors represent the direction of steepest

ascent of f , and the projections represent the rate of increase as one traverses the search line. On the search

line, f is minimized where the gradient is orthogonal to the search line.

2.2 Conjugate Gradient Method

Steepest descent often finds itself taking steps in the same direction as earlier steps. Wouldn’t it be better if,

every time we took a step, we got it right the first time? Here’s an idea: let’s pick a set of orthogonal search

directions {p1, p2, · · · , pn}. In each search direction, we’ll take exactly one step, and that step will be just

the right length to line up evenly with x∗. After n steps, we’ll be done.

And here comes the conjugate gradient method. Remember that for any starting point x0, the conjugate

gradient method converges to the unique minimum x∗ of f in only n steps. In our case, n is the total

number of pixels in the image. A is a n × n symmetric and positive-definite matrix. Let {p1, p2, · · · , pn}

be A-conjugate vectors. (We cannot have more than n linearly independent vectors in Rn, hence we cannot

have more than n vectors that are A-conjugate. Plus, if A = I, then {p1, p2, · · · , pn} are orthogonal vectors.)

Since these vectors are independent, we can denote solution x∗ with

x∗ = x0 +

n∑
i=1

αipi, (6)

where αi is the step size along direction pi.

4

Eq.(7) is the update rule:

xk+1 = xk + αkpk

x1 = x0 + α0p0 (7)

x2 = x0 + α0p0 + α1p1

xk = x0 + α0p0 + · · ·+ αk−1pk−1

x∗ = xn = x0 + α0p0 + · · ·+ αn−1pn−1

From Eq.(7), we can get

xk − x0 = α0p0 + · · ·+ αk−1pk−1 (8)

x∗ − x0 = α0p0 + · · ·+ αn−1pn−1 (9)

Since pk is conjugate to each other, for every k 6= i, pTkApi = 0. Times pTkA on both sides of Eq.(9), we’ll

get

pTkA(xk − x0) = pTkA(α0p0 + · · ·+ αk−1pk−1) = 0 (10)

pTkA(x∗ − x0) = pTkA(α0p0 + · · ·+ αn−1pn−1) = αkp
T
kApk (11)

From Eq.(11), we’ll get

αk =
pTkA(x∗ − x0)

pTkApk
=
pTkA(x∗ − xk + xk − x0)

pTkApk
(12)

Take Eq.(10) into Eq.(12), we’ll get

αk =
pTkA(x∗ − xk)

pTkApk

=
pTk (Ax∗ −Axk)

pTkApk

=
pTk (b−Axk)

pTkApk

=
pTk rk
pTkApk

(13)

rk is the negative gradient of f at xk, along which the steepest descent method would require to move.

It can be updated by it’s definition:

rk = b−Axk (14)

Or, it can just be updated by taking the relationship between e and r, which is usually how we implemented

in algorithm:

xk+1 = xk + αkpk

xk+1 − x∗ = xk − x∗ + αkpk

ek+1 = ek + αkpk

−Aek+1 = −Aek − αkApk

rk+1 = rk − αkApk (15)

5

According to experiment, there’s not much numerical difference between the above two update methods.

However, we are not doing steepest descent here, which may still have slight move on previous search directions

p and cause ”zig-zag” path in descent. The αk above already tells us how long a step should take

in the corresponding pk such that pk is conjugate to all the previous p, and that is guaranteed by

Eq.(10).

Then the problem comes to how to determine pk, and we give the following expression (imagine β is a

negative number, so it’s just like subtracting conjugation from residual)

pk = rk +
∑
i<k

βipi = rk + βk−1pk−1, where p0 = r0. (16)

It’s analogous to the usual Gram-Schmidt process for obtaining an orthogonal basis. βi indicates the

conjugate projection component on pi. The update rule for pk is that, in each iteration, the new

conjugate direction is current negative gradient eliminated all the previous conjugate directions, as Figure 4

illustrates.

Since it’s an iterative method, we only have to consider eliminating last search direction pk−1 in term of

conjugation. Residual is orthogonal (error is conjugate) to all previous search directions, which

can be explained by derivation below:

ek = xk − x∗ = −
n∑

i=k

αipi

pTj Aek = −
n∑

i=k

αip
T
j Api j < k

−pTj rk = −
n∑

i=k

αip
T
j Api

pTj rk = 0 j 6= i, then pi is conjugate to pj (17)

Also residual is orthogonal (not conjugate) to all previous residuals, which can be explained by

derivation below:

pk = rk +
∑
i<k

βipi

rTj pk = rTj rk +
∑
i<k

βir
T
j pi k < j

rTj rk = 0 according to Eq.(17) (18)

As each new search direction is constructed from the residual to be A-orthogonal to all the previous

residual and search directions, the linear span of previous search directions and residual are identical. So

comes from the above two conclusions.

6

Figure 4: Gram-Schmidt conjugation of two vectors. Begin with two linearly independent vectors u0 and u1.

Set d0 = u0. The vector u1 is composed of two components: u∗, which is conjugate to d0 and u+, which is

parallel to d0. After conjugation, only the A-orthogonal portion remains, and d1 = u∗. If we stretch the

space until the ellipses appeared circular, we’ll find that d0 and d1 are strictly orthogonal.

Similar to the solution of α, we use the conjugate property of pi to calculate βk. Times pTkA on both

sides of Eq.(12), it goes to

pTkApk+1 = pTkA(rk+1 +
∑

i<k+1

βipi) (19)

0 = pTkArk+1 +
∑

i<k+1

βip
T
kApi (20)

0 = pTkArk+1 + βkp
T
kApk (21)

From Eq.(19), we get the expression of β:

βk = −p
T
kArk+1

pTkApk
(22)

Let us simplify this expression by taking the inner product of rk and Eq.(14):

rTk+1rk+1 = rTk+1rk − αkr
T
k+1Apk

αkr
T
k+1Apk = rTk+1rk − rTk+1rk+1

αkr
T
k+1Apk = −rTk+1rk+1 (Each new residual is orthogonal to all the previous residuals.)

rTk+1Apk = − 1

αk
rTk+1rk+1

pTkArk+1 = − 1

αk
rTk+1rk+1 (A is symmetric.) (23)

Therefore by substituting Eq.(12) and Eq.(20) into Eq.(19), β can be simplified as

βk =
1

αk

rTk+1rk+1

pTkApk

=
pTkApk
pTk rk

rTk+1rk+1

pTkApk

=
rTk+1rk+1

pTk rk
(24)

With xk, αk and pk, the update rule is as clear as

xk+1 = xk + αkpk (25)

7

In summary, the whole process can be described below:

1. Set k = 0, select an initial point x0 ∈ Rn.

2. Set r0 = −∇f(x0), p0 = r0. If r0 = 0, stop.

3. Solve the step size along pk: αk =
pT
k rk

pT
k Apk

.

4. Update the estimation with αk, pk: xk+1 = xk + αkpk.

5. Set rk+1 = −∇f(xk+1) or rk+1 = rk − αkApk. If rk+1 = 0, stop.

6. Solve the conjugation components among rk: βk =
rTk+1rk+1

pT
k rk

.

7. Doing conjugation on rk+1: pk+1 = rk+1 + βkpk.

8. Set k = k + 1, then go to step 3.

2.3 Iterative Method

The key to making progress is to note that in general, the matrix A is extremely sparse, since the linear

relationships usually only relate nearby grid points together. We therefore seek methods which don’t require

ever explicitly specifying all the elements of A, but exploit its special structure directly. Many of these

methods are iterative - we start with a guess xk, and apply a process that yields a closer solution xk+1.

Let’s recap the idea of Eigen first: Ax = λx. If |λ| < 1, then Aiv = λiv will vanish as i approaches

infinity. If |λ| > 1, then Aiv will grow into infinity as i approaches infinity.

Figure 5: As i increases, Aiv converges to zero with |λ| < 1.

Figure 6: As i increases, Aiv diverges to infinity with |λ| > 1.

A very important skill in understanding linear algebra is to think of a vector as a sum of other vectors

whose behavior is understood. Say a vector x is illustrated as a sum of two eigenvectors v1, v2. Applying A

to x is equivalent to applying A to the eigenvectors, and summing the result.

8

On repeated application, we have Aix = Aiv1+Aiv2 = λiv1+λiv2. If the magnitudes of all the eigenvalues

are smaller than 1, Aix will converge to 0, because the eigenvectors that compose x converge to 0 when A is

repeatedly applied. If one of the eigenvalues has magnitude greater than 1, x will diverge to infinity. This is

why numerical analysts attach importance to the spectral radius of a matrix:

ρ(R) = max|λj |, where the λj are the eigenvalues of R (26)

An iterative scheme converges if and only if ρ(R) < 1. The size of the spectral radius determines the

convergence rate, and ideally we would like to find splittings which result in as small a ρ(R) as possible.

Jacobi Method. The Jacobi method is one of the simplest iterations to implement. We split A into D+R,

where D is the diagonal component and R is the remainder. The convergence properties are then set by the

matrix D−1R.

Ax = b (27)

(D +R)x = b

Dx = b−Rx

x(m+1) = D−1(b−Rx(m))

We start with an initial guess x0, and then successively improve it according to Eq.(22). And entry-wise

iteration is shown as below:

Algorithm 1 Jacobi Method

for j = 1 to N2 do

x
(m+1)
j = 1

ajj
(bj −

∑
k 6=j ajkx

(m)
k)

end for

where 1
ajj
, bj , ajk correspond to D−1, b, R respectively.

Gauss-Seidel Method. The Gauss–Seidel method improves on the Jacobi algorithm, by noting that

if we are up-dating a particular point u
(m+1)
j , we might as well reference the already updated values

x
(m+1)
1 , x

(m+1)
2 , . . . , x

(m+1)
j−1 in the calculation, rather than using the original values x

(m)
1 , x

(m)
2 , . . . , x

(m)
j−1. Ac-

cording to the property of Gauss-Seidel, we split A into L∗ + U , where L∗ is a lower triangular component

and U is a strictly upper triangular component.

Ax = b (28)

(L∗ + U)x = b

L∗x = b− Ux

x(m+1) = L−1∗ (b− Ux(m))

9

Algorithm 2 Gauss-Seidel Method

for j = 1 to N2 do

x
(m+1)
j = 1

ajj
(bj −

∑j−1
k=1 ajkx

(m+1)
k −

∑N2

k=j+1 ajkx
(m)
k)

end for

The entry-wise iteration can be written as:

Multigrid Method. This method is to make the progress converge faster on a final grid. The idea of

multigrid is to take advantage of the fact that Jacobi and Gauss-Seidel method converge very fast on a coarse

grid. And the effect of the iterations is essentially smoothing out the solution error. Initially, the solution

error is the true solution itself. But over the iterations, the error gets way more smoother. The important

steps are:

• Smoothing – reducing high frequency errors, using a few iterations of the Jacobi or Gauss–Seidel

method.

• Residual Computation – computing residual error after the smoothing operation(s).

• Restriction – downsampling the residual error to a coarser grid.

• Interpolation – interpolating a correction computed on a coarser grid into a finer grid.

• Correction – Adding prolongated coarser grid solution onto the finer grid.

Figure 1 and 2 shows the convergence of the conjugate gradient methods with and without preconditioner,

respectively. On small size Lena, the CG method without preconditioner takes 54 iterations for residual’s

norm to reach below 10, while the one with preconditioning takes 22 interations. On large size Lena, the CG

method without preconditioner takes 112 iterations for residual’s norm to reach below 50, while the one with

preconditioning takes only 87 interations.

10

Figure 7: The convergence on small size Lena.

Figure 8: The convergence on large size Lena.

3 Implementation

3.1 Conjugate Gradiant Method

The b, A, x0 here correspond to above F , E, U , respectively. And I initialize the F , g to Laplacian filtered

lena, all-one-matrix, respectively. The condition for stopping the iteration is rk+1 < 10.

Figure 3 shows the result where g(x, y) = x2 + y2. The progress takes 59 iterations in total.

11

Figure 9: From left to right: G, U , F .

3.2 Iterative Method

Below is my implementation of multigrid method. As a preconditioner, the multigrid works just like z1 =

M−1r1, so the multigrid function should be called like z1 = multigrid(0, r1).

Algorithm 3 Multigrid

function multigrid(x0, b)

for i = [1 : 10] do

x0 = jacobi(x0, b) . Smoothing

end for

residual = Ax− b . Residual Computation

residual coarse = sample(residual) . Restriction

if size(b, 1) > 1 then

error coarse = multigrid(error coarse, residual coarse)

end if

error = interpolate(error coarse) . Interpolation

x = x0 − error . Correction

return x

end function

Figure 4 shows the result of multigrid precondtioned congjugate gradient methond.

12

Figure 10: From left to right: G, U , F .

References

[1] J. R. Shewchuk et al. An introduction to the conjugate gradient method without the agonizing pain,

1994.

13

	Quadratic Form
	Iterative Methods for Optimization
	Steepest Descent Method
	Conjugate Gradient Method
	Iterative Method

	Implementation
	Conjugate Gradiant Method
	Iterative Method

