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Abstract—The ability to configure transport protocols from
collections of smaller software modules allows the characteristics
of the protocol to be customized for a specific application or net-
work technology. This paper describes a configurable transport
protocol system called CTP in which microprotocols implementing
individual attributes of transport can be combined into a com-
posite protocol that realizes the desired overall functionality. In
addition to describing the overall architecture of CTP and its
microprotocols, this paper also presents experiments on both
local area and wide area platforms that illustrate the flexibility
of CTP and how its ability to match more closely application
needs can result in better application performance. The prototype
implementation of CTP has been built using the C version of the
Cactus microprotocol composition framework running on Linux.

Index Terms—Configuration, customization, extensibility, trans-
port protocol.

I. INTRODUCTION

EXISTING network transport protocols such as TCP and
UDP have limitations when they are used in new applica-

tion domains and for new network technologies. For example,
multimedia applications sharing a network need congestion
control but not necessarily ordered reliable delivery, a combi-
nation implemented by neither TCP nor UDP. Similarly, the
congestion control mechanisms in TCP work well in wired
networks but often over-react in wireless networks where
packets can be lost due to factors other than congestion. The
lack of appropriate guarantees or specific features has led to
the widespread development of specialized protocols used in
conjunction with or instead of standard transport protocols.
These include IPSec [1] and SSL [2] for security, RSVP [3]
for bandwidth reservation, RTP [4] for real-time audio and
video, GTP [5] and CEP [6] for transport in Grid and high-end
computing environments, and SCTP [7] for enhanced transport
reliability. Developing such a protocol from scratch is, needless
to say, often a significant undertaking.

In this paper, we describe our experience building a config-
urable transport protocol, CTP, that allows protocol semantics to
be tuned to specific application needs without the engineering
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effort involved with new protocol development. With this ap-
proach, software modules that implement different service at-
tributes or variants are written, and then a custom protocol is con-
structed by selecting appropriate modules based on the needs of
the higher levels that use the service or on the specific charac-
teristics of the underlying network or computing platform. Thus,
for example, a congestion-control module can be configured to-
gether with a datagram service. The net result is, in effect, a
family of transport protocols, each useful in a given scenario.

We experimentally demonstrate that CTP achieves compa-
rable performance to existing protocols such as TCP and UDP
on the applications for which they were designed. More im-
portantly, we show that CTP can be customized for new appli-
cations to provide better performance than existing protocols
without the software engineering overhead associated with de-
veloping a new protocol from scratch. Our prototype version of
CTP is implemented using the Cactus microprotocol composi-
tion framework [8] running on UNIX UDP sockets on a cluster
of Linux x86 machines and between Linux x86 machines across
the Internet.

II. CTP DESIGN

A. Transport Attributes and Algorithms

The first step in developing a customizable transport protocol
is identifying various quality attributes and algorithms. These
include:

• Reliability. Addresses the likelihood that the receiver re-
ceives all the data sent by the sender.

• Ordering. Describes guarantees concerning the ordering of
data at the receiver relative to the order in which it is sent.

• Performance. Describes whether data is transported from
sender to receiver best effort or with some guaranteed per-
formance using resource reservation.

• Timeliness. Describes the timing characteristics of the
end-to-end transmission with respect to maximum latency
or jitter.

TCP and UDP provide essentially a fixed set of these
attributes. In particular, TCP provides strong reliability (guar-
anteed delivery) and ordering (in-order byte stream) semantics,
but only best-effort performance and no timeliness guarantees.
Similarly, UDP provides best-effort performance, but with no
ordering, timeliness, or reliability guarantees.

Given an attribute, numerous algorithms and protocols are
often available for implementing its properties. For example,
reliability can use some combination of positive, negative,
or selective acknowledgment protocols, or several different
forward error correction schemes. In some cases, different
algorithms provide different types of guarantees. For example,
IP-style one’s complement and cyclic redundancy checks
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(CRC) provide integrity that protects against accidental data
modification, while cryptographic methods protect against
intentional modification. In other cases, different algorithms
provide approximately the same guarantee, but with different
trade-offs with respect to resource usage or other attributes. For
example, forward error correction uses more bandwidth than
acknowledgments, but provides faster recovery from failures,
and thus a smoother data flow at the receiver.

Different choices can also be made for other design elements,
such as whether to use congestion and/or flow control, and if so,
what type. The protocol must also be able to interact appropri-
ately with the protocol below it in the protocol stack. For ex-
ample, messages may need to be fragmented into pieces or small
messages coalesced into one packet. If a resource reservation
protocol such as RSVP is available, the transport protocol may
interact with it to make a resource reservation for the connec-
tion. Finally, the transport protocol must deal with such practical
issues as connection establishment, monitoring, and tear-down.

B. Cactus

Cactus is a system for constructing highly-configurable pro-
tocols for networked and distributed systems [8]. Individual pro-
tocols in Cactus, termed composite protocols, are constructed
from fine-grained software modules called microprotocols that
interact using an event-driven execution paradigm. Each micro-
protocol is structured as a collection of event handlers and gen-
erally implements a distinct property or function of the protocol.
Composite protocols are then layered on top of each other to
create a protocol stack using an interface similar to the standard

-kernel API [9]. This two-level approach has a high degree of
flexibility, yet provides enough structure and control that it is
easy to build collections of modules realizing a large number of
diverse properties.

At runtime, composite protocol instances, termed composite
sessions, are used to process packets. Composite sessions are
created by protocol routines in response to open requests from
either local applications or received packets. Each composite
session contains a collection of microprotocol instances in
which event handlers are bound to protocol-specific events to
effect protocol processing.

The programming model in Cactus is based on events and
event handlers. Events are used to signify state changes of
interest, such as “message arrival from the network”. When
such an event occurs, all event handlers bound to that event
are executed. Events can be raised explicitly by microprotocol
instances or implicitly by the runtime system. The runtime
system also provides a variety of operations for managing
events and event handlers. In addition to traditional blocking
events, Cactus events can also be raised with a specified delay
to implement time-driven execution, and can be raised asyn-
chronously. Arguments can be passed to handlers in two ways,
statically when a handler is bound to an event and dynamically
when an event is raised. Other operations are available for
unbinding handlers, creating and deleting events, halting event
execution, and canceling a delayed event. Handler execution is
atomic with respect to concurrency, i.e., a handler is executed
to completion before any other handler is started unless it
voluntarily yields the CPU.

The Cactus message abstraction is designed to facilitate de-
velopment of configurable services. One of the main features
of Cactus messages are message attributes, which are a gen-
eralization of traditional message headers. Operations are pro-
vided for microprotocols to add, read, and delete message at-
tributes. Furthermore, a customizable pack routine combines
message attributes with the message body for network trans-
mission (on-wire format), while an analogous unpack routine
extracts attributes at the receiver.

Synchronization and coordination of execution activities in
Cactus is accomplished through event-based barriers that can
be associated with data items, including messages. A micropro-
tocol instance can register with the barrier, and an event associ-
ated with the barrier will only be raised when all microprotocol
instances registered with the barrier have entered the barrier.
These barriers are used to coordinate activities across multiple
microprotocols, especially to control the transfer of messages
up and down the protocol stack.

C. Design Overview

CTP is a composite protocol in which each attribute or func-
tion described in Section II-A is implemented by one micropro-
tocol or a set of alternative microprotocols. Thus, the current
design has one or more microprotocols for reliability, ordering,
security, jitter control, congestion control, flow control, data
and header compression, MTU discovery, message fragmen-
tation and collation, and connection establishment, monitoring
and tear-down. The goal of the design is to decouple the imple-
mentations of different attributes and functions to maximize the
ability to mix and match different microprotocols to provide ex-
actly the required properties. Decoupling the different features
of transport protocols is not trivial, since often much of the func-
tionality is tightly coupled for efficiency. For example, relia-
bility, congestion control, and flow control in TCP often use the
same transmission window data structure, while byte sequence
numbers are used to implement reliability, ordering, and flow
control feedback.

The current CTP design focuses on only bidirectional mes-
sage-oriented point-to-point communication over an unreliable
packet-oriented network protocol (e.g., IP). Specifically, an ap-
plication uses a given CTP configuration to exchange arbitrary
length messages (e.g., a video frame) with some application-de-
fined semantics with a single endpoint. Since the design of CTP
does not assume that the underlying network protocol supports
such arbitrary length messages, microprotocols for fragmenting
or coalesces messages into an appropriate transport unit—a
segment—are provided. Finally, CTP addresses are currently
local/remote IP/port number 4-tuples similar to those used by
TCP.

D. CTP Events

Microprotocol instances in a CTP session interact using
events in order to manipulate shared data, largely messages
and their attributes. Fig. 1 shows the predefined set of common
events useable by all CTP microprotocols; solid arrows are
used to indicate events raised by CTP’s interface routines and
dashed arrows to indicate causal relations between other events.
For example, when the event is raised,
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Fig. 1. Major CTP events.

some microprotocol will raise the
event. Additional local timeout events are used by several of
the microprotocols. Most of the event names are self explana-
tory; for example, is raised when a
previously sent segment is acknowledged.

CTP makes extensive use of the Cactus event-based barrier,
particularly event-based barriers associated with individual
messages. For historical reasons, event-based barriers asso-
ciated with messages are generally referred to as hold bits.
CTP uses three sets of hold bits on each message: send bits,
deallocate bits, and done bits. The send bits are used to coordi-
nate sending of segments down to lower layers and delivery of
messages up to the application. A microprotocol sets a send bit
in a given message when the message can exit the composite
protocol as far as the microprotocol is concerned. When all bits
in a message are set, it exits and the event
is raised to notify microprotocols that the segment has actually
left the protocol. For example, congestion control, flow control,
and reliability functionality in CTP each control send bits to
determine when a segment can be transmitted.

Send bits allow different microprotocols to operate on mes-
sages independently without knowing which other microproto-
cols need to process the message. They also decouple the ap-
proval process from any kind of ordering—when all the required
microprotocols have set their bits, the message exits the com-
posite protocol independent of the order in which they were set.
Note that systems supporting only hierarchical composition in-
trinsically dictate one fixed release order. Similarly, deallocate
bits are used for determining when a segment will not be needed
by any microprotocol and thus can be deleted.

Done bits are used when agreement from multiple micropro-
tocols is needed on a property unrelated to a message either ex-
iting the composite protocol or being deallocated. For example,
a congestion control microprotocol needs to know when an out-
going message is not on the network (i.e., has either been ac-
knowledged or timed out) and will never be retransmitted in
order to advance the trailing edge of the congestion control
window. To do this, every relevant microprotocol sets a done bit
at the appropriate time, and then the event is
raised when all bits are set. Note that deallocate bits are not suf-

ficient for this purpose because microprotocols may delay set-
ting deallocate bits on messages even though they will never re-
transmit the packet. For example, the
microprotocol delays deallocating sent messages so that it has
the data needed to compute the contents of redundant packets
using an erasure code algorithm.

E. Configuration and Initialization

CTP composite sessions are created in response to an ex-
plicit open request from an application or when a packet with
a host/port 4-tuple is received that does not demultiplex to an
existing session. The CTP session initialization routine is then
invoked, resulting in the creation of session-global state, the
instantiation of microprotocol instances, and the initialization
of these microprotocol instances. At this time, microprotocol
instance initialization routines set up their data structures and
notify the runtime system of any necessary hold bits they will
need on CTP messages. After the session and all of its micro-
protocol instances are initialized, the CTP demultiplexing rou-
tine raises the event in the new session so that
microprotocols that perform connection establishment can exe-
cute appropriately. If the session was created as a reaction to a
packet received from the network, the
event will be raised to allow processing of any data contained in
the packet.

New CTP sessions select the appropriate microprotocol in-
stances for each composite session based either on information
in the locally-generated open request or on data in the packet
that caused the creation of the new session. For local open re-
quests, the current CTP implementation requires applications
to specify exactly the microprotocols they desire in the session
being created, including resolving dependencies by hand. Con-
figuration tools such as those used in previous Cactus-based sys-
tems [10] could also be used to ease this process.

For open requests received from a remote host, CTP requires
that packets that create a session contain sufficient data to deter-
mine which microprotocols were used to generate the received
segment. In the most general case, connectionless protocols
where any packet can establish a session, this is implemented as
a 32-bit bitfield that is included with every CTP packet, with a
different bit assigned to each possible CTP microprotocol. For
connection-oriented CTP configurations, however, this bitfield
need only be included in the connection establishment request.

Note that the microprotocol configuration in an existing CTP
session is not currently changeable at runtime. While feasible
in principle, doing so would require substantial additional ma-
chinery either to quiesce the network or to support multiple
microprotocol instances simultaneously while old packets are
drained from the network. However, applicable research into
supporting such dynamic adaptation capabilities has been done
both in the context of Cactus [11], [12] and in other systems
such as the K42 operating system [13].

III. MICROPROTOCOL HIGHLIGHTS

A. Base Functionality

is the only microprotocol that must be
present in any configuration. It adds port identifiers on all
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outgoing segments for demultiplexing and also contains
trivial handlers for certain events to ensure that a message
is carried through CTP irrespective of the presence of other
microprotocols.

The and micro-
protocols add message attributes uniquely identifying each
outgoing message and segment, respectively. While this labeling
does not provide any service to the application, it is useful for
other microprotocols such as reliability or ordering. Performing
the procedure in a separate microprotocol allows the other micro-
protocols to share the same attribute, saving space in the message.

A group of microprotocols transforms messages into
segments at the sender and then back to messages at
the receiver. They are also responsible for raising the

and events.
simply creates a separate segment from each mes-

sage, combines multiple small messages into one
segment, and fragments the messages into segments that
can be handled by the underlying IP network without IP-level
fragmentation (MTU discovery). One of these microprotocols
must be present in each configuration.

Finally, a set of optional microprotocols is responsible for es-
tablishing and shutting down a connection, and for monitoring
its status. implements a handshake protocol
that provides reliable startup and shutdown semantics, and
exchanges random initial sequence numbers for message and
segment numbering. is completely transparent
to other microprotocols, even those that use sequence num-
bers—if it is not included, constant initial values are used.
An additional microprotocol is responsible for
sending probe messages to detect link failures in the absence
of application messages.

B. Informational Microprotocols

CTP contains a number of microprotocols that collect
information and provide it to other microprotocols by
raising events or setting shared variables. For example, the

microprotocol maintains an
estimate of the end-to-end round trip time in a protocol-wide
shared variable by handling the and

events so that it can note when a
segment is actually placed on the wire and when an acknowl-
edgment for the segment is received. This estimate is then used
by other microprotocols for detecting congestion and setting
timeout values, for example.

The microprotocol is another, more complex,
informational microprotocol used to track the status of trans-
mitted segments. It implements a general cumulative acknowl-
edgment facility necessarily more general than similar function-
ality in other protocols. In particular, it can be used in CTP
configurations that do not provide reliable delivery guarantees
because it does not incorporate functionality such as retrans-
missions. This allows it to be used, for example, in unreliable
protocols that still need to track packet delivery status for flow
and congestion control purposes, as well as in reliable configu-
rations that include microprotocols such as .

The generality of is achieved by slightly re-
defining the meaning of a cumulative acknowledgment and in-

Fig. 2. ACK-related event handling.

troducing a session-global data structure to decouple the mi-
croprotocol from the presence of reliability microprotocols. In

, an acknowledgment indicates that the acknowl-
edged segment was received and that the receiver no longer
needs or expects to receive the acknowledged segment or any
segment sent prior to it. Note that this does not mean that the
previous segments were necessarily received—simply that they
are unneeded, that is, that their reliability constraints have been
met.

The session-global data structure used by
keeps track of whether the reliability constraints on each packet
have been met. If a reliability microprotocol is included in
CTP, it sets the default reliability status of packets to RELI-
ABILITY UNMET in its initialization routine, and then later
sets it to RELIABILITY MET when the packet is acknowl-
edged. If a reliability microprotocol is not included in the
configuration, however, the default status of packets remains
RELIABILITY MET. This allows and similar
informational microprotocols to know for which packet to send
a cumulative acknowledgment.

In reliable protocols where the receiver expects to receive
every packet, the more general definition of acknowledgments
and the reliability tracking data structure results in the standard
acknowledgment behavior used in protocols such as TCP. In
protocols that do not require complete reliability, however, the
more general definition allows acknowledgments for packets to
be sent even if some previous packets have not been received.
In addition, this design also allows for partially reliable config-
urations where some packets must be transported reliably and
some unreliably, although CTP does not currently include any
microprotocols that make use of this flexibility.

Fig. 2 shows how events are used to track segment status in ac-
knowledgment processing; an arrow pointing to a microprotocol
indicates that it has a handler bound to the event, while an arrow
originating at a microprotocol indicates that it raises the event.
For each outgoing message (event ),

includes a cumulative acknowledgment attribute
as described above, and also raises the
timer event when the message is actually transmitted (event

). For each incoming message (event
), it checks the acknowledgment

attribute, and cancels the event
and raises the event if appro-
priate. Similarly, the microprotocol also
monitors the event and raises the
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Fig. 3. Retransmit microprotocol pseudo code.

event when appropriate. Other micropro-
tocols such as then use these events and the data
included in event arguments (e.g., sequence numbers) to deter-
mine when to retransmit old segments or release new packets
to the network.

C. Reliability Microprotocols

Reliable transmission can be implemented using different
types of redundancy ranging from redundant network connec-
tions to redundant transmission over the same connection. CTP
currently has two reliability microprotocols: and

. is a traditional ARQ
reliability scheme that relies on informational microprotocols
to know when packets have been received and which ones
should be retransmitted. As shown in the pseudocode in Fig. 3,
it handles the and
events and retransmits the appropriate segment when one
of these events is raised. In addition, it allocates a done bit
on each outgoing message and sets it upon receiving the

event. As mentioned in Section II, this
allows other microprotocols to know when the message will
not be retransmitted so that they can, for example, advance the
congestion window.

transmits redundant data so that
the receivers can reconstruct a complete transmission despite
message losses. at the receiver then
handles the redundant segments and uses them to create a new
message for each of these missing segments and raises the

event for the reconstructed segments.
Redundant data packets are also tagged with a special attribute
to assure that they are not handed to the application. As a result,
other microprotocols see the reconstructed segments as if they
had arrived normally. The specific error correction scheme
currently used by this microprotocol is a block erasure code
algorithm [14] that encodes segments of original data into
segments of encoded data .

Note that forward error correction and ARQ reliability can
often be used together in the same CTP configuration. This gives
the user a rich set of possibilities for reliable communication
that can be used to match the specific requirements of particular
applications.

D. Transmission Control Microprotocols

CTP offers flexible facilities for controlling the speed of
transmission, typically used to ensure that a sender limits
its outgoing traffic to a level acceptable to the network and
receiver. Our architecture divides these microprotocols into
two categories: flow control and congestion control.

Flow control refers to end-to-end transmission control that
provides a mechanism for the receiver to dictate the sender’s
transmission speed. Available microprotocols include:

• XON/XOFF. The receiver issues suspend/resume instruc-
tions to the sender.

• RTS/CTS. The sender explicitly requests the ability to send
more packets.

• Windowed. The receiver periodically informs the sender of
its available buffer space.

These microprotocols all operate at the sender side by binding a
handler to the event, which sets its send
bit on an outgoing message only when the requirements for
transmitting the segment are satisfied.

At the receiver side, there are facilities in the API to allow
higher level protocols to specify policies on traffic rates. The
flow-control microprotocols can communicate this information
to the sender either by transmitting new feedback messages to
the sender or by piggybacking the information on existing mes-
sages. This feedback is handled at the sender in a handler bound
to the event.

Congestion control behaves similarly to flow control in
that it limits the transmission rate of senders, but is intended
to avoid overrunning the capacity of the network rather than
the receiver. Congestion control in CTP consists of two types
of microprotocols, congestion control microprotocols that
implement the mechanisms for controlling congestion and
congestion policy microprotocols that describe corresponding
policies. Typical configurations would include one congestion
control and one congestion policy microprotocol.

Congestion control microprotocols, like those that do
flow control, use send bits to regulate segment trans-
mission. These microprotocols monitor protocol-wide
shared variables that congestion policy microprotocols
change in response to policy-specific indications of con-
gestion. CTP currently implements two congestion con-
trol microprotocols: and

.
implements a simple

window-based scheme that limits the number of unacknowl-
edged packets in the network. The size of the window is
stored in a shared variable that can be changed by conges-
tion policy microprotocols in response to various events.
The microprotocol works
similarly, but instead controls the average outgoing byte rate
based on a shared variable. Because each congestion control
microprotocol uses a different send bit for controlling segment
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transmission, multiple congestion control microprotocols can
be used simultaneously when appropriate.

Congestion policy microprotocols work by changing shared
variables exported by congestion control microprotocols, and
as such, are designed to work with specific congestion control
microprotocols. Available policy microprotocols include:

• . This microprotocol handles
the , and

events and changes the congestion
window used by the in
response to these events in accordance with the congestion
control policy used by TCP [15]. Note that the policy
implemented by this microprotocol does not depend on
the presence of the microprotocol in the CTP
configuration, so it may be used with unreliable communi-
cation or in combination with .

• . This microprotocol monitors
segments status events and sets the maximum outgoing
data rate used by ac-
cording to the TCP response equation [16].

• . This microprotocol mon-
itors the average round-trip time and the packet status
events and sets both the outgoing data rate used by

and the window size
used by similarly to the
SCP protocol [17].

Other congestion policy microprotocols are also easily imple-
mented in this framework.

E. Ordering and Jitter Control Microprotocols

Ordering microprotocols are relatively simple for
point-to-point communication as currently supported by
CTP. The sender can add a message attribute that indicates
the order of the message either as a sequence number or by
specifying the message’s logical predecessor(s). The current
implementation has a microprotocol, which
enforces strict in-order delivery by buffering out-of-order
messages and sending them to the application only after their
predecessors have been delivered, and a alternative
that discards messages that arrive out of order after a config-
urable delay. A microprotocol uses ordering
information provided by the application to record and enforce
the logical predecessors of each message. An
microprotocol can be used with any ordering microprotocol to
allow urgent out-of-band messages to be delivered as quickly as
possible by overriding the send bit used by the current ordering
microprotocol.

Jitter control microprotocols are structurally similar to or-
dering microprotocols, but use the passage of time rather than
predecessor information to decide when the send bit in a mes-
sage is set. These microprotocols include ,
which delivers messages separated by a fixed time interval and

, which preserves the sender’s time intervals
between messages at the receiver.

IV. DESIGN AND IMPLEMENTATION EXPERIENCES

Over the course of designing and implementing CTP, we
gained substantial experience in dealing with configurability in

CTP, as well as using the Cactus protocol framework. We also
ran into issues with our original CTP design [18] that had to be
resolved. In this section, we discuss these experiences.

A. Configurability and Extensibility in CTP

To make CTP highly configurable, the different micropro-
tocols have been designed to be as independent as possible.
However, there are some dependencies—when one micropro-
tocol requires that another be in the configuration to function
correctly—and some conflicts—when two microprotocols
cannot be in the same configuration. The dependencies in the
current design are relatively simple. Every configuration must
have and one of the message-to-segment
conversion microprotocols , or .
The reliability and FIFO ordering microprotocols use se-
quence numbers provided by the and

. Similarly, most flow and congestion
control microprotocols require an informational microprotocol
such as to provide feedback on the status of
transmitted segments. Finally, congestion control policy and
mechanism microprotocols must be used in conjunction with
each other.

Conflicts are either syntactic or semantic in nature. An ex-
ample of a syntactic conflict is that only one message-to-seg-
ment conversion microprotocol should be in each configuration,
while an example of a semantic conflict is that and
a reliable communication microprotocol should not be used to-
gether. Semantic conflicts do not cause the combination to fail,
but the resulting semantics do not satisfy the properties of both
of the microprotocols.

Despite these dependencies and conflicts, there are still hun-
dreds of possible different CTP configurations even with a small
number of different microprotocols for each transport property
and function. The challenge is to identify the correct configu-
ration for each application domain and execution environment.
In many cases, this may require experimentation with different
combinations to reach the optimal one.

CTP is also designed to be easily extensible, meaning that
new microprotocols can be added without modifying the ex-
isting ones. The actual effort needed depends on the type of ex-
tension. It is typically trivial to add a new alternative implemen-
tation for an existing property or function, since the event and
data structure interactions are usually the same as in existing
microprotocols.

On the other hand, adding a completely new property or func-
tion can be more difficult. The implementor must first determine
if CTP already has all the necessary events required by the new
microprotocol. If not, the CTP framework or some of the ex-
isting microprotocols may need to be modified to raise these
events. However, completely new microprotocols can often be
implemented using the existing set of events. For example, in
our design, the jitter control microprotocols were added after
the rest of CTP was designed with no modifications to other
microprotocols.

B. Corrected Design Mistakes

Over the course of designing and implementing CTP, we
made two substantial design mistakes that required re-archi-
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tecting parts of the system. This resulted in an insufficiently
flexible protocol when we initially tried to use CTP for multi-
media applications such as the one used in the experiments in
Section V. These two issues are discussed in more detail below.

Decomposing Complex Interactions: Flexible configura-
bility in CTP did not come without substantial effort. For
example, while the reliability, ordering, and flow control trans-
port functions that are tightly connected in TCP are completely
independent in our final design, this was not originally the case.
In our original design [18], a single micropro-
tocol performed two logically separate functions: tracking the
status (received/lost/timed out) of transmitted segments, and
reliable transmission of segments using timeouts and retrans-
missions. This overloading, the result of failing to completely
decompose acknowledgment functionality inspired by TCP,
caused problems for applications that wanted segment status
tracking but not retransmissions such as streaming multimedia
transmission applications.

Decoupling these responsibilities required the introduction of
several new microprotocols and events. Much of this decoupling
comes from the use of Cactus’ event-based programming model,
butsomerequiredthegeneralizationofprotocolfunctionalityand
the introduction of additional mechanisms and data structures.
We decomposed the original microprotocol into
several microprotocols, namely

, and .
We also introduced three new events,

, and , to announce
when segments are acknowledged, explicitly lost, or have
had an unknown status for an unacceptable amount of time.
This decomposition allowed CTP to be configured to use
acknowledgments for feedback about segment arrival and loss
without mandating the introduction of retransmissions and their
negative effects on multimedia applications.

The new microprotocol implements acknowl-
edgments and segment timeouts, while the and

add additional packet tracking functionality. On
the sender side, all of these microprotocols work by raising the
appropriate events at the appropriate time; these events are then
responded to by . On the receiver side,
was changed to acknowledge packets when it has either received
a packet or no longer needs a packet, and a session-global data
structure describes whether the reliability constraints on each
received packet have been met. In reliable protocols, where the
receiver expects to receive every packet, this behavior results in
the standard acknowledgment behavior used in protocols such
as TCP. In protocols that do not require complete reliability,
however, the more general definition allows an acknowledgment
for a packet to be sent even if some previous packets have not
been received. Note that this change also required the introduc-
tion of done bits for use by as de-
scribed in Section III-B.

Separating Mechanism and Policy: Another shortcoming
of the original CTP design was that it did not separate con-
gestion control mechanism and policy. As in all systems,
keeping such separation is useful. This problem was solved by
introducing two different microprotocols that implement con-
gestion control mechanisms, and

, and a variety of different micro-
protocols that implement different congestion control policies
as previously described. The most substantial change required
by this generalization was the introduction of the done bits on
each CTP segment and the corresponding
CTP event, allowing to advance
the trailing edge of the congestion window at the appropriate
time.

As a result of this experience, separate policy microprotocols
were similarly used for controlling forward error correction pa-
rameters when CTP was later modified to support adaptation of
error correction parameters. To further enable careful separation
of mechanism and policy, later work on a system named Cholla
[12] explicitly separated protocol policies into a policy control
engine where they could be separately composed, controlled,
and analyzed.

C. Cactus Event Experiences

After implementing a variety of CTP microprotocols and
testing a variety of different configurations, we found the largest
source of bugs was in the ordering of event handlers. Cactus
allows event handlers to bind with different order priorities,
and handlers are run in numeric order priority. Excessive use of
event ordering, however, resulted in a number of different bugs.
In the original implementation, for example, there were not
separate and events;
microprotocols that wanted to run after segments were sent
would simply bind to with a large order
priority. As new microprotocols were introduced, however,
misorderings between when handlers were run could cause, for
example, round trip times to be calculated inappropriately.

To address this problem, later implementations of CTP were
changed to use more fine-grained events instead of ordering
among event handers on fewer events. The resulting definition
of more CTP events along the sending and receiving processing
path required us to understand and interface with longer event
chains when implementing new protocols. However, our expe-
rience shows that documenting and understanding the (well-de-
fined) longer event chains was much easier than understanding
somewhat shorter event chains and the ordering constraints of
every possible microprotocol in the system.

V. EXPERIMENTAL RESULTS

A. Overview

While CTP cannot compete at this stage with tuned versions
of TCP and UDP, the flexibility provided by the service is useful
for application domains and execution environments that are not
the focus of the standard protocols. In particular, CTP is useful
when either a set of characteristics that falls somewhere between
TCP and UDP is required, or for cases where stronger guar-
antees are needed than TCP provides. CTP is also appropriate
when there is the opportunity to configure a protocol to match
the characteristics of a specific network environment. The goal
of this section is to quantify the potential overheads and benefits
provided by the configurability of CTP.

In the remainder of this section, we present local area and
wide area network results in a variety of situations. Local area
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TABLE I
LATENCY AND BANDWIDTH COMPARISON

performance results were collected between two 2-processor
2.2 GHz Pentium 3 Xeon machines running Linux kernel 2.4.18
across a quiescent 100 Mbps Ethernet; only one processor on
each machine was used by the test program. The C implemen-
tation of Cactus 2.2 was used for composing microprotocols
into a composite CTP protocol running at user level on top of
Linux UDP sockets. Note that this imposes additional overhead
on CTP compared to TCP and UDP. Wide area performance re-
sults were collected between Linux machines at the University
of New Mexico (UNM) and the Georgia Institute of Technology
(Georgia Tech).

Section V-B uses these platforms to quantify the cost of con-
figurability in CTP by comparing latency and bandwidth num-
bers in different CTP configurations over both local and wide
area networks. Section V-C then illustrates the potential bene-
fits of CTP by customizing protocol configurations to applica-
tion-specific and hardware-specific needs.

B. Configurability Overhead

The first set of experiments measures the bandwidth and ping-
pong latency of UDP, TCP, and various configurations of CTP.
Four different CTP configurations are included:

• CTP-Minimal: a minimal CTP configuration containing
only the driver and fragmentation/reassembly microproto-
cols.

• CTP-LossyFIFO: the minimal CTP configuration aug-
mented with per-message sequence numbers and unreli-
able in-order message delivery microprotocols.

• CTP-Video: a CTP configuration for video transmission
that uses SCP-style congestion control, positive and neg-
ative acknowledgments, round-trip-time estimation, and
in-order unreliable message delivery.

• CTP-Bulk: a TCP-Tahoe-like CTP configuration including
reliable, in-order message delivery using retransmissions,
duplicate acknowledgments, and TCP-style congestion
control.

Note that the first three of these configurations are all unreliable
configurations; only CTP-Bulk guarantees reliable transmission
of all data.

In the latency tests, two machines ping-pong minimal-sized
application packets 10 times to measure the average round-trip
latency for one round trip. In the bandwidth tests, a sending
application transmits 1000 1250-byte messages to a receiver,
which replies with a user-level acknowledgment once all the
data has been received. We measure the interval at the sender
between the transmission of the first packet and receipt of the
acknowledgment and use this to compute the end-to-end data

transmission rate. To enable direct comparison of protocol pro-
cessing costs, the PUSH flag is set on every message handed to
TCP, causing it to preserve message boundaries and send the
same number of data segments as the other protocols; we con-
firmed experimentally that the same message boundaries were
used in TCP.

Table I shows the averages and standard deviations of 10 runs
of the bandwidth and latency tests on both local and wide area
networks, with the top part of the table comparing unreliable
protocol configurations and the bottom part comparing reliable
protocols. All measurements were made on the receiver after
several initial packet exchanges to allow the congestion control
window to open fully.

These results indicate a latency overhead of approximately
100 microseconds per round trip over UDP in the simple local-
area test and execution environment, with approximately the
same service guarantees. Similarly, bandwidth is competitive
with UDP, although slightly less because this version of CTP is
layered on top of UDP and because of protocol overhead such as
the longer CTP headers required to support the sophisticated se-
mantics of more complex configurations (68 byte CTP headers
as opposed to 8 byte UDP headers). CTP header overhead is
currently unoptimized, however, and can be reduced by special-
izing headers to particular configurations instead of having a
single generic header that encompasses all current possible CTP
configurations. Additionally, running CTP directly on top of IP
would lower its latency costs significantly.

As microprotocols implementing more complex semantics
are added to CTP configurations in the first part of the table,
latency gradually increases and bandwidth slightly decreases.
Adding relatively simple microprotocols such as
and to the CTP configurations (the CTP-
LossyFIFO configuration) adds negligible overhead; more com-
plex microprotocols that implement, for example, congestion
control, introduce correspondingly more overhead.

In the wide area unreliable results, latencies are dominated by
wide area network costs, which obscure event overhead costs.
Bandwidth numbers vary as expected, with the UDP, CTP-Min-
imal, and CTP-LossyFIFO configurations providing the best
bandwidths given their lack of congestion control. CTP-Video
provides less bandwidth because of congestion control actions,
but more bandwidth than the TCP and CTP-Bulk configurations.
Again, this is expected since the SCP-based congestion control
policy used by the multimedia-oriented CTP configurations is
more aggressive than TCP-derived policies and known to not
be TCP-fair.
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Fig. 4. Real-time streaming media performance of UDP, CTP-Bulk, and CTP-Audio. (a) UDP/CTP-Bulk/CTP-Audio Wide-Area. (b) UDP/CTP-Audio Wide-
Area. (c) CTP-Bulk Breakdown.

Comparing the reliable protocols, the latency overhead of
CTP-Bulk compared to TCP is somewhat higher, on the order
of 200 microseconds. This is caused by the increased event pro-
cessing in CTP for the complex configuration required for full
reliability. We expect the latency performance of all CTP con-
figurations to improve as the event mechanisms in the Cactus
runtime are optimized, although it is probably unrealistic to ex-
pect CTP to beat TCP and UDP for this type of use.

The bandwidth differences between CTP-Bulk and TCP are
caused by minor differences in delayed acknowledgment han-
dling and packetization in the two protocol implementations.
Specifically:

• CTP-Bulk currently has an MTU of 1250 bytes as opposed
to the bytes that TCP uses, has larger headers, and
runs on top of UDP.

• TCP (as a stream protocol) maintains the sender window
sizes in bytes, while CTP-bulk maintains a window size in
packets, since it is a message-oriented protocol.

These two differences prevent CTP-Bulk from utilizing the band-
width of a lower bandwidth wide area connection as effectively
as TCP does. Note, however, that CTP’s modular structure
makes such differences easy to change when appropriate.

C. Benefits of Custom Configurations

CTP can be tuned to provide optimized behavior for given
applications or hardware environments similar to hand-built
custom protocols without the engineering overhead of de-
veloping such protocols from scratch. In this section, we
demonstrate the performance benefits that customizing CTP
configurations to application- and hardware-specific needs can
provide.

1) Application-Specific Customization: To study the poten-
tial application-level benefits of protocol customization, we ran
CTP as the underlying transport protocol for a custom Cactus
multimedia-transmission and playback application. This appli-
cation sends compressed audio or video to a remote receiver,
which then plays back the received data in real-time from a play-
back buffer with fixed time capacity. This application supports
both uncompressed and compressed (H.263/Ogg Vorbis) audio
and video streams.

We studied the impact that custom CTP configurations have
on an audio transmission configuration of this application using
UDP, CTP-Bulk, and a new configuration CTP-Audio for audio
transmission that is configured identically to CTP-Video except

for the addition of a block-erasure forward error correction mi-
croprotocol. CTP-Bulk acts as a proxy for TCP performance
in this experiment, since we did not have the kernel-level ac-
cess that would be needed to vary the loss experienced by the
TCP protocol on the wide-area test machines. Audio packets
were sent at 128 kbps on both low-latency (local) and high-la-
tency (wide-area) networks, and with different amounts of ad-
ditional packet loss at the ingress network device to examine
how different protocol configurations and network conditions
affected application performance. The application was set to use
a fixed 3000 ms playout buffer, and CTP-Audio was set to use

and to be able to recover from one dropped data
packet out of every five packets. Each test consisted of 1500
packet transmissions, and was conducted 10 times on each pro-
tocol/network configuration.

Fig. 4(a) shows the performance of all three protocols on
this application in terms of the percentage of packets delivered
within the application playout window on a wide-area network
between UNM and Georgia Tech. CTP-Bulk is unable to de-
liver packets on time in the face of significant packet loss, while
UDP and CTP-Audio continue to provide reasonable service
to the application. Fig. 4(b) shows only UDP and CTP-Audio
performance over wide-area networks, and demonstrates that
CTP-Audio is able to deliver packets on time more robustly than
UDP in the face of packet loss. Local-area comparisons between
UDP and CTP-Audio behave essentially the same.

Fig. 4(c) provides a more detailed breakdown of the perfor-
mance of the CTP-Bulk protocol in the wide-area case. Since
CTP-Bulk delivers all packets in order, as packet loss increases,
packets are delivered increasingly late due to the TCP-like re-
transmission-based reliability scheme. UDP and CTP-Audio, on
the other hand, deliver packets in a timely fashion. All of the
late packets shown in 4(b) and (c) are due to packet loss, though
CTP-Audio delivers more packets on time in the face of packet
loss thanks to the forward-error correction service it provides to
the application.

Of course, existing protocols, for example RTP [4] and
SCTP [7], can provide application benefits similar to those
shown above. However, each of these protocols had to be
constructed from scratch, and are not easy to modify to support
other, different application needs. CTP, however, allows the
application authors to customize protocol behavior using a
single integrated package that already supports a wide range of
application-desirable semantics.
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TABLE II
ROUND-TRIP LATENCY ON LOW-LATENCY UNRELIABLE NETWORKS

2) Hardware-Specific Customization: In the previous case,
CTP was able to be easily reconfigured to provide superior per-
formance to applications compared to TCP and UDP because
the service requirements of the application were different than
those provided by TCP and UDP. However, CTP configurations
can provide superior performance compared to TCP even in
cases where TCP exactly matches application service require-
ments, particularly when the underlying network hardware vio-
lates fundamental assumptions that TCP makes.

For example, modern versions of TCP derived from the BSD
code retransmit segments after receiving three duplicate ACKs
or upon expiration of a retransmission timeout, However, the
TCP retransmission timer is typically very coarse, on the order
of 500 ms. Local wireless networks, connections across campus
networks or even wide area-networks frequently yield round-
trip times on the order of tens of milliseconds or faster, so faster
retransmission timers can be beneficial under certain circum-
stances. This is particularly true on, for example, 802.11b wire-
less networks, which can have low latencies and high drop rates.

We have measured the performance of CTP using the CTP-
Bulk configuration described above. This configuration includes
the and microprotocols described in
Sections III-B and III-C, which use fine-grained retransmission
timing. Table II lists the average round-trip latency of this CTP
configuration compared to TCP. These times were measured
using 10 tests of 100 back-to-back round-trips using zero-length
application packets. This test was performed on the same plat-
form as described above; network packet losses were simulated
by randomly dropping varying proportions of packets on each
receiving machine.

Although TCP has better latency in the lossless case, CTP
was able to provide faster delivery on average when losses oc-
curred by retransmitting more quickly. CTP can provide similar
advantages in other environments where TCP is known to per-
form sub-optimally, such as high bandwidth-delay product links
and long-distance wireless networks, or networks where losses
may not be the result of congestion but may instead indicate, for
example, radio interference. Moreover, CTP allows the user to
configure all of these from a single integrated package, rather
than forcing the construction of new specialized protocols from
scratch.

D. Performance Optimizations

The performance of a composite protocol built using Cactus
such as CTP can be optimized in any number of ways. These
optimizations can be classified based on whether they require
changes in the Cactus runtime system or microprotocols, and

the extent of these changes. The least intrusive optimizations
customize the protocol’s behavior using features in the Cactus
runtime specifically provided for such customization. For ex-
ample, message handling operations can be customized to con-
struct message headers in whatever format is most efficient for
the particular protocol by customizing the message pack and un-
pack routines as mentioned in Section II-B.

Another type of optimization modifies the Cactus runtime
system, but does not require changes in the microprotocol code.
For example, to eliminate the table lookups required to invoke
customizable operations, the message handling operations can
be added as static functions to the runtime system. Similarly,
event dispatch and handling performance could be dramatically
improved using techniques already demonstrated elsewhere
[19], [20].

Finally, some optimizations require that the chosen micropro-
tocols be modified in some way, either by hand or through auto-
matic compile time or run time optimization. For example, the
indirection required to raise an event can be optimized by re-
placing the raise operation with direct calls to the appropriate
event handlers or even by inlining the handlers.

In the experiments above, the only optimization used was
the first one described above, where the Cactus message han-
dling operations are customized. This optimization resulted in
a minor decrease in the latency and increase in the bandwidth
in the CTP-Minimal and CTP-Bulk configurations over unop-
timized CTP. This only took a few hours of programming and
did not require any changes to the Cactus framework or CTP mi-
croprotocols. Other work has shown that more aggressive CTP
optimizations can substantially improve CTP bandwidth perfor-
mance [21].

VI. RELATED WORK

Other projects have explored composite protocol frame-
works, generally in the context of specialized environments.
Specifically, XTP [22] and TP++ [23] have been used to support
flexible data transport in high-speed networks, and Minden’s
composite protocol system [24] supports transport protocol
composition for active network systems. XTP, for example, can
be configured to support different amounts of reliability and dif-
ferent connection establishment mechanisms. In contrast, CTP
is designed to allow general configurability, enabling its use in
a wide range of general purpose and specialized applications.
Unlike these systems, CTP also allows the wire message format
to be customized, potentially enabling backwards compatibility
with protocols such as TCP and UDP.

A number of different configuration frameworks have been
used to construct modular transport services [9], [25]–[28].
Most of these frameworks use a hierarchical composition
model where the communication subsystem is constructed as a
directed graph of modules, with interactions limited to message
exchange between adjacent modules. In contrast, Cactus does
not force a linear order between modules when the modules
are logically on the same level or independent, and allows
arbitrarily rich interactions between modules.

Protocol heaps [29] propose a non-hierarchical role-based ap-
proach to constructing network services and suggest that such
an approach could be used either in a single layer of a protocol
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stack or to replace the stack altogether. While the authors note
that roles in their proposed system are similar to microproto-
cols in Cactus’ predecessor Coyote [30], Cactus and Coyote
focus only on providing support for non-hierarchical composi-
tion with a single layer of the stack. To our knowledge, protocol
heaps have not yet been used to implement substantial proto-
cols such as we have done with CTP. However, because of the
similarities between the two systems, our experiences designing
and implementing a flexible, non-hierarchical transport service
and our measurements of the costs of such flexibility should be
directly applicable to protocol heaps.

Another non-hierarchical approach is used in Adaptive [31],
where each protocol or service consists of a “backplane” with
slots for different protocol functions such as flow control and
reliability. Unlike CTP, this backplane restricts the composition
to a fixed set of functions and also constrains the interactions
between different protocol functions.

Other more specialized transport protocols have been pro-
posed since the introduction of TCP and UDP. Examples include
RDP [32], which provides a message-based transport service
with reliability and optional FIFO ordering guarantees, and
VMTP [33], which provides transactional (RPC style) commu-
nication with customizable reliability and some support for real
time and multicast data. More recent proposals include RTP [4]
for transmissionof real-timedatasuchasaudioorvideoovermul-
ticast network services, SCTP [7] for improved reliability using
techniques such as multihoming, and partially-reliable transport
protocols [34] for use in multimedia services. Extensions to TCP
have also been developed to improve its performance and appli-
cability for specific application or execution domains. Examples
of such extensions include selective acknowledgments [35]
and support for transaction-oriented services [36]. As already
noted, the goal of CTP is not to be yet another transport protocol
or yet another TCP extension, but a prototype of a completely
customizable transport protocol that can be configured to serve
any application domain in any execution environment.

VII. CONCLUSION

The ability to customize transport protocols can provide im-
portant flexibility when it comes to supporting new applications
and new network technologies. Here, we have described an ap-
proach to building such services based on Cactus, as well as
a concrete realization of the approach in the form of CTP. In
this family of transport protocols, various attributes are imple-
mented as separate microprotocols, which are then combined
in different ways to provide customized semantics. Initial ex-
perimental results indicate that, while the performance is some-
what slower than TCP and UDP for similar configurations, the
ability to target the guarantees more precisely can in fact re-
sult in better performance. While it will always be possible
to construct more efficient specialized solutions, CTP allows
easy component-based construction of custom transport proto-
cols with minimal effort.

Future work will focus on using CTP as an experimentation
and prototyping platform to implement and measure different
transport-related algorithms. This will require extending CTP
with, for example, MPI-style matching instead of port-based de-
multiplexing. We also plan to extend CTP to support customiz-

able multicast and group communication, as well as to explore
further performance optimizations.
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