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ABSTRACT 

Reverse engineering is the process of defining and instantiating a model based on 

the measurements taken from an exemplar object.  The measurement (or data sensing) 

process is prone to random and systematic errors and often fails to sense the object in a 

manner consistent with the intended functionality of the object's design.  Therefore a 

model fit directly to the data will not faithfully capture the geometry of the part (the 

form), nor the relationships among features of the part (the function) as originally 

specified by the designer. 

Manmade objects are often well defined, following specific rules and structures 

based on perceived pragmatics.  This is especially true in the case of mechanical two and 

a half dimensional (2.5D) machined parts. Because of the high accuracy needs of this 

domain, reverse engineering techniques using generic primitives are inappropriate. This 

dissertation asserts that an understanding of common design practices and 

manufacturing knowledge specific to 2.5D machining can and should be used to guide 

the reverse engineering process in order to achieve higher accuracy models. 

To this end, reverse engineering is characterized as a constrained optimization 

problem. Logical laws of form are encoded as constraints in order to coerce new models 

to emulate the structure common to this genus of parts while best approximating the 

sensed data.  A technique has been created to automatically hypothesize likely 

constraints that should hold on a hypothesized model.  These constraints drive a DOF 

reduction process on the model and are further encoded as penalty functions during the 

model optimization.  The entire process is formulated in a manner consistent with 

modern optimization techniques. 
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CHAPTER 1 

1 INTRODUCTION 

Reverse engineering, defined as model creation from exemplar
1
 objects, is 

becoming more prevalent in many industries, including manufacturing, automotive 

design, and computer animation.  While fields such as computer animation can often get 

by with low resolution models enhanced with texture maps, such fields as automotive 

design require high precision models in order to merge assemblies of parts and check 

their interaction based on their real world physical properties.  This work focuses on 

techniques for recreating high accuracy models of manufactured mechanical parts, 

specifically those designed for 2.5 axis milling. 

Mechanical 2.5D machined parts
2
 are defined by their 2D profiles in the X-Y 

plane and an extrusion depth.  These parts are typically created using a three axis 

machining center.  Such parts are found in many real world applications and represent a 

rich and complex geometric environment, yet one that has sufficient structure that can be 

exploited in the reverse engineering process.  Further, these parts are often difficult to 

measure precisely using optical or manual scanning techniques because of their 

reflectance patterns, abrupt discontinuities, curved surfaces, and deep concavities.
3
 

The traditional solution is to have an engineer take the part, make sketches of it, 

measure it using handheld calipers, and recreate a new model representing his or her 

                                                 

1
 The term exemplar is used to refer to the physical object of interest. 

2
 Throughout the dissertation, the terms part, exemplar, and object will be used 

interchangeably to refer to mechanical parts designed for and machined on three 

axis milling machines. 

3
 In fact, it is often the case that the sensed data is poorest in the areas where the 

most accuracy is needed, such as feature intersections. 
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interpretation of the part.  Although calipers measure certain widths and lengths 

accurately, they unfortunately are often not appropriate for measuring relationships 

between features of the object nor do they easily handle sculptured surfaces.  Thus the 

expert's own judgment has to be used to correct for the lack of accurate measurements of 

the physical properties under consideration.  This makes for a time-consuming process 

and often results in a redefinition of the model, not a replication. 

Modern sensing-tools (i.e., vision systems, laser systems, and touch probes) are 

capable of providing copious amounts of data not easily acquired using manual calipers.  

This data is processed using low-level generic primitives
4
 to fit a wide variety of 

topological domains from solely free-form geometry to well-structured manufactured 

parts.  The strength and weakness of these systems is their generality.  Although such 

systems can produce a model for "any" surface, they often fail to achieve the required 

accuracy, and they do not capture the functionality behind the objects they represent. 

Current computerized geometry reconstruction systems are not sufficient for overcoming 

the noise associated with the sensed data, nor do they produce appropriate models 

necessary for redesign or manufacture.  This limitation is rooted in two main causes: 

sensor error and model inappropriateness. 

Although many data sensing techniques exist, all suffer from different problems 

and inaccuracies, resulting in random and systematic noise in the data.  This work uses 

data produced by an automatic laser range finder.  Such data present a cloud of 3D points 

that lie within an error bound of the true surfaces.  This error bound is often larger than 

the required accuracy of the model application.  Further, these data clouds are 

unstructured, often having missing areas of data, and containing data with systematic 

errors. 

The second reason current methods can fail is that they are inappropriate to the 

specific goals of a given type of reverse engineering.  For example, a triangulated mesh 

perfectly interpolating the sensed data, or a simplified mesh approximating the surface of 

the data, can be constructed.  In either case, the representation fails to capture the 

                                                 

4
 Generic primitives include both triangulated mesh representations and simple 

geometric primitives such as spheres, cubes, and cylinders. 
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semantics associated with the geometry and functionality of many parts where 

topologically uniform surfaces are encountered.  Likewise a spline patch approximating 

the geometry of a region does not embody the ontological fact that the geometry was 

actually a plane, or a hole, or some other mechanical feature. 

1.1 Thesis 

This work addresses creating appropriate and faithful models for mechanical 2.5D 

machined parts, reconstructed from physical exemplars, that maintain tight tolerances 

compared to the original part as designed.  The success of this effort has been in the 

ability to incorporate domain specific knowledge of manufacturing and design in such a 

way as to produce new models that are truer to the original design. 

This dissertation proposes a new method for mapping domain-specific knowledge 

about manufacturing and design into the reverse engineering process.  Knowledge is 

formulated in terms of geometric and parametric constraints that confine the topology of 

the hypothesized model to well-defined forms.  The reverse engineering process is 

defined as an optimization framework attempting to minimize the distance from the 

sensed data to the hypothesized model while enforcing all constraints.  The constraints 

directly and indirectly impose structure on the geometry of the model and are 

mathematically formulated in a manner that allows them to be integrated into global 

optimization methods.  The process produces CAD models that more accurately represent 

the form and function of the exemplar parts as originally designed. 

This research demonstrates the effectiveness of constraint-based reverse 

engineering in overcoming sensor error and achieving faithful and accurate models.  

Faithful models logically depict the objects as they might have been designed and attempt 

to use a minimal set of parameter to do so.  Accurate models contain little positional error 

when compared to the geometry of the original design.   

A set of constraints representing knowledge of 2.5 axis milling and design has 

been proposed.  These constraints, as well as the geometry they apply to, have been 

formulated for optimization using standard optimization packages.  Finally, a method for 

automatically hypothesizing likely constraints has been created.  This dissertation makes 

no attempt to advance the core area of optimization, but instead details how reverse 
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engineering/model reconstruction can be formulated in a manner that takes advantage of 

the strengths of current optimization strategies. 

1.2 Goals and Validation Techniques 

The operational domain of this dissertation is that of mechanical part re-creation, 

and thus the primary application-area goal is to create high precision models from 

exemplar parts that reflect not only the geometry of, but as importantly, the design intent 

behind the geometry.  The pedagogical goal behind this research is to show that 

knowledge in this domain can be encoded directly using geometric and parametric 

constraints in a manner fit for use with standard optimization algorithms.  The result is a 

reverse engineering method couched in the terms of constrained optimization that 

produces models that are more accurate than previously attainable. 

A new computational framework has been created which represents design and 

manufacturing knowledge as constraints that guide a global optimization process.  

Additionally, a technique is advanced for automatically hypothesizing and asserting 

constraints based on such knowledge.  Finally a system has been developed which 

encompasses the reverse engineering process, rapidly and semi-automatically segmenting 

and fitting unordered data clouds, hypothesizing constraints, optimizing based on the 

constraints and data, and finally producing faithful, high accuracy CAD models. 

To validate the claims of this dissertation, exemplar parts and designs were taken 

from mechanical parts created and designed for automotive systems.  The initial models 

were available for comparison with the reverse engineered models.  The results both in 

terms of global error measurements and in terms of parametric faithfulness to the original 

design are given for a variety of exemplar parts.  These results show that the techniques 

developed for this research are effective and powerful. 

1.3 Reverse Engineering Process 

The model creation process, as applicable to this work, is shown in Figure 1-1.  A 

2.5D part, for which a new model is required, is scanned by a laser range finding sensor 

to produce a representative set of 3D points.   
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Figure 1-1: The Reverse Engineering Process 
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The points are partitioned based on local areas of common geometry.  They are 

then fit to an initial set of geometric primitives.  This initial model is analyzed to produce 

a list of likely constraints on the geometry that are deemed to hold based on design 

principles.  An optimization procedure is then applied to produce a new model that 

corresponds to the 3D points but maintains certain high level properties.  The resulting 

model has increased accuracy over previous techniques and is in a form that can be re-

engineered or directly machined. 

1.4  Artifacts 

Manmade objects are almost always designed with far less than the total 

representational power of free-form geometry.  In the case of mechanical 2.5D machined 

parts, the geometry usually contains many well-defined geometric relationships.  Such 

artifacts include parallel planar faces, aligned holes, symmetric pockets, and common 

widths and radii.  Such knowledge can be encapsulated as geometric and parametric 

constraints.  Constraints restrict the possible geometric structures of the model during the 

optimization process to those that mimic the physical properties encountered in the 

exemplar object.  Thus constraints can be viewed both as a language that allows an 

engineer to discuss geometric properties and as a tool that mathematically restricts the 

geometry to certain shapes. 

"Modeling accuracy depends on effective use of properties that distinguish the 

geometry of interest from effects due to sensor noise" [7].  This research has identified 

three levels of constraints that are useful in representing the progression of knowledge 

used in model creation: domain specific primitives, domain specific pragmatics, and 

functional constraints.  Domain specific primitives narrow the possible shape of the 

reconstructed model from arbitrary geometry down to a well-defined set of design and 

manufacturing features.  Domain specific pragmatics attempt to capture specific 

geometric conditions and conformities that are likely to be found based on how a part is 

designed and manufactured.  Functional constraints describe likely interaction among the 

features of the object. 

Each level represents a broader view of how design artifacts are predicted by 

analyzing design intent.  By progressively utilizing and enforcing each level of 
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constraints, more knowledge is brought to bear on the problem creating more accurate 

models when compared to the original design.  

1.5 Optimization Over Constraints 

An optimization method can be interpreted as a process to minimize some 

undesirable criteria.  In the unconstrained case, the optimization criterion is the geometric 

distance between the hypothesized model and the sensed data points.  In the constrained 

case, the hypothesized model is created using a limited set of appropriate geometric 

forms that are then optimized based on the data, subject to certain geometric constraints.  

It is important to understand that the topological and geometric constraints asserted 

during the reverse engineering process prohibit the model from simply conforming to the 

sensed data, because it is known that the sensed data is only an approximation of the true 

form of the object. 

To employ a compatible optimization method, the constraints and models must be 

represented mathematically.  For the purposes of this work, the models and constraints 

are expressed in terms of symbolic parametric notation and geometric construction 

algorithms.  This makes it possible to define error metrics for the sensed data and for the 

violation of constraints.  This further allows the model to be redefined using fewer 

variables; this process is known as the symbolic degree of freedom (DOF) reduction 

process and is driven by the asserted constraints. 

It is important to note that previous efforts on model reconstruction fit each 

feature (model element) of the object individually without consideration to its global 

function.  Constraints accord a method to integrate multiple geometric features during a 

single optimization session, rather than as several distinct optimizations.  This provides a 

powerful tool for accurately extracting the intended relationships and geometry over the 

entire exemplar object. 

1.6 Overview 

Chapter 2 details the background work that forms the foundation for constraint-

based reverse engineering.  This includes a review of reverse engineering considering 
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both vision-based techniques and those dealing with pure range data.  Further, a brief 

introduction is furnished for the field of optimization. 

Chapter 3 contains a motivation for and discussion of the domain specific 

knowledge applied in building the constraint optimization framework.  A set of design 

constraints is given as well as the motivation behind the use of these constraints for 

reverse engineering. 

Chapter 4 describes how the constraints and geometry are formulated to work 

with the optimization methods.  Details of the constructive geometry specific to this 

domain are shown and methods are described for reducing the complexity of models by 

asserting constraints to reparameterize and reduce the DOFs of the model. 

 Chapter 5 details the method for automatically hypothesizing constraints based 

on initial geometric and parametric fittings of the data.   

Chapter 6 discusses the entire reverse engineering process and the resulting 

models.  Quantitative results for each exemplar object are exhibited along with a 

qualitative description of how well the constraint assertion and optimization process 

functioned in recreating the object relative to how the designer likely envisioned it. 



 

 

CHAPTER 2 

2 BACKGROUND 

The research presented here is based on many fields: reverse engineering 

techniques in the field of manufacturing, modeling, data segmentation and fitting, 

dimensioning and tolerancing, feature-based design, geometric constraint systems, and 

optimization theory. 

2.1 Reverse Engineering in the Field of Manufacturing 

Reverse engineering is the process of accurately duplicating an object (in many 

cases by creating a CAD model for the object).  This process has found use in the areas of 

computer graphics, animation, medicine and CAD/CAM
5
, among others.  The need for 

reverse engineering in the field of manufacture has becoming increasingly important.  A 

few common scenarios follow: 

 Designers, such as in the automotive industry, sculpt new models from clay.  

CAD representations of these models are then required to produce the finished 

part.  

 Spare parts are needed, but no CAD models or design processes exist for the part 

due to the part's antiquity or other business related reasons. 

 Original CAD models no longer represent the true part because of subsequent 

undocumented modifications made after the initial design stage.
6
 

 

                                                 

5
 CAD/CAM represents computer aided design and manufacturing. 

6
 Modifications are often introduced during the lifetime of a part, occurring as early 

as the initial manufacturing process when changes are sometimes made directly 

on the shop floor to facilitate the machining of the part. 
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Traband et al. [37] identify many of the concerns and opportunities that are now 

or will soon be associated with reverse engineering.  They define the results of a reverse 

engineering operation as producing a type three drawing set and a set of intelligent CAD 

models of the components.  Further, they define the reverse engineering preprocess as: 

1. Collecting all available information and documentation, including nonproprietary 

drawings, functional requirements, tooling and fixturing requirements, processing 

and material requirements, etc. 

2. Identifying new data elements required for a complete technical data package. 

3. Performing a cost/benefit analysis. 

4. Contacting the cognizant engineer. 

5. Establishing a reverse engineering management plan. 

6. Establishing acceptance criteria. 

Once this process has been accomplished, the technical issues of the actual 

reverse engineering process must be addressed.  This process usually starts by scanning
7
 

the part in question.  The result of the scanning process is often simply a set of 3D 

geometric points associated with the surface of the object.  Numerous early researchers 

from the vision community have reported on employing vision-based systems (using 

intensity and range image analysis) for reverse engineering.  Specific examples of reverse 

engineering research can be found in [11], [18], [19], [22], [24], [25], [28], [30], [36], and 

[37] among others. These works form a foundation for modern forays into reverse 

engineering.  Unfortunately, none provide the accuracy and fidelity needed for CAD 

models in the realm of mechanical parts. 

Broacha and Young [4] describe the commercial state of the art of reverse 

engineering.  They mention several factors that should be provided in any reverse 

engineering system.  These include a facility for data import and export, a mathematical 

foundation of surface modeling, comprehensive functionality for displaying and 

manipulating point data, and the actual process for reverse engineering or surfacing.  

These criteria, along with those established above, greatly reduced the number of viable 

                                                 

7
 A list of scanners/digitizers can be found in [4]; information on coordinate 

measuring machines can be found in [28]. 
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reverse engineering systems in either commercial or academic use.  The constraint-based 

optimization approach described in this dissertation offers a path for adding domain 

specific knowledge into such a system. 

2.2 Modeling 

A geometric model represents the spatial aspects of an object.  In the field of 

manufacturing, the traditional model is a blueprint, or engineering drawing.  This 

"model" specifies geometric information as well as material, assembly, and tolerance 

information.  It would be up to a manufacturing engineer to translate the model (drawing) 

into a manufacturing plan.  In some cases, the manufacturer modifies the original 

drawing to simplify or facilitate the manufacturing process.   

With the advancement of electronic technology, it was only natural to 

computerize the design and modeling stage, and even the manufacturing process itself.  

According to Dierckx [9] a good model should provide the following functionality: 

 Parameter Estimation:  When modeling a known curve, it is often necessary to 

instantiate the parameters of that curve. 

 Functional Representation:  Functions give us values over the entire range of the 

data, as well as provide derivative information. 

 Data Smoothing:  Because sensed data is subject to error, it is not sufficient nor 

desirable to interpolate the data, but rather it is necessary to approximate the true 

curve. 

 Data Reduction:  Storage, manipulation, and reasoning needs often require that 

large volumes of data be replaced by a set of parameters much smaller than the 

original data set. 

The value of a computerized model lies in the ability of the computer to 

manipulate and reason about the model.  A good model captures the crucial information 

necessary to construct or utilize an object while abstracting away erroneous detail.  The 

computerized model construction process is similar to the original drafting process.
8
  A 

                                                 

8
 See Sturgill [33] for a discussion on the necessity of “drawing” in the design 

process. 
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well-defined CAD system mimics the way an engineer designs a part, unobtrusively 

restricting the part definition to conform to well known design principles.  The result is a 

CAD model that implicitly and explicitly describes the object as intended. 

CAD models should replace the engineering drawings with all required 

information, including geometric and tolerance information, as well as retain the intent of 

the designer.  It should further be possible to generate engineering drawings from the 

CAD model.  Few modeling methods satisfy all these criteria.   

Among the most often encountered computer geometry representational 

techniques are point clouds, spatial occupancy representations, B-Reps, Constructive 

Solid Geometry (CSG), generalized cones, polygonal meshes, and feature-based models.   

Point clouds are collections of 3D geometric points that are associated with the 

surface of an object.  Point clouds are the standard output of traditional sensing devices.  

They represent optically gathered or physically touched locations on the surface of real 

world objects and exhibit a tolerance range of deviation from the true surface.  These 

clouds are used as the input to various data fitting algorithms.  Point clouds are 

straightforward to maintain and manipulate as a single entity but are seldom used in the 

design process.  They are cumbersome and lack precise geometric information to 

describe accurately all but the coarse shape of a part. 

Spatial occupancy representations divide 3 space into discrete and uniform 

subregions that can be combined to describe the volume enclosed by a part.  Various 

representations are discussed by Besl [1] including voxel, octree, tetrahedral cell 

decomposition, and hyper-patch representations. Such a representation is useful for 

computing simulations of the properties of a part, but requires copious amounts of 

memory to store complex shapes and is not directly amenable to engineering processes. 

Surface boundary representations, or B-Reps, are a modeling form in which "an 

object is modeled by a graph corresponding to a hierarchy of topological entities (faces, 

edges, vertices)" [32].  Such a model easily captures discontinuity information, but does 

not represent high level features (such as pockets or holes) or the design intent behind the 

model.  B-Reps are often used to generate code that controls numerically controlled 

machining devices. 



 

 

13 

CSG models are formed by taking geometric primitives, such as rectangles or 

cylinders and combining them by invoking regularized Boolean operators, such as "and" 

and "or" [32].  A model is typically comprised of a large number of simple shapes that 

are added or subtracted (i.e., “Booleaned”) together hierarchically to define complex 

geometry.  CSG models must be recomputed every time a primitive is moved to 

reevaluate edges and vertices of the object, and they cannot easily represent many 

manufactured objects. 

Generalized cones describe an object as the area produced by sweeping an 

arbitrary 2D curve, or cross section, along a 3D space curve, known as the axis [1].  

These shapes perform well in many situations, but are not general purpose enough to 

represent a rich set of free form surfaces. 

Polygonal meshes, or wire-frame models, are simple boundary representations of 

data.  They allow shaded renderings of objects and can be used in some simple tasks 

where deforming a complex object is not necessary.  Meshes are also one form of model 

that can easily be constructed from actual data.  As discussed in the next section, Hoppe 

et al., [16] suggest the mesh as a generalized surface reconstruction representation. A 

chief drawback to meshes is that they are piecewise linear representations of a model; 

most models require higher DOFs to accurately represent the true geometry.  Further, the 

use of meshes in the design process can be rather cumbersome after only a few vertices 

are added [33]. 

Feature-based models represent the CAD community’s most recent attempt to 

capture, or enforce, design practice as well as to facilitate transferring models from the 

area of design to manufacturing.  They restrict the designer to a set of well-defined 

operations, based on common mechanical features, which are used to describe a part.  

This set of features strives to be powerful enough to design most manufactured parts but 

structured enough to ease the design process by limiting the possible topologies to those 

that are readily machined.  Feature-based design is discussed further in Section 2.6. 

For more information on model types and their use in object recognition, see Besl 

and Jain [1], and for surface reconstruction, see Bolle and Vemuri [3]. 
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2.3 Data Segmentation 

Besl and Jain describe segmentation as surface characterization.  "Surface 

characterization is the computational process of partitioning surfaces into regions with 

equivalent characteristics" [1]. 

The goal of data segmentation is to associate data points with the hypothesized 

feature they represent.  Proper classification of data points into their associated features is 

necessary before fitting can begin.  Least squares fitting supposes a zero mean Gaussian 

distribution of error.  Any points associated with the wrong feature act as outliers, greatly 

disrupting the fitting process.  It is often the case that the points associated with the 

boundaries between features contain the most noise and thus care needs to be taken to 

segment out large and/or more easily identifiable features first in an attempt to diminish 

this problem. 

Segmentation methods initially came from the vision community where image 

partitioning was of key interest.  Two primary methods exist for segmentation of a range 

image: edge based and region based segmentation [24].  Edge based methods use 

discontinuities to encircle a region that is then considered classified.  Region based 

methods attempt to classify points based on local properties, such as intensity value, 

orientation, or curvature.  All neighboring points that have similar properties are grouped 

into the same region. 

Segmentation of 3D point clouds relies on two approaches.  The first and most 

often seen is bottom-up segmentation, but recent work suggests top-down segmentation 

as an alternative [36].  In a bottom-up segmentation, subfeatures, such as planes, lines, 

and arcs, are identified and then combined into shapes such as pockets or outlines.  This 

technique can fail when the data is extremely noisy or sparse, or when the surface does 

not conform to standard assumptions of smoothness and local uniformity.  Attempts to 

overcome these problems utilize various robust segmentation routines that can tolerate 

various percentages of outliers. 

Owen [24] suggests that a top-down segmentation approach is advantageous.  The 

idea behind top-down segmentation is that if some source (e.g., an interactive user) can 

identify the top-level feature, such as a pocket, then the computer can produce the low 

level geometry associated with the feature.  The top-level feature provides constraints on 
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the hypothesized model that can be used to help classify a data point as included or 

excluded. 

Various examples of segmentation and fitting techniques are detailed in the next 

section.  Many of these techniques come from the machine vision community where 

image reasoning necessitates a good classification of the image regions.  For further 

reference see Besl and Jain [1]. 

2.4 Data Fitting 

Data is produced from sensors in an attempt to describe a phenomenon.  Often 

there is some amount of noise in the data because of the inability of the sensor to 

perfectly capture its subject.  It is the object of the data fitting process to produce a model 

which best describes the sensed object based on this data.  Traditional methods employ 

generic modeling primitives to approximate a wide variety of forms.  Newer techniques 

utilize domain specific models in an effort to overcome the error associated with the 

sensing process and produce more accurate representations. 

General data fitting techniques include functional approximation and 

interpolation.  In the simplest case, interpolation techniques fit functions directly through 

the measured data points.  Approximation techniques fit functions in the neighborhood of 

the data points, attempting to minimize some error function.  Interpolation is often used 

in the design process where the designer represents a shape, such as the profile of the 

part, by several points and asks the computer to connect them via primitives such as arcs, 

lines, or splines.  Approximation is used to fit large amounts of usually noisy data.  A 

well-known error criterion is the weighted least-squares function.  This function can be 

described as: 
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An attempt is made to minimize the error function E, where w is a vector of 

weights (often uniformly set to one), r is the number of data elements, p is the data 

vector, and Z is the model.  By minimizing the RMS (Root of the Mean of the Squares) 
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error, an optimal fit can be achieved on data that has zero-mean Gaussian noise.  Analysis 

of the sensor used in this work shows it to produce approximately normally distributed 

data with identifiable areas of systematic error. 

For linear equations, a closed form solution can be found using the least squares 

fitting technique.  Because it is not possible to find a general solution to curve estimation, 

iterative methods are necessary [34].  Iterative methods describe the broad area of 

algorithms that attempt to find maximums (or minimums) in data spaces via some sort of 

search or iterative approximation. These numerical routines often assume a continuous 

functional distribution and follow derivative information in an attempt to descend to the 

lowest error area.  Multivariate functions describing complex CAD modes are often 

nonconvex, thus having multiple maximums and requiring either good initial guesses, or 

specialized global optimization techniques. 

Many CAD and reverse engineering packages utilize spline based models [4], 

[10], [19], [30].  Splines supply a mathematically sound representation for 3D curves and 

surfaces that provide many nice properties such as smoothness constraints and data 

reduction.  Splines can also be broken up into local piece-wise smooth sections to model 

more complex geometry.  These local sections can be modified without affecting any 

other part of the surface.  Unfortunately, splines can actually over fit the data.  Because 

splines are a generic approximation of a surface they can undulate through the noise 

reducing the error to the data.  This can produce a curved surface where a lower DOF 

surface, such as a line or arc, is more appropriate. 

To familiarize the reader with data fitting and segmentation techniques in the area 

of pattern recognition and image analysis, several methods published in this area are 

reviewed below. 

Han et al. [13] suggest that for industrial parts, it is sufficient to identify a set of 

features that represent a majority of such parts.  These features include planes, cylinders, 

and spheres.  They use an image-based approach, generating normals associated with full 

regions in the image, separated by planes or other boundaries.  From the normals, they 

predict geometric features.  This approach is not appropriate to mechanical parts because 

of the reliance on inappropriate primitives. 
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 Jain and Naik [19] describe a system for developing spline-based descriptions of 

objects from range images.
9
  Their system is divided into a robust segmentation algorithm 

and a spline-based fitter.  The segmentation algorithm, based on the work by Besl [2], 

computes HK regions (H is the mean curvature; K is the Gaussian curvature).  These HK 

regions describe various surface properties such as peaks, ridges, valleys, flat areas, etc.  

The spline-based fitter then applies a least-squares fit to each subregion.  The claim is 

made that this system can produce CAD models regardless of the surface types found in 

the image. 

Hoppe et al. [16] suggest a method of surface fitting based on polygonal meshes.  

They suggest that surface fitting and function reconstruction are two distinct classes of 

problems.  The idea is to produce a surface that approximates the true surface based on 

data points on or around the surface.  Their method requires no segmentation because the 

mesh does not exploit any partial structure in the data.  They iteratively build up a 

polygonal mesh based on the assumption that the object can be described as a collection 

of piece-wise linear surfaces.  Although this is a general-purpose technique, it lacks the 

powerful data reduction abilities of functional approximation and does not classify local 

areas of data into separate features useful in CAD/CAM applications. 

Chen and Medioni [5] also produce polygonal meshes.  They insert a balloon 

(polygonal sphere) into the volume of the object and then inflate it until it contacts the 

surface, where it becomes locked down.  At various stages they increase the size of the 

balloon so that the polygonal mesh will keep an average polygon size.   

Delingette et al. [8] discuss a polygonal segmentation and fitting algorithm that 

uses feature information to drive the fitting process.  They minimize an error criterion 

based on smoothness energy, feature energy, data energy, kinetic energy, and Raleigh 

dissipation energy.   By combining these forces, they attempt to deform a generic surface 

(a tessellated icosahedron) into the shape defined by the data points.  They present results 

on sculptured surfaces as well as polyhedral shapes. 

                                                 

9
 Range images comprise a 2D array of pixels but instead of intensity information, 

the pixels contain the distance from the camera to the object. 
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Taubin [34] discusses the problems of parametric curve fitting in two and three 

dimensions.  He suggests that fitting should be based on the mean square distance from 

data points to the curve or surface, but that this value cannot easily be computed and thus 

it is necessary to approximate the distance to the curve.  He also proposes that 

generalized eigenvector fits can provide a good initial estimate to iterative techniques.  

Finally he discusses the idea of interest regions and gives a variable-ordered 

segmentation algorithm for classifying them. 

Yu et al. [40] are concerned with robust segmentation in the face of outliers.  

They propose a system that can tolerate up to 80% outliers based on measuring residual 

consensus, using a compressed histogram method.  Their method is useful in segmenting 

out planar and quadratic regions from a range image.  The key element is a random 

selection of data points, a fit to these points, and a comparison with the complete set of 

random fits.  The fit with the most power based on a histogramming scheme is chosen to 

represent the data.  Like many generalized approaches discussed above, neither the 

accuracy of the approach nor the model generated are suitable for CAD/CAM 

applications. 

2.5 Dimensioning and Tolerance Information 

Dimensioning refers to detailing the size of the geometric structures of a part.  

Tolerancing refers to the process of assigning error ranges with respect to a feature as 

described by an engineering drawing or a CAD model.  Combined, they define the 

functional limits of a part’s geometry and describe the allowed geometric relations 

between elements of the part [29].  Both activities are important during the design phase 

as they pass on information to the manufacturer detailing the required precision necessary 

for the manufacturing process. 

A reverse engineered CAD model must provide dimensions for the part of 

interest, preferably in a manner consistent with modern design and manufacturing 

systems.  It should also provide tolerance information on the part.  This tolerance 

information should not only represent error associated with the reverse engineering 

process, but also represent the new set of tolerances associated with machining new parts 

of this type.  Although determining the error associated with the reverse engineering 
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process is conceptually straightforward, estimating original tolerances can be difficult to 

impossible based only on the sensed data.  Such information can often be hypothesized 

(by a domain expert) based on understanding of the parts functionality. 

The field of dimensioning and tolerancing describes the allowable error for a new 

part in terms of the violation of certain properties of the part, such as the diameter of the 

holes or the planarity of the pocket walls.  This type of information forms a foundation 

for the constraints used in this dissertation.  Current efforts to automate the creation of 

tolerances from engineering drawings have many of the same problems faced in the 

reverse engineering community.  For example, dimensioning and tolerancing 

formulations contain a great deal of implicit information that an expert engineer 

automatically incorporates into the manufacture (or reverse engineering) of a part.  An 

automated process cannot readily extract this information.  Likewise, the creation of a 

new part model can benefit from the explicit information found in the scanned part data 

as well as the implicit information known about the manufacturing process. 

Geometric tolerances describe the usual specifications found on an engineering 

drawing which detail the relation between features and subfeature.  Four tolerance groups 

have been identified [20]: 

1. Form tolerances, controlling the departure of the shape from the true shape.  

These include: straightness, flatness, roundness, cylindricality, line profile, and 

surface profile. 

2. Attitude tolerances, controlling the rotation relation between features.  These 

include: parallelism, squareness, and angularity. 

3. Location tolerances, controlling the translation between features.  These include: 

position, concentricity, and symmetry. 

4. Runout tolerances, controlling the amount of wobble when a cylindrical shape is 

rotated about its axis. 

A properly constrained model contains exactly enough dimensioning information 

to define the part without over or under-constraining it.  Current models are constructed 

using a forward-chaining paradigm, which requires that the part be built in such a way 

that all the geometric elements are created in a step-by-step manner [20].  Using this 

insight into the design process allows for a better approach to the reverse engineering 
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problem.  These tolerance groups represent the type of information that must be 

represented in order to accomplish the current work on constraint-based optimization. 

2.6 Feature-Based Design 

Recently, a push has been seen to develop feature-based tools for modeling and 

reverse engineering.  The term feature in CAD/CAM has come to represent an 

encapsulation of data representing both the form and the function of the object.  Features 

represent many properties associated with the design and production of a part.  Design 

features provide information associated with the designer's intent.  Manufacturing 

features provide insight into the manufacturing process for the object.  The distinctions 

and transformations between design and manufacturing features are the subject of 

continuing research [6].  The term form feature is used to represent the stored geometrical 

data.  Form features can be represented as volumetric features, referring to the solid 

volume of the feature, or as surface features, designating the surfaces exposed when 

adding or subtracting a volumetric model from a part.  In addition, features can be used to 

represent design intent via assembly features (how parts interact), material features (what 

parts are made of), and precision features (tolerance specifications).   

The use of a feature-based paradigm is important for two reasons:  First, features 

form a natural and efficient model for fitting data; second, many parts are designed either 

directly or intuitively along feature-based lines using standard design practices, and thus 

features usually correspond to the designer's intent and accurately represent the data 

acquired from real parts. 

Work by Shah [32], Shah and Rogers [31], and Cunningham and Dixon [6], form 

a foundation for the use of feature-based design and modeling in manufacturing.  A 

designer will choose a feature, such as a hole or pocket, and sketch  (or otherwise define) 

the geometry [33].  The CAD system implements any implicit properties that hold on the 

geometry of the feature, such as smooth transitions between arcs and lines.  Further, the 

designer can specify tolerance information as well as other design intent and save this 

with the model.  

The need exists for translating design features into manufacturing features that 

can be directly incorporated into NC machining code.  Cunningham [6] states that all 
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design features should be formed in such a manner as to be translatable into 

manufacturing features that can be directly machined.  Some features are common to both 

manufacturing and design, such as holes, while others require specific translation.  The 

features used in this work are common to both design and manufacture. 

Merat [21] uses a set of design features for inspection planning and associates 

inspection hints with each feature.  In a similar manner, the methods utilized in this 

dissertation apply constraints on the primitives used for features of a part, as well as 

across sets of features, bringing knowledge to bear on the model recreation process. 

Feature recognition is often necessary for producing a machining plan from a low 

level geometric model of a part.  This is similar to reverse engineering, but without the 

problem of noise.  An extensive review of this process can be found in Shah [32] and 

Vandenbrande [38].  Shah additionally subdivides the area into machining-region 

recognition (the development of tool paths) and that of actual feature recognition, 

arguably the more complex problem.  In both cases, the idea is to proceed from a 

geometric description of the part, such as a B-Rep (or in limited cases a CSG model), and 

derive actual features or milling volumes.  Both researchers utilize bottom-up 

segmentation of the geometric model, thus attempting to locate definable low-level 

patterns in the data that can be combined and built up into fully defined features.  This 

amounts to a combinatorial search problem, with heuristics to direct the search.   

Vandenbrande [38] shows some of the obstacles associated with a bottom-up 

approach, pointing out the difficulties of identifying features that interact and thus 

obscure each other.  The alternative is based on a top-down segmentation of the data.  

This is accomplished by allowing a human operator to interactively point out high-level 

features.  Thompson et al. [36] have proposed that manufactured features can more easily 

and justifiably be located and recovered by recognizing the power and utility of an 

interactive process utilizing an expert human.  The expert identifies the overall feature, 

such as a pocket, and the computer builds the underlying geometry of the feature.  This 

approach can save time and deal with interacting features.  Further, the user can evaluate 

the recreation and modify it as necessary. 

The work of [6], [10], [14], [33], and others provides confidence that 

manufactured parts are designed along common practices.  Feature-based CAD systems 



 

 

22 

are a natural out growth of practices common to engineering design [10].  This idea 

provides the key to Owen's Masters thesis [24].  Owen's work advances the following the 

premises: 

 Features form a natural parametric foundation for accurately fitting and 

representing data in the reverse engineering process when applied to mechanical 

parts. 

 Key features represent extruded profiles that can successfully be fit in 2D. 

 An interactive system utilizing a knowledgeable user can accurately and 

efficiently segment data and verify fits, using a top-down approach. 

2.7 Geometric Constraints 

Fundamentally, this dissertation is about taking physical representations of 

geometry and producing a mathematical model describing the physical object.  Two key 

issues are: 1) how to represent the geometry, and 2) how to impose constraints on the 

fitting process to construct geometry that behaves in a manner true to the physical world.  

The following section considers current research in the area of representing and 

manipulating geometry in the design of manufactured objects. 

Originally, the entire weight of making sure a engineering drawing was consistent 

fell on the designer. CAD systems were developed to put this onus on the computer.  

Many strategies have been tried, beginning as early as the 1960s with Sutherland's 

Sketchpad program.  Hsu's dissertation [17] attempts to address the idea of geometric 

constraint solving in the design process.  He lists several criteria for an ideal constraint 

solver: 

1. Reliability - Derive all possible solutions (if required). 

2. Predictability - Do not jump erratically through the solution space and should 

provide a way for a human to control the results. 

3. Efficiency - Allow interactive response times. 

4. Robustness - Handle over and under-constrained problems. 

5. Generality - Handle a wide variety of constraint types and not be restricted to any 

specific dimensions. 
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Couching these requirements in terms of a computer aided reverse engineering 

system gives: 

1. Reliability - The algorithm should derive a model that is consistent with the data 

given it and its knowledge of the design and manufacturing processes. 

2. Predictability - The algorithm should come up with the simplest accurate solution.  

An interactive user should be able to guide the process. 

3. Efficiency - The algorithm should run at interactive speeds. 

4. Robustness - The algorithm should be able to handle over and under-constrained 

hypothesized features. 

5. Generality - The algorithm should be able to handle a wide variety of parts and 

inter-related constraints and not be restricted to any specific dimensions. 

Given these criteria, Hsu defines four methods developed to address the 

constraint-solving problem.  These include propagation methods, numerical methods, 

constructive methods, and algebraic methods. 

Constraint propagation is the process of representing the geometrical constraints 

in the form of an acyclic graph.  The graph contains nodes representing the variables or 

constants defining the geometry and the edges of the graph represent the relationships 

between the geometry.  Once the acyclic graph is built, values are propagated throughout 

until a solution is found.  The graph cannot contain cycles of dependencies in order to 

ensure a solution.  To overcome this weakness, this method must be combined with 

numerical approaches. 

Numerical methods have been briefly described previously in relation to data 

fitting.  In these cases the geometry is represented as algebraic formulas and constraints 

are created by relating variables across equations.  Once a global equation is developed 

describing the geometry of the part, an iterative process is invoked to find a minimum 

error fit.  Unfortunately, these techniques are sometimes unpredictable and can have 

difficulties converging. 

A newer method of constraint solving which applies to problems solvable by 

ruler-and-compass construction is known as the constructive approach.  Constructive 

methods are an extension to standard propagation techniques, differing in the way 

constraints are ordered for evaluation.  Hsu describes two approaches: rule-based and 
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graph-based.  In the rule-based approach, geometric constraints are represented 

symbolically.  Rewrite rules are utilized to simplify geometry and reduce DOFs.  

Unfortunately, rule-based systems tend to be slow.  Graph-based approaches consist of 

two steps.  One, a top-down phase is entered where the graph is analyzed and a sequence 

of constructive steps is derived.  Two, a bottom-up phase occurs where the construction 

steps are carried out and the model is constructed. 

The final group of constraint solving techniques uses algebraic methods.  The 

geometric constraints are written as algebraic formulas, which are then combined and 

reduced using elimination methods.  Algebraic methods tend to be extremely slow and 

often have exponential complexity.  Table 2-1 is taken from [17] and summarizes the 

behaviors of the various methods. 

2.8 Sensors and Scanning 

The current generation of sensors provides three main operational groups (hand 

held, manually controlled, and automatic) and consists of two separate methods (touch 

sensing and noncontact sensing).  Hand held and manually driven sensors include 

traditional sensors such as calipers and micrometers, as well as modern coordinate 

measuring machines.  These devices fall within the paradigm of touch sensing, requiring 

some sort of probe to physically contact the surface of the part.  Non-contact sensors, 

Table 2-1: Method Analysis 

 Reliability Predictability Efficiency Robustness Generality 

Propagation Yes Yes Fast Yes No 

Newton’s No No Moderate No Yes 

Homotopy Yes ? Slow No  Yes 

Rule-based Yes Yes Slow Yes No 

Graph-based Yes Yes Fast Yes No 

Algebraic Yes ? Very slow Yes Yes 
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which are usually controlled automatically, include a gamut of devices that depend on 

light sensing and triangulation to produce 3D surface data. 

Hand held sensors, such as micrometers and calipers, are in theory accurate to +/-

2 microns
10

 but are subject to human error, and are limited to a small subset of the 

possible geometrical measurements that can be applied to an object. Their strength lies in 

measuring static fundamental qualities generic to most parts. Such qualities include hole 

diameters and part thickness. They can also be specialized to a particular job, such as 

determining the diameter of a rounded edge. 

Touch sensors do not provide a good means for measuring changing contours or 

other areas, on a part, which are custom designed.  For example, to determine the 

dimensions and geometry of a moderately complex interior pocket contour would require 

hundreds of accurate touches.  To even contemplate this task, one would require some 

sort of semi-automatic coordinate measuring machine (CMM).  Experience with CMMs 

has shown that, while extremely accurate, they are expensive, hard to utilize, user 

intensive, and slow.  Further, CMMs require customized programming (or manual 

operation) for every new part upon which they are used.  These problems suggest the use 

of noncontact sensing, cameras and/or lasers, as well as active sensing methods that 

attempt to remove human interaction from the sensing process. 

Noncontact sensors predominately use light to sense the shape of an object.  

Stereo camera systems triangulate common points on the object base on corresponding 

points in each view.  Laser systems either use time of flight to measure the distance to the 

object or project the laser spot on to the object and triangulate the distance.  Such 

triangulation systems are the most accurate claiming results in the range of +/-50 

microns.  These automatic range sensors have an advantage of being fast and requiring 

minimal user time.  Under ideal circumstances, the error associated with the acquired 

data is evenly distributed and can be averaged out; however, numerous situations 

encountered while scanning parts produce data points that are less well behaved.  

                                                 

10
 On average repeatable measurements are to +/- 25 microns. 
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For this work a Digibot II laser scanner was employed (Figure 2-1).  This scanner 

is a fully automatic laser range scanner.  The laser projector is translated in the X and Z 

directions.  The part is placed on the rotary table capable of rotating the part 360°.  The 

laser is set at a particular height (in Z) and the part is rotated.  A small red laser dot is 

projected onto the surface of the part, representing a single data point.  As the laser 

strikes the part, two separate light sensing diodes (fixed at 30° offsets from the projection 

vector) mechanically translate along the X direction sensing for the greatest light 

reflectance.  Given the X offset from the projection spot, a Y value is triangulated.  Once 

a value is calculated, the part is rotated a fixed number of degrees and a new Y value is 

calculated.  This produces a scan contour (or several contours), consisting of consecutive 

 

 

Figure 2-1: Digibot II Laser Scanner 
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2D points, describing the 2D geometry at a particular Z level.  Once these connected 

contours are completely sensed (to the ability of the machine), the laser projector is raised 

by a preset amount in the Z direction and a new set of contours is created.  This process 

continues until contours have been created from the bottom of the object to the top.  This 

results in an unorganized (the contour relationship is not used) set of 3D points. 

Empirical testing of the Digibot II shows data errors in the range of +/-125 

microns and systematic errors ranging up to +/-250 microns or more.
11

  The sensing 

process contains many sources of error.  It is not the purpose of this dissertation to 

address these issues, but instead to take the data "as is" from the sensor and attempt to 

overcome the noise through the constrained optimization process. 

The following problem areas have been identified in association with the Digibot 

scanner: 

 As the surface plane of the part relative to the path of the laser beam approaches 

90°, the laser does not accurately reflect back from the object to the sensors.  This 

often requires multiple scans of the part and results in subpar accuracy on sloped 

surfaces. 

 Deep concavities cause the scanner to be unable to sense the location of the laser 

mark, thus leaving unsensed areas in the data cloud. 

 Narrow pockets cause a spreading of the reflectance pattern of the laser.  This 

causes the bottom of pockets to appear to slope inward.   

 The surfaces of the scanned object must be able to reflect the laser in a uniform 

manner.  Many machined parts have highly specular metallic surfaces.  To scan 

them requires that they are sprayed with a coating of white powder or paint.  The 

paint thickness averages approximately 25.4 microns in thickness, but varies 

randomly across the entire model.  For high accuracy models, the thickness of the 

paint must then be analyzed and compensated for. 

                                                 

11
 As a point of reference, NC machining systems can produce parts to the accuracy 

of +/-25 microns or better.  For general purpose parts, accuracy in the range of +/-

50 microns is common. 
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It is apparent that data from even the best scanners are far from perfect.  New 

methods of fitting are necessary to compensate for this lack of accurate data.  The use of 

features and constraints attacks the problem at the fitting stage, not at the sensing stage.   

2.9 Optimization 

This section reviews the basics of optimization principles and techniques.  It is not 

intended as a complete introduction to numerical optimization, but as a refresher of 

general principles.  For more information refer to [27].   

Optimization is the attempt to find the best (or at least a good) solution to a 

problem where multiple variables are in competition.  This is achieved by minimizing the 

value associated with an error function.  In the case of model fitting, the standard 

function to be minimized is the distance from the empirical data to the surface of a 

hypothesized model.  The model is represented parametrically by a list of values that 

must be instantiated in order to specify the physical geometry of the object.  As these 

values are modified, the geometry of the model changes and the amount of error between 

the instantiated object and the data fluctuates. 

Given only two variables, the error can be graphed as a topographic map with the 

Z dimension representing the amount of error caused by various values of X and Y.  In 

higher dimensions, it becomes quickly impossible to visualize the optimization surface.  

The only certainty is that as the number of dimensions or DOFss increase, the problem 

becomes much harder to solve.  By choosing an appropriate representational form, it is 

possible to limit the DOFs necessary to fully represent a part’s geometry.   This both 

increases the resistance to noise in the data and makes the fitting process more likely to 

converge to the desired result. 

Typical reverse engineering programs tend to localize the optimization to one 

feature or even one subfeature, thus reducing the DOFs to a reasonable number.  When 

trying to optimize an entire model, even one of only moderate complexity, it is possible 

to deal with 50-100 DOFs, a situation in which even very fast machines take excessive 

amounts of time and most algorithms begin to break down.  Finally it should be noted 

that it is seldom the case that the best result is achieved by simply fitting the data.  When 
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possible, appropriate models and constraints should applied to the optimization process in 

order to guide and simplify it. 

2.9.1 Numerical Methods 

Classical numerical optimization is the attempt to find the maximum or 

minimum
12

 of an equation, or system of equations.  For functions of one variable, the 

goal is to find the value x
*
 such that ƒ(x) ≥ ƒ(x

*
) for all x.  The function, ƒ(x), is termed 

the objective function.  An example can be seen in Figure 2-2.  For this simple function, 

visual inspection determines x  = 1 as a local minimum and x ~= -0.64 as the global 

minimum of the function, and no unbounded maximum exists.  

Unfortunately, visual inspection is seldom available when solving complex 

equations, and even an expert's ability to reason about or visualize spaces drops off 

quickly after more than 3 DOFs.  To address this problem, optimization theory has 

created a class of iterative algorithms which attempt to step through the function starting 

at an initial value, x
0
, evaluating successive values of x

k
 until a minimum value, ƒ(x

*
), is 

found.  For multiple dimensions, x represents a vector of parameter values.  Several 

issues must be addressed to turn this general outline into a usable algorithm: 

1. How to choose the initial value, x
0
? 

2. How to choose the next value, x
k+1

? 

3. When is a minimum found? 

4. Is the minimum a local or global minimum? 

5. Are there any constraints that bound the values of x? 

Question 1 involves where to start the algorithm.  In general, this depends on the 

character of the function being optimized.  The best-behaved functions are those that are 

convex (or concave).  A function is said to be convex if it has the property: 
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12
 This discussion will be in terms of minimums.  For maximums simply solve for – 

ƒ(x). 
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Figure 2-2: Critical Points 

 

 

for any x, x' in C, and any pair of non-negative scalars p and q.  This implies that all 

points that lie on a line between two points of the function are also in the function (which 

is certainly not the case for large noisy reverse engineering spaces).  It can be shown that 

convex functions have only one minimum, and therefore that minimum is the global 

minimum.  Similar to convex functions are unimodal functions, in which there is a path 

of ever decreasing values from any starting point to the global minimum. 

Other good characteristics include continuity and differentiability.  Derivatives 

provide information about the local behavior of the function.  Further, if the function can 

be stated analytically, direct reasoning can often be made on it.  Unfortunately, many of 

the functions of interest in the real world are not so well behaved.  They often have 

multiple minima and maxima, have no analytic form, and at best can be differentiated by 

finite difference techniques.  In these cases, the importance of a good starting "guess" 
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cannot be overemphasized.  Arbitrary starting points cannot be guaranteed to converge to 

a global minimum and, at best, will take many more iterations to do so. 

Typical initial guesses attempt to start the optimization process as close to a 

solution as can be determined by some preprocessing.  Thus initial guesses are usually 

made with some "knowledge" of the function.  In the case of reverse engineering, each 

low level geometry element is fit separately and the results are used to start the global 

optimization process. 

Question 2 forms the crux of the iterative process.  "How is x(k+1) chosen from 

x(k)?"  The methods under consideration are local descent methods, which attempt to 

follow the function downhill until a minimum is reached.  Thus: 
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where p is a direction vector and a is a step size.  The down hill direction can be chosen 

based on derivative information, giving the equation: 

 

pxg T  )(0  

 

where g(x) is the gradient of the function at x.  The choice of a is deceptively complex, as 

too large an a leads to overshooting the proper value and too small an a leads to slow 

convergence  rates or non convergence. 

Question 3 concerns when a minimum has been found.  A minimum point is a 

point such that: 
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This formula is similar to the definition of the first derivative of a function. This leads to 

the idea that a necessary condition for a minimum is that the first derivative equals zero.  

Furthermore, it should be noted that while necessary, this condition is not sufficient to 

guarantee a minimum, as inflection points also have first derivatives equal to zero. 
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If the initial guess is close enough to the actual answer, then finding the minimum 

can be equated to finding the nearest zero crossing of the derivative. Newton's method is 

one method that can compute zero crossings.  This method forms the prototype for many 

iterative optimization algorithms and will be discussed in greater detail in the next 

section. 

Question 4 ponders the quality of the solution.  Is the current minimum a local or 

global minimum, and if a local minimum, is it good enough?  As noted previously, if the 

function is convex, a strong statement can be made about having found a global 

minimum.  Unfortunately, these are the only types of functions that have been studied 

sufficiently to make such a claim.  Certain optimization algorithms are designated as 

Global Optimizers
13

, and these routines attempt to find the global optimum, usually 

through techniques such as stochastic search, grid search, or simulated annealing.  They 

have little application to the problem at hand, as the complexity of the space makes them 

ineffective and a good initial guess is available.   

Question 5 introduces the idea of constrained optimization.  Two techniques are 

combined in the reverse engineering application.  The first method is known as an 

interior-point method; it constrains all iterations of the solution to remain in feasible 

regions (meaning all constraints are satisfied.)  For the purposes of this work, this is 

achieved via a model complexity reduction based on the constraints.  The details are 

presented in chapter four.  The second method is an exterior-point method; this method 

allows the intermediate parameter values to violate certain of the constraints in an effort 

to escape local minima.  This is achieved using penalty functions (which are discussed in 

Section 2.9.4). 

By answering these five questions in a manner consistent with the reverse 

engineering process, it is possible to utilize optimization for the purpose of improved 

model creation. 

                                                 

13
 The term “Global Optimizer” is taken from the optimization literature.  Future 

references to the term “global optimization” in this dissertation refer to the 

process of optimizing all surfaces of a model at one time. 
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2.9.2 Newton's Method 

Newton's method has two properties of interest: 1) it is an iterative algorithm 

which improves with each iteration,
14

 and is thus a prototype of many optimization 

routines.  2) It solves zero crossing problems, which are useful in optimization.  Newton's 

method is traditionally described as a means for solving first derivatives of an equation, 

but to understand the mechanics of the method, the problem of solving one equation in 

one unknown is presented. 

Consider finding the square root of 3.  This equation can be formulated as finding 

the root (or zero crossing) of: 

 

032 x  

 

Starting with an initial guess, say 3.0, Newton's method attempts to calculate 

progressively better values of x based on intersecting the tangent line at the current value, 

xc, with the x-axis (see Figure 2-3).   

Thus, at each step, Newton's method computes an approximate local model (in 

this case, a line) of the equation and solves for it.  As long as the starting guess is close to 

the answer and the derivative has a nonzero lower bound, then Newton's method 

converges quadratically to the desired result (each iteration increases the number of 

correct decimal places by a factor of two). 

Newton's method has a few notable characteristics: 

1. It relies on being able to take the derivative of the function. 

2. It is not globally convergent in all cases (perhaps most cases). 

3. If the initial value is close to a local minimum or maximum (hence the first 

derivative is approximately zero), then the next approximation may be singular or 

ill conditioned. 

4. Certain pathological cases can cause the iterations to repeat.  Consider taking the 

Newton value of arc tangent (x) at x ~= 1.39175 

                                                 

14
 Newton’s method will improve, or remain constant, as long as the current guess 

is within a close range to the answer being sought. 
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Despite these shortcomings Newton's method furnishes a powerful tool for the use 

in and prototype for more advanced optimization methods. 

2.9.3 Conjugate Direction Methods 

In high dimensional spaces, it is not visually or intuitively apparent what direction 

to take to proceed toward the minimum of the function.  A simple approach is to fix all 

the variables except one, modify that one variable until a local minimum (in one 

dimension) is found.  Now fix that variable and modify another variable.  Continue until 

no modification of any variable improves the function evaluation. 
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Iteration Value 

1 3 

2 2 

3 1.75 

4 1.7321428 

5 1.7320508 

 
 

Figure 2-3: Newton’s Method 
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This search is known as the univariate search method.  It only requires function 

evaluations and 1D optimizations.  For some problems, it is an effective approach.  

Unfortunately, there are many problems where this is not the case.  Consider Figure 2-4:  

for (a) there is little interaction between the variables and the search converges quickly; 

for (b) the search breaks down into many very small zigzags toward the goal. 

Ideally, a direction would be chosen that attempts to move directly toward the 

minimum, rather than only in one dimension.  The univariate search attempts to optimize 

along the one-dimensional vectors (1,0) and (0,1).  A small logical leap suggests the use 

of other directional vectors.  In (b), the vector (-1,1) forms a much better optimization 

path from the starting point.  The question then becomes, what other directions to search 

in.  If the search directions are too closely aligned, convergence becomes difficult. 

Powell [26] suggests that the only direction vectors to be utilized should be 

orthogonal, or conjugate, to each other.  Further Powell provides an algorithm for 

determining these directions as follows:  Start a univariate search.  After one iteration 

along all axes, replace one of the univariate directions with the vector formed by 

subtracting the start position from the current position.   Move  along this direction until a  

Figure 2-4: Univariate Search 
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minimum is found and then repeat, continuing to replace the initial univariate directions 

with the new vectors.  After an additional iteration for each dimension, all the directional 

vectors will be conjugate.  

Both Newton's method and Powell's method use only function evaluations.  If 

gradient information can be derived efficiently and accurately, then it should be used.  

The gradient is the direction of greatest increase of the function and can be calculated 

based on first derivatives.  Using gradients results in a steepest descent algorithm.   

At any point in the optimization, a new direction is chosen based on the gradient 

at the current point and a 1D optimization along that vector.  Steepest descent algorithms 

attempt to improve the local optimization of a function to the greatest degree with each 

step. 

Often it is the case that gradients are not analytically available.  In this case, finite 

differences can be used to approximate the Jacobian.   
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As hi approaches 0, (gc)i approaches the gradient.  Finite difference routines must choose 

a value of hc sufficiently small to approach the gradient without falling subject to noise in 

the data.  

2.9.4 Boundary and Penalty Methods 

There is great interest in solving the constrained optimization problem using the 

techniques already established for unconstrained optimization.  This transformation is 

usually effected by building a new function, T, as a combination of the original error 

function, F, and a boundary function, , which defines how far the constraints have been 

violated: 

 

T(x, r) = F(x) + (c(x),r) 
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The two best-known boundary methods, , are barrier and penalty methods.  

Barrier methods form steep walls around the feasible values of x.  Thus (c(x),r) would 

equal zero when the constraints are met, but approach infinity as the constraints are 

violated.  Barrier methods are interior point algorithms, requiring the initial and all 

subsequent iterations to be feasible points. 

The second form of boundary methods uses what are termed penalty functions.  

Rather than forming walls around the feasible area, slopes are used which allow the 

constraints to be mildly violated.  This allows the initial points to be outside the feasible 

realm.  As the iterations increase, the penalty becomes higher, forcing the optimization 

into the feasible region. 

Both methods suffer from increasingly steep-sided valley effects as the 

controlling parameter is intensified.   

2.9.5 Simplex Search Method 

The simplex
15

 search [23] is a direct-search method that relies only on function 

evaluations to compute the minimum.  A simplex is an N + 1 dimensional structure that 

attempts to flow downhill until a minimum is found.  In the case of a 2D space, the 

simplex is a triangle.  Starting with one axis of the simplex, vectors to the other points 

form a basis for the space.  Each point on the simplex is evaluated and then several 

operations can take place in an attempt to move the simplex closer to a local minimum: 

 Reflection - the largest valued point is reflected through the hyper-plane formed 

by the other points. 

 Reflection and expansion - a new point is chosen along the line from the highest 

point through the hyper-plane.  This point is pushed as far as possible from the 

hyper-plane in order to make larger amounts of progress in the downhill direction. 

 Contraction (multiple contractions) - when the simplex encounters the bottom of a 

valley or tries to move through a narrow gap in the function space, the reflection 

step will often fail because the reflected point is not making new progress toward 

a minimum.  Therefore, the size of the simplex is reduced in one or more 

                                                 

15
 Not related to the Linear Programming Simplex routine. 
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directions in an attempt to ooze through the area (thus attempting to make the 

scale of the simplex more appropriate to the scale of the function in the current 

area of concern.) 

The simplex routine does not use derivative information and is frugal with the 

number of function evaluations.  These functions can be implemented as codes to create 

the model based on the new parameterizations and to compute the error from the new 

model to the data set.  For these reasons it has proved an effective general-purpose 

optimization routine.  See [23] for more information including an implementation of the 

simplex algorithm. 

2.9.6 Constrained Optimization 

A more rigorous description of the optimization process involves the concept of 

an objective function.  This function, F(x), provides a measure of the current success of 

the optimization based on the instantiation of all appropriate variables (the parameter 

vector x).  The goal of the optimization process is to find a parameter vector x which 

minimizes the value of F(x).  Without applying any constraints, this process is known as 

the unconstrained optimization process. 

Constrained optimization attempts to minimize F(x) while satisfying the 

constraint functions G(x) and H(x), thus: 

 Minimize F(x) 

 subject to: G(x) = 0 for all i 

   H(x) > = 0 for all j 

Once F, G, and H have been appropriate formulated, generic optimization 

software can be used to attempt to find a minimum.  Many optimization routines exist.  

This research uses both the simplex search routine and Powell's method. 

For model building, the parameter vector x is used to instantiate a model 

representing the object.  For the purposes of this dissertation, the topology of the object is 

determined and confirmed prior to the optimization process.  Once x is generated, the 

static list of data points is compared against the hypothesized model using a root mean 

squares error criterion. 



 

 

CHAPTER 3 

3 DESIGN ARTIFACTS, CONSTRAINTS, AND 

REVERSE ENGINEERING 

Manmade objects often embody certain properties, in terms of geometric shape, 

that are explicitly and implicitly laid out during their design.  These properties, or design 

artifacts, come about because they fulfill certain desirable traits, such as simplicity, 

effectiveness, functionality, and manufacturability.  An understanding of an object's 

properties can be used to increase the effectiveness of identifying, classifying, or 

modeling a part.  This is especially true for the design and manufacturing of 2.5D 

mechanical parts. By identifying components of the design and manufacturing process 

and enforcing them via mathematical constraints during model reconstruction, more 

realistic and accurate models can be produced.   

Consider the genre of 2.5D manufactured parts.  Although these parts vary largely 

in function and size, they have many properties in common.  An example would be the 

use of planar surfaces that ensure two objects fit flush against each other.  A noisy data 

set taken from a planar surface may well be more accurately approximated, in terms of 

distance from the data to the model, by a sculptured surface, yet domain specific 

knowledge refutes the likelihood of such a representation because designers purposefully 

choose planar surfaces for their functional efficiency, simplicity, and machining ease.  

Thus a plane fit to the data would exhibit more error in relation to the data than a free-

form surface, but would be a better approximation to the design intent behind the object.  

This is the fundamental aspect of how knowledge can benefit the model recreation 

process. 
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3.1 Reverse Engineering an Exemplar Part 

Consider Figure 3-1 depicting the Lower Link, a 2.5D part used as in the 

suspension assembly for a Mini-Baja racer.  The goal of the reverse engineering process 

is not only to create a model that accurately represents this shape, but more importantly, 

recreates the geometry in such a manner as to reproduce a model that reflects what the 

original designer intended.  Such a model can then be used to produce replacement parts 

or to make modifications to the original part's design. 

An engineer has two sets of information to work with when recreating a model: 

1. Physical measurements of the object.  

2. Design and manufacturing knowledge about the object. 

All model reconstruction techniques utilize some form of sensed data, such as 

range images or point clouds as the primary source of information.  The difference lies in 

how the data is transformed into geometry.  Most methods fit generic forms such as 

triangulated meshes, B-Reps, or generalized cones (or other geometric primitives) 

directly to the data.  

 A discerning look at the Lower Link and an understanding of the uses and 

 

Figure 3-1: Lower Link 
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tolerances necessary for a valid manufacturable model belies the applicability of these 

general forms and suggests that a structured, domain specific method is required. 

Figure 3-2 represents the data cloud constructed by sensing the Lower Link.  

Notice the general noise, the rounding of corners, and the systematic error in the pockets 

(as seen by the sloped line in the third view).   The average sensing error along the 

exterior profile of the part (where the best data is collected) is approximately 130 

microns.  The worst case data points were over 900 microns off the surface.  For data on 

the interior pockets the average error is 300 microns and worst case is 1675 microns.  

General fitting techniques cannot adequately compensate for these inaccuracies if the 

resulting model is to be manufactured as a valid replacement for the original. 

Algorithms exist that will automatically transform a data cloud into an irregular 

triangulated mesh (Figure 3-3) forming a model that can be machined.  This "fitting" 

process can be applied directly to the data, and thus no knowledge of the object's function 

is needed.  Although the reconstructed mesh closely conforms to the data cloud, there is 

no guarantee of topological equivalence with the original design; more importantly, while 

each face of the mesh, on average, may be a good local approximation to the surface of 

the original model, the combined elements of the mesh unduly fluctuate based on local 

data inaccuracies, and thus form a poor representation of the true machined surfaces of 

the object.  

From this evidence it is asserted that knowledge about the design and manufacture 

of a part is as important as the sensed data, which should be considered only one of 

several associated sources of information used to generate a model.  By analyzing 

hypothesized geometry both in relation to the sensed data and based on knowledge of 

how these types of parts are designed, manufactured, and assembled, a higher quality 

model can be constructed.  In Chapter 4, a focus is made on how this knowledge can be 

formalized for use with general optimization techniques to fit both the data and the 

functionality of the desired part simultaneously. 
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Figure 3-2: Views of the Lower Link Data Cloud 
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3.1.1 Local Constraints 

Knowledge of the design process indicates that most, if not all, geometric 

elements of a part are designed from simple well-defined shapes that serve specific 

purposes.  Expert engineers use this information to simplify the job of modeling a part.  

By quantifying the possible design artifacts, an algorithmic fitting process can also be 

greatly simplified, resulting in a more accurate reconstruction. 

By applying knowledge of 2.5D manufacturing and design techniques, several 

educated assumptions about the general geometry of the Lower Link can be made  (i.e., 

 

Figure 3-3: Triangulated Mesh Representation (Lower Link) 
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the main "flat" surfaces are presumed to be planar, the curves appear to be continuous, 

there are holes, profiles, and pockets in the part, etc.).  By exploiting the fact that 

arbitrary geometry is unlikely, more appropriate models can be developed for reverse 

engineering.  Owen [24] suggests a feature-based breakdown of 2.5D parts.  Features 

encapsulate the form and function of a part's geometry using a mathematical formalism 

that constrains the possible configurations of a part.  These well-defined geometric 

primitives reduce the possible DOFs of the constructed model and force the geometry to 

match a hypothesized version of the designed model.  For example, they enforce a 

smoothness quality
16

 between the arcs and line segments in the contours. 

One of the important aspects about 2.5D features is that they represent a piece of 

2D geometry that has been extruded into the third dimension.  This realization allows a 

two-tiered fitting process, beginning by extracting and fitting the bounding planes, and 

then followed by a 2D fit of the profile curve data.  To recreate the original surfaces, 

these curves are then extruded normal to the bounding planes.
17

  

Figure 3-4 depicts a feature-based decomposition of the Lower Link.  The 

features of interest include holes, profiles, and pockets (all contained within their 

bounding planes).  During the reverse engineering session, the engineer would identify 

each contour and hole for segmentation and fitting.   

Features inherently enforce certain low level geometric constraints.  In design this 

limits the set of constructed entities to those that are easily manufactured.  In reverse 

engineering, this has the affect of forcing the fitting process to produce geometry that is 

likely to be seen in real world parts. 

3.1.2 Global Constraints 

The application of domain specific features is not in itself a panacea, as it is not 

powerful l enough to fully exploit and capture all the  functional  properties  of an  object.   

                                                 

16
 Specifically C1 continuity. 

17
 In practice the planes are fit to the data and then the segmented 3D data 

representing the feature are projected onto one of the bounding planes.  After the 

feature is fit as a planar curve, it is projected back into 3D. 
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Figure 3-4: Feature-based Description 
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The reconstructed features should automatically be positioned in such a manner as to 

recreate, as far as possible, the properties intended by the part's designer.  Failure to do so 

can result in a close approximation that still does not meet the tolerances required by the 

reverse engineered model. 

The limited ways in which primitives can be combined to form mechanical 

features is in of itself a type of constraint on the possible geometry of an object.  

Enforcing global geometric properties across a single feature or between multiple 

features can augment these local constraints.  For example, the designer has most likely 

placed the two pockets (seen in the Lower Link) symmetrically.  Likewise the walls of 

the pocket have probably been placed in parallel to each other and the profile of the 

object.  If each pocket is fit separately, it is unlikely that they will end up symmetric to or 

aligned with each other.  Further, if each wall segment is fit separately, it is unlikely they 

would end up truly parallel.  If this were a high precision part, such a change in the center 

of gravity could adversely affect wear and performance.   

As another example, consider the upper holes on the Lower Link used to hold a 

connecting pin.  Current sensing processes result in poor data for holes because they self 

occlude (especially small diameter holes) and have sharp discontinuities.  If each hole is 

fit independently, no guarantee can be made that the assembly will still function.  Even a 

small translation in the location of the center of high tolerance holes can prevent a mating 

piece from sliding smoothly between them.  In these cases, the importance of 

constraining the centers of the holes and the common radii cannot be overstated.  The 

result of this process enforces that the functionality of the holes (holding a mating pin) 

will be achieved, even if the sensed data contains error that would otherwise adversely 

affect this property.  

When attempting to model the Lower Link the reverse engineer would notice 

several likely geometric properties (see Figure 3-5): 

1. The 2.5D nature of the part suggests that the planar surfaces along the sweep 

direction are all aligned. 

2. The upper holes appear to be concentric and have the same diameter. 

3. The outer profile edges help shape the interior pocket contour they surround. 
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Figure 3-5: Constrained Lower Link 
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4. The pockets on either side of the object look as though they contain identical 

geometry offset along the part's sweep direction. 

5. Many of the planar surfaces are parallel or perpendicular to each other. 

A study of the Lower Link and similar parts makes it apparent that the geometry 

in this domain is not free form, but highly structured.  This structure can and should be 

utilized during the model reconstruction phase.  Constraints are a natural representation 

for capturing knowledge of the design process.  Table 3-1 contains a list of constraints 

consistent with the design of 2.5D machined objects.  These constraints represent 

characteristics implicitly and explicitly utilized during part design. 

3.1.3 Lower Link Conclusion 

A key insight about the geometry of 2.5D machined parts is that most, if not all, 

of elements are constrained externally by their neighboring features and internally by 

their own design.  The lower link is sensed initially as an unordered point cloud.  To 

create an appropriate model for manufacture and redesign, it is necessary to apply more 

information than just the sensor data.   

 

Table 3-1: Identified Constraints 

Incidence Primitives (lines and arcs) meet at well-defined locations. 

Smoothness Primitives meet with equivalent tangents. 

Perpendicularity 

Parallelism 

Feature lines are often aligned parallel to each other or at right angle 

intersections. 

Concentricity The center of holes and arcs are often created to be concentric with 

one another. 

Symmetry Features are often created in whole or in part with symmetric 

relationships around specific axis lines. 

Common Angles Lines and planes often intersect at well-defined angles, such as 30, 60 

or 90°. 

Radius 

Consistency 

Arcs often have identical radii when compared with other arcs in the 

contours of the object.  Likewise, holes in an object are often drilled 

with the same bit or a limited set of bits. 

Width 

Consistency 

Pocket walls and other types of features often contain equivalent 

thickness throughout the entire part. 

Identical but 

Offset 

Certain geometries are found in one part of the object and repeated in 

other areas. 
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Knowledge of the design and manufacturing process can help produce low DOF models 

that can be further constrained by domain specific knowledge.  The resulting models 

more accurately represent the likely geometry of the part than those produced by 

traditional fitting methods and contain topology that most likely matches that envisioned 

by the original designer.  

3.2 Design and Manufacturing in the Domain of 

2.5D Axis Machining 

This research claims that certain geometries are much more likely to be found in 

the realm of 2.5D mechanical design because of the nature of such parts, and thus the 

geometric properties of these shapes should be exploited when reverse engineering them.  

To support this claim, the concepts of design practice, manufacturing knowledge, and 

design intent will be briefly examined. 

1. Manufacturing Knowledge:  2.5D parts are usually machined using a three axis 

machining center. This machining process limits the possible geometry of a part.  A 

block of aluminum (or other material) is placed in the milling machine, at which point 

a tool (i.e., end mill, drill, ream, tap, etc.) aligned with the Z-axis is used on the initial 

stock.   

 Typically a part has a 2D contour that is swept into the third dimension.  

Machining away all material on the outside of the contour physically reproduces 

this.  For holes, the drill bit completely pierces the stock, producing holes aligned 

with the Z-axis.  This machining process lends itself to extruded 2D geometry and 

planar surfaces.
18

 

 In the cases where off-axis geometry is needed, the part must be removed from 

the machine tool and then refixtured.  This is usually accomplished by remounting 

the part along another planar surface that has been machined flat by the previous 

machining cycle.  Such a surface is almost always orthogonal to the original 

                                                 

18
 Three axis machining can be adapted to produce certain free form pseudo 3D 

geometries, but this type of machining is seldom used in practice. 
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mounting surface.  At this point, the same limitations of the three axis machining 

center apply. 

2. Design Intent:  Design intent can be broken into two forms, feature interaction and 

model appropriateness.   

 Feature interaction is the idea that the perceived interaction between features is by 

"design" and not by coincidence.  A simple example would be that if two walls of 

a 2.5D part appear to be parallel, then it is likely they were intended to be parallel 

and should be fit as such. 

 Designers often choose the simplest geometry to accomplish their goals. Model 

appropriateness describes the ability of a model to represent this goal.  This means 

that the fit geometry is consistent with the designer's intent.  Hence even if a high 

DOF spline can better represent the sensed data for a certain feature, it would not 

closely match the designer's conception of the feature. 

3.3 The Advantages Attained by Using Constraints 

The use of consistent patterns in the design of 2.5D manufactured parts provides 

the foundation behind many design systems and the reverse engineering system presented 

in this dissertation.  Regardless of the design system (which differ in implementation and 

representation) a designer uses, the results tend to be straightforward with well-defined 

characteristics.  Thus, whether a designer uses a system based on non-uniform rational B-

splines (NURBS), features, triangulated polygons, or even hand drawn lines, it does not 

alter the fact that the resulting design contain the same properties which can be leveraged 

during reverse engineering. 

The power gained by using constraints is the ability to lower the DOFs of the 

problem, making the system more likely to converge to the desired result and less 

affected by noise.  The following areas demonstrate how this advantage is realized: 1) 

enforcing design intent, 2) simplifying the fitting process, and 3) binding geometry 

together. 
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3.3.1 Enforce Design Intent 

Design practice suggests that even complex models are often defined in terms of 

simple well-defined shapes.  With no constraints applied, standard modeling systems 

allow the creation of many arbitrary shapes not seen in manufacturing.  Even a simple 

constraint that forces segments of a profile to be incident to each other is necessary to 

enforce a real world property that is intuitive to the designer and reverse engineer.  Thus 

the use of constraints can limit the reverse engineered model to the realm of feasible 

models produced by designers.  This can be done in two manners.  First, the choice of 

primitives can provide a powerful tool.  Second, mathematical constraints can be applied 

over the primitives to further limit their DOFs.  

3.3.2 Simplify the Fitting Process 

The fitting process involves a weak search over a large vector of parameters.  Any 

step that can reduce the number of parameters or the size of the search space speeds the 

search and reduces the effects of noise.  Constraints can be used both for DOF reduction 

and to set feasibility boundaries on the search. 

3.3.3 Binding Geometry 

Traditionally, physically separate geometric elements are fit independently.  This 

causes multiple fitting steps on smaller amounts of data and allows geometries that are 

linked by the design to “float” unrelated to their counterparts in the reconstructed model.  

When fitting the various geometries that make up an interesting part, it is common to find 

that they share certain geometric properties.  This is often the case, for example, where 

several holes have the same radii or are concentric with each other, where the walls of a 

pocket have a constant offset from their counterparts on the surrounding profile, or where 

the diameter of a round is consistent throughout a model.  Because of the errors 

associated with data sensing (notably noise and missing data), significant parametric 

errors can be introduced when fitting geometry.  These problems can be addressed by the 

use of geometry spanning constraints. 

Binding geometry across a single part can reduce the possible forms of the part 

and simply the fitting stage.  Several examples were detailed using the Lower Link, 
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including symmetrical pockets and aligned holes.  Other examples include common wall 

thickness, symmetric halves of a part, and mating holes in an assembly.  Binding 

geometry across the multiple parts of an assembly can be instrumental in enforcing 

tolerances and thus allowing assemblies of parts to fit with together.   

3.4 Taxonomy of Constraints 

When recreating a mathematical model of a manmade object from an exemplar 

part, it is beneficial to provide mathematical constraints that enforce known or suspected 

design artifacts.  One way to achieve this is to use a limited set of features, with low 

DOFs, for modeling aspects of a part.  This ensures that the optimization process does not 

fit just the noise inherent to sensed data, but also fits the inferred design intent of the 

object.  Unfortunately, even simple features and subfeatures are not restrictive enough for 

the reverse engineering application.  There is a need to further limit the possible 

geometry of the model.  This can be accomplished by applying certain geometric 

constraints to the optimization process, limiting the feasible geometry of the part to those 

that are common in the domain of interest. 

The previous sections described constraints in terms of local and global 

properties.  This section presents a clarified taxonomy of constraints.  Many 2.5D 

manufactured parts can be formed by combining a small set of domain specific 

primitives, termed features.
19

  Features form the basic building blocks of design, 

representing such items as pockets, profiles, and holes.  Features are composed of 

geometric primitives, notably lines and arcs.  The design process suggests these 

primitives can only be combined in a few limited, well-defined ways.  These composition 

characteristics are termed design pragmatics.  A further level of control, termed 

functional constraints, governs the placement of features and subfeatures in relation to 

each other.  

                                                 

19
 From this point on, the term feature and domain specific primitive will be used 

interchangeably.  Any use of the term primitive (as opposed to domain specific 

primitive) will refer to the line and arc geometry that make up the basic building 

blocks of pockets and profiles. 
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Figure 3-6 symbolically depicts the increases in accuracy gained from adding 

additional constraints and thus reducing the possible DOFs of the model. 

3.4.1 Domain Specific Primitives 

It has been shown by Thompson et al. [35] that features form a natural 

decomposition of 2.5D manufactured parts.  The use of domain specific primitives such 

as those shown in Table 3-2 can greatly increase the accuracy and appropriateness of a 

recreated model.  Features are based on common design practices and facilitate making 

simple accurate models.  The fact that these features are used in design is a strong 

argument for their use in reverse engineering.  

Features, such as pockets, in terms of 2.5D architecture, are formed from the 

combination of two bounding planes and a characterizing contour.  Contours are formed 

from a collection of ordered primitives that fully define the 2D geometry of the feature.  

Without any limiting constraints these contours could contain arbitrary geometry.  In 

practice a number of pragmatics are enforced.  These pragmatics will be discussed in the 

following section. 

Perhaps not as readily grasped is the idea that optimizing over features is simply 

another form of constrained optimization. Features were created based on common 

engineering structures, and thus map directly to design artifacts.  For example, consider 

Figure 3-7, which depicts three separate optimizations to the same set of data.  The 

piecewise linear interpolation produces zero error when compared to the data, but with 

the knowledge that the data points were scanned from a circular hole, a better 

representation can be chosen, constraining the fit to a circular shape. 

A distinction is made between modeling error and data-fit error.  Features help 

decrease modeling error and thus increase the accuracy to the original design, but when 

compared to the data, they increase the error over more general primitives.   

Features also form natural decompositions of machined parts.  They hypothesize 

the general shape and are useful in segmenting the scanned data into local regions.  

Further, features form a basis for applying global constraints across objects.  This follows 

from their algebraic descriptions.  Such global constraints will be discussed in the section 

on functional constraints. 
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Figure 3-6: Increased Accuracy 

 

Table 3-2: Feature Taxonomy 

Feature  A high level geometric entity formed by combining subfeatures and 

microfeatures. 

Holes Blind, Through, Counter-sunk, Counter-bored, Tapped 

Contours Pocket, Profile, Island, Boss 

Slots  

  

Primitives The geometric primitives used to form features. 

Planes  

Lines  

Arcs  

  

Micro 

Features  

A manufactured geometric entity that is too small to be accurately 

identified by automated sensors. 

Rounds Smooth exterior surface between meeting planes 

Fillets Smooth interior surface between meeting planes 

Accuracy 

Additional Constraints/ Reduced 

Degrees of Freedom 

Functional 

Constraints 

Pragmatics 

Primitives 
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Fit:  Line Interpolation Oval Fit    Circle Fit 

Data Error: Zero   Low     High 

Design Error: High   Medium    Low 

Figure 3-7: Fit Options 

 

Features are represented as tagged parameter vectors.  At its most general, the 

feature vector for the contour pocket seen in Figure 3-8 would be composed of the 

following primitives: 

  Arc1, Line1, Arc2, Line2, Arc3, Line3, Arc4, Line4, Arc5, Line5, Arc6, Line6 

The geometry of each primitive is represented as follows: 

Arcs:    Center(x, y),  Radius, starting theta, ending theta 

Lines:  End 1 (x, y),  End 2 (x, y)  

An arc requires five values and a line segment requires four.  The pocket profile is 

defined by 54 values (six lines and six arcs).  Fortunately a great deal of simplification 

can be applied to these structures to reduce the number of parameters required to 

represent this geometry. 

3.4.2 Domain Specific Pragmatics 

Mechanical features have many implied restrictions on their possible geometry.  

Their representational power must be explicitly captured by the reverse engineering 
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system in order to force the reconstructed model into a form that is likely to recreate the 

desired part.  Primarily, only a limited set of primitives, as discussed above, is allowed to 

represent each feature.  Second, the primitives can only be placed based on a rigid set of 

rules.  These properties/restrictions are termed domain specific pragmatics and they 

include: 

 Incidence - Connectivity of adjoining lines and arcs 

 Smoothness and Continuity - Arc features usually form smoothing actions 

between line segments, providing C2 continuity 

These pragmatics represent the intuitive idea behind how features are constructed 

and manufactured.  They further allow the reduction of the DOFs necessary to represent 

features.  Now line segments can be replaced with lines that require two DOFs to 

 

Figure 3-8: Pocket Profile 
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represent (the normal and distance from the closest point on the line to the origin).  Arcs 

can be represented based on their surround geometry and as is described in the next 

chapter, require as few as one DOF.  Pragmatics represent the implicit assumptions made 

by designers (and reverse engineers) when creating models. 

3.4.3 Functional Constraints 

Domain specific primitives model the recreated geometry in a manner similar to 

that of the design process.  For 2.5D machined parts an appropriate choice of primitive is 

that of design feature.  Domain specific pragmatics enforce even greater restrictions on 

the possible geometry of the features.  For example, a domain specific pragmatic forces 

the use of continuous smooth contours.  Functional constraints attempt to enforce high-

level design intent. 

When an engineer designs a part and chooses a specific feature, it is with the 

expectation of a certain functionality.  An example would be the placement of symmetric 

weight reduction pockets to ensure a correct center of mass, or the placement of 

concentric holes to ensure the acceptance of a mating feature.  With the error inherent in 

data scanning, small variations are likely to corrupt the recreated model.  These variations 

can impact the usefulness of the replacement items. 

Once again consider the Lower Link example in Figure 3-1.  The line primitives 

that make up the profiles and pockets were not randomly placed but were purposely set at 

parallel and perpendicular angles to each other.   Further, the top and bottom pockets as a 

whole were set directly opposite from each other and centered in the overall profile.  The 

top and bottom mating holes were machined to accept similar connectors and thus are of 

the same radii. 

All of these properties are designed into the object to promote its functionality, 

while maintaining an easily machined geometry.  By enforcing these constraints, the 

DOFs of the hypothesized model are reduced and each separate feature is bound to the 

whole in a well-defined and enforceable manner. 

This dissertation considers the effects of the following functional constrains: 

Perpendicularity, Parallelism, Concentricity, Symmetry, Known Angle between 
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subfeatures, Arc Distance, Radius Consistency, Width Consistency, and Identical but 

Offset features. 

3.5 Overview 

Figure 3-9 demonstrates the progression of constraints used to guide the 

optimization of the bottom of one of the Lower Link pockets.  As more information (in 

the form of constraints) is applied to the reconstruction problem, the less unintended-

effects from sensor noise will bias the new model.  In the following chapter the methods 

for representing these features and constraints will be discussed. 
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Figure 3-9: Constraint Progression 
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CHAPTER 4 

4 CONSTRAINT FORMULATION FOR MODEL 

OPTIMIZATION 

This dissertation claims that domain specific knowledge can be applied to the 

model creation process to generate higher quality models.  In the previous chapters, the 

type of model and the properties inherent to the domain of 2.5D manufacture are detailed.  

This chapter describes the formulation of both the model and the constraints in such a 

manner as to be incorporated into an optimization algorithm.  While this dissertation does 

not attempt to advance the core field of optimization research, it shows the ability to 

introduce domain specific knowledge via constraints into an optimization framework.  

Each model is reconstructed based on a set of manufacturing features similar to 

those utilized in feature-based design.  Holes are defined directly by their parametric 

geometry.  Higher order features, such as pockets and profile-contours, are made up of 

low-level geometric primitives (arcs and lines).  Each primitive has one or more 

parametric forms that can be used to construct the geometric form.  These constructions
20

 

are made based on the current parametric representation, the actual parametric values, 

and ruler and compass composition algorithms. 

All information necessary to construct the complete 2.5D geometry of the model 

is kept in a feature vector.  A feature vector is defined as the list of all parametric values 

and topological information required to instantiate the model.  The parametric values in 

                                                 

20
 The term constructive geometry is used here to describe the transformation from 

parametric space to geometric space using basic geometric rules (hence the term 

ruler and compass).  Various parametric representations can be used to define a 

single geometric shape.  For example, a line can be represented as a point and a 

normal, or as an angle and minimum distance from the origin. 
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the feature vector are the components that define the optimization space.  The topological 

information contains which parameterizations are in use, as well as other book keeping 

information necessary to reconstructing the model from a minimum set of parameters.  

By adaptively changing the parametric values, variations of the shape of the object can be 

hypothesized and tested. 

The initial feature vector for a part is constructed via an interactive system that 

fits low level geometry to the data cloud using standard least-squares fitting techniques.  

These initial fits of the low level primitives (circles, lines, and arcs) form the input to the 

constraint-based optimization process.  First, the primitives are mapped onto features by 

enforcing the appropriate domain specific pragmatics.  Then higher-level functional 

constraints are hypothesized from the low level geometry.  Finally, penalty functions are 

asserted and the optimization begins. 

The process of enforcing smoothness and incidence on the primitives is 

accomplished by intersecting adjacent lines and changing the radii of the arcs so as to 

merge with adjoining arcs or lines.  This produces small deformations in the feature that 

are incongruent (as would be expected) with the sensed data.  Under feature-based 

reverse engineering, an optimization would then take place on each separate feature, 

resulting in the final model.  For the purposes of constrained optimization, the feature 

vector, representing the entire model, is optimized, accentuating or alleviating these 

deformations from the data to create a globally more appropriate and accurate model. 

Once the initial model has been created, constraints are hypothesized and asserted 

producing a new feature vector representing the same geometry but with a greatly 

reduced number of parameters.  Any constraints that cannot be directly represented 

through a parameter-set transformation are used to construct penalty functions to direct 

the optimization process.  The output of this process is an instantiated parameter vector 

that most accurately (to the criteria of the constraints and sensed data) represents the form 

and function of the hypothesized original design.  

4.1 Problem Formulation 

The goal of the optimization process is to find the set of parametric values that 

produce the model that best fits the actual 3D position data while concurrently preserving 
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the constraints asserted upon the possible geometry of the model.    This problem can be 

formulated as seen in Table 4-1.  P represents the vector of parameters defining the 

model geometry.  M is a function that computes the geometric model based on the 

parameters P.  M contains algorithms for transforming from the parametric space to the 

geometric space for each supported feature.  T is a transformation function on p that 

commutes geometric constraints into a reduced set of parameters, pr which is 

constructively equivalent
21

 to the original, in that it can reproduce the same geometry as 

produced by M(p).  D represents the error between the constructed model and the data 

points.  E represents the violation of the constraints associated with the optimization.  The 

goal of the optimization process is to minimize F, the weighted sum: D + α * E. 

By defining these functions, the reverse engineering problem is transformed into 

an constrained optimization problem.  The optimization is achieved by standard 

methods,
22

 which, when applied to the parameter vector, pr produce the best model based 

on the error criteria. 

This research has successfully met the following objectives: 

1. The model creation function M was designed incorporating a representative set of 

2.5D feature geometry.  The function was implemented using constructive ruler 

and compass algorithms similar to those used in feature-based design packages. 

2. The transformation function T was defined to reparameterize the model based on 

the constraints, reducing the number of DOFs while maintaining the same 

geometric representation.  This function uses symbolic substitution methods and 

has an understanding of the geometry creation methods found in M. 

 

                                                 

21
 T also produces the book keeping information necessary for the transformation, 

such as the current parameterization used by each feature.  Because this 

information is constant, it is not considered as part of the search space. 

22
 For purposes of this work, both Simplex Search (amoeba) and Powell’s method 

(conjugate directions) were investigated.  Both methods were amenable to the 

formulation of the model and constraints used in this research and were able to 

converge to acceptable minimums. 
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3. The function D, which computes RMS error between the sensed data set and the 

current model geometry, was created.  D also resegments the data during the 

optimization in order to limit the effects of outliers on the optimization. 

4. A method was created for producing E directly from the list of constraints.  This 

set of penalty functions was integrated into the objective function based on both 

geometric properties (e.g., distance between two lines) and parametric properties 

(e.g., radius equivalence). 

 

Table 4-1: Problem Formulation  

b: Global book keeping information necessary for the reconstruction of 

the model. 

 

C: The constraints asserted on the model. 

D: The sensor data associated with the exemplar under reconstruction. 

P: Vector of parametric values used to instantiate the model geometry. 

Pr: A reduced DOF vector representing the same information as p based 

on the asserted constraints and B. 

M(p,b): A model creation function that constructs the physical geometry of 

the model from a parametric list of values and types. 

T(p,c)=Pr: A transformation function which reduces the number of parameters 

based on the constraint list c. 

D(M(Pr,b),d): D is an error function that computes the distance from d to the 

model. (More precisely, this function must segment d based on the 

distance to the closet primitive and then compute the RMS error by 

summing the error over each primitive.) 

E(M(Pr,b),c): Error derived from the violation of constraints, c. 

F: The object function to be optimized over.  Equivalent to D + α * E.  

Alpha is a weighting term equalizing the data and penalty errors. 

The optimization algorithm. 
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The application of T to create the new parameterization vector is a 

preoptimization step that significantly reduces the complexity of the model under 

consideration, and thus the optimization process itself.  E is computed during each step of 

the optimization based on constrained optimization techniques. 

4.2 Constraint Representation 

Features were introduced and formulated in Chapter 3.  Consider a pocket feature 

comprised of a bounding plane, an extrusion depth, and a contour.  The contour is an 

annotated ordered list of geometric primitives (viz., arc and line segments).  Each part of 

the feature is defined by its parametric values which, when instantiated, determine the 

physical shape of the object.  Under this formulation, many of the geometric constraints 

can be applied over the parametric representation. 

The first application of constraints is to reduce the number of parameters 

necessary to define the model.  T(p,c) = pr.  This is accomplished by replacing multiple 

parameters with a single parameter and a constructive method for recreating the lost 

parameters.  The reasons for reducing the number of variables are: 

 The constraints are implicitly enforced,  

 the optimization convergence is faster,  

 and the resistance to data noise is improved. 

In the terminology of optimization, an interior point method has been created 

which searches for the best possible (lowest error) model while maintaining all 

constraints at each iteration of the optimization routine. 

Because M constructs the physical geometry of the part based on ruler and 

compass techniques, and because different parameterizations can be used to represent the 

same geometry, it is not always possible to directly assert model constraints based on the 

parametric representation.  In this case, the constraints are used to explicitly guide the 

optimization process by increasing the value of the objective function by an amount 

related to the degree with which each constraint has been violated.  Function E(M(pr),c) 

is defined to calculate this result.  Penalty functions force the optimization process to 

converge on a model with the desired topology.  This is equivalent to an exterior point 
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method, initially allowing infeasible configurations but then forcing the final 

configuration towards a feasible model. 

4.3 Construction of Primitives 

The low level elements that make up the 2D geometry are arc segments, line 

segments, and circles.  For contours, domain specific pragmatics have shown that the 

geometry of the primitives is locally restricted by their neighboring geometry, and thus 

line segments can be represented as true lines, and arc segments can be represented as the 

curving action between lines.  Primitive construction is the technique that constructively 

builds the physical geometry from the reduced DOF representations using ruler and 

compass techniques. 

For example, consider two line segments that meet at a corner.  If each line 

segment keeps track of the common endpoint, consistency errors can occur.  If, instead, 

both line segments are transformed into line representation, then the common point can 

be calculated by intersecting the two lines.  In this case, each time the parameterization of 

either line changes, the new end-point must be recalculated.  For the constructive 

techniques involved in the features defined in the 2.5D domain, the complexity of the 

operation is constant. 

Now, consider a circular arc bounded by two lines.  As arcs are smoothing actions 

between two line segments, the arc must be incident and tangent to the neighboring lines.  

Therefore the arc can be constructed based on the line position simply by knowing its 

radius. Figure 4-1 represents the constructive geometry transforming the parametric 

representation into the geometric representation.  The point I represents the intersection 

of the two bounding lines.  By adding the normalized bisector vector times the distance d 

to the point I, the new arc center is determined.  The intersection points between the lines 

and the arc are then determined by projecting the center onto both lines.  This provides 

the complete geometric form of the line-arc-line structure. 

In most constructive geometric operations, care must be taken to deal with 

singularities, such as if the lines become parallel in the line-arc-line example.  In such a 

case, multiple constructive forms may be necessary and a transformation between them 

established.  Alternatively, if the singularity can be hypothesized before  the optimization  
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Figure 4-1: Arc Construction Based on Radius 

 

(again as in identifying the parallel nature of the constraining lines) then only the parallel 

formulation need be used.  

Another interesting feature found in the 2.5D domain is that of the boss, or triple 

arc subfeature (Figure 4-2).  A boss often forms a strengthening structure around holes.  

It is composed of three arcs with C1 continuity.  The radii of the outside arcs are equal, 

and the whole structure is symmetric based on the surrounding lines.  Several 

parameterizations of this feature are required based on whether the bounding lines 

intersect, are parallel, or are collinear.  This subfeature is an example of a domain specific 

structure that requires deep understanding of the domain, yet yields large dividends in the 

reconstruction process. 
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Figure 4-2: Boss (Triple-Arc) Subfeature 

 

It should be noted that as the DOFs are reduced certain book keeping measures 

must be made, such as retaining the symbolic topological information (Line followed by 

an Arc, followed by a Line, etc.).  In the case of the line-arc-line structure, there are four 

possible quadrants where the arc could fall based purely on the intersection of the lines.  

It is therefore necessary to store which quadrant represents the interior of the object.  This 

allows the model construction method to recombine the reduced parameter model back 

into the full geometry of the part.  This information is considered static throughout the 

entire optimization process and is not considered a DOF. 

4.4 Defining the Reduced Degrees of Freedom Model 

By using the asserted constraints on the geometry to produce the reduced 

parameter vector a powerful technique for constrained optimization is developed.  The 

phrase DOF reduction is used for this technique.  Two methods have been identified for 

reducing the DOFs of a model: symbolic substitution and feature re-parameterization. 

 

4.4.1 Symbolic Substitution 

As the name implies, symbolic substitution replaces equivalent symbolic 

parametric variables with a single common variable.  Symbolic substitution is valid when 

primitives have parameters representing identical information, such as the radius of a 

hole, or the angle of a line. 

Consider the two lines L1 and L2, defined by an angle, q, representing the line's 

normal direction, and the distance, d, representing the shortest distance from the line to 

r1 

r2 

r1 
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the origin.  If the lines are parallel, then this angle parameter can be redefined in terms of 

a single angle.  Thus given: 

 

Line1  (d1, q1) &  

Line2  (d2, q2) 

 

and the constraint: 

 

Parallelism    (q1 == q2) 

 

a new description is generated: 

 

Line1  (d1, q1) &  

Line2   (d2, q1) 

 

The result is a four-DOF problem being reduced to a three-DOF problem. For 

holes, defined by a center and a radius, symbolic substitution is possible for concentricity 

constraints. 

 

 

Hole1  (x1, y1, r1) &  

Hole2  (x2, y2, r2) 

 

The constraint: 

 

Concentricity    (x1, y1) == (x2, y2) 

 

The result: 

 

Hole1  (x1, y1, r1) & 

Hole2  (x1, y1, r2) 
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Thus a six-DOF problem is reduced to four.  Likewise, for radius equivalence 

constraints, the single radius parameter can be substituted among all common radii holes, 

reducing the number of parameters necessary to represent each additional hole by one. 

4.4.2 Feature Reparameterization 

Unfortunately, symbolic substitution only works when two or more primitives 

have corresponding parameterizations (and thus construction methods).  Consider a hole, 

represented by (x,y,r) and a bounding boss.  A concentricity constraint cannot be directly 

applied because there is no direct representation for the center of the middle arc. 

To address this shortcoming, it is noted that many geometrical forms can be 

parameterized in multiple way and still be instantiated to the same physical geometry.  A 

line can be described as "Ax + By + C = 0" or as "y = mx + b" or as "(d1, q1)."  Feature 

reparameterization is the modification of the representation of a primitive, giving it a new 

parameterization that can then be used for symbolic substitution.   

The physical geometry for a linear edge on a model is represented by the line 

segment (x1,y1), (x2,y2).  The slope of the line is not directly represented by this 

parameterization.  By transforming the line segment into a line, the angle becomes 

available:   

 

Line Segment(x1,y1), (x2,y2)   Line(d1, q1). 

 

At the same time the end points of the line are no longer directly available and 

must be computed by some new method (usually the intersection of the current line with 

the next line in the contour).   

The choice of reductions is not arbitrary.  In the arc example above, rather than 

calculate the start and end theta values for the arc segment by projecting the center of the 

arc onto the neighboring lines, the lines could be computed based on the angle of arc 

segment end-points.  This formulation is poor because small fluctuations in these angles, 

which would be likely to occur because of segmentation errors, would cause large 
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fluctuations in the line normals and would not necessarily maintain other line constraints 

such as parallelism. 

For this work, the following ordering of primitives was used to decide which 

primitive required a new parameterization: lines, single arcs, holes, and triple arc 

features.  Because of the general stability of the line parameterization and the widespread 

use of lines in this domain, most structures were based on the surrounding linear 

structure.  When concentric holes and arcs occur, the hole parameterization is based on 

reconstructing the arc first and then equating the arc center to the hole center. 

The result of symbolic substitution, feature reparameterization, and subfeature 

construction is the ability to apply the model definition function M on a set of fewer 

parameters while still producing a physical model equivalent to the initial model.  The 

advantages of reducing the number of variables necessary to represent the geometry 

cannot be overstated and include superior noise resistance, more tractable problems, and 

faster and more accurate convergence. 

4.5 The Optimization Function 

Once the DOF reduction has taken place, the optimization process commences.  

All the constraints that cannot be symbolically reduced are imposed in terms of penalty 

functions during the optimization process.  The objective function, F, is the weighted sum 

of D and E.  The optimization can be defined as finding: 

 

)))),,(()),,((min(( cbpMEdbpMD rr   

 

D calculates the sum of the square of the distances from each sensed data point to 

the appropriate primitive in the model.  E calculates the violation of any constraints that 

have not already been symbolically formulated and represents the summation of the set of 

penalty functions.  As described in the Chapter 2, penalty functions limit the feasible 

region of the optimization surface. 

The following examples show the penalty functions used for concentricity and 

parallelism, where pi represents the center point of each hole, and vi represents the normal 

to each plane: 
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Concentricity: ƒ(p1,p2) = (geometric distance from p1 to p2)
2
 * ki * wi  

Parallelism:    ƒ(v1, v2) = | 1 - (v1· v2) | * kj * wj 

 

where ki and kj are the controlling parameters and wi and wj are scaling parameters.  The 

strength (magnitude of the value) of the controlling parameters is gradually increased 

during the optimization process to avoid initially falling into unrecoverable local minima, 

while gradually forcing the geometry into feasible regions as the optimization converges.   

A difficulty found with penalty functions is normalizing them so that the error 

produced by one sort of constraint (say an angle based constraint) does not fade into 

insignificance or completely overpower a second constraint (say a distance criterion).  

The purpose of the scaling parameters is to adjust the value of each constraint into a level 

commensurate with the order of magnitude of the error function and with the other 

penalty functions.  In this work, the penalty functions calculated scalar offsets  

(concentricity, width equivalence, radii equivalence, etc.).  Thus the scaling between 

penalty functions was linear.  The controlling factor of the penalty functions was 

increased incrementally over four separate runs of the optimization.  The final value was 

three orders of magnitude greater than the initial value, forcing alignment errors of less 

than 0.1 microns.  

4.6 DOF Reduction Example 

Consider Figure 4-3, which depicts a simple part called the Steering Arm.  The 

entire 2.5D geometry consists of two holes and an exterior profile containing five line 

segments and three arcs.  To create the physical geometry for this object the following 

information is needed:  for each line, the start and end points; for each arc, the center, the 

radius, and the start and end thetas; for the holes, the center and the radii.  Specifically, 

the following geometric values are needed: 
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Line1:   Start(x,y), End(x,y) 

Arc1:   Center(x,y), Radius, ThetaA, ThetaB 

Line2:   Start(x,y), End(x,y) 

Arc2:   Center(x,y), Radius, ThetaA, ThetaB 

Line3:   Start(x,y), End(x,y) 

Line4:   Start(x,y), End(x,y) 

Arc3:   Center(x,y), Radius, ThetaA, ThetaB 

Line5   Start(x,y), End(x,y) 

Tie Rod Hole:  Center(x,y), Radius 

Mounting Hole: Center(x,y), Radius 

The above describes the geometry of the pocket in its most complete form and 

requires 41 DOFs.  The following constraints are asserted on this geometry:  The profile 

primitives are incident and continuous, the tie rod hole is concentric to the large profile 

arc, lines two and five are parallel, lines one and two are  perpendicular, and the 

mounting hole is centered in the stock.  The remainder of this section describes the 

transformation from this low level geometry to a feature vector utilizing a reduced 

parameter set that is still capable of constructing the geometry.   

The first goal is to enforce incidence and continuity, reducing the number of 

parameters in the process.  As detailed earlier, the arcs can be described as smoothing 

 

Figure 4-3: Steering Arm 
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actions applied to the intersection of the lines.  Therefore, the line segments can be 

redefined as lines (using an angle/distance representation) bounded by the arc segments: 

Line1:  Theta1, Distance1 

Line2:  Theta2, Distance2 

Line3:  Theta3, Distance3 

Line4:  Theta4, Distance4 

Line5:  Theta5, Distance5 

The constraint hypothesis step
23

 asserts lines two and five as parallel to each other 

and perpendicular to line one.  This allows the following symbolic substitution: 

Line1:  Theta2 + 90°,  Distance1 

Line2:  Theta2,   Distance2 

Line5:  Theta2,   Distance3 

Each arc can now be defined based on its radius and neighboring lines and the 

geometry constructed via the a fore mentioned ruler and compass method.  This reduces 

the basic geometrical description of each arc from five DOFs to a constructive 

description requiring one DOF and insuring C1 continuity: 

Arc1:  Radius1, Line2, Line3 

Arc2:  Radius2, Line3, Line4 

Arc3:  Radius3, Line4, Line5 

The final hypothesized constraint is that the tie rod hole and arc two are 

concentric represented by the following substitution: 

Arc2:   Radius2, Line3, Line4 

Tie Rod Hole:  Center of Arc2, Radius4 

Using incidence, smoothness, parallelism, perpendicularity, and concentricity 

constraints, the DOFs of the Steering Arm has been reduced from 41 to 15.  By 

instantiating these parameters, the Steering Arm's geometry can be regenerated with these 

constraints implicitly retained.  The final requirement is that the mounting hole must be 

located equidistant to Line2 and Line5. 

                                                 

23
 The next chapter details a strategy for automatically generating the appropriate 

constraints.  For the purposes of this example, the engineer asserted the 

constraints. 
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4.7 Penalty Function Example 

Due to small errors in the manufacture and/or the error associated with the 

scanning process, it is unlikely that the recreated mounting hole will end up exactly 

centered in the Steering Arm profile.  A reasonable inspection of the part would suggest 

that this property was very likely to exist in the original design.  To remedy this situation 

a constraint is asserted stating that the center of the hole is equidistant to the walls of the 

profile. 

Consider the formulation of Line2, Line5, and the mounting hole from the 

Steering Arm. 

Line2: theta2, distance2 

Line5: theta2, distance2 

Mounting Hole: center(x,y) and radius 

There is no direct correspondence between the geometry or parametric 

representations of these features.  Therefore it is necessary to construct a penalty function 

to account for this constraint.  The error function of interest becomes the difference in 

distance from the center of the hole to the lines. 

 

(Distance(line2, center) - Distance(line5, center))
2
  * kj * wj. 

 

During each iteration of the optimization process, this value is calculated and 

added to the error value associated with the current iteration.  As wj is gradually 

increased the center of the hole is forced closer and closer to the center of the two lines. 

4.8 Discussion of Under and Over 

Constrained Geometry 

In the case of constraint-based geometric construction systems  (i.e., solvers), a 

large effort is made to deal with the problem of over and under constrained geometry.  

Under constraining implies that not enough information is present to fully describe the 

geometry of the object.  Over constraining implies that more constraints are asserted on 
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the geometry than are physically possible to maintain.
24

  In the reverse engineering 

setting, these problems are not of the same concern for the simple reason that a real world 

instantiation of the geometry already exists. 

First of all, a distinction must be made between the constraints imposed over the 

geometry on the model, and the "constraint" which is the sensed data itself.  The tools for 

creating the initial feature vector only allow geometry that has a physical representation.  

Therefore the initial geometry can be considered well constrained. 

Because the geometry of the part is well defined before the constraint 

optimization process and at least some data points are available for all primitives of the 

part, it is impossible to under constrain the reverse engineering system.  The geometry is 

in fact always constrained by the physical data when no higher-level constraints are 

asserted. 

The only concern is when the system (or user) provides a set of assertions on the 

geometry which create an over constrained set.  In the case of symbolic substitution, the 

last substitution to be made will overrule previous substitutions.  This results in utilizing 

one constraint and removing another.  In most cases where this happens, the physical 

geometry of the recreated model is obviously inconsistent with the data, thus quickly 

allowing the engineer to identify the illegal constraint and remove it. 

In the case of constraints represented by penalty functions, the numerical methods 

will attempt to minimize the error, resulting in an averaging of the inconsistencies.  

Again, this should be immediately apparent to the engineer via physical inspection of the 

recreated model and analysis of the final RMS error associated with each feature. 

In summary, over and under constrained geometry is a difficult problem in the 

area of geometric solvers, but because a physical instance of the part exists for the reverse 

engineering process, it is not possible to under constrain the problem, and an over 

constraining of the problem results in immediate and apparent discrepancies in the 

topology of the model and the error associated with the features representing the model. 

                                                 

24
 An over constrained set of assertions, which can be reduced to a well-constrained 

set because one or more constraints are interdependent, is not considered over 

constrained. 



 

 

76 

4.9 Constraint Formulation Summary 

Constraints are formulated directly on the parametric representation of the 

geometry either by appropriate substitution or by penalty function creation.  Table 4-2 

lists the identified constraints and their reformulation for use with the optimization 

process. 



 

 

77 

 

Table 4-2: Local and Global Constraints 

Incidence  

 Line to Line Intersection forming corner. 

 Line to Arc Projection of arc center onto line to form arc segment end point. 

 Arc to Arc Any case of arc to arc incidence is handled by special 

constructive subfeatures, such as a boss. 

Smoothness  

 Line to Arc Arcs are formulated as smoothing actions on lines based on the 

radius of the arc. 

 Arc to Arc As above (arc to arc). 

Perpendicularity  

 Line / Line The angular value of the first line is symbolically substituted for 

the second line (the value is then adjusted 90°) 

Parallelism  

 Line / Line The angular value of the first line is substituted for the second 

line. 

Concentricity  

 Arc / Arc A Penalty function is constructed based on the calculated 

distance between the two centers. 

 Arc / Hole The arc center is substituted for that of the hole. 

Symmetry  -  Symmetry is achieved by a combination of penalty functions and 

other constraints. 

Radius Consistency  

 Arc / Arc The radius of one arc is substituted for the next. 

 Arc / Hole The radius of the arc is substituted for the hole. 

Width Consistency  

 Lines / Lines A Penalty function is calculated based on the square of the 

distance between the first set of lines minus the distance between 

the second set of lines. 

 



 

 

CHAPTER 5 

5 AUTOMATIC CONSTRAINT ACQUISITION 

The advantages of and methods for applying constraints during the fitting process 

have already been discussed.  The assumption has been that the constraints are known a 

priori to the global optimization phase, and that these constraints are accurate and 

meaningful.  The important question remains:  How were these constraints identified? 

Manufacturing and design knowledge implies not only how certain constraints should be 

enforced mathematically, but also which constraints are likely in the domain of 2.5D 

manufactured parts.  This knowledge provides two insights.  First, a well-defined list of 

possible constraints over each feature (or its associated primitives) can be identified.  

Second, a test for likely constraints can be implemented based on approximate equal 

parametric values determined during the initial fittings.  Below is a list of the steps 

employed by Owen et al. [24]. 

1. Scan part to produce data cloud. 

2. Manually segment bounding plane data and then fit individual plane. 

3. Manually segment single feature data.  

4. Fit data to lines and arcs based on local feature constraints. 

5. Repeat steps 2-4 until all features have been identified. 

6. Build model on a feature-by-feature basis. 

These steps are augmented as shown below.  Step five is the subject of this 

chapter, and steps six and seven are the subjects of the previous chapters. 

1. Automatically segment and fit bounding planes. 

2. Constrain the bounding planes based on alignment constraints. 

3. Semi-automatically segment and fit features. 

4. Identify likely constraints. 

5. Build optimization function over all features enforcing constraints. 
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6. Optimize over all features simultaneously while maintaining constraints. 

5.1 Manufacturing and Design Knowledge 

Manufacturing and design knowledge can be used to formulate likely constraints 

that can apply to the specific features in a domain.  As detailed in Chapter 3, certain 

geometric topologies and relationships are implicitly and explicitly used in the design and 

manufacturing of the 2.5D parts considered here.  Some of these qualities are enforced 

during the reverse engineering process by the use of features that mimic the design 

patterns of the object.  Other properties must be explicitly denoted by the reverse 

engineering system. 

The first application of constraint acquisition is based on the implied qualities of 

three axis machining.  In the case of these parts, the planar faces bounding an extruded 

2D curve are almost always parallel to one another.  This quality is implicit both in the 

designers sketch and in the CAD representation.  During the reverse engineering process, 

a decision must be made on how to handle this and similar situations. 

Consider a pocket bounded by bottom and top planes.  Previous methods have 

either fit both planes individually or only used one plane as the basis for the feature.  This 

leads to problems in calculating the height of the pocket as well as problems projecting 

the data into two dimensions for fitting.  Manufacturing and design knowledge promotes 

the idea that the top and bottom planes should be fitted simultaneously with equivalent 

normals.   This results in parallel planes.  Further, in the case where one bounding plane 

is more accurately sensed (due to larger surface area or less occlusion) the optimization 

function can be weighted to constrain the less accurate section of data to the more 

accurate section.  The result is a well formed bounding region for the feature of interest. 

Additionally, problems arise when multiple features share the same bounding 

planes.  If it were the case that only data points near the feature were used for fitting the 

bounding plane, or that the bounding plane was fit several times with different 

segmentations of data, then multiple planes would most likely be introduced into the new 

model where only one true plane existed before.  High-level knowledge requires all 

shared bounding planes be fit simultaneously with all hypothesized parametric 

equivalencies enforced. 
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5.2 Parametric Equivalence 

Parametric approximate equivalence is a method for identifying constraints on a 

specific model.  Given two primitives (fit directly based on the sensed data), of types α 

and β, a cross reference is made to a correspondence table denoting the possible 

constraints which can hold between the given types of geometry (See Table 5-1).   

 In the case of two holes, the centers can be concentric, or the radii can be 

equivalent.  In the case of two lines, the normals can be parallel or perpendicular, or in 

the case of parallel lines, they can have a common distance from another line.  For every 

set of two primitives, the possible constraints are checked and a parametric equivalence 

test is made.  This test takes the form of a distance check for concentricity, a length test 

for radii, or a theta check for parallel and perpendicular constraints:   

Concentric Test:  ||center1 – center2|| < δ1 

Parallel test:   |theta1 – theta2| < δ2 

Perpendicular test:  |theta1 – theta2| - 90 < δ3. 

If a primitive is found to have a parametric value closely matching another 

primitive, then a constraint is hypothesized suggesting that any error between the two was 

caused by noise in the sensing process and a constraint needs to be enforced during the 

optimization. 

Parametric equivalence is a powerful tool for speculating on likely constraints.  

These tests are valid because they are based on knowledge of logical design practices. 

For example, a typical part with holes will have a minimum number of different radii.  In 

the case of threaded holes, the screws for one hole are quite likely to fit another hole.  

 

Table 5-1: Example Constraints 

 Hole Line Arc Plane 

Hole Concentric 

Diameter Equiv. 

Distance to Center of Hole Concentric - 

Line - Parallel 

Perpendicular 

Distance to Line 

- - 

Arc - - Concentric 

Radius Equivalence 

- 

Plane - - - Parallel 

Perpendicular 
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Further, the radii of these holes are likely to be one of a set number of well-known drill 

bit sizes. 

Consider Figure 5-1 depicting both a profile and a pocket feature.  The values in 

Table 5-2 and Table 5-3 were computed fitting each separate primitive to its individual 

segmented data.  The lines are parameterized in terms of their normal and distance from 

the origin.  The arcs are parameterized based on their center and radius.  By cross-

referencing every primitive, several relations can be observed. 

 

 

 

Figure 5-1: Lower Link Profile and Pocket Features 
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Table 5-2: Lower Link Lines Parametric Values 

Lines Normal in Degrees Distance from Origin 

L1 3.135 2.636 

L2 1.566 -0.548 

L3 1.107 -0.443 

L4 1.565 -1.172 

L5 3.140 -2.612 

L6 1.563 -0.843 

L7 3.136 -1.239 

L8 1.566 0.752 

L9 3.142 -2.620 

L10 1.564 1.078 

L11  2.029  0.351 

L12 1.565 0.451 

L13  3.122 1.759 

L14 1.563 -0.402 

L15 1.106 -0.300 

L16 3.133 -1.077 

L17 2.026 0.191 

L18  1.566 0.288 
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Table 5-3: Lower Link Arcs Parametric Values 

Arcs Center (x) Center (y) Radius 

A1 -0.020 -1.131 0.583 

A2 1.507 -0.575 0.604 

A3 1.504 -0.585 0.269 

A4 1.521 0.469 0.280 

A5 1.523 0.458 .610 

A6 -0.007 1.025 0.571 

A7 -1.536 -0.170 0.220 

A8 -1.550 0.088 0.208 

A9 0.034 0.807 0.519 

A10 0.862 0.397 0.212 

A11 0.858 -0.527 0.215 

A12 -0.001 -1.014 0.607 

 

First, lines L1, L5, L7, L9, L13, and L16 have normal orientations within 0.02 

degrees.  Likewise, lines L2, L4, L6, L8, L10, L12, L14, and L18 have similar 

orientations, as do lines L3 and L15, and lines L11 and L17.  As these values are very 

close, they are automatically flagged as likely parallel constraints.  Further, lines L5 and 

L9 have similar normals and distance parameters, implying that they are in fact two line 

segments on the same geometric line. 

In addition to the parallel constraints, it is numerically apparent that many of these 

lines have normals perpendicular to each other within a very small error delta.  Thus 

many of the lines, such as L1 and L2, can be flagged denoting a perpendicular constraint.  

The same process is applied comparing the radii of each arc.  The result is the flagging of 

A7, A8, A10, and A11 as likely radius equal constraints. 
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5.3 Hypothesis Based on Geometric Considerations  

As stated in the previous chapter, not all information about the geometrical 

relations of a model can be construed directly via the parameterization.  For the case of 

identifying equivalent-width constraints a geometric test must be made.   

Once again consider the Lower Link.  An additional test is made calculating the 

distances between all sets of parallel lines. This information is saved in an upper diagonal 

matrix.  After all the width computations are made, corresponding values are grouped. 

This allows an automatic assertion of width-equal constraints, such as usually found with 

pocket webbing or symmetric features.  

Table 5-4 displays the matrix for a subset of the lines from the Lower Link profile 

and pockets.  Two things are directly apparent: 1) the distance between L2 and L12 is 

almost exactly one inch which implies a distance constraint, 2) the distances between 

lines L2 and L14, L3 and L15, L7 and L16, L11 and L17, and L12 and L18, are all within 

0.02 inches.  This information can be taken for evidence that the pocket feature is 

centralized (on three sides) to the profile feature. 

Similar to the line examples, several numeric equivalencies can be made on arc 

subfeatures.  Arcs A2 and A3 and arcs A4 and A5 have centers within 0.015 inches.  

Similarly the centers of arcs A12 and A6, and arcs A1 and A9 are separated by several 

Table 5-4: Line Distances 

 L2 L3 L7 L11 L12 L14 L15 L16 L17 L18 

L2 - X X X 0.999 0.146 X X X 0.836 

L3 - - X X X X 0.143 X X X 

L7 - - - X X X X 0.162 X X 

L11 - - - - X X X X 0.160 X 

L12 - - - - - X X X X 0.163 

L14 - - - - - - X X X 0.690 

L15 - - - - - - - X X X 

L16 - - - - - - - - X X 

L17 - - - - - - - - - X 
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tenths of an inch.
25

  Based on the scale of the object and accuracy of the sensor, the user 

would set the appropriate distance criteria to assert concentricity. Because access to the 

original Lower Link model is available, it is possible to determine that the first set of arcs 

is in fact concentric while the second group is not.   In the case where the delta value is 

too large, a false positive result will be reported.  This result can either be overruled by 

the user, or ignored, producing an erroneous constraint, yet one unlikely to adversely 

affect the final model. 

5.4 A Word of Caution 

It should be noted that parametric equivalence is not without its liabilities.  There 

are several reasons that can cause the assertion of a false constraint.  (1) The initial 

segmentation and fitting of certain small arc primitives can lead to vastly differing 

parametric values, even while maintaining a close geometric approximation to the correct 

shape.  (2) The reverse engineer may fit a different feature to the data from that initially 

created during the design, causing a mismatch of parametric representation.  (3) The 

apparent equivalence could simply be a coincidence in the data or the result of machining 

or sensor error. 

Only in case (1) is it likely that the asserted constraint will cause dramatic, or 

even noteworthy, errors in the new model.  In most cases the differing parametric values 

will cause a constraint not to be hypothesized.  In the case of a false positive constraint, 

the produced model will usually be either so far off as to immediately draw the attention 

of the engineer, or so close that the change is unlikely to have a pronounced effect.   

Of further note, the optimization process produces an error value associated with 

each feature.  Any extreme peak in a single features error is strong evidence of improper 

constraints.  (It should also be noted that large errors could occur when true constraints 

are dragging the model away from very poor scanned data and toward the desired 

geometry.) 

                                                 

25
 It is sometimes the case that coincidence does exist in model creation.  Seldom 

will a designer purposefully offset a structure by hundredths or thousandths of an 

inch, but certain CAD packages will allow diverse feature parameterizations that 

can occasionally lead to these situations. 
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These results highlight two important ideas: 

1. Parametric equivalence is a powerful tool for hypothesizing likely geometric 

properties of an object, removing the tedious job of asserting multiple 

straightforward constraints from the user. 

2. If the initial fit is off because of noise, segmentation error, or other error sources, 

parametric equivalence can fail.  Therefore, although this method is generally 

accurate, an interactive user should verify all constraints and may be required to 

assert missed constraints. 



 

 

CHAPTER 6 

6 THE REVERSE ENGINEERING PROCESS 

QUANTIFIED 

There is a hierarchy of possible goals that may be desired for any given reverse 

engineering process.  At the lowest level, a simple representation of the spatial geometry 

of the exemplar part must be created.  Such a representation is inadequate for all but the 

most basic analysis and renderings.  A feature-based reverse engineering paradigm 

provides not only a more useful and powerful representation, akin to that created by the 

modern design process, but also provides a method for noise reduction and error 

correction.  Constraint optimization over features is the next logical step in the continued 

progression of this research. 

Constraint-based optimization in the area of reverse engineering provides a 

method for creating high precision models that reflect the design intent behind the 

geometry of the exemplar part.  This method enforces that the geometry created does not 

blindly fit the sensed data (which is known to have systematic errors, missing data, and 

noise) but also adheres to high-level design constraints.  This reduces the sensitivity of 

the process to the errors introduced through machining, wear, and scanning. 

This chapter discusses the entire engineering process as utilized in this work.  To 

validate the approach, several exemplar parts have been chosen from those making up the 

University of Utah Mini-Baja and Formula SAE Race Cars  (See Figure 6-1).  Each part 

has multiple features, including holes, pockets, and profiles. Unconstrained, these models 

would contain from dozens to hundreds of DOFs.  Such large optimization spaces are in 

the general case unsolvable due to myriads of local minima.  By combining strong local 

starting points, DOF reduction, and constraint-based optimization tools, higher accuracy 

models for each exemplar part have been created.  These models better capture the 
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physical geometry and the functional properties of the object by using dependencies 

asserted across the entire object to bind the global geometry of the object.  Such a model 

is of high value to the redesign process that often follows reverse engineering.   

The remainder of this chapter details the stages of the reverse engineering 

process, how constraints were applied to the models and the results obtained.  Certain 

stages of the process that are necessary to the overall system, but not the focus thereof, 

are only given cursory descriptions.  The reader is encouraged to keep in mind the goals 

of this research, as outlined below: 

1. To create high precision models that reflect not only the geometry, but as 

importantly, the design intent behind the exemplar parts. 

2. To demonstrate that reverse engineering can be achieved and couched in the 

terms of constraint optimization. 

3. To show that design and manufacturing knowledge can be codified as 

constraints to guide a global optimization process, thus producing higher 

accuracy models. 

 

 

Figure 6-1: Formula SAE Race Car 
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4. To automatically hypothesize and assert constraints based on knowledge of 

the design process. 

5. To rapidly and semi-automatically segment and fit unordered data clouds, 

producing CAD models.  

This work has demonstrated the ability to use optimization to produce high 

precision models while maintaining geometric properties defined by constraints 

representing real world "truths."  Further, a method has been developed for automatic 

local and global constraint/dependency assertion.  A rapid feature-based segmentation 

and initialization system has been developed to process unorganized data clouds and 

instantiate the optimization process. 

6.1 Desired Results 

The goal of each specific reverse engineering process is dependent on the 

projected use of the generated model.  The techniques proposed by this dissertation are 

necessary because of the difficulties in sensing 2.5D mechanical parts to a sufficient level 

of accuracy for reproduction and the problems in producing models that are faithful to the 

original design.  These same techniques are feasible because of the inherent structure in 

this domain.   

To show the effectiveness of constraint-based reverse engineering, the recreated 

models were compared with the original models (available from the designer) used to 

machine the exemplar parts.  The exemplars were manually measured to determine any 

manufacturing errors, and this information was used to assert the ground truth. 

To quantify this research two separate groups of metrics are provided.  These 

include: 

 Model Analysis: 

1. Parametric Error in Terms of Design Intent 

2. Volumetric Error 

 Method Analysis: 

3. Automatic Constraint Assertion 

4. DOF Reduction 
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Parametric error describes the differences between salient feature elements, such 

as how equal two radii are, how close the center of a hole is to a concentric hole, or how 

parallel one line is to another line.  The parametric information is arguably of equivalent 

value as the geometric shape of the final model.  Design intent is a qualitative comparison 

between the recreated model and the original model based on the quantitative parametric 

differences.  The focus here is placed on how well the reverse engineered features 

represent design truths associated with the original model. 

Volumetric error concerns the spatial difference between the reverse engineered 

model and the original model.  The reported values show the square root of the mean of 

the squares (RMS error) of these values.  Section 6.1.1 describes the process for 

generating this metric. 

Automatic constraint assertions refer to how well the constraint hypothesizer has 

determined the constraints that accurately reflect the design intent of the object.  This 

includes the number of false positives (wrong constraints) and false negatives (missed 

constraints).  These constraints, along with those asserted by the reverse engineer, 

provide the design knowledge that drives the optimization process. 

DOF reduction represents the number of parameters that have been removed via 

the automatic DOF reduction algorithm.  The lower the number of parameters used to 

represent the model, the more resistant the optimization becomes to noise and local 

minima.  This category also describes the number of penalty functions enforced on the 

model. 

For each exemplar part, a description is given describing the part and the intent 

behind its design.  The total DOFs associated with the part are shown along with the 

number left after DOF reduction has taken place.  The effectiveness of the automatic 

constraint assertion process is detailed.  A parametric analysis is given showing the 

feature-based errors encountered in relation to the scanned data and the original model.  

Finally a volumetric error measure is given, stating the total volume the final model 

differs from the original model.  
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6.1.1 Volumetric Error Calculation 

The process of quantifying the difference between two nearly identical models is 

complex.  As previously mentioned, discrepancies in parametric values, such as the radii 

of corresponding holes, are useful (even crucial) for item by item checking, but do not 

characterize the overall similarity or difference between the geometry of the two models.  

The volumetric error attempts to quantify the difference that would be found between the 

two models if they were overlapped and one subtracted from the other.  Thus the 

volumetric error (VE) can be defined as: 

 

VE = Volume (Mo – T (Mr)) 

 

Where T is the transform that minimizes the integral of the distance between 

corresponding surfaces of each model (i.e., the volume of difference), Mo is the original 

model, and Mr is the reconstructed model, and “-” is the Boolean operation differencing 

the two models. 

Unfortunately, an analytic evaluation of T is not available, nor is it easy to 

compute the volume of the difference between two arbitrary solids.  To address these 

problems an iterative optimization process using the 2.5D planar nature of the parts is 

used to approximate T.  Once registered, the difference volume between the two models 

is calculated by a discrete sampling method. 

 The direct 3D registration process is difficult and expensive to compute.  

Fortunately, due to the 2.5D nature of the models, several advantages present themselves 

for the registration process.  First, the bounding (or anchor) planes of the models can be 

directly aligned
26

 and the difference in heights averaged.  This changes the registration 

problem from a 3D model-to-model problem into a 2D contour-to-contour optimization 

involving only a single translation and rotation.  Further, only the outer profile is used 

based on the fact that it is the most easily, and thus most accurately sensed feature of the 

model. 

                                                 

26
 In the case where a model has bounding planes with differing normals 

(nonoptimized models) the average normal is used. 
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Differencing two continuous curves is not easily accomplished.  An 

approximation is made by taking a sampling of equidistance points (an arc length 

parameterization) along the length of one profile and computing an objective function 

based on the sum of the squares of the distances from each point to the nearest subfeature 

on the corresponding contour.  This involves a segmentation process (corresponding each 

point with the nearest subfeature) and 2D distance calculations.  The resulting 

optimization computes the estimate for T allowing for the volumetric differencing. 

Once the models are registered, the volumetric difference between the two models 

is calculated.  This is achieved by approximating the continuous nature of the surfaces of 

the model with a discrete sampling of points.  Again using the nature of the 2.5D parts, 

the 3D geometry can be sampled by taking equally spaced points along each 2D profile 

(as generated during the registration process) and projecting them along the Z-axis at the 

same interval.  This covers the sides, pockets, and holes with a set of surface-wise 

equidistant points, each representing approximately the same area of the surface of the 

model.  The planar surfaces are sampled through a Cartesian grid of points.  By creating a 

fine distribution of points, the continuous surface of the model is approximated. 

Given an even distribution of points, the volume between the models is closely 

approximated by projecting each point from the sampled model on to the closest surface 

of the reconstructed model and multiplying this value by the area represented by the 

point.  Because the related features for which each point was created are known, the error 

metric can be given on a feature-by-feature, subfeature-by-subfeature, or model-by-

model basis.  

6.2 The Parts 

This work has been validated on a set of representative 2.5D exemplar parts
27

 (see 

Figure 6-2 and Figure 6-3).  The simplest part under consideration is the Steering Arm.  It 

consists of a profile contour, a tie rod hole, and a single mounting hole.   

                                                 

27
 The design and production of the parts was done by mechanical engineering 

students and faculty for the annual Society of Automotive Engineers (SAE) 

design competition at the University of Utah. 
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Figure 6-2: Shock Plate (left) and Lower Link (right) 
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(a) Upright 

 

(b) Steering Arm 

 

(c) Shock Tower 

Figure 6-3: Additional Exemplars 
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This part demonstrates the basic and fundamental application of constrained 

optimization to improve the reverse engineering process. 

The Shock Plate consists of two complex interior pockets, three through holes, 

and a simple exterior contour.  It mounts to a shock absorber and wheel suspension and 

forms a rocker between the two.  The pockets are symmetric and were designed with 

equal thickness between each wall and the exterior profile.  The holes were designed to 

accept equal sized fasteners. 

The lower link is also used as part of the wheel suspension. The lower link 

consists of an extruded profile, two pockets, and three through holes.  The pockets are for 

weight reduction and are symmetric, with equal web thickness on three sides.  The holes 

form assembly connections.  The upper holes are aligned to accept a connecting rod.  The 

lower hole has the same radius as the two upper holes.  The tines of the fork are of equal 

strength (size) and symmetric around the center of the part. 

The shock tower is part of an assembly holding a shock absorber and a rocker 

arm.  It has two rod-connection holes of exactly the same size, and two smaller mounting 

holes.  The upper fork is symmetric and is built to hold a shock absorber allowing a 

single axis of motion.  It contains two weight-reducing pockets centered on the main 

body of the part.   

The upright forms the basic foundation of the wheel assembly of the car.  It 

mounts the brake calipers for the wheel using holes on the periphery flanges.  It has two 

weight reducing pockets that are centered in the part, have parallel walls, and are 

concentric on the center hole, which accepts the wheel axle.  All the mounting holes 

accept the same size screws.   

In each case, the designs for the parts are natural and efficient, devised to provide 

strength and low weight, symmetry, and ease of assembly and manufacturing.  As will be 

shown, the constrained optimization process has in each case produced a new model that 

captures these intents, thus increasing the overall accuracy of the model while enforcing 

the criteria of the original design. 
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6.3 The Process 

The reverse engineering process was described in the introductory and 

background chapters of this dissertation.  The processes necessary for recreating models 

are summarized here:  

1. Data Acquisition and Registration 

2. Initial Segmentation and Plane Fitting 

3. Initial Feature-by-Feature Estimation 

4. Automatic Constraint Hypothesis  

5. DOF Reductions and Boundary Function Creation 

6. Constrained Optimization 

The remainder of this chapter discusses each phase and the results associated with 

it.  The important research addressed by this work concerns stages 4 through 6.  

Additional work was invested in phases 2 and 3 to rapidly produce initial data for the 

optimization phases. 

6.4 Data Acquisition 

Each exemplar part was scanned multiple times by a Digibot II laser scanner (See 

Section 2.8) in different (approximately orthogonal) orientations to achieve a complete 

covering of the entire object.  Refixturing was necessary because not all surfaces could be 

captured with only one view.  The data from each scan were merged into one data cloud 

by calculating equivalent planar surfaces in each view of the data and optimizing a 

transformation (rotational and translational) to minimize the distance between these 

planes. 

Each part was sprayed with a crack developer solution that spreads a thin layer of 

white powder across the part.  This powder was measured to average approximately 25 

microns in thickness on a planar surface. 

For small hole features, screws or plugs were inserted in order to achieve more 

accurate data for these areas.  Because the plugs were aligned with the bounding plane of 
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the feature, it was still possible to project the plug data into the bounding plane to analyze 

the center of the hole.
28

 

6.5 Initial Segmentation and Plane Fitting 

The exemplar parts utilized in this work are in the class of 2.5D geometry, 

explicitly, 2D contours that have been extruded along the Z-axis with occasional minor 

off axis machining operations.
29

  Each plane used in the manufacture of the part forms an 

"Anchor" for the extrusion of the 2D feature into 3D.  Knowledge of this class of parts 

allows for intelligent segmentation of the data cloud representing the object.  First, a 

stochastic plane finding method is run over the data, automatically classifying sections of 

data corresponding to the main planar regions of the part.  This rapidly reduces the total 

number of points in the data cloud, which in turn speeds the collection of smaller planes 

and eventually the segmentation of the features themselves. 

After all the points associated with each anchor plane have been defined, an 

optimization process is invoked which optimizes over all aligned planes.  The planes are 

represented by a common normal for the plane group and the minimum distance from 

each plane to the origin, thus requiring an N+3 DOF parameter vector, where N is equal 

to the number of planes.  The error minimized is the RMS distance from each data point 

to its corresponding plane.  A simplex search is used to compute the optimization. 

6.6 Initial Feature by Feature Estimation 

Once the plane segmentation has been accomplished, the remaining data represent 

the various feature regions (data associated with the inherent features of the part).  This 

                                                 

28
 This method of hole sensing combined with the inherent nature of feature-based 

modeling allows the center of the hole to be fit accurately and the desired radius 

to be inserted by the engineer.  For the purposes of the errors reported in this 

chapter, no values were inserted by hand.  All radii were calculated from the 

sensed data. 

29
 Off axis machining is accomplished by refixturing the object and re-machining.  

It should be noted that fixturing errors can often be a significant source of 

manufacturing error. 
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leaves each region spatially segregated from its neighbors and thus more easily pulled out 

by semi-automatic means. 

At this point, the user selects a feature (which includes specifying the bounding 

planes and a data point in the data cloud which is part of the feature), and the data 

associated with that feature is automatically segmented from the data cloud.  The user can 

interactively clip any elements from the segmentation that is deemed outliers.  The 

resulting data is projected into the specified anchor plane, forming a list of 2D points 

representing the feature outline.  A contour finding method is then applied to construct an 

arc and line decomposition of the data.  Each line and arc is fit separately producing an 

initial description of the feature. 

Because of varying levels of noise and scale across a part, the contour routine can 

mistakenly label an arc segment as a line segment.  The user is allowed to interactively 

correct the resulting geometry before accepting the final contour and passing it on to the 

next stage.  Once the feature has been defined, all data points associated with the feature 

is classified and saved for use in the optimization process.  This makes each subsequent 

feature segmentation easier in the sense that fewer outliers and misclassifications are 

likely.  These steps are repeated until the entire data cloud has been classified. 

The result of this phase of the process is a feature-by-feature decomposition of the 

part along with initial geometry approximations and associated segmentations.  The 

geometry is then used to hypothesize the features and the data points are used during the 

optimization process.   

6.7 Automatic Constraint Acquisition 

Engineers are good at implicitly visualizing possible constraints given an exemplar part, 

yet this process can be tedious.  Stating, line 1 is parallel to line 2, and line 3 is 

perpendicular to line 2, and line 4 is parallel to line1, etc., for a large number of features 

is quite repetitive and could result in the user unintentionally missing constraints.  This 

research has shown that the constraint identification and assertion process is well suited 

to automation.  Table 6-1 displays the number of constraints identified on the geometry 

of each exemplar.  In all cases the majority of constraints were accurately hypothesized.     

The missing constraints were the result of comparing the parametric values of small 
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primitives that were not accurately fit by the initial primitive fitting phase due to noisy 

data and incorrect segmentations.  

The incorrect constraints found for the Lower Link involved a concentric arc 

constraint between the outer profile and the inner pocket contour.  The designer chose 

slightly different rounding radii for each arc.  This is a case where because of the small 

nature of the primitive, the arc centers overlapped enough to hypothesize their 

concentricity.  Had the constraint been allowed through to the optimization process, the 

inner and outer profile arcs would have been forced into alignment.  The resulting 

geometrical differences would have not been visible to the engineer, nor would the effect 

have been adverse. 

The outer profile of the upright consists of four flanges that are similar to boss 

features surrounding the four mounting holes.  For each of these flanges, it was 

hypothesized that they were actually boss features, when in fact, the bounding arcs are 

offset by small line segments and do not truly center on the hole.  When optimized with 

these constraints, spikes in the error were noted for the flanges as the two outer arcs were 

forced into a single arc.  From this information it was possible for the engineer to 

reevaluate the original model and discover the need for these line segments. 

The constraint hypothesizer accurately identified the vast majority of constraints 

used in the design of the exemplar parts based on the initial parametric and geometric 

values fit to the data.  This technique has proven robust and effective.  Nevertheless, the 

routine is sensitive to the fitting of the primitives in the object and would need to be 

Table 6-1: Constraint Hypotheses 

Exemplar Part Hypothesized 

Constraints 

Incorrect 

Constraints 

Missed Constraints 

Steering Arm 3 0 0 

Shock Plate 22 0 2 

Lower Link 41 2 0 

Shock Tower 20 0 1 

Upright 79 8 0 
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adjusted to compensate for poorer data sources or objects of larger scales.  Thus it is 

important to allow an interactive environment where the engineer can override the 

hypothesized constraints or assert new constraints. 

A final note should be made about the complexity of the constraint hypothesizer.  

As implemented, the hypothesizer is doing N-squared comparisons, where N represents 

the number of primitives.  Many of these checks result in a simple comparison that shows 

no possible appropriate constraints between the primitives.  Of those primitives that have 

possible correspondences, a simple mathematical comparison is all that is required.  The 

largest model in the exemplar set (the Upright) contains approximately 90 primitives.  

The time required to analyze this model was 0.1 seconds.
30

  For extremely large and 

complicated parts or assemblies, it may be necessary to optimize the algorithm.  Certainly 

as the DOFs of the object are reduced based on initial constraints, the remaining number 

of checks could be reduced. 

6.8 DOF Reduction and Boundary Function Creation 

Chapter 4 provides a description of the DOF reduction methods and the creation 

of boundary functions.  The initial DOFs for each model, the reduced number, and the 

total number of boundary functions applied to each reverse engineering process are 

presented below.  As can be seen in Table 6-2, a significant amount of simplification 

between a full geometric description and a constrained constructive representation can be 

achieved via the DOF reduction strategy.  The first column represents the number of 

DOFs to geometrically build the object.  The second column reports the number used 

after the domain specific primitives have been applied.  The third column represents the 

number of DOFs after the global constraints were applied.  This is the size of the feature 

vector during the constrained optimization.  The final column shows the number of 

constraints that were not applicable to symbolic substitution methods and required a 

penalty function implementation 

                                                 

30
 Pentium III, 1.0 Gigahertz Processor 
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. 

The large amount of simplification shown here directly leads to the increased 

accuracy found in the next section.  It also is indicative of the well-defined nature of this 

domain of parts, ratifying the decision to use domain specific knowledge. 

6.9 Error Analysis 

The error analysis of the reverse engineering process comes in several flavors.  In 

the past, model creation techniques have described their success in terms of how well the 

model fits the sensed data.  Thompson et al. [36] describe various methods of 

determining error between reconstructed models.  These include positional and local 

surface shape error, corresponding to parametric and volumetric errors metrics. 

Table 6-3 lists the RMS values calculated on a feature-by-feature basis for the 

exemplar parts.  The values are in microns and represent the positional error between the 

reverse engineered model and the original model.  The second column represents the 

model fit using low-level constraints (pragmatics and features).  The third column 

represents the model constructed via the constrained optimization process with as much 

knowledge as possible applied.  In almost all cases the RMS errors between the recreated 

features and the corresponding feature on the original model have been reduced by the 

use of constraints.  In the few instances where the error has increased, the optimization 

has pulled one feature away from its true position in order to optimize a separate feature. 

Table 6-2: Degree of Freedom Reductions and Penalty Functions  

Exemplar 

Part 

Initial 

DOFs 

With Domain Specific 

Primitives and Pragmatics 

With Functional 

Constraints 

Number of 

Penalty 

Functions 

Steering Arm 31 18 15 1 

Shock Plate 132 48 20 9 

Lower Link 144 72 26 5 

Shock Tower 92 45 22 3 

Upright 264 144 68 7 
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Table 6-3: RMS Error on Exemplar Parts in Microns 

Exemplar Part and Features Feature-based model  Constrained Model  

Steering Arm   

Tie Rod Hole 90 49 

Mounting Hole 89 62 

Profile 39 39 

Shock Plate   

H1 41 32 

H2 63 23 

H3 70 27 

Profile 25 20 

Pocket 1 186 49 

Pocket 2 192 49 

Lower link   

Pocket 1 264 131 

Pocket 2 157 131 

Profile 29 24 

Shock Tower   

Profile 58 41 

Pocket 1 166 121 

Pocket 2 148 121 

Hole 1 77 53 

Hole 2 29  47 

Mounting Hole 1 74 35 

Mounting Hole 2 64 48 
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Table 6-3: continued 

Exemplar Part and Features Feature-based model  Constrained Model  

Upright   

Flange Hole 1 523 259 

Flange Hole 2 446 263 

Flange Hole 3 360 366 

Flange Hole 4 140 278 

Profile 1 57 41 

Profile 2 50 44 

Profile 3 61 67 

Pocket 1 71 37 

Pocket 2 63 39 

Boss 22 28 

Big hole 35 28 
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In all exemplar parts, the design intent behind the original model has been 

effectively captured.  The optimization process has forced the constrained model into 

feasibility, reducing parametric differences to zero.  Table 6-4 represents the parametric 

discrepancies between associated features of the Shock Tower as reverse engineered with 

local (purely feature-based) and global constraints.  The feature-based model contains 

wide variations depending on the noise associated with each feature.  From 0 to 203 

microns of discrepancy can be seen.  To attempt to convey the benefit of the constrained 

methodology, several additional examples are presented below. 

Consider the basic design of the Steering Arm.  The most prevalent advantage of 

this method on the Steering Arm is the concentric placement of the tie rod hole inside the 

outer profile.  The calculated center of the hole using the constrained method was exactly 

concentric with the outer profile, while using a local, feature by feature fit, the center was 

101 microns off the true center.   

The other significant result is the centering of the mounting hole based on the 

exterior profile. Additionally, the line segments on the outer profile were aligned 

perpendicular and parallel to their neighbors.  In the feature-based method, the normal of 

the line segments were off by .08 and .06 degrees from their designed value.  These small 

Table 6-4: Parametric Differences in Microns 

Shock Tower Feature Decomposition Without Constraints With Constraints 

Difference between the radii of hole 1 and 2  76 0 

Difference between the radii of the mounting 

hole 1 and 2 

0 0 

Pocket 1 and 2 width difference 215 0 

Pocket 1 and 2 offsets 50-100 0 

Width of the webbing between pocket 1 and 

the outer profile 

61 0 

Offset of the centers of the mounting holes  

1 and 2 

50, 200 0 

Offset of the cube hole center from the 

exterior profile arc center 

25 0 
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discrepancies are not necessarily important geometrically, but parametrically remove the 

nice properties associated with true parallelism and perpendicularity. 

It should be noted that the outer profiles of a part are sensed more accurately than 

interior features because fewer occlusions occur and the profile can be aligned normal to 

the laser.  This can lead to positional accuracy on par to models created using functional 

constraints.  Nevertheless, functionally constrained geometry is superior as shown in 

Figure 6-4 representing a highly magnified look at the three profiles that make up the 

exterior of the Upright.  The three profiles represent the rectangular section near the top 

of the part, the main contour section of the part without the flanges, and the main contour 

section with the flanges.  The fits of the three exterior profiles made in isolation to each 

other vary up to 50 microns and are not aligned upon one another as would be required 

for constructing a solid model from the features or when considering machining a new 

part.  The profiles that were generated under the constrained optimization align on each 

other as expected.  Thus the necessity of optimizing based on global constraints can 

clearly be seen. 

6.10 Summary 

The results presented here show significant increases in the geometric accuracy of 

the resulting reverse-engineered models while enforcing dependencies among the various 

inter-related geometries of each part similar to those found in the original designs.  Thus 

the new models are both geometrically closer to the original design, and parametrically 

more in keeping with the design intent behind the parts.  Finally, the ability to 

automatically hypothesized constraints has been shown to be effective, and the ability to 

construct model representations with far fewer DOFs, based on asserted constraints, has 

been demonstrated. 
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Figure 6-4: Upright Exploded View



 

 

CHAPTER 7 

7 CONCLUSION 

The field of reverse engineering requires model creation techniques that capture 

the high tolerances and design attributes necessary to successfully machine replacement 

parts.  Current methods of reverse engineering usually require the manual inspection and 

measurement by an engineer or use generic model fitting techniques based on the data 

acquired from general purpose sensors.  The physical inspection of a part can be a time-

consuming process requiring manufacturing and design expertise, often resulting in 

approximations where hand held calipers cannot easily describe the geometry of the part.  

Generic reverse engineering strategies are usually not appropriate to the domain of 

manufactured parts. 

Successful models of manufactured parts demand high precision modeling that 

ideally captures the functional properties of the part in addition to the geometry.   Such 

models must be amenable to manufacture and support re-engineering.  Appropriate 

models for manufacture often require a precision greater than that directly available from 

the scanned data.  Such data are usually poor because of the reflectance property of the 

parts and the fact that the most difficult areas to sense are often those where the highest 

tolerances are needed, such as the discontinuities between features.  Previous reverse 

engineering systems were not developed to handle the data and requirements of this 

domain and therefore result in poorer accuracy and less useful representations. 

In the reverse engineering of mechanical 2.5D parts, it must be recognized that 

these parts are, by their very nature, artifacts designed with specific properties that can be 

leveraged in the model recreation process.  The geometry as designed is limited by 

considerations such as effectiveness, functionality, simplicity, and manufacturability.  

This design and manufacturing knowledge can be codified via the use of constraints to 

guide the optimization process, effectively increasing the accuracy and appropriateness of 



 

 

108 

the final model.  Appropriate models can be created by applying domain specific 

primitives, pragmatics, and functional constraints, inside an optimization framework, 

despite the error associated with the sensing process. 

Constraint-based reverse engineering attempts to recreate a model of a part from 

an exemplar object that is faithful to the original design and captures the geometry and 

function of the part with greater accuracy than previously attainable.  The resultant 

models logically depict the objects as they are likely to have been designed and contain 

dependencies that are useful if any redesign is necessary.  In the presence of noisy data, 

the parametric optimization minimizes the positional error associated with each feature of 

the part while constraints maintain the functional properties of the features as predicted 

by manufacturing and design knowledge. 

7.1 Contributions 

Reverse engineering should not be considered simply a "fitting" process based on 

sensor data, but should instead be couched as an optimization process constrained by the 

sensor data and by knowledge of design artifacts.  The application of constraints (based 

on domain specific knowledge) provides a method for reverse engineering more accurate 

and useful models. 

This work has identified a set of constraints that encapsulate the design of a 

representative set of 2.5D manufactured parts.  These constraints have been formulated as 

symbolic manipulations of the algebraic representation of the model and also (when 

symbolic transformations are not possible) as penalty functions based on the parametric 

and geometric representations of the model.  Further, this work has demonstrated that 

likely constraints can be automatically hypothesized. 

The domain of 2.5D manufactured parts requires high accuracy models, which are 

appropriate for redesign or machining.  Current data acquisition methods for use with 

these types of objects are not capable of recreating a desirable model appropriate to the 

domain.  This dissertation has shown that knowledge can be applied to the model 

recreation process in the forms of geometric constraints.  The results presented for the 

exemplar parts show not only geometric accuracy in terms of lower RMS error values, 

but also an improved parametric representation.  The ability to exploit domain specific 
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representations, pragmatics, and global constraints through the use of optimization 

algorithms is a significant contribution toward the area of high tolerance model 

recreation. 

7.2 Systems 

An interactive system was created for visually displaying point cloud data and 

rapidly segmenting and fitting the data cloud resulting in an initial feature-based model.  

A separate program was created to analyze this model, hypothesizing constraints based 

on design and manufacturing knowledge.  Finally an optimization framework was created 

which accepts the initial feature-based model, the list of constraints, and the data points, 

and uses generic optimization routines to construct the optimized model.  This model is 

directly transferable to a feature-based CAD package for manufacture or redesign. 

7.3 Future Work 

While constraint optimization is a powerful method for reverse engineering, there 

are several issues of concern with the current system and numerous areas of research 

available in the field of reverse engineering itself. 

The initial model creation process is still far from automatic.  Advances could be 

made in the area of automatic segmentation.  Much as the automatic plane finder is an 

initial step, techniques for identifying self contained "feature clouds" between planes 

could be made.  These segmentations could be automatically fit, both as holes and 

contours, and an error metric could decide if either effectively captures the geometry of 

the cloud. 

In the area of optimization, the weights associated with features during the 

evaluation of the objective function could be hypothesized based on knowledge of the 

sensor.  Additionally, multiple data sources could be integrated into the system, perhaps 

adding an interactive step to the sensing process where features and constraints guide the 

sensing process during the model creation.  Further, the model as developed could be 

used to drive a CMM that would check and improve the accuracy of the model. 

Another area of interest is the adaptation of this work toward a larger set of 

possible geometric forms, including identifying and implementing constraints on 
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manufactured parts created using five axis machining.  Other interesting domains could 

also be addresses, such as parts created on lathes, by castings, or by other manufacturing 

techniques.  Additional 2.5D constraints, such as radial symmetry, should also be 

implemented to extend the usefulness of the current system 
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