
FORMALIZATION AND VERIFICATION OF

SHARED MEMORY

by

Ali Sezgin

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

School of Computing

The University of Utah

August 2004

Copyright c© Ali Sezgin 2004

All Rights Reserved

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

SUPERVISORY COMMITTEE APPROVAL

of a dissertation submitted by

Ali Sezgin

This dissertation has been read by each member of the following supervisory committee
and by majority vote has been found to be satisfactory.

Chair: Ganesh G. Gopalakrishnan

Allen E. Emerson

Matthew Flatt

Wilson Hsieh

Ratan Nalumasu

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

FINAL READING APPROVAL

To the Graduate Council of the University of Utah:

I have read the dissertation of Ali Sezgin in its final form
and have found that (1) its format, citations, and bibliographic style are consistent and
acceptable; (2) its illustrative materials including figures, tables, and charts are in place;
and (3) the final manuscript is satisfactory to the Supervisory Committee and is ready
for submission to The Graduate School.

Date Ganesh G. Gopalakrishnan
Chair: Supervisory Committee

Approved for the Major Department

Christopher R. Johnson
Chair/Director

Approved for the Graduate Council

David S. Chapman
Dean of The Graduate School

ABSTRACT

Shared memory verification, checking the conformance of an implementation to

a shared memory model, is an important, albeit complex on many levels, prob-

lem. One of the major reasons for this complexity is the implicit manipulation

of semantic constructs to verify a memory model, instead of the desired syntactic

methods, as they are amenable to be mechanized. The work presented in this

dissertation is mainly aimed at reformulating shared memory verification through

a new formalization so that the modified presentation of the problem manifests

itself as purely syntactic.

(Shared) memories are viewed as structures that define relations over the set

of programs, an ordered set of instructions, and their executions, an ordered set of

responses. As such, specifications (basically memory models that describe the set

of executions considered correct with respect to a program) and implementations

(that describe how an execution relates to a program both temporally and logically)

have the same semantic basis. However, whereas a specification itself is described

as a relation, an implementation is modelled by a transducer, where the relation it

realizes is its language. This conscientious effort to distinguish between specification

and implementation is not without merit: a memory model needs to be described

and formalized only once, regardless of the implementation whose conformance is

to be verified.

Once the framework is constructed, shared memory verification reduces to lan-

guage inclusion; that is, checking whether the relation realized by the implementa-

tion is a subset of the memory model. The observation that a specification can be

approximated by an infinite hierarchy of finite-state transducers (implementations),

called the memory model machines, results in the aforementioned syntactic formu-

lation of the problem: regular language inclusion between two finite-state automata

where one automaton has the same language (relation) as the implementation and

the other has the same language as one of the memory model machines.

On a different level but still related to shared memory verification, the problem

of checking the interleaved-sequentiality of an execution (an execution is interleaved-

sequential if it can be generated by a sequentially consistent memory), is considered.

The problem is transformed into an equivalent constraint satisfaction problem.

Thanks to this transformation, it is proved that if a memory implementation

generates a non interleaved-sequential and unambiguous execution (no two writes in

the execution have the same address and data values), then it necessarily generates

one such execution of bounded size, the bound being a function of the address and

the data spaces of the implementation.

v

To Şişyanak

CONTENTS

ABSTRACT . iv

LIST OF FIGURES . ix

LIST OF TABLES . xi

ACKNOWLEDGMENTS . xii

CHAPTERS

1. INTRODUCTION . 1

1.1 Shared Memory Models . 2
1.2 Formal Verification and Shared Memory Models 5
1.3 Previous Work on Formalizations . 6

1.3.1 Semiformalization . 6
1.3.2 Specification Oriented Formalization . 7
1.3.3 Verification Oriented Formalization . 8

1.4 Presented Work . 9
1.4.1 New Formalization . 9
1.4.2 Verification as Language Inclusion . 12
1.4.3 Debugging Sequential Consistency . 12

2. FORMALIZATION OF SHARED MEMORIES 14

2.1 Introduction . 14
2.2 Notation . 19
2.3 Rational Expressions, Transductions . 20
2.4 Memory Protocols . 22

2.4.1 Specification . 23
2.4.2 Implementation . 28

2.5 Formalization in Action - Shared Memory Models 37
2.5.1 Sequential Consistency as a Specification 37
2.5.2 Sequential Consistency of Implementation 39

2.6 Implementation of Lazy Caching . 40
2.7 Summary . 46

3. VERIFICATION OF SHARED MEMORIES AS A LANGUAGE
INCLUSION PROBLEM . 48

3.1 Introduction . 48
3.2 The Serial Machine . 51

3.3 A Finite Approximation to Sequential Consistency 54
3.4 Related Work - A Comparison Based on Languages 60

3.4.1 The Work of Qadeer [53] . 61
3.4.2 The Work of Bingham, Condon and Hu [16] 61
3.4.3 Admissible Program/Executions . 63
3.4.4 Admissible Languages . 63

3.5 Lazy Caching Protocol and Sequential Consistency 65
3.6 The General Case for Shared Memory Models 74
3.7 Summary . 76

4. SEQUENTIAL CONSISTENCY AND UNAMBIGUOUS EX-
ECUTIONS . 78

4.1 Introduction . 78
4.2 Notation . 80
4.3 Interleaved-Sequentiality Checking: Present Situation 82
4.4 Constraints for Interleaved-Sequentiality: A New Formulation 86
4.5 Minimal Sets . 101
4.6 Finiteness Result for Unambiguous Executions 106
4.7 Summary . 110

5. CONCLUSION . 111

5.1 Summary . 111
5.2 Future Work . 115

APPENDIX: EXECUTION BASED FORMALISM AND THE UN-
DECIDABILITY RESULT . 118

REFERENCES . 121

viii

LIST OF FIGURES

2.1 A program and its execution represented in the most abstract level. . . 15

2.2 User and memory communicate over an interface. 22

2.3 Two mappings for the same instruction/response stream pair. The
above line represents the temporal ordering of the instructions and
responses. The mappings give instances of mappings that are/are not
immediate. 32

2.4 Two mappings, one tabular and the other not, have the same mapping
for the first execution but they differ on the second. 33

2.5 Two pairs of color strings, only one of which is compatible. For the
compatible pair, we also provide the mapping given by the normal
permutation, η̃. 34

2.6 The lazy caching protocol. 43

3.1 A serial machine with p processors . 51

3.2 The diagram of SCP,C(j, k) . 54

3.3 The pseudo-code for SCP,C(j, k). 56

3.4 Comparison diagrams. 64

4.1 Sample concurrent execution, G0. 82

4.2 The concurrent execution Gf . 85

4.3 The graph representing the relation IR of [33]. 85

4.4 Part of the coce of Gf exhibiting a cycle, for Ta = {(3, 11)}, Tb =
{(13, 9)}, Tc = {(5, 1)}. 86

4.5 Sample concurrent execution, G1. 87

4.6 Sample concurrent execution, G2. 88

4.7 Sample non-i-s concurrent execution G3 illustrating cycles and the
minimal set. The dashed lines are the result of ordering w(a,1) before
w(a,2). The dotted lines are the result of ordering w(a,4) before
w(a,3). 102

4.8 The concurrent execution Gd with two minimal instruction sets. 106

4.9 The relation between the temporal ordering of instructions/responses
and its associated corresponding concurrent execution; the top half
gives the temporal ordering. 108

4.10 The arbitrary run r and the constructed run r′, where T = 2|Vm|+ 1. 109

x

LIST OF TABLES

2.1 The original transition structure of a lazy caching memory, as given
in [8]. 41

2.2 The transition structure of an implementation modelling an instance
of a lazy caching protocol. 45

ACKNOWLEDGMENTS

This work, which is somewhat unorthodox as it strives to develop a novel

theoretical framework in lieu of the existing ones, could not have been possible

in an environment lacking patience, freedom and trust. Even though I believe that

these should be standard in an academic institution, such is not the case, and I am

grateful to my advisor, Dr. Ganesh Gopalakrishnan, who has been instrumental in

making me believe that such ideal cocoons for research can and do exist. I have

been a gracefully embraced PhD student.

Due to personal reasons, I have had certain timing constraints, or depending on

from where you look, problems. I would like to thank my committee members for

putting up with all the requests, which at times could have well been perceived as

whims.

I have received several important comments on my work. Besides the obvious

one, Dr. Gopalakrishnan, Dr. Stephan Merz of LORIA, had the kindness to go

through the very rough initial drafts and had considerable impact on the shaping

of the formalization. Dr. Wilson Hseih and Dr. Ratan Nalumasu made me realize

not every aspect of my research was as important. Prosenjit Chatterjee and Ritwik

Bhattacharya, my comrades on this arduous road of graduate study, have been

points of both discharge and recharge. I cannot overstate the importance of their

role in my work.

Of course, there are always those who have nothing to do with my academic

work, but whose absence I cannot bear: my friends and my family. I would like

to thank them for reminding me that there is a world out there whose existence I

have severely suspected on more than several occasions.

Finally, I am one of those who think without passion nothing is worth doing.

Ipek, my wife, my companion, through her own mysterious ways, kept me strong

enough to like what I was working on. If it was not for her, I would probably be

writing a resignation letter at a company I would have loathed for devouring my

life and creativity, instead of this acknowledgment for a work I am proud of and

absolutely have no regrets whatsoever!

xiii

CHAPTER 1

INTRODUCTION

One of the prominent characteristics of today’s society is its infatuation with

speed. Fastest cars are pitted against each other as entertainment for the weary

minds. We admire, usually to the point of adoring/worshipping, the fast minds of

professional athletes; we are fascinated by the way these sports figures minimize

the time between perception and action. Arguably, the most popular events in any

kind of race are the ones with short duration; we want to see fast human beings

and we want the result fast. The examples can be piled up into a huge mountain

of evidence to the present obsession for speed.

Being part of, in fact not arbitrarily but essentially, today’s society, computers

are no different. We want our internet connection to be as fast as possible, we

want our computer to crunch numbers at a speed that was inconceivable only

a few decades ago. And the majority of research on computer production is

aimed at this aspect: faster processors, faster system buses, faster memories, faster

communication, etc.

Unfortunately, the speed of a computer that can be summarized as the number

of operations it can perform in unit time cannot grow without limit. There are

physical boundaries which are insurmountable. The major remedy for this and the

hope to satisfy the ever lasting thirst for speed seems to lie in plurality.

It is nothing but normal to expect to have a job done in a shorter period of

time when everything relating to the job is kept the same while the work force is

increased. Construction sites, military, public transportation are but some instances

of this principle. The same method, increasing the computing power through the

introduction of more and more computing devices, can be and has been applied to

computing.

2

Just combining a few computers in some ad hoc fashion and hoping them to run

in harmony would be naive. For most cases, the processing units should commu-

nicate information among them. The physical connection frame, the anticipated

characteristics of the work load, the kind of operations to be performed are all

aspects that affect the kind of information to be shared. Without getting into

much detail, we can say that there are two main paradigms for the dissemination of

information in such a system: message-passing architectures and shared memories.

In a system based on message-passing, the processing entities communicate

via messages. There are communication protocols to which they are expected to

comply. Depending on the connection topology, the messages could be broadcast

or be peer to peer. The burden, most of the time, is on the programmer or a system

level programmer.

As an alternative favoring the programmers, shared memories have also been

proposed. In this case, there is a memory system, either physically or logically

shared, and the processing units communicate through this memory system by

reading or writing to certain memory locations. The values read/written usually

have specific meanings and enable the programmer to arbitrate the operation of

the processing units. However, this abstraction comes at a price: it is not always

clear what takes place in real time. This has the undesired effect of introducing

some sort of nondeterminism to the way the ”shared memory” behaves. There is

”always” a way out, or so has the past made us believe. This time, it comes in the

notion of shared memory model.

1.1 Shared Memory Models

A shared memory model, simply put, is a restriction on the possible outputs that

a shared memory might generate for any input. A point of contention immediately

occurs: what exactly is meant by the input/output of a memory?

The common approach, albeit controversial, is to see the input as a program

projected onto its memory access operations. This point is controversial because

whether the input to a memory is actually the unfolding of a program or not depends

on what is perceived as memory. Memory could be taken as the combination of the

3

operating system, compiler, communication network and a collection of physical

storage devices. This would represent the view of a programmer. Or it could be

merely a storage device. In the former case, the input and output will indeed

represent the unfolding of a program. In the latter, however, the instructions could

be reordered. For instance, a compiler might and most likely will rearrange the

instructions such that a better utilization of time is achieved. In such a case, we

can no longer talk about a program per se.

Regardless of what a memory really represents, one thing remains invariant.

There is always a stream of instructions presented to the memory and the memory

in return generates a stream of responses. For the sake of simplicity, it is common

practice to assume that there are two types of instructions: read instructions, in-

structions that query the contents of a location, and write instructions, instructions

that update the contents of a location.

The input to a memory, then, becomes this stream of instructions. In the case of

a single user of a memory, the input is simply represented as a string over a suitable

alphabet. In the case of multiple users, which is the case for shared memories, the

input becomes a collection of strings; one string per user.1

As for the output, the memory is expected to generate suitable responses for

the instructions it accepts. For instance, for a read instruction, the memory should

return the value of the location queried by the read instruction. For a write

instruction, the response is not as obvious. It will be assumed, without loss of

generality,2 that the memory generates an acknowledgment, which merely will mean

that the memory has input the instruction.

1As we will see in the next chapter, this is the most abstract view of a memory; usually, more
detailed representations are employed.

2For the case where write instructions do not generate any response, see the explanation in
[37].

4

Much like the input, the output is also a stream of responses. In the single user

case, we will have a single string, whereas for shared memories, the output will be

a collection of strings, one for each user.3

From now on, programs (executions) will be understood as inputs (outputs) to

a (shared) memory as explained above.

When there is only one user, the expected behavior is not complicated: a query

of a location should return the most recent value written into that location. The

notion of most recent should be clear: the temporal ordering of queries and updates

as they are input into the memory. This is always implicitly assumed; we can say

that there is a single memory model for the single user case!

Things do get complicated, however, when we think of multiple users of a

memory, which is precisely the root of confusion for shared memories. Even if

a global temporal ordering can be defined and there are many systems where such

an ordering is impossible to define, almost all the speed-up, hence the raison d’être

of shared memories, would be limited by the memory itself!

Let us go back to the first sentence of this section. It should now be clear

what we mean by a shared memory model: for any program, it defines a set of

allowed executions. A shared memory model, therefore, restricts the level of non-

determinism for shared memories. The formal definition will have to be deferred

until the next chapter.

Shared memory models are abstract entities; they are not expected to be fully

implemented. The idea is to design a shared memory system that operates under a

certain shared memory model; for any program, what the system generates should

be among the allowed executions defined by the model, but it is not expected to

generate all possible executions. This point, as we shall see in the next chapter,

makes us distinguish the notion of a model and that of a system.

When a memory system is designed, the designer either has a specific model to

which the system is to conform, or defines a new model and claims that the system

follows the model. In both cases, unless we assume the infallibility of the designer,

3See Chapter 2.

5

which we never should, a new problem asserts itself: how can a memory system be

shown to comply with a memory model? The answer to this question takes us to

the next section.

1.2 Formal Verification and Shared

Memory Models

The objective of any kind of verification is simple: to obtain a convincing

argument that a certain property holds for a certain structure. The convincing

argument could be done by presenting evidence, by testimony, by comparison, by

investigation, etc. In what is called the real world, these discussions almost never

form an argument that convinces all. Some of the reasons are lack of ground

rules, not being able to reach a consensus on basic assumptions, terms not having

constant meaning but being contextual. As a remedy, since the Ancient Greeks, an

alternative domain has been formed: mathematics/logic.4 Once the assumptions,

or the axioms, and the deduction rules are set, a proper argument, or a proof,

transcends subjectivity and becomes a demonstrable truth.

Formal verification forms a bridge between the real world and this ideal realm.

It is concerned with real world objects, such as microprocessors, communication

protocols, software code, and with real world properties, such as the liveness of a

system, deadlock freeness of a protocol. The argument, in return, is carried on

in the mathematical domain; so these structures and properties are represented as

mathematical objects. Furthermore, the steps in the argument depend solely on

its form, or syntax, and as such, become amenable for mechanization. Therefore,

there are two important relations: the first one relates real entities to mathematical

objects; the second one relates these objects to syntactical structures. Usually,

however, these two relations are coalesced into a single relation where a structure is

defined syntactically and its semantics is provided by a well-known mathematical

theory. This step is known as the formalization of a problem.

4Whether logic is more general than mathematics or the opposite, has been and still is the
source of much controversy. Here, we tend to take the two together.

6

Since we are dealing with shared memories, next we will see the previous

formalization efforts for shared memories.

1.3 Previous Work on Formalizations

The work on shared memories might not be as popular as, say, graph theory,

but it is not exactly a rarely visited topic either. It would just not make much

sense to list all the relevant work on this topic, one after the other, in no coherent

order. Instead, we will try to categorize previous work according to the level of

formalization which depends on what ultimate motivation it has. Even though, the

bounds are more often than not quite blurred, it can be argued that there are three

major camps: the semiformalization, used mostly by people concerned with the de-

sign/implementation of memory systems, the specification-oriented formalization,

used by people interested in comparing different shared memory models with each

other, and finally, verification-oriented formalization, used by people who try to

come up with efficient and mechanizable methods for the verification of a specific

or arbitrary shared memory models for arbitrary shared memory systems.

1.3.1 Semiformalization

Included under this rubric are the works that primarily focus on designing new

shared memory systems. The common characteristic of this type of work is its

dependence on meta-narrative to explain how a memory works. Consider the

following excerpt from one of the better-known papers [4] in this camp:

A write is said to be globally performed when its modification has
been propagated to all processors so that future reads cannot return
old values that existed before the write. A read is globally performed
when the value to be returned is bound, and the write that wrote this
value is globally performed.

It might very well be the case that this sentence poses no problem for a designer, but

we think that a definition of this kind cannot be deemed formal. Expressions like

“existed before” or “bound” are semantic in nature. It is assumed that the system

is modelled by a state machine and at any state, these properties have truth values.

However, the truth values are assigned not based on a syntactic definition but most

7

likely, by the designer himself/herself. This has the risk of making any kind of

verification on such a system dubious; the verification is as correct as the designer

is correct at assigning those truth values. Instead, we ultimately want a complete

syntactic model which should not be annotated semantically.

Implied by this kind of definition, are formalizations that explain the operation

of a shared memory system based on temporal orderings of operations. Typically, a

shared memory model is given. A set of sufficient conditions for any system satisfy-

ing this memory model is devised. These conditions dictate which instruction can

be issued or which operation can be completed. Consider the following quote[27]:

In a multiprocessor system, storage accesses are strongly ordered if
1. accesses to global data by any one processor are initiated, issued

and performed in program order, and if
2. at the time when a STORE on global data by processor I is

observed by processor K, all accesses to global data performed with
respect to I before the issuing of the STORE must be performed
with respect to K.

Naturally, any formalization used in these approaches will have a time information,

be it relative or absolute, and semantically annotated events, as explained above,

will have to be ordered. Some examples include [2, 5, 6, 7, 26, 29, 45, 56, 58, 61, 62].

It is worth noting that strong ordering of the above quote was designed as a

sufficient condition for sequential consistency. It turned out to define a memory

system not comparable to sequential consistency![3]

1.3.2 Specification Oriented Formalization

Formal specification, as an active research area, seeks to remove from systems

ambiguities which do cause misunderstandings or contradictions when their descrip-

tions are given in an informal manner, that is, using natural language descriptions.

In this sense, formalization itself becomes the end result.

In shared memories, specification has been used mainly to provide a taxonomy

of shared memory models whose semantic differences or similarities are better

captured in a unified formalization. The work done in this vein can be further

divided into two: memory as a transducer, memory as a generator.

8

The first class models memory as a system that is characterized by its input and

its output. Each operation, read or write, is seen as a process whose start and end

points correspond to the invocation of the operation and the termination thereof,

respectively. Some examples include [14, 8, 13, 30, 31, 36, 37].5

The second class, on the other hand, sees and characterizes memory by its set

of executions. It is not hard to see that, if a many to one corresponding exists

between the set of responses a memory generates (memory’s output set) and the

set of instructions it receives (memory’s input set), the set of responses generated

for a particular execution plus the information on program ordering6 can be used

to extract the program.7 Based on this observation, some work have opted to

use only executions as the basis for the formalization of memory models. In this

execution-based approach, a memory model is usually described through what it

shall not generate (or accept). Examples include [9, 10, 28, 24, 48, 49, 41, 54, 60].

1.3.3 Verification Oriented Formalization

Finally, there is the kind of work that this dissertation belongs to. The works un-

der this category try to develop a general enough approach to the formal verification

of shared memory models. Unlike the first approach, implementation details are

usually abstracted. Unlike the second, the execution itself is viewed as a process.

This process is also modelled using mathematical structures. More often than

not, a finite state automaton is used. That in turn implies that a memory is

usually seen as a set of strings, or traces in certain contexts. This is akin to the

execution-based approach of the previous class; the notable distinction being the

introduction of the generator itself as a part of the problematic. Some examples

are [12, 16, 18, 17, 20, 21, 23, 25, 34, 35, 39, 40, 42, 46, 47, 51, 52, 53, 59].

5Some of these, namely [8, 31], actually contain some verification results but they do not try
to generalize the results for arbitrary systems and/or models. Hence, they are not considered to
be verification-oriented as they do not try to obtain a methodology.

6Program order, a rather habitual naming, is the order of issuing instructions per processor.

7Of course, some untold assumptions must hold, such as, the memory does not generate
responses arbitrarily and only to the instructions it has accepted.

9

Unfortunately, a verification methodology derived from an execution-based ap-

proach has some important inadequacies. As we will argue in the next section,

abstracting away the input part might lead to results not corresponding to the

original problem.

1.4 Presented Work

The title of the dissertation explicitly states that we will be concerned exclu-

sively with the problem of formal verification in the context of shared memories. In

the light of the previous argument, this means that we have to have a formalization

and a certain methodology for the problem of shared memory verification. The first

part of the dissertation, composed of the following two chapters, is indeed following

this pattern. The somewhat odd chapter out, Chapter 4, is a more detailed look

into a specific shared memory model. Let us briefly summarize these.

1.4.1 New Formalization

As we have already demonstrated, the area of shared memory formalization

does not really lack formalization. There seems to be many different approaches;

one must surely be able to pick the suitable formalization and use it for whatever

one sees fit. The need for a new formalization actually originated from a previous

formalization used for a certain problem.

In their well-known paper [12], Alur et al. obtain some very strong results about

the verification of certain shared memory models.8 The result with arguably the

most important repercussion is what has come to be known as the undecidability

of sequential consistency. In this paper, it has been proved that the class of

sequentially consistent languages is not regular. This result has since been used

as the evidence to the impossibility of developing an algorithm which can decide

whether a given finite state shared memory system is sequentially consistent or

not. Almost all of the work done after [12] cites this work and tries to define a

maximally decidable class of finite state shared memory systems. For instance,

8Strictly speaking, according to our formalization introduced in the next chapter, linearizability
is not a shared memory model.

10

in [35], it is claimed that “[even] for [finite state systems], checking if a memory

system is sequentially consistent is undecidable.” We have, however, suspected

the application of [12]. The link from this undecidability result to the perceived

undecidability of shared memory verification is fallacious, fallacy being a direct

result of the execution-based formalization used. There are two related issues. One

is to do with how a memory model is defined; the other is to do with the absence

of program, or input, in the formalization.

A shared memory is to generate an execution for any syntactically correct

program. A shared memory that generates an execution for only a proper subset

of programs would be violating any kind of sensible correctness criterion. But

the argument used for the result of [12] does precisely that. As long as the

execution-based approach where a memory is viewed as a generator is used, the

undecidability result for shared memory verification follows. As an analogy, it

would be like claiming the nonregularity of Σ? because its subset Σp for p prime

is not regular. Actually, Alur et al. seem to be aware of this fact when they say

in [12]:

... thus any finite state implementation that is sequentially consistent
obeys some property that is stronger. For verification purposes, it may
therefore be more appropriate to use a specification that is stronger
than sequential consistency per se.

We have pointed out the abstracting away of program from the formalization as the

second reason as well. This is due to the fact that without the notion of a program,

or input, certain characteristics of finiteness of the shared memory system cannot

be expressed.

Consider the following regular expression9:

w(1,1,2) r(1,1,1)∗ r(2,1,2)∗ w(2,1,1)

9w(p,a,d) (r(p,a,d)) denotes the writing (reading) of value d to (at) location a by processor
p.

11

As long as the definition of [12] is concerned, a shared memory system with the

above regular expression is sequentially consistent.10 Furthermore, since this is a

regular expression, it is claimed that it is the output of a finite state shared memory

system. However, a finite state and sequentially consistent system cannot generate

all the strings that belong to this regular expression (see Appendix).

Based on this, we clearly want to have a formalization that also represents

the transduction nature of memory; we should have both the program and the

execution. Furthermore, the second reason above implies that the temporal ordering

of input and output is relevant and should not be abstracted away.

In the light of all these, we have not so much developed a novel formalization

as picking suitable parts from each formalization presented above. We will model

a shared memory model as a certain relation over programs and executions. This

relation will be called specification and the emphasis will be on what it contains

and not how that relation can be realized. A shared memory system, in turn,

will be based on a specific mathematical structure, a transducer, which might be

considered as a variation of the basic concept of automaton. A transducer satisfying

certain properties will be the mathematical equivalent of a shared memory system,

and will be called an implementation.

Finally, we should note that a few formalizations [8, 38] are very close to our

formalization. The major difference is that in those works, memory system is

assumed to complete its instructions in order and pipelining of instructions is not

allowed. Specifically, in [8], this results in a restricted definition of sequential

consistency, which is not equivalent to the original definition given in [43]. The

assumption that the processor does not submit an instruction until it receives the

response for the previous instruction, as in [38], removes a major difficulty in the

formalization. However, that assumption no longer reflects the real world systems.

10At this point, we do not want to get into the specifics of sequential consistency. The reader can
review the definition of sequential consistency given in the next chapter and see for himself/herself
that this regular expression indeed forms a set of strings each of which belong to a sequentially
consistent specification.

12

The next chapter will give an idea to the reader about the complexity of formalizing

without this assumption.

1.4.2 Verification as Language Inclusion

Once the formalization is done, we will demonstrate how we can make use of

the new approach. The objective, since the beginning of this research, has been the

development of a framework where the formal verification of shared memory models

could be automated. Our emphasis on a language based formalism is primarily due

to this desire. In Chapter 3, we will indeed formulate the problem as a language

inclusion problem: a shared memory system satisfies a certain shared memory

model if its language is contained within the language of a machine, element of

a certain class of machines defined according to the shared memory model itself.

We will demonstrate this method using lazy caching [8] as the memory system and

sequential consistency [43] as the memory model.

We should tell that the method as of now is not complete. We were not able

to develop a method which would verify a memory model for a memory system if

and only if that memory system conforms to that memory model. There might be

instances where the system conforms to the model, yet the language inclusion fails

to hold. But unlike previous work on this area, we claim that the problem is open

and not undecidable as has been the general perception.

1.4.3 Debugging Sequential Consistency

Sequential consistency is not an arbitrary shared memory model. It has been the

first to be, albeit informally, proposed as a correctness criterion for shared memory

systems. It is not abnormal, then, for us to concentrate on this memory model.

Unlike Chapters 2 and 3 whose results are not confined to sequential consistency

but hold for all memory models and systems, Chapter 4 deals exclusively with

sequential consistency.

Formal verification as language inclusion can be seen as the sufficiency approach.

When a system satisfies the inclusion, it is proved that the system satisfies its

13

memory model. However, the failing of the language inclusion is inconclusive; no

result can be drawn without additional and possibly different work.

We can also approach from the other end. We can generate a set of tests which

would try to find violating executions of the memory system. We call this the

debugging approach.

In Chapter 4, we obtain a strong result for the debugging approach. We are able

to prove that for a given finite state shared memory system, it is decidable to check

whether it has an unambiguous11 execution that violates sequential consistency.

This result is obtained through a transformation of the original problem to a

constraint satisfaction problem. We hope that this transformation also sheds some

light on to the intricacies of sequential consistency.

11An execution in which there do not exist two different write operations with the same location
and data values.

CHAPTER 2

FORMALIZATION OF SHARED

MEMORIES

In this chapter, we will develop a new formalization for shared memories. This

formalization is based on the theory of (rational) transduction, a topic in for-

mal language theory (for introductory texts, see, for instance, [15, 55]). In this

formalization, we will distinguish specifications as shared memory models (the

definition of which program/execution pairs are allowed) from implementations as

the descriptions of how shared memory systems behave. The latter is modelled as a

(length-preserving) rational transducer, whereas, for the former, we do not require

any particular approach.

We show that as long as the “user” and the “memory” are finite entities,

we can do away with arbitrary implementations and work on a canonical model

instead. As we shall see, the biggest challenge in moving from specifications to

implementations is the formulation of the mapping between input (instructions)

and output (responses) symbols using only a finite set of tags, or colors as we will

call them in this work.

2.1 Introduction

A formalization of a real world entity entails an inevitable abstraction. In-

evitability is due to the (perhaps debatable on a philosophical level) infiniteness of

the real world and the preferred finiteness of the target domain and the finiteness

of the abstraction process itself which has to terminate in finite time. The crucial

decision in formalization, therefore, is to choose what to abstract and what to

represent. For instance, names are almost never represented. In formalizing a

transistor, we do not care whether a particular transistor in a particular design is

15

called T301 or Faust; they are modelled by the same structure as long as they are

deemed identical on their operational specifications. For some aspects, the decisions

are rather trivial. Then again, having the mathematical structure represent certain

information about the real object or not can make all the difference. We have seen

in the first chapter that the absence of program information in the formalization

might and will cause one to reach inaccurate conclusions.

Another notable aspect about the formalization of shared memories is one of

our own making. We find it appropriate to represent shared memory models and

shared memory systems on two different levels of abstraction. We view a shared

memory model as a relation. How that relation is to be realized should not be

part of the definition of the shared memory model. Hence, a shared memory model

should be a nonoperational structure. That an equivalent operational structure can

be constructed is irrelevant to the formalization of the memory model. A shared

memory system, on the other hand, should fore and most describe how the system

behaves; hence the need for an operational structure. Of course, these two different

levels of abstractions should be related to each other.

With these points in mind, we argue that there are four levels of abstraction for

shared memories. We will now briefly discuss these levels.

1. Abstraction Level One: This corresponds to the highest level where we

represent the program and its execution as two isomorphic partially ordered

sets. A typical representation is given in Fig. 2.1.

Specifically, we do not have any information on the temporal ordering of

instructions or responses besides that of the ordering of instructions issued by

r(1,0)

P2P1 P2

w(1,1) r(1)

r(1)

w(1,1)

r(1,1)

P1

Figure 2.1. A program and its execution represented in the most abstract level.

16

the same processor. That is, in Fig. 2.1, we know that the first read instruction

of processor 2 is indeed issued before the second read instruction but we do

not have any information about their respective ordering of completion or

how they are ordered with respect to other instructions or responses of other

processors.

For the following levels, let i1 denote the write instruction of processor 1, i2

and i3 denote the first and second read instruction of processor 2, respectively.

Let r1, r2 and r3 denote the responses corresponding to these instructions.

2. Abstraction Level Two: The next level adds some more information about

temporal ordering. A possible representation of Fig. 2.1 is given below:

i2 i1 i3, r1 r3 r2, 3 1 2

In this representation, there are three strings. The first one represents the

program. Instead of giving only per processor issuing order, this string also

totally orders instructions issued by different processes. It is assumed that a

symbol precedes (or is in the prefix of the subword up to) another symbol if

and only if the former is issued before the latter.

The second string represents the execution. A similar total order is given for

the responses as well. This time the order is done according to their time of

completion.

In the previous abstraction level, since the isomorphism between the program

and the execution was clear from the formalization, we did not need additional

structures to represent which response was to which instruction. However, this

is not the case for this level. The last string, a string of numbers, which as

we will see, represents a mapping between the string of instructions and the

string of responses, takes care of this isomorphism. Its semantics will be given

later in this chapter, but for now, it suffices to point out that the mapping in

this level maps the first instruction to the third response, the second to the

first and the last to the second.

17

3. Abstraction Level Three: The third level is less abstract from the previous

level not so much because of the amount of information it represents as the

way the same information is represented. We still have the same information

about instructions and responses, and the temporal ordering of issuing and

completion. But, instead of using the infinite set of natural numbers to

represent the mapping between instructions and responses, we use a finite

set of symbols. Below, we give a possible representation of Fig. 2.1:

(i2, c1)(i1, c2)(i3, c3), (r1, d1)(r3, d2)(r2, d3)

ϕc((c1, d1) (c2, d2) (c3, d3)) = 3 1 2

Note that, this time we do not have the third component. Instead, we have

tagged each instruction and response with the elements of a finite set; ci and

di, not necessarily different, all belong to the same (finite) set. Additionally,

we now have included a function, ϕc, which maps a string of pairs over these

elements to a string of natural numbers, which in turn, is nothing but the

mapping of the previous abstraction level.

The motivation behind this, as will be discussed later, is the appeal to the

finiteness of a shared memory system, or an implementation.

4. Abstraction Level Four: This level is the lowest level and has the most

information about the program and its execution. The additional information,

compared to the previous level, is the temporal ordering of instructions and

responses. With this formalization level, the relative temporal ordering of an

instruction or a response is completely known. A possible representation of

Fig. 2.1 is given below:

(i2, c1)(i1, c2)(r1, d1)(i3, c3)(r3, d2)(r2, d3)

ϕc((c1, d1) (c2, d2) (c3, d3)) = 3 1 2

So, for instance, we know that the first response to be completed belongs to

the second instruction issued (first instruction of the first processor) and this

18

happens before the third instruction, the second read instruction of the second

processor, is issued. Much like the previous abstraction level, we again have

the tagging of instructions and responses to determine the mapping between

them.

As we will see in this chapter, we choose level two for the specification, level four

for the implementation. The latter choice is obvious, as this fourth level actually

represents the operation trace (history) or the computation of a shared memory

system. The former, however, seems debatable. We could have as well chosen

the first level which seems to be a better fit to what we have been explaining

about shared memory models. Indeed, the results of this dissertation would be left

unchanged, were we to switch to this first level. The choice was made due to the

simplicity we get when we want to define the semantics of a trace that belongs to

the implementation. We have chosen the third level as the operational semantics of

the implementation and mapping that to the second level is trivial. It would have

been more cumbersome to use the first level as the semantic basis. Although not

really an essential point, the second level had the additional property of being able

to distinguish a serial memory from sequential consistency. We prefer to point out

this difference even though from a mathematical stand point, there should be none.

In the following section, we will explain the notation used throughout this

dissertation, safe for some parts of the fourth chapter. In Section 2.3, we briefly

describe rational relations and transducers and provide the theorems that we will

make use of. This section is provided mostly to make the dissertation self-sufficient;

for more detail on the topic of rational languages and transducers, the reader is

referred to [15]. In Section 2.4, which is the main contribution of this chapter,

we will develop the proposed formalization. We will start with specifications,

explain the intuition for both specification and implementation and develop the

generality results for implementations. Sections 2.5 and 2.6 will illustrate the use

of the formalization. In the former, we will define sequential consistency. In the

latter, we will describe how to model finite instances of the lazy caching protocol

as implementations. We end the chapter with a summary of the results.

19

2.2 Notation

Let N denote the set of natural numbers. We shall denote the subset {1, 2, · · · , k}
of N with [k]. A permutation is a bijection from a subset R of N onto itself. The set

of all permutations over R will be denoted by PermR. In particular, with an abuse

of notation for the sake of simplicity, the set of all permutations over [k] will be

denoted by Permk. Perm denotes the infinite union
⋃

k>0 Permk. A permutation

η ∈ Perm is bounded by b if for all i ∈ dom(η), we have i ≤ b + η(i). A set

of permutations is bounded if there exists b such that all the permutations in the

set are bounded by b. For any PermR, the identity function is called the identity

permutation.

Let an alphabet, Σ, be a nonempty set. Its elements are called letters or symbols.

A string over Σ is a finite sequence of symbols of Σ. The string with 0 symbols is

called the empty string, denoted by ε. Let Σ∗ be the set of all strings over Σ. In an

algebraic setting, as in the next section, Σ∗ is also called the free monoid of strings

over Σ with respect to concatenation as the associative binary operation and the

empty string as the identity element.

For a string σ over Σ and X ⊆ Σ, let σ = y1x1y2x2 . . . ynxn be a representation

of σ such that yi are strings over Σ \ X and xi are strings over X. Then, the

projection of σ into X, σ ¹ X, is the string x1x2 . . . xn. When X is a singleton {x},
we will abuse the notation and write σ ¹ x.

In the case where the alphabet is taken to be N, a string n = n1n2 . . . nk of

length k in N∗ will be identified with a mapping n : [k] → N such that n(i) = ni.

Usually, n will be referred to as a sequence rather than a string.

Given a permutation η over [k], consider the sequence n of length k with ni =

η(i) for all i ∈ [k]. Then, n is called the canonical representation of η, where

we write η ∼ n. So, the set of sequences whose mappings are bijections over [k]

is isomorphic to Permk. Hence, we will use such sequences and permutations

interchangeably. For instance, we might talk about a sequence over N being in

Perm.

20

For any relation R on D1 ×D2 · · · ×Dn and an element a ∈ D1 ×D2 · · · ×Di

with i ≤ n, R(a) denotes the set {b ∈ (Di+1 · · · ×Dn)|(a, b) ∈ R}. For a tuple a in

D1 ×D2 · · · ×Dn, let]i(a) denote the ith component of a.

For any function f : A → B, dom(f) denotes the domain of f ; that is, the subset

of A on which f is defined. The image of f , img(f), is the set {b|∃a ∈ A, f(a) = b}.
With an abuse of notation, we will also use dom and img for relations.

When referring to the components of a structure, we will use the name of

structure as superscript to address each component. In the case of nested structures,

for simplicity, we shall use only the outermost structure’s name as superscript when

no confusion is likely to arise.

2.3 Rational Expressions, Transductions

Most of the definitions and theorems of this section, more or less standard in

the formal language community, are taken from [15].

A rational subset, also called a rational language, of Σ∗ is either empty or can

be expressed, starting with singletons, by a finite number of unions, products, and

the plus or star operations. Such an expression is called a rational expression.

Kleene’s theorem states that, for languages over finite alphabets, rationality and

recognizability1 coincide.

Definition 2.1 Let X and Y be alphabets. A rational relation over X and Y is a

rational subset of the monoid X∗ × Y ∗.

A transduction τ from X∗ into Y ∗ is a function from X∗ into the powerset of Y ∗,

written τ : X∗ → P(Y ∗). The graph of τ is the relation Rτ defined by

Rτ = {(f, g) ∈ X∗ × Y ∗|g ∈ τ(f)}

Conversely, for any relation2 R ⊂ X∗ × Y ∗, the transduction τR : X∗ → P(Y ∗)

defined by R is given by τR(f) = {g ∈ Y ∗|(f, g) ∈ R}.

1That a finite state automaton accepts/generates the language.

2By a “relation,” unless stated otherwise, we will always mean a relation over (finite) strings.

21

Definition 2.2 A transduction τ : X∗ → P(Y ∗) is rational iff its graph Rτ is a

rational relation over X and Y .

Definition 2.3 3 A transducer T = 〈I, O,Q, q0, F, E〉 is composed of an input

alphabet I, an output alphabet O, a finite set of states Q, an initial state q0, a

set of accepting states F , and a finite set of transitions or edges E satisfying E ⊂
Q× (I ∪O ∪ {ε})×Q.

For a transition (s, a, t) ∈ E, s, a and t are the source state, the label and the target

state of the transition, respectively.

A run, r, of T is an alternating sequence of states and labels, q0a1q1 · · · anqn,

such that, the first state q0 is the initial state qT0 , and for all 1 ≤ i ≤ n, we have

(qi−1, ai, qi) ∈ E. For such a run, we call the sequence q0q1 · · · qn, the path of the

run denoted by rp; a1a2 · · · an, the label of the run, rl; the subword of the label

where all and only the input letters are kept, the input label of the run, ri4; mutatis

mutandis, for output label, ro5. We will call the pair (ri, ro) a label (of the run

r) as well. The transducer T accepts a run r, if the final state qn is in F T . The

language of a transducer T or the transduction realized by T , denoted by τT is the

set {(ri, ro) | r is an accepting run}.

Theorem 2.1 (Thm. 6.1 [15]) A transduction τ : X∗ → P(Y ∗) is rational iff τ

is realized by a [finite] transducer.

A binary relation R over strings is length-preserving if (f ,g) ∈ R implies that the

lengths of f and g are equal. Using these definitions, the following theorem can

now be stated.

Theorem 2.2 A length preserving rational relation over X∗ × Y ∗ is a rational

subset of (X × Y)∗.

3This is a somewhat restricted definition but suits better for this work.

4ri = rl ¹ I.

5ro = rl ¹ O.

22

Corollary 2.1 Given a length preserving rational relation R over X∗ × Y ∗, there

is a finite state automaton with alphabet (X × Y) that recognizes R.

2.4 Memory Protocols

Before getting into the specifics of the formalization proposed in this work,

we would like to explain our view of (shared) memories. The intuitive picture is

summarized in Fig. 2.2. There are two parties involved in the system. One is

the user, the other is the memory. The user could be the collection of processors

or threads. It issues memory access instructions, such as reads and writes, to be

processed by the memory. The memory services the instructions and generates

suitable responses as output. The interface is basically a set of syntactic definitions

of instructions and responses that the user and the memory are allowed to use/gene-

rate. The interface also defines a set of possible responses for each valid instruction,

that is, it makes explicit what it means to generate a suitable response for an

instruction.

A memory specification defines the behavior of a memory for a given interface.

Simply put, the specification relates the input of the memory to its output. From

the user perspective, a memory specification is a description of the possible response

streams for a given instruction stream.

In the following subsection, we will formalize these ideas and define the interface

and the memory formally. For the specification part, we are not concerned about

the specifics of the user.

inputoutput

instruction
stream

response
stream

Interface

User

Memory

Figure 2.2. User and memory communicate over an interface.

23

2.4.1 Specification

Definition 2.4 A memory interface, F, is a tuple 〈I,O, ρ〉, where

1. I and O are two disjoint, nonempty sets, called input (instruction) and output

(response) alphabets, respectively. Their union, denoted by Σ, is called the

alphabet.

2. ρ ⊆ O × I is the response relation.

The following definition will be useful later for defining parameterized shared

memories.

Definition 2.5 A restriction of a memory interface F with respect to a set Σ′ ⊆ ΣF

is the memory interface F[Σ′] with

1. IF[Σ′] = IF ∩ Σ′.

2. OF[Σ′] = OF ∩ Σ′.

3. ρF[Σ′] = ρF ∩ (OF[Σ′] × IF[Σ′]).

It is called lossless in F iff OF[Σ′] = {o|i ∈ Σ′ ∧ ρF(o, i)}.

So, lossless means that for any instruction that is retained in the restriction, all

possible outputs defined by the initial interface, can still be generated.

We will actually use a specific memory interface, namely the interface for multi-

processor shared memories restricted to read/write, or rw-interface for short, which

is defined as follows:

Definition 2.6 The rw-interface is the memory interface RW with

1. IRW = {wi} × N3 ∪ {ri} × N2

2. ORW = {wo, ro} × N3

3. For any σi ∈ IRW , σo ∈ ORW , we have (σo, σi) ∈ ρRW iff either the first

component of σo is wo, the first component of σi is wi and they agree on

24

the remaining three components, or the first component of σo is ro, the first

component of σi is ri and they agree on the second and third components.

Formally,

ρRW ={((wo, p, a, d), (wi, p, a, d)) | p, a, d ∈ N}∪
{((ro, p, a, d), (ri, p, a)) | p, a, d ∈ N}

Also, for ease of notation the following will be used:

1. A partition of Σ, {R, W}, where

R = {ro} × N3 ∪ {ri} × N2

W = {wi, wo} × N3

2. Three functions, π, α, δ, where for any σ ∈ ΣRW , π(σ) is the value of σ’s

second component, α(σ) that of the third component, and δ(σ) that of the

fourth component if it exists, undefined (denoted by ⊥) otherwise.

The rw-interface has only two types of instruction and response. The type R

stands for read instructions/responses, and the other type, W , for write instruc-

tions/responses. Each write instruction has a unique response. Each read instruc-

tion can generate exactly one response from a set. The collection of these sets forms

a partition of all possible responses for read instructions. A response is associated

with exactly one instruction.

We are now ready to define a memory specification.

Definition 2.7 A memory specification, S, for a memory interface F is the tuple

〈F, λ〉, where λ ⊆ ((IF)∗ × (OF)∗)×Perm, is the input-output relation.

We shall let µS denote dom(λS) (a relation over (IS)∗ × (OS)∗).

λ of a memory is expected to define the relation between the input to a memory,

a (finite) string over I that might be called a program or an instruction stream, and

the output it generates for this input, a (finite) string over O that might be called

an execution or a response stream.6 For each such program/execution pair of the

6Although we are using the words program and execution, we do not claim that the input is
required to be the unfolding of a program and the output to be its associated execution. This

25

memory, λ also defines, through permutation, the mapping between an individual

instruction of the program and its corresponding output symbol in the execution.7

For instance, consider an input-output relation for RW which has the following

element: ((((ri,1,1) (ri,1,1)), ((ro,1,1,2) (ro,1,1,4))), (21)). In the pro-

gram, we have two reads issued by processor 1 to address 1. The execution generates

two different values read for address 1; 2 and 4. By examining the permutation,

we see that the first instruction’s response is placed at the second position of the

output stream, whereby we conclude that the returned value for the first read is 4.

Similarly, the second read’s value is 2. So, intuitively, if the permutation’s ith value

is j, the jth symbol of the output stream is the response corresponding to the ith

instruction of the input stream.

Definition 2.8 A shared memory S is a memory specification for RW.

Let us define a few exemplary shared memories.

Example 1 We define the following shared memories:

• S∅ = 〈RW , λ∅〉, where σ = ((p,q),n) ∈ λ∅ implies p ∈ (IRW)∗ and q = n =

ε.

• SU = 〈RW , λU〉, where σ = ((p,q),n) ∈ λU implies |p| = |q| = |n|.

• SND = 〈RW , λND〉, where σ = ((p,q),n) ∈ λND implies p ∈ (IRW)∗,

q ∈ (ORW)∗, |p| = |q|, ρRW(qj, pj) and η(j) = j, for j ∈ [|p|], η ∼ n.

might or might not be the case, depending on where exactly the interface, user and memory are
defined. One choice might put the compiler at the user side, quite possibly resulting in an input
stream that is different from the actual ordering of instructions in a program due to performance
optimizations.

7By itself, ρ may not be enough to define this mapping, as there might be an input symbol
with multiple occurrence in the program, having multiple output symbols that are related to the
same input symbol by ρ.

26

• SNC = 〈RW , λNC〉, where σ = ((p,q),n) ∈ λNC implies

p ∈ {(wi,1,1,1)} · {(ri,1,1),(wi,1,1,1)}∗

q ∈ {(wo,1,1,1)} · {(ro,1,1,1),(wo,1,1,1)}∗

|p| = |q| and η(i) = j implies ρRW(qj, pi) for η ∼ n.

So far, we have not placed any restrictions on a specification, more specifically

on µS. This relation might include (ε,q) or (p, ε) (executions without programs

or vice versa), or (p,q) for |p| 6= |q| (the number of instructions and responses

do not match). Or we could have ((p,q), η) with equal length p and q where η is

completely arbitrary, not respecting the response relation defined by the interface.

For instance, consider the shared memories defined above. S∅ defines a memory

that accepts any program as input but fails to generate any response whatsoever.

SNC accepts only certain input streams; for instance, any program that starts with

an instruction other than (wi,1,1,1) is not allowed.

Clearly, such specifications are of little use. What we are interested in, are

systems that behave in a reasonable way. We formalize this notion next.

Definition 2.9 A memory specification S is called proper if

1. µS is length preserving.

2. For any p ∈ (IS)∗, there exists q ∈ (OS)∗ such that (p,q) ∈ µS.

3. σ = (p,q) ∈ µS implies ∅ 6= λS(σ) ⊆ Perm|p| and for any η ∈ λS(σ),

η(j) = k implies ρS(qk, pj).

If the first condition holds, the memory specification is length-preserving. Then,

a length-preserving memory specification matches the length of its input to the

length of its output. Note that, without the third requirement, it is not of much

use. The shared memories SU , SNC and SND are length-preserving, S∅ is not.

If the second condition holds, a memory specification is complete. Completeness

is the requirement that a memory specification should not be able to reject any

27

program as long as it is syntactically correct with respect to the interface. Among

the above shared memories, SU and SND are complete. This property, despite its

simplicity, is one which has been neglected by all previous work on shared memory

formalization, to the best of our knowledge.

The third condition says that any permutation used as a mapping from the

instructions of the input to the responses of the output should respect the response

relation of the interface. There are some subtle points to note. First, it requires that

the output stream, q, be at least as long as the input stream, p; it could be greater (a

problem which is taken care of by the requirement of length-preservation). Second,

even for the same input/output pair, there can be more than one permutation.

Since we are trying to define a correct specification without any assumptions, these

arguably weak requirements are favored for the sake of generality. Both of the

shared memories SND and SNC satisfy this third property; S∅ and SU do not.

Definition 2.10 A restriction of a memory specification S to the set Σ′ ⊆ ΣS is

the memory specification S[Σ′] with

1. FS[Σ′] = FS[Σ′]

2. λS[Σ′] = λS ∩ (((IFS[Σ′])
∗ × (OFS[Σ′])

∗
)×Perm)

Definition 2.11 A memory specification S is called finite if

1. ΣS is finite.

2. µS is a rational relation.

3. λS((IS)
∗ × (OS)

∗
) is bounded.

If S is not finite, then it is infinite. The finiteness of a memory specification is

related to its implementability by a finite state machine. The first two cases should

be obvious; without their being satisfied, a memory specification cannot be realized

by a finite state machine. The third condition appeals to a characteristic of the

user, which we will analyze in the next subsection.

28

We shall conclude this subsection with the definition of parameterized instances.

Let S be a shared memory specification. Let P,A, D be subsets of N. Let Σ′ =

I ′ ∪ O′, where

I ′ = {ri} × P × A ∪ {wi} × P × A×D

O′ = {ro, wo} × P × A×D

Then, S[Σ′] is called a parameterized instance. If S, P , A, D are all finite, S[Σ′] is

called a finite parameterized instance, or finite instance for short. We shall usually

identify a parameterized instance with the tuple 〈P, A,D〉, denoted by P〈P,A,D〉, or

simply P when no confusion is likely to occur.

2.4.2 Implementation

Typically, we expect the memory specification to be used for defining shared

memory models. That is, we are not really concerned about how a memory

specification can be realized; it is to define all correct (allowed) input/output pairs.

Any formalization, as long as it is mathematically sound, can be used to define

the set of allowed pairs. An implementation, on the other hand, should be the

mathematical description of something realizable. It is a machine that receives

instructions, which it processes, and that generates responses. So, instead of the

“static” definition of a specification, the implementation is necessarily “dynamic.”

We believe that a transducer captures this notion of dynamism as it helps us

distinguish the input and output of a finite-state machine. Before proceeding on to

the formal definitions, there are a few observations to make.

First of all, it should be obvious that since we are dealing with finite-state

machines, the permutation used in the specification to map instructions to their

responses is not adequate; we can only have finitely many input and output symbols.

Our suggestion is to use a finite set of colors as a tag for each instruction and

response. But this seems to introduce a new problem: how do we define the mapping

once the color set is set? Before answering this question, let us move on to the next

observation.

The user (per Fig. 2.2) is also a finite-state machine whose specifics we ignore.

But its finiteness is crucial to our argument. When the user issues an instruc-

29

tion, it must have a certain mechanism to tell which response it receives actually

corresponds to that instruction; this is especially true if both the user and the

memory operate in the presence of pending or incomplete instructions. Let us

assume that i1 is an instruction that the user issued and the response r1 is the

symbol that the memory generated for i1. When the user receives r1 from the

memory, it should be able to match it with i1 without waiting for other responses.

Furthermore, once i1 and r1 are paired by the user, they should remain paired; a

future sequence of instructions and responses should not alter the once committed

matchings. Since the user is modeled as a finite machine, it can retain only a

finite amount of information about past input; most likely, it will only keep track

of the pending instructions, instructions that have not received a response from

the memory yet. These ideas are the basis for requiring implementations to be

immediate and tabular, formalized below.

Once we assert that the user behaves in the aforementioned manner, we can

tackle the relation between color sets and permutations. For any color set, we can

assume that there is a certain interpretation function which defines a permutation

when given two sequences of colors. The combination of the color set with this

interpretation is called a coloring. Besides obeying the properties of the previous

paragraph, we leave the interpretation, called conversion function, unspecified. We

prove that any such coloring is equivalent to a certain canonical coloring which

helps us do away with arbitrary colorings and work thereafter with the canonical

coloring. This, in our view, is an important result: we are not assuming anything

more than the finiteness of the user to obtain this result and removes, as we hope, a

possible attack due to the arbitrariness of the canonical coloring, which could have

been treated as an ad-hoc solution.8

We have previously talked about the universality of memories: they should

not be allowed to stop operation or output when the user has still some pending

instructions for which it expects responses. Once the implementation is defined as

8For instance, in [38], Hojati et al. actually used this canonical coloring without rigor, as a
matter of fact.

30

a finite state machine, this property can be specified easily: at any reachable state

of the implementation, there must always be at least one path to an accepting state

such that no further input is read. We think that this is a basic requirement of any

memory implementation, hence this is part of the definition of an implementation

and not some property that it may or may not satisfy. We now proceed to formalize

these ideas.

Let a coloring C be the tuple 〈C,ϕ〉, where C is the color set and ϕ is the

conversion function (C2)∗ → Perm. That is, a coloring defines a subset of Perm

whose elements are in a correspondence with strings over pairs of colors. Of course,

C could be chosen identical to N, dom(ϕ) restricted to
⋃

k∈N(Permk)
2 and ϕ(n,m)

defined to be the composition of n and m both of which are treated as permutations,

to define all of Perm. A coloring C is finite if CC is finite.

We are now ready to define the principal mathematical structure used for

memory implementations.

Definition 2.12 A responder M over 〈I,O〉 with coloring scheme C is a trans-

ducer 〈I × C,O × C, QM, qM0 , FM, EM〉 such that for all ((p,n), (q,m)) ∈ τM,

we have |n| = |m| < |p|, |q|, and ϕC(n,m) ∈ PermR, for some R ⊆ [|p|].
We further require that for all q ∈ QM, if q is reachable from qM0 , then there

is a path from q to some r ∈ FM, such that all the edges on this path are in

QM× ((O× (C ∪{ε}))∪{ε})×QM. It is called length-preserving, if |p| = |q| and

R = [|p|].

A responder M is finite if CM is finite, and the sets I, O are finite. Before getting

into the specifics of colorings, we will need the following lemma.

Lemma 2.1 Let T be a finite, length preserving transducer. Then, there exists a

number NT , such that for any accepting run of T , the difference between the number

of input symbols read and the number of output symbols generated cannot exceed NT .

Proof (Lemma 2.1): Let NT be the cardinality of the state space of T . Assume

that T has an accepting run r = q0a1 · · · qm such that at some state qk in r, we

31

have |si| > |so| + NT ,9 where s is the prefix of r that ends at qk. Let t be the

suffix ak+1 · · · qm. Then there necessarily exist some repeating states in s. Find

the first such repeating state, say qi and its last occurence in s, and construct a

new run where the part between the two occurences is removed. The remaining

run completed with t is still an accepting run of T . Now, in the removed portion,

if there are no nonempty labeled edges, or the number input symbols is equal to

the number of output symbols, repeat the procedure, as there are still at least NT

input symbols. In the eventual case where there is an unequal number of input

and output symbols removed, the resulting run, although in the language of the

transducer, cannot have the same number of input and output symbols, thereby

contradicting the assumption that the transducer was length preserving.

¤
Let ϕ be the conversion function of a finite, length preserving responder. An

output symbol (oi, mi) of a run r is immediate if it is mapped by ϕ to an input

symbol that preceded it in the label of r. Formally, let (oi,mi) be in ro for some

run r. Let sk be the state just following (oi,mi) in r. Then, it is immediate if it is

mapped to an input symbol found in the label of the run s0a0 · · · sk; that is, there

is aj = (pl, nl) ∈ (I × C), j < k and ϕ(]2(r
i),]2(r

o))(l) = i. A run is immediate if

all its output symbols are. A finite, length preserving responder is immediate if all

its runs are. It follows from the definition of boundedness and Lemma 2.1 that an

immediate responder is bounded (by |QM|).
As an example, consider the case depicted in Fig. 2.3. Time is assumed to

progress from left to right; i1 would be the first symbol in the label, r3 would be

the last. The mapping given on the left is immediate, as each response is mapped to

an instruction that precedes its temporally. The mapping on the right, however, is

not immediate as it maps r1 to i3 where i3 appears later in the temporal order than

r1. This would intuitively correspond to the case where a response is generated to

an instruction that is yet to be read.

9Without loss of generality, we are assuming that there are more input symbols than output
symbols. The other case is symmetric.

32

Nonimmediate

i
2

i
1

i
3

r
1 2

r r
3

i
3

i
2

i
1

r
1 2

r r
3

Immediate

i
3

i
2

i
1

r
1 2

r r
3

Figure 2.3. Two mappings for the same instruction/response stream pair. The
above line represents the temporal ordering of the instructions and responses. The
mappings give instances of mappings that are/are not immediate.

Let f be a function C∗ × C → C. We call f a template for the conversion

function ϕ of an immediate responder M if for all (n,m) ∈ dom(ϕ), we have

ϕ−1(n,m)(k) = f(ni1 · · ·nij ,mk) + bk. The sequence ni1 · · ·nij is the subword of

n1 · · ·nr, r ≤ min(k + |QM|, |n|), such that all nl with ϕ(n,m)(l) < k are removed

and nr is the color of the last input symbol read before the kth output symbol

whose color is mk is generated. The number bk is an offset equal to the number

of symbols removed in the prefix n1 · · ·nif(ni1
···nij

,mk)
. Note that, the subword can

be at most of length |QM|. Intuitively, the template f , when given a sequence of

colors c and a color c, returns the rank (the first letter of c being first) of the input

symbol to which c is mapped. A conversion function for which a template exists is

called tabular.

Again, we will give an example illustrating the tabularity of a mapping. In

Fig. 2.4, we are giving not only the temporal ordering of instructions and responses

as in Fig. 2.3, but also the color of each instruction and response. We assume that

there are two different conversion functions, ϕ1 and ϕ2. For the first string, the

mappings given by the two conversion functions are identical. However, when the

first instruction (and its response) are removed, the mappings generated by ϕ1 and

ϕ2 differ. The mapping on the left is due to ϕ1 which is a tabular mapping. It

can be seen that d2 is still mapped to c3. Note that, when the response with color

33

(Immediate)

i i
2

i
3

r
1

i
4 2

r r
3 5

i
4
r r

5

c
1

c
2

c
3

c
4

c
5

d
1

d
2

d
3

d
4

d
5

c
1

d
1

c
2

c
3

i
2

i
3

i
4 2

r r
3 5

i
4
r r

5

c
4

c
5

d
2

d
3

d
4

d
5

c
2

c
3

c
4

d
2

d
3

d
4

c
5

d
5

c
2

c
3

c
4

c
5

c
2

c
3

c
4

c
5

d
2

d
3

d
4

d
5

d
2

d
3

d
4

d
5

Tabular Nontabular

1

Figure 2.4. Two mappings, one tabular and the other not, have the same mapping
for the first execution but they differ on the second.

d2 is generated in the second string, the input to the template function of ϕ1 is

the same, (c2c3c4, d2), as the first string in which after generating (r1,d1), c1 does

not affect the remaining mappings. So it is expected that the remaining mappings

remain the same under a tabular conversion function. However, the mapping on

the right is different and hence ϕ2 is not tabular. Intuitively, it can be said that

how ϕ2 maps a response depends not only on the set of pending instructions but

also on the previous mapping history, a property which will possibly require a user

with an infinite amount of storage.

Let C be a finite set of colors. Its elements will be denoted by ci, 0 < i ≤ |C|.
Let n,m ∈ C∗. They are compatible if n ¹ ci = m ¹ ci, for all ci ∈ C. Let n,m be

compatible. Then, the normal permutation from n to m, η̃(n,m), is defined as

η̃(n,m)(i) = j iff (n1 · · ·ni) ¹ ni = (m1 · · ·mj) ¹ mj

34

That is, η̃(n,m) matches the occurrences of each color; the position of the first

occurrence of c1, if any, in n is mapped to the position of the first occurrence of

c1 in m, and so on. That this mapping is well-defined follows from the definition

of compatibility. A finite responder M for which ϕM = η̃ is said to be in normal

form.

The pairs given in Fig. 2.5 give an example of compatible and non-compatible

pairs of color strings. The one on the left is compatible as there is an equal number

of occurrences of each color, c1 two times, c2 three times, c3 one time, in both

strings. The one on the right, however, has two occurrences of c1 in one string and

only one occurrence of c1 in the other. The figure also illustrates how the mapping

would be done by the normal permutation η̃ for the compatible pair.

For a label σ = ((p,n), (q,m)) of a responder M, define the induced label, σ̃,

to be ((p,q),n′) such that n′ ∼ ϕM(n,m). Define the induced language L̃(M) of

a responder M as

L̃(M) = {σ̃ | σ ∈ τM}

Lemma 2.2 Let M be an immediate responder, such that ϕM is tabular. Then,

there exists an immediate responder N in normal form such that L̃(M) = L̃(N).

Proof (Lemma 2.2): Let M = 〈I × C,O × C, Q, q0, F, E〉, C = 〈C,ϕ〉. We

assume that C = {1, . . . , m}. Let D = {1, . . . , N}, where N is the bound NM

from Lemma 2.1. We assume that f is the template for ϕ. Let ci, di range over

Compatible pair

1

c
2

c
2

c
2

c
2

c
1

c
1

c
2

c
3

c
1

c
3

c
2

c
1

c
1

c
2

c
3

c
1

c
3

c
2

c
3

Noncompatible pair

c

Figure 2.5. Two pairs of color strings, only one of which is compatible. For the
compatible pair, we also provide the mapping given by the normal permutation, η̃.

35

the elements of C and D, respectively. Define N over 〈I,O〉 with coloring scheme

〈D, η̃〉 to be the transducer 〈I ×D,O ×D, Q′, q′0, F
′, E ′〉 where

1. Q′ = Q×P([N])× (C ×D)≤N . An element of P([N]), a subset of [N], will

denote the colors of D which correspond to instructions whose responses have

not been generated. (C × D)≤N is the set of all strings of length less than

or equal to N over (C ×D). It is used to encode the input to f whenever a

response is generated by M. It is also used to update the set of used colors

of D.

2. q′0 = q0 × ∅ × ε. We start from the initial state of M while no color in D is

being used.

3. F ′ = F × ∅ × ε. A state in Q′ is final if its projection onto Q is in F and

no color in D is being used; a condition that is satisfied only if there is no

pending (colored) instruction.

4. ((q, U, s), a, (q′, U ′, s′)) ∈ E ′ if one of the following holds

(a) a = ε and (q, ε, q′) ∈ E and U ′ = U , s′ = s.

(b) a = (p, di) ∈ I×D, di /∈ U , (q, (p, c), q′) ∈ E, U ′ = U∪{di}, s′ = s·(c, di).

(c) a = (p, dk) ∈ O × D, dk ∈ U , (q, (p, c), q′) ∈ E, s = (c1, d1) · · · (cn, dn),

f(c1 · · · cn, c) = k, s′ = (c1, d1) · · · (ck−1, dk−1)(ck+1, dk+1) · · · (cn, dn), U ′ =

U \ {dk}.

So, N mimics M with some extra information about the combination of

colors in C used as an input for f . The case (a) does not update the extra

information in U or s. In case (b), M inputs (p, c) while moving from q to

q′. Hence, color c ∈ C becomes part of the input to f for the next mapping

of a response. Since f is arbitrary, its input might be any string in C≤N .

To compensate this and keep the color sequences in D compatible, we need

at most N different colors, hence the cardinality of D. So, we choose an

arbitrary color d ∈ D that is currently not in U (the set of used colors), and

36

append (c, d) to s. In case (c), M outputs (p, c) while moving from q to q′.

Since f is tabular (and M is immediate), we can find to which instruction

this (p, c) is mapped to. And since N is guaranteed to have a different color

in D for each pending instruction, N can output p paired with the color of

the instruction to which f maps (p, c). This also makes the input and output

color sequences compatible.

Let hq : Q → Q′ be defined as

hq(q) = {(q, U, s) | U ⊆ [N], s ∈ (C ×D)≤N}

Also, define hl as

hl(ε) = ε

hl((p, c)) = {(p, d) | d ∈ D}, p ∈ I ∪ O, c ∈ C

Then, assume that q0a1q1 . . . atqt is an accepting run in M. By the explanations

above, it is easy to see that there exist q′j, bj, 1 ≤ j ≤ t such that q′0b1q
′
1 . . . btq

′
t

is an accepting run of N where q′j ∈ hq(qj), bj ∈ hl(aj). Similarly, if q′0b1q1 . . . btqt

is an accepting run of N , there exist aj, 1 ≤ j ≤ t such that q0a1q
′
1 . . . atq

′
t is an

accepting run of M, where q′j = h−1
q (qj), aj ∈ h−1

l (bj).

Combining all the previous arguments with the fact that N preserves the

instruction to response mapping of M, we conclude that their induced languages

are equal; that is, L̃(M) = L̃(N).

¤
Finally, we have to establish the link between specifications and implementa-

tions.

Definition 2.13 An immediate responder M with a tabular conversion function

is said to implement a (finite) memory specification S if

1. ΣS = IM ∪ OM

2. L̃(M) ⊆ λS.

37

By virtue of Lemma 2.2 and the arguments done at the beginning of this section

pertaining to the finiteness of the “user,” from now on, by an implementation, we

will mean an immediate responder in normal form.

The implementation is exact if the inclusion in the second condition above is

an equality. Note that, for any implementation we can define a specification for

which the implementation is exact. Such a specification will be called the natural

specification of an implementation. Henceforth, when we talk about properness,

completeness, etc. of an implementation, we will be referring to its natural specifi-

cation.

2.5 Formalization in Action - Shared

Memory Models

In this section, we will illustrate one use of our formalization. It is no secret

that when we were defining specifications, we had a specific application in mind:

that of formalizing shared memory models. In the first subsection, we will give a

formal definition of one such shared memory model, sequential consistency, due to

[43]. We have to also note that we will be exclusively dealing with some theoretical

aspects of sequential consistency in the following chapters. In the next section,

we will demonstrate how a finite instance of the lazy caching protocol [8] can be

modeled as an implementation.

2.5.1 Sequential Consistency as a Specification

A shared memory model is a restriction on the output streams that can be

generated for a given input stream. Hence, it is actually a predicate on the input-

output relation λS of a given shared memory specification S. In the following,

we will describe sequential consistency, chosen for its simplicity and for its being

accepted as a basic model by the research community.

There is no single formulation of sequential consistency, although the informal

definition thereof is well-known[43]:

[A memory system is sequentially consistent] if the result of any execu-
tion is the same as if the operations of all the processors were executed

38

in some sequential order, and the operations of each individual processor
appear in this sequence in the order specified by its program.

The general approach is first to characterize the correctness of an execution, and

then to require each execution that can be generated by the design under inspection

to satisfy this correctness criterion. The formalizations usually differ in how they

represent an execution, hence in how they define the property to be satisfied

per execution. [references and examples: graph-based, rule-based, trace-based] It

should not matter which formulation is picked as long as the input/output relations

are equivalent. What follows is one such formulation.

For a string q = q1q2 · · · qn, let q̂ = (q1, 1)(q2, 2) · · · (qn, n), be the augmented

string of q. For q̂, let (qi, i) ≺q
t (qj, j) if and only if i < j. ≺q

t is called the temporal

ordering induced by q. When there is no confusion, we will abuse the notation and

write qi ≺q
t qj whenever (qi, i) ≺q

t (qj, j). The initial state of a shared memory is

a mapping img(α) → img(δ). For the sake of clarity, we will usually assume that

the image of the initial state is simply {0}.

Definition 2.14 Let σ = ((p,q),n) ∈ ((IRW)
∗ × (ORW)

∗
) × Perm. Then, σ is

interleaved-sequential at the initial state ι if |p| = |q| = |n| and there exists a total

ordering ≺q
l over {j | 1 ≤ j ≤ |q|} such that

1. For any i ∈ [|p|], if η(i) = j, then ρRW(qj, pi), where η ∼ n.

2. Let j < k, π(pj) = π(pk) and i, l be such that i = η(j), l = η(k). Then, i ≺q
l l

(local input stream order, or input/program order).

3. If qj ∈ R, then either

(¬∃k ≤ |q| . qk ∈ W ∧ α(qk) = α(qj) ∧ k ≺q
l j)∧

δ(qj) = ι(α(qj))

or,

∃k ≤ |q| . qk ∈ W ∧ α(qk) = α(qj)∧
k ≺q

l j ∧ δ(qj) = δ(qk)∧
(¬∃l ≤ |q| . ql ∈ W ∧ α(ql) = α(qj) ∧ k ≺q

l l ≺q
l j).

39

The ordering ≺q
l is called the logical order of q in σ.

A label σ of a run of an implementation is interleaved-sequential (i-s, for short)

if σ̃ is i-s.

So a program and an execution are i-s if they are of the same length, each

instruction generates a response conforming to the output relation of the interface,

and it is possible to rearrange the responses of the execution such that the per

processor order of the input is preserved and each read returns the value written

by the most recent write to the same address with respect to the logical ordering

or the initial value in the absence of any such write.

Given this definition of i-s, we can now define sequential consistency as a shared

memory (specification).

Definition 2.15 Sequential consistency is the shared memory SSC = 〈RW , λSC〉,
where σ ∈ λSC if and only if σ is i-s.

It is also possible to talk about the sequential consistency of a shared memory S
when the relation defined by λS is a nice subset of the relation defined by λSC .

Definition 2.16 A shared memory specification S is sequentially consistent if S is

proper10 and all elements of λS are i-s.

The above definition has a novelty: for the first time, to the best of our knowledge,

a specification is required to be proper to be sequentially consistent. As argued

previously, when only the execution, the output stream, is used to define sequential

consistency, or any memory model for that matter, it is impossible to characterize

a proper specification.

2.5.2 Sequential Consistency of Implementation

The sequential consistency of an implementation does not follow from the se-

quential consistency of its specification. We have required the specification to be

10Actually, a complete specification is enough as the remaining constraints are implied by i-s
elements. We should also note that all previous definitions of sequential consistency ignored
properness.

40

proper for sequential consistency. This property, unfortunately, does not simply

carry over to implementations as in its definition we only require an inclusion rela-

tion; certain programs might not produce outputs in the implementation. There-

fore, in the case of an implementation, we will have to use its natural specification.

Definition 2.17 An implementation is sequentially consistent if its natural speci-

fication is sequentially consistent.

2.6 Implementation of Lazy Caching

Sequential consistency and high performance always seem to be perceived at

opposite ends. If a sequentially consistent memory is designed, it is believed that

it comes at the expense of possible interleavings of memory accesses as memory

accesses would require stalling of the system to ensure that sequential consistency

is preserved (see, for instance, [32]). However, the ease of programming for sequen-

tially consistent memories makes them difficult to do away with. In this section,

we will formalize the lazy caching protocol of [8], which provides a sequentially

consistent memory with an improved management of memory accesses, i.e., less

blocking. We will use an informal yet intuitive presentation, much like the original

description of [8]. As can be verified, the only substantial difference between our

definition and that of [8] is the use of colors, as should be expected.

The original transition structure of the lazy caching protocol is given in Ta-

ble 2.1.

The memory system is a collection of p processors. Processor i, i ∈ [p], has

an output queue, Outi, and input queue, Ini, and a cache, Ci. The queues are

assumed to be unbounded.

The following operations are defined for queues:

• append(queue, item) adds item as the last entry in queue.

• head(queue) returns the first entry from queue.

• tail(queue) returns the result of removing head(queue) from queue.

41

Table 2.1. The original transition structure of a lazy caching memory, as given in
[8].

The observable transitions
(ri,i,a) ::

handshake[i] = null → handshake[i] := (ri,i,a);

(ro,i,a,d) ::
handshake[i] = (ri,i,a) → handshake[i] := null;
∧ Ci[a] = d
∧ is empty(Outi)
∧ no star(Ini)

(wi,i,a,d) ::
handshake[i] = null → handshake[i] := (wi,i,a,d);

(wo,i,a,d) ::
handshake[i] = (wi,i,a,d) → handshake[i] := null;

Outi := append(Outi, (d, a));

The internal transitions
MWi(d, a) ::

head(Outi) = (d, a) → Mem[a] := d;
Outi := tail(Outi);
k 6= i ⇒ Ink := append(Ink, (d, a));
Ini := append(Ini, (d, a, ∗));

MRi(d, a) ::
Mem[a] = d → Ini := append(Ini, (d, a));

CUi(d, a) ::
¬is empty(Ini) → Ini := tail(Ini);

Ci := update(Ci, data(head(Ini)));

CIi ::
→ Ci := restrict(Ci);

42

The predicates for queues are:

• no star(qi) returns true only if the queue qi has no entry of the form (d, a, ∗).

• is empty(queue) returns true only if queue is empty, that is, has no non-empty

entries.

The arrays, which may also be considered as partial functions, have the following

meaning:

• handshake, from [p] to IRW , keeps track of the pending instruction for each

processor. The protocol lets processor i generate a response if the response

matches handshake[i], as in (ro,i,a,d) can be generated only if handshake[i]

is (ri,i,a).

• Mem, from N to N, represents the global shared memory. Mem[a] gives the

content of address a.

• Ci, from N to N, represents the local memory of processor i. Ci[a] gives the

value of address a as viewed by processor i.

Other miscellaneous functions are:

• data((d, a, ∗)) or data((d, a)) return the tuple (d, a).

• update(cache, (data, address)) returns a new array which agrees with cache

on all indices except for address for which it returns data.

• restrict(cache) returns a new array that agrees with cache on all indices for

which the new array is defined. That is, it is a restriction of cache on a subset

of the domain of cache.

A pictorial view of the protocol is given in Fig. 2.6.

Processor i can issue an instruction only if it has no pending instruction, that

is, handshake[i] = null.11 If the issued instruction is a write, that is, (wi,i,a,d)

11We have slightly changed the definition of [8] in that an instruction cannot be removed before
it is serviced.

43

Stream

P P P1 2 p

C C C

OutpOutOut1 2

1 2 pInIn In

p1 2

Bus

. . .

Mem

Lazy Caching Protocol

Input Memory Interface

StreamOutput

Figure 2.6. The lazy caching protocol.

for some a and d, its response can be generated at any time. When such a response,

(wo,i,a,d), is generated, the entry in handshake[i] is cleared and the data, address

pair (d, a) is placed in the queue Outi. The response, (ro,i,a,d), for a read

instruction, (ri,i,a), can be generated only if there are no entries of the form

(d, a′, ∗) in Ini, Outi is empty and the cache Ci is defined for address a, which

intuitively means that the line for address a is in the cache Ci. These guards imply

that all the preceding write instructions issued by processor i must have reached the

global memory Mem (the emptiness of Outi) and all the preceding local writes have

reached the cache Ci. When the response, (ro,i,a,d), is generated, the processor

enables the issuing of the next instruction by resetting handshake[i] (to null).

44

Besides the external or observable actions, the protocol also has some internal

transitions. MWi(d, a) represents the updating of the global memory by processor

i whose head entry of Outi is (d, a). As the global memory is updated, the entry

(d, a) is inserted into each Ink, for k 6= i. Into Ini, (d, a, ∗) is inserted to tag it as

a local write.

CUi(d, a) is the updating of the cache of processor i, Ci, by which the storing

of the data value d in the address a is modelled.

As a nondeterministic measure to compensate for the abstraction of caching

policies, two transitions, MRi(d, a) and CIi, are used. The former places an entry

(d, a) into Ini to model the case where a read miss occurs in cache Ci and the value

is requested from the main (global) memory. CIi undefines the mapping Ci for

arbitrary, possibly 0, addresses, modelling the flushing of cache lines.

Since this definition uses unbounded queues Ini and Outi, it clearly cannot

be implemented as it is by a finite-state machine. To that end, we have to add

guards which would check the fullness of a (finite sized) queue before enabling

a transition which would require appending as a consequent action. A similar

transition structure is given in Table 2.2 which describes the implementation of a

finite instance of the lazy caching protocol, denoted by LC(sin, sout), where each

Ini queue has capacity s ini, each Outi has capacity s outi, and sin = maxi{s ini},
sout = maxi{s outi} and where by finite, we mean that the address space A and

the data space D are also finite.

As we have explained above, there can be at most one pending instruction per

processor. This means that a color set of cardinality |[p]| will be enough. Let

the color set, C, be {c1, . . . , cp}. It is not hard to see that the handshake array

maps each instruction to its response. Since we will be using colors to achieve this

mapping, handshake becomes redundant, so we will not use it. Instead, we will

employ a subset of C, called U , of used colors. Each processor will have a unique

associated color, ci for processor i. During the operation of the implementation,

processor i will have a pending instruction if and only if ci ∈ U .

45

Table 2.2. The transition structure of an implementation modelling an instance
of a lazy caching protocol.

The observable transitions
((ri,i,a), ci) ::

ci /∈ U → U := U ∪ {ci};

((ro,i,a,d), ci) ::
ci ∈ U → U := U \ {ci};
∧ Ci[a] = d
∧ is empty(Outi)
∧ no star(Ini)

((wi,i,a,d), ci) ::
ci /∈ U → U := U ∪ {ci};

((wo,i,a,d), ci) ::
ci ∈ U → U := U \ {ci};
∧ not full(Outi, s outi) Outi := append(Outi, (d, a));

The internal transitions
ε ::

head(Outi) = (d, a) → Mem[a] := d;
∧ ∀k.not full(Ink, s ink) Outi := tail(Outi);

k 6= i ⇒ Ink := append(Ink, (d, a));
Ini := append(Ini, (d, a, ∗));

ε ::
Mem[a] = d → Ini := append(Ini, (d, a));
∧ not full(Ini, s ini)

ε ::
¬is empty(Ini) → Ini := tail(Ini);

Ci := update(Ci, data(head(Ini)));

ε ::
→ Ci := restrict(Ci);

46

To take care of the finiteness of Ini and Outi, we define a new predicate for

queues, not full(queue, size) which returns true only if queue has less than size

entries.

We represent all the internal transitions by the empty string, ε. The language

of the implementation must be a subset of Σ∗, so any other label is abstracted in

this manner.

Since the transition structure given in Table 2.2 is almost identical to the original

description barring the adjustments listed above, it deserves no further explanation.

Observe that, for any i ∈ [p], Ini can never be stuck with some entries; the

guard for removing an element from Ini requires only that Ini be non-empty (the

guard for CUi). This in turn implies that the guards for committing an instruction

in the Outj queue to the memory, for any j ∈ [p], cannot remain false. Therefore,

as long as a certain fairness constraint is added to the run, which prevents the

cache from repeatedly flushing the address for which there is a read instruction

pending, the lazy caching protocol is free from deadlock.12 This also means that,

one requirement for the finite-state machine to become an implementation, that of

the ability to reach an accepting state from any reachable state without expecting

further input, is satisfied.

It is not hard to see that the machine is length-preserving; each instruction

generates exactly one response. Because each response is mapped to an instruction

preceding the response in time, the machine is immediate. Adding to the fact that

the machine will always generate compatible pairs and the mapping is in normal

form, we conclude that the description given for a finite instance of the lazy caching

protocol is indeed an implementation.

2.7 Summary

In this chapter, we introduced a new formalization for shared memories. The

main motivation was to overcome the shortcomings of previous work in this area,

as explained in Section 2.1. We have formally stated that a shared memory model

12For a detailed analysis, see [8].

47

is basically a complete specification. We have defined a canonical implementation

and showed its generality which only depends on the finiteness of the memory

implementation and the party interacting with this memory implementation. We

have also used this formalization to define sequential consistency (as a specification)

and the lazy caching protocol as an implementation. The next chapter will build

on these results.

CHAPTER 3

VERIFICATION OF SHARED MEMORIES

AS A LANGUAGE INCLUSION PROBLEM

In this chapter, building on the results of the previous chapter, we will refor-

mulate the formal verification of a shared memory model. We will demonstrate

our approach by proving the sequential consistency of the lazy caching protocol.

We will demonstrate the use of memory model machines: their use enables one to

transform the formal verification of a shared memory model into a regular language

inclusion problem.

3.1 Introduction

Since Lamport’s definition, there have been many attempts at characterizing

theoretical aspects of SC (e.g., [12, 13, 36, 37, 48, 57]) and developing verifica-

tion approaches for shared memory protocols with SC as the specification (e.g.,

[16, 35, 50]).1 A memory system is usually modelled as a finite-state machine which

is sequentially consistent if all the words in its language satisfy a certain property,

which we called interleaved-sequentiality2 in the previous chapter. Interleaved-

sequentiality requires that the completed instructions (responses) can be ordered3 in

such a way that the per processor order is preserved and any read on any address

returns the value of the most recent write (with respect to the logical order) to

that address, or the initial value when no write to that address precedes the read.

1Hereafter referred to as “SC verification.”

2Other names used previously are serial or linear. Due to the other well-established meanings
of these words, we propose interleaved-sequential, which we also hope reflects better the intended
meaning.

3This order is called the logical order.

49

There are different ways to characterize this property. An approach based on trace

theory defines an execution, a word over Σ, to be a trace in a partially commutative

monoid. A trace is interleaved-sequential if it is in a certain equivalence class. We

call this the trace based approach to modelling SC.4

Unfortunately, the trace based approach to modelling SC introduces a number of

problems described as mentioned in Chapter 1 and Appendix A. A related concern

is that while two notable efforts ([16] and [53] being their latest publications) have

given algorithms for SC verification, neither have formally contrasted the languages

that correspond to the definition of SC they employ to the language of (finitely)

implementable sequentially consistent systems.

We have already defined sequential consistency as a shared memory specification

in the preceding chapter. In this chapter, we define an infinite family of finite-state

implementations each of which implements sequential consistency. These imple-

mentations, called the SC machines, are actually modified versions of the serial

memory, which has been previously used as an operational definition of sequential

consistency (for instance, [1]). We describe the serial memory, which we call serial

machine in Section 3.2.

In Section 3.3, we define the parameterized class of SC machines. We show

that if the language of a memory implementation is contained in the language

of some SC machine then the memory implementation is SC. Furthermore, this

check can be accomplished using regular language containment. This is the first

formulation of SC that we are aware of in which the problem of checking a given

finite automaton against the SC specification is reduced to that of checking regular

language inclusion with the members of a parameterized family of regular languages:

if the containment succeeds for one instance of the parameters, we can assert that

the protocol is SC.5

4See, for instance, [12].

5It is worth noting that Hojati et al. [38] formalized a certain verification effort based on
refinement as a language inclusion problem, but that approach was implementation dependent as
is usually true for refinement proofs in general.

50

In Section 3.4, we compare the family of SC machines against the most re-

cent work on SC verification. The comparison is based on the class of languages

each work defines, and the program/execution pairs each work deems interleaved-

sequential.

We argue that TSC which is the class of languages defined to be sequentially

consistent in the trace-based approach, is a superset of SC, which is the class

of sequentially consistent languages. We show that there are languages in TSC

consisting of program/execution pairs that are illegal from our point of view, as

well as from the point of view of anyone who can view both the program executed

as well as the execution that the program generated. This, we believe, may result

in wrong claims being made about SC. In particular, the well-known undecidability

proof of [12] does not apply to the domain of memory systems as defined in this

work as the language used in that paper is in TSC \ SC.6

We further argue that SCm, the class of languages recognized by SC machines,

is contained within FSC, the class of sequentially consistent languages that are

recognized by finite state machines, which is contained in SC and finally which is

contained in TSC. We are then able to present the following results with respect

to this hierarchy:

• We can show that there are finitely implementable SC languages that are not

captured by [16], [53], or even SCm that we propose.

• We show that both [16] and [53] contain almost no member of SCm; their

algorithms would be inconclusive in proving almost all members of SCm to

be SC.

In Section 3.5, we employ the SC machine to prove that restricted7 finite

instances of the lazy caching protocol, are sequentially consistent. The proof is

accomplished by language containment: for each LCnq(sin, sout) (see Section 3.5),

6The language used in the final reduction is not complete, a property that we require to be
satisfied by any sequentially consistent system.

7An enabled transition cannot be postponed for an unbounded number of transitions.

51

there is an SC(J,K) machine, where the language of the former is a subset of that

of the latter. We also argue that the unbounded case has an unfairness, a property

which is precisely the reason why the language containment argument for any SC

machine does not work. However, we also define another infinite-state machine,

which basically is an SC machine with unbounded processor and commit queues

(see Section 3.3) and argue that its language is a superset of the language of any

LC(sin, sout).

In Section 3.6, we briefly point to the fact that the method carried throughout

this chapter for defining the family of implementations for sequential consistency

and the satisfaction of sequential consistency as a language inclusion problem has,

indeed, nothing specific to sequential consistency; the method could be employed

for any shared memory model and implementation as long as the formalization of

Chapter 2 is followed.

Finally, in Section 3.7, we present a summary of the results of this chapter.

3.2 The Serial Machine

As a first step, we will define the serial machine as a specification, which in

fact has an exact implementation. The serial machine is an operational model for

sequential consistency. Its diagram is given in Fig. 3.1. It is a machine that does

not behave “as if ...” [43] but operates as such.

Memory

P1 P2 Pp. . .

Figure 3.1. A serial machine with p processors

52

Basically, there is a single shared memory, one input port and one output

port. The machine nondeterministically accepts through its input port one of the

instructions each processor tries to issue. If the instruction is a write of a value, v,

to an address a, then the value of a in the memory is updated to reflect the change

and the instruction completes. If the instruction is a read of an address, then the

value in the memory is passed to the processor which issued this instruction, and the

instruction completes. The instruction is completed and the result is passed to the

issuing processor through the output port before another instruction is accepted.

Formally, the definition of the serial machine is as follows:

Definition 3.1 The serial machine, SSM = 〈RW , λSM〉, is the shared memory

specification with σ = ((p,q),n) ∈ λSM if and only if n is the identity permutation

of Perm|p| and ≺q
t is also a logical order for q in σ8.

We introduced the serial machine as an operational model for sequential consistency.

We now establish the link between them.

Lemma 3.1 Let ((p,q),n) be i-s. Then, there exist two permutations η1, η2 ∈
Perm|p| such that ((p′,q′),n′) ∈ λSM , where n′ represents the identity permutation

in Perm|p|, p′ = pη−1
1 (1) · · · pη−1

1 (|p|), and q′ = qη2(1) · · · pη2|q|.

Proof (Lemma 3.1): Since ((p,q),n) is i-s, there is a logical ordering, ≺q
l , of q

in σ. Define η2(i) = j if and only if qi is the jth element in the logical order. To

have a consistent temporal ordering for p′, set η1 = (η2(η(i)))−1, where η ∼ n.

¤

Example 2 Let us analyze the following i-s element ((p,q),n) of λSC, where

p = (ri,1,1) (wi,1,1,1) (wi,2,1,2)

q = (wo,1,1,1) (ro,1,1,2) (wo,2,1,2)

n = 2 1 3

8qi ≺q
t qj if and only if i ≺q

l j.

53

The logical ordering of q is 3 ≺q
l 2 ≺q

l 1. According to the proof of Lemma 3.1, we

have η2 ∼ 3 2 1 and η1 ∼ ((3 2 1)(2 1 3))−1 = 3 1 2. Using these permutations,

we get

p′ = (wi,2,1,2) (ri,1,1) (wi,1,1,1)

q′ = (wo,2,1,2) (ro,1,1,2) (wo,1,1,1)

n′ = 1 2 3

Since n′ is the identity permutation, and the temporal and logical orders for q in

σ′ = ((p′,q′),n′) coincide, we conclude that σ′ is indeed in λSM .

Lemma 3.1 implies that for any element σ = ((p,q),n) of λSC , there is at least

one element σ′ = ((p′,q′),n′) in λSM such that q rearranged according to its logical

order is the same as q′. So, in a sense, SSM is a logically complete specification with

respect to sequential consistency. However, this fact is of little use if we want to

formulate the checking of sequential consistency as a language inclusion problem.

There seem to be two main shortcomings in SSM . One is its inability to

generate arbitrary interleavings for instructions; if instruction i1 temporally pre-

cedes instruction i2, even if i1 and i2 belong to different processors, arbitrary

interleavings between the two is not possible. Consider the following case. Processor

P1 is to issue (ri,1,1) next, whereas processor P2 has (wi,1,1,3) as its next

instruction. Even though, say, (ri,1,1) precedes (wi,1,1,3) in the input stream,

a sequentially consistent implementation can commit (wi,1,1,3) first and then

return (ro,1,1,3) for the read instruction. This is not possible in SSM ; (ri,1,1)

precedes (wi,1,1,3), which means that the read instruction will read the value

written before (wi,1,1,3).

A similar problem arises when an output symbol is generated. As we have

seen in Lemma 3.1, an output symbol cannot be generated after another output

symbol it precedes in logical order. This means that once p is fixed, q is also fixed,

whereas in λSC , for each p, there are at least |q|! different q′ and n′ pairs such that

((p,q′),n′) ∈ λSC .

54

It should be clear that a finite-state machine cannot generate all such q′ for a

given p, but we can use finite approximations; for a given p, SSM has one q (and n),

ideally there are at least |q|! number of q and n pairs such that ((p,q),n) ∈ λSC ;

the finite approximations introduced in the next section will have a number in

between.

3.3 A Finite Approximation to Sequential

Consistency

In this section, we will define for each shared memory instance a set of machines

whose language-union will cover all possible interleaved-sequential program/execu-

tion pairs of that instance at the initial state ι.

Let P be a parameterized instance (P, A, D), C be a color set and let j, k ∈ N.

For simplicity, we will assume that P = [|P |], A = [|A|], C = [|C|]. The diagram

of SC(P,C)(j, k) is given in Fig. 3.2.

memory

... ...

Commit

Queues

Processor

Queues

Input instruction
stream

stream
responseOutput

size ksize j

array

Figure 3.2. The diagram of SCP,C(j, k)

55

The machine SC(P,C)(j, k) is defined as follows:

There are |P | processor first-in first-out (fifo) queues each of size j such that

each queue is uniquely identified by a number in P , |C| commit fifo queues each of

size k, again each with a unique identifier from C, and the memory array, mem, of

size |A|. Initially, the queues are empty, and the memory array agrees with ι, that

is, mem(i) = ι(i), for all i ∈ dom(ι).

At each step of computation, the machine can perform one of the following

operations: read an instruction, commit an instruction or generate a response.

The choice is done nondeterministically among those operations whose guards are

satisfied.

Let σ = (p, c) be the first unread (colored) instruction. The guard for reading

such an instruction is that the π(p)th processor queue and the cth commit queue are

not full. If this operation is chosen by the machine, then one copy of σ is inserted

to the end of the π(p)th processor queue, another is inserted to the end of the cth

commit queue and a link is established between the two entries.

The guard for committing an instruction is the existence of at least one non-

empty processor fifo queue. If this guard is satisfied and the commit operation

is chosen, then the head of one of the nonempty processor queues is removed

from its queue. Let us denote that entry by (q, c). If q ∈ R, then the response

((ro, π(q), α(q),mem(α(q))), c) replaces the entry linked to (q, c) in the cth commit

queue. If q ∈ W , then the response ((wo, π(q), α(q), δ(q)), c) replaces the entry

linked to (q, c) in the cth commit queue and the α(q)th entry of the memory array

is updated to the new value δ(q), i.e., mem[α(q)] = δ(q).

The guard for outputting a response is the existence of at least one nonempty

commit queue that has a completed response at its head position. If indeed there

are such nonempty queues and the output operation is chosen, then one of these

commit queues is selected randomly, its head entry is output by the machine and

removed from the commit queue.

The pseudo-code of the machine is given in Fig. 3.3. For the sake of simplicity,

the data structures and the standard routines for queues (insertion, copying the

56

INIT:

for all q ∈ QP ∪ QC

q.full:=FALSE;

q.empty:=FALSE;

endfor

p_size:=j;

c_size:=k;

mem[a]:=ι[a];

ready:=TRUE;

buf:=ε;

ITER:

RP:={q | q ∈ QP, q.full=FALSE};
RC:={q | q ∈ QC, q.full=FALSE};
OP:={q | q ∈ QP, q.empty=FALSE};
OC:={q | q ∈ QC, q.empty=FALSE AND (q.hd).fin=TRUE};
if ready AND buf=ε, then

buf:=read(input);

ready:=FALSE;

if buf6=ε AND QP[buf.q]∈RP AND QC[buf.c]∈RC, then

ch:={INP};
if OC 6= ∅, then

ch:=ch ∪ {OUT};
if OP 6= ∅, then

ch:=ch ∪ {COM};
if ch=∅, then TERMINATE;

c:=rnd(ch);

If c=INP, then

id:=QC[buf.c].ins(buf); QP[buf.q].ins((buf,id)); ready:=TRUE;

goto ITER;

if c=OUT, then

q:=rnd(OC); output((q.pop).resp);

goto ITER;

if c=COM, then

q:=rnd(OP); ((p,c),id):=q.pop;

if p ∈ R, then

p’:=(r_o,π(p),α(p),mem(α(p))); rep(id,(p’,c));

if p ∈ W, then

mem:=mem[<α(p),δ(p)>]; p’:=(w_o,π(p),α(p),δ(p));

rep(id,(p’,c));

goto ITER;

Figure 3.3. The pseudo-code for SCP,C(j, k).

57

head and popping) are not given; they should be clear from the explanations above.9

The only “unorthodox” function is rep which takes a pointer and a data, and

replaces the contents of the slot which the pointer points to (in a commit queue)

with the data and sets a flag fin of that slot to TRUE.

We proceed to prove some properties of SC machines.

Lemma 3.2 If there are some nonempty processor queues, the removal of any head

entry from any of these queues is possible.

Proof (Lemma 3.2): Since there is no additional guard (besides having at

least one nonempty processor queue) which needs to be satisfied for the commit

operation, any head entry of a nonempty processor queue can be committed, thereby

updating the linked entry in the commit queue.

¤

Lemma 3.3 The SCP,C(j, k) machine never deadlocks, that is, it does not reach

a state where either there is still unread input or there are some nonempty queues

and none of the guards for any of the three operations is satisfied.

Proof (Lemma 3.3): Since by Lemma 3.2, any head entry can be chosen to

commit, we could empty the processor queues in l consecutive commit steps where

l is the number of entries in the processor queues. Then, all entries of the commit

queues, including the head entries, are ready to be output. That means that it

is always possible to reach a state where all the processor and commit queues are

empty. Since when these queues are empty, the guard for reading an input symbol

is enabled, the reading of input cannot get stuck either. Therefore, the SCP,C(j, k)

will not deadlock.

¤

Lemma 3.4 If ((p,n), (q,m)) is in L(SCP,C(j, k)), then n and m are compatible.

9The mapping mem[〈a, d〉] agrees with the mapping mem on all addresses except for a where
the new data value is given by d.

58

Proof (Lemma 3.4): Since nothing concerning the colors is done, an instruction

and its committed form have the same color.

¤

Lemma 3.5 SCP,C(j, k) machine is an immediate responder in normal form.

Proof (Lemma 3.5): The input order of instructions per color is preserved in

the output due to the ordering imposed by the commit queues. That is, if (i, c)

comes as the nth instruction with color c in the input, its output (o, c), for some

o ∈ ORW , will be the nth response in the output with color c. Combining this with

Lemma 3.4, we conclude that it is in normal form.

That it is immediate follows from the fact that for a response to an instruction

to be output, the instruction first has to be read from the input.

¤
Let the language of an SCP,C(j, k) machine, L(SCP,C(j, k)), be the set of pairs

of input accepted by the machine and output generated in response to that input.

Let LP,C denote the (infinite) union
⋃

j,k∈Nat L(SCP,C(j, k)).

Lemma 3.6 Let M be a shared memory implementation of instance P, and let

σ = ((p,n), (q,m)) ∈ τM . Then, σ is i-s if and only if σ ∈ LP,CM .

Proof (Lemma 3.6): (Only if) : Choose j = k = |p|. With these values of j

and k, all instructions can be held in the processor and commit queues without

being forced to remove an element. Let ≺q
l be the logical ordering of q. Consider

the following run of SCP,CM (|p|, |p|). It first reads all the instructions into their

respective queues. Then, consistent with the ordering dictated by ≺q
l , instructions

are committed and the necessary changes are made in the commit queues. We

recall that an implementation of a finite instance is assumed to be an immediate

responder in normal form. That means that n and m are compatible. Therefore, as

the final step, the commit queues are emptied according to the temporal ordering

of (q,m), in accordance with the mapping done by the normal permutation of M .

59

The other direction follows from the definition of i-s and the fact that the order

of committing is the logical order of the output string.

¤

Theorem 3.1 A shared memory implementation M of instance P is sequentially

consistent iff M is proper and the relation it realizes is in LP,CM .

Proof (Theorem 3.1): Follows directly from the previous lemma and the defi-

nitions of LP,CM and sequential consistency.

¤
This theorem can also be used as an alternative yet equivalent definition of sequen-

tial consistency of implementations.

It should be clear that for finite values of j and k, the SCP,C(j, k) machine is

finite iff P and C are finite.

Theorem 3.2 Let M be an implementation of a finite instance P. Then, M is

sequentially consistent if M is complete and L(M) ⊆ L(SCP,CM (j, k)) holds for

some j, k ∈ N.

Proof (Theorem 3.2): Follows from Thm. 3.1 and the definition of sequential

consistency.

¤
The relation realized by a finite SCP,C(j, k) is also the language of a 2-tape

automaton, since it is finite-state and length preserving (see [15]). The same can be

said about length-preserving shared memory implementations of a finite instance.

Since the emptiness problem for regular languages is decidable, it follows that it

is decidable to check whether a finite instance implementation realizes a relation

that is included in the language of some SC machine. Furthermore, completeness

of an implementation of a finite instance is also decidable; it suffices to construct a

new automaton with the same components whose transition labels are projected to

the first (input) alphabet and then to check for its universality. These observations

allow us to claim the following.

60

Theorem 3.3 Given an implementation M of a finite instance P, it is decid-

able to check whether M is complete and has a language that is subset of some

SCP,CM (j, k), for some j, k ∈ N.

3.4 Related Work - A Comparison

Based on Languages

Previous work on sequential consistency checking can be divided into two main

classes: necessity and sufficiency.

The approach based on necessity tries to find necessary conditions for a se-

quentially consistent implementation. These conditions are then formalized and

tested on a given implementation. Work in this vein include [22, 51]. As such,

they are valuable as debugging tools; if at least one of the conditions fail for

an implementation, it is concluded that the implementation is not sequentially

consistent. However, if the conditions are satisfied, the effort is inconclusive; the

implementation might still have runs that violate sequential consistency.

The approach based on sufficiency tries to prove that an implementation is

sequentially consistent. As is true with all kinds of formal verification, there are

those that are completely automatic [53, 16], those that are manual [18, 40] and

those that lie in between [25, 19].

It is widely believed that a fully-automatic formal verification algorithm for any

finite state memory implementation is undecidable.10 Hence, the works of [53, 16],

which are based on the same formalism of trace theory, try to characterize realistic

or practical subsets whose membership problem is decidable.

The approach presented in this paper is an effort at the automatic formal

verification for sufficiency and so it behooves to compare the recent results on

that area with the results of this paper. The languages of the SC machines define

yet another class of languages, which we will denote by SCm. For the comparison

10For the undecidability result, refer to [12]. Due to the formalization used in this paper, we
do not share this belief.

61

to make sense, we will translate the trace theoretical representations of the previous

work to our setting.

3.4.1 The Work of Qadeer [53]

In this work, which revises the test automata approach of [50], a memory

implementation is verified for sequential consistency through composition of the

implementation with a collection of automata. The main assumption is that for

any address and any two write instructions, w1, w2, to that address, w1 precedes

w2 in issuing order if and only if the response to w1 precedes the response to w2 in

the logical order. Another assumption, causality, states that if a value is read at an

address, then that value is either written by an instruction or is the initial value.

In our formalization of the problem, the requirement that a read must return

a value that is input into the system before the read is completed is stronger than

causality, hence that assumption is already satisfied by any system claimed to be

sequentially consistent. However, the first assumption about the logical ordering

per address is not present in our framework; it is an assumption which we are

reluctant to make, as the aim of this work is to be as general as possible and not

appeal to experience.

As we shall see below, this class of languages, which we shall denote by Lq,

includes languages that are not sequentially consistent, that are not finitely imple-

mentable, and that are finitely implementable but not among SCm.

3.4.2 The Work of Bingham, Condon and Hu [16]

This work, which seems to be the culminating point of a series of previous work,

such as [17, 23], has some interesting observations about the undecidability work.

They argue that there are two properties that need to be satisfied by any memory

implementation, however have not been ruled out by previous work employing trace

theory. The first one, prefix-closedness, stresses the fact that a memory should

not wait for certain inputs to reach an accepting state. The second, prophetic

inheritance, states that a read cannot return the value of a write that is yet to

occur. As should be obvious, the exact same requirements are also present in our

62

framework. Actually, we believe that in an execution based formalization, which

[16, 53] certainly are, it is impossible to characterize these notions.

Consider the output sequence (ro,1,1,1) (wo,2,1,1) which does not belong

to the class DSC defined in [16]. This output sequence could belong to an execution

that is prophetic, to an execution that is not prefix-closed, or to an execution that is

neither; the correct characterization depends on the input stream. In the following

examples, time is assumed to progress from left to right; in each instance, the upper

line corresponds to the input, the lower to the output. We also assume that the

initial value of address a is 0.

Instance 1 : (ri,1,1) (wi,2,1,1)

(ro,1,1,1) (wo,2,1,1)

Instance 2 : (wi,2,1,1) (ri,1,1)

(ro,1,1,1) (wo,2,1,1)

Instance 3 : (wi,2,1,1) (ri,1,1)

(ro,1,1,1) (wo,2,1,1)

The first instance corresponds to the prophetic inheritance; the read instruction

returns a value that has not yet been input into the system. The second corresponds

to an execution that is not prefix-closed; a response to a read instruction that has

not been input is generated. Only the third instance corresponds to a case which

can be considered intuitively correct. It should not come as a surprise, then, to

note that only the third instance is allowed in our framework.

We will use Lbch to denote the class of languages that [16] defines.11

In the following subsections, we will compare these two classes and the class

defined in this paper based on the program/execution pairs and languages each

class admits.

11In [16], this class is called DSC which is a limit of all DSCk, for k ∈ N. All DSCk are finitely
verifiable for sequential consistency.

63

3.4.3 Admissible Program/Executions

For the comparison to make sense, we will translate the trace theoretical repre-

sentations of [16, 53] to our setting. We will also assume that the values of 〈P, A, D〉
and C are fixed and refer to the language union of all SCP,C machines as L(SCm).

For the following, let L(q), L(bch) denote the unions of the languages of classes

Lq, Lbch, respectively. With respect to the program/execution pairs each class has

(Fig. 3.4(a)), only L(SCm) is exactly equal to the program/execution pairs that are

interleaved-sequential (i-s, for short). Neither L(q) nor L(bch) include all possible

i-s behaviors. Furthermore, these sets are mutually incomparable and both contain

behaviors that are not i-s.12

As an example, consider the region A of Fig. 3.4(a) which corresponds to i-s

executions which are not in L(bch) ∪ L(q). The following is such an execution,

which is given along with its program:

Program : (ri,1,a) (wi,1,a,1) (wi,2,a,2)

Execution : (ro,1,a,2) (wo,1,a,1) (wo,2,a,2)

As can be seen, if the last write (wo,2,a,2) of processor 2 is logically ordered as

the first response, the output stream becomes i-s. However, this execution is not in

L(bch) as the instruction (ri,1,a) receives a value that is not seen in the output

so far. It is not in L(q), as the temporal ordering of writes to address a is not the

same as their logical ordering. We should note that this input/output pair can be

generated by any SC(j, k), for j, k ≥ 2, regardless of the cardinality of the color

set.

3.4.4 Admissible Languages

As for the classes of languages (Fig. 3.4(b)), the SCm is included in the class of

finitely implementable languages, denoted by FSC.

12Strictly speaking, this claim is true, as both will allow executions without any program. It
might be argued that this is a mere technicality; we are ready to accept that point of view if the
relation between programs and executions is made explicit.

64

A

B
F

C

D E
G

LbchLq

SC=L(SCm)

(a) Word based

SCm

TSC

SC

FSC

Lq Lbch

1

2

3

(b) Language based

Figure 3.4. Comparison diagrams.

Region 1 represents the class of languages that are finitely implementable but

not covered by any of the Lq, Lbch, SCm. As an example to such a language,

consider the following set of input/output pairs13:

Input : (wi,1,a,1) (wi,2,a,2) ·1(b,−)∗ ·2(c,−)∗ (ri,2,a)

Output : ·1(b,−)∗ ·2 (c,−)∗ (ro,2,a,1) (wo,1,a,1) (wo,1,a,2)

The symbol ·i(x,−) is a wildcard denoting any symbol that has x in the address

and issued/performed by processor i. The Kleene-∗ has the usual meaning. We

assume that except for the instructions on address a, every instruction is completed

according to the input order. A finite state machine generating this input/output

pair must only check for the addresses accessed so far. It will only detain two

instructions on address a and complete the others in the order they appear as

input which can be done using finite resources. If this set of input and output pairs

is combined with the language of the serial machine, LSM , we get a complete and

sequentially consistent finite implementation that belongs to Region 1.

Region 2 represents the set of sequentially consistent languages, not finitely

implementable, but included in both Lq and Lbch. Consider the following set of

13In this example, the relative ordering of output symbols to input symbols is not represented.

65

input/output pairs:

Input : (wi,1,a,1) (ri,2,a)
k

Output : (wo,1,a,1) (ro,2,a,d)
k

We require that d be 1 only if k = 2n for some integer n, otherwise d is the initial

value of a. The language formed by taking the union of the above with LSM is

sequentially consistent, although the part given above cannot be generated by any

finite state machine.

Finally, for region 3, languages that are defined to be sequentially consistent

under the formalism of trace theory (denoted by TSC in fig. 3.4(b)) and included

in both Lq and Lbch, we can simply take the empty language. Since it has no

violating executions, it is defined to be sequentially consistent! Other examples

include S∅ and SNC , defined in the previous chapter.

3.5 Lazy Caching Protocol and Sequential

Consistency

The lazy caching protocol, described in the previous chapter, is notorious for

the difficulty it causes when one tries to prove it sequentially consistent. There is a

special issue of Distributed Computing, devoted exclusively to the proof that lazy

caching is indeed sequentially consistent (see, for instance, [18, 34]). Almost all the

methods used to prove lazy caching sequentially consistent are manual or highly

dependent on the specifics of lazy caching, making those methods highly unlikely

to be employed for the general case of shared memory verification. We would like

to claim that for any finite implementation of the lazy caching protocol, there is an

SC machine whose language is the superset of the implementation. Unfortunately,

that is not true. But it might not be as bad as it sounds.

Let us first define a family of machines that define a fair implementation of

the lazy caching protocol. Let LCnq(sin, sout) be the finite state machine whose

language is included in the language of LC(sin, sout) with the following additional

property.

66

For any run r = q0a1q1 . . . qt and for any qj, j ∈ [t] and jc = min{j + nq, t}, the

following holds for any i ∈ P :

1. If at qj, Outi is nonempty, then there is at least one MWi transition between

qj and qjc .

2. If at qj, Ini is nonempty, then there is at least one CUi transition between qj

and qjc .

The relation between these LCnq machines and the SC machines is established by

the following theorem.

Theorem 3.4 For each LCnq(sin, sout), there are SCP,P (J,K) machines such that

L(LCnq) ⊂ L(SCP,P (J,K)).

Proof (Theorem 3.4): We will construct, for any run r of LCnq(sin, sout),

a run r′ of SCa
P,P (J,K) such that the labels (ri, ro) and (r′i, r′o) are equal and

L(SCa
P,P (J,K)) ⊂ L(SCP,P (J,K)).

Let us first define the following sets for convenience:

• MWi = {MWi(d, a) | d ∈ D, a ∈ A}

• MW = ∪i∈P MWi

• WRi = {((wo,i,a,d),i) | a ∈ A, d ∈ D}

• WR = ∪i∈P WRi

• WIi = {((wi,i,a,d),i) | a ∈ A, d ∈ D}

• WI = ∪i∈P WIi

• RIi = {((ri,i,a),i) | a ∈ A}

• RI = ∪i∈P RIi

• RRi = {((ro,i,a,d),i) | a ∈ A, d ∈ D}

67

• CUi = {CUi(d, a) | d ∈ D, a ∈ A}

• MRi = {MRi(d, a) | d ∈ D, a ∈ A}

Let r = q0a1q1 . . . atqt be a run of LCnq(sin, sout). Define r̂ = q0b1q1 . . . btqt

such that bj = aj if aj 6= ε; otherwise, bj is the appropriate internal label (of the

transition from qj−1 to qj).

Let nw = |b1b2 . . . bt ¹ WR|. That is, nw gives the number of write responses (or

equivalently, the number of write instructions) in r̂ (or r).

Let

• ins op(n,m) = |bnbn+1 . . . bm ¹ WRp|

• ins ip(n,m) = |bnbn+1 . . . bm ¹ (MRp ∪MW)|

• rmv op(n,m) = |bnbn+1 . . . bm ¹ MWp|

• rmv ip(n, m) = |bnbn+1 . . . bm ¹ CUp|

That is, ins op(n,m) gives the number of insertions into Outp from qn−1 to qm in

r̂. Similarly, for the same interval, ins ip(n,m) gives the number of insertions into

Inp; rmv op(n,m), the number of removals of entries from Outp; rmv ip(n,m), the

number of removals of entries from Inp.

Let mc : (WI × [t]) → [nw] be such that mc(((wi,p,a,d),p), j) = k, if bj =

((wi,p,a,d),p)), there is l ∈ [t] such that bl = MWp(d, a) and |b1b2 . . . bl ¹ MW | =
k, and ins op(1, j) − rmv op(1, j) = rmv op(j, l − 1). That is, all removals from

Out queues, hence updates of the global memory Mem, are uniquely identified by

a number in [nw] which determines its temporal order in r̂; mc(wr, j) = k if the jth

label of r̂ is wr and its data/address pair is the kth update of Mem.

Let pv : (QLCnq (sin,sout) × P) → [nw] be such that pv(qj, p) = k, if there is

i ∈ [t] such that bi ∈ MRp ∪ MW , ins ip(1, i) − rmv ip(1, i) = rmv ip(i, j), and

|b1b2 . . . bi ¹ MW | = k. That is, for any p ∈ P and j ∈ [t], pv gives the number of

writes seen at processor p till state qj in r̂.

Let oldest(qj) = min{pv(qj, i) | i ∈ P}; hence, it gives the number of writes the

processor, which has updated its cache the least number of times, has seen.

68

Let rc : (RR× [t]) → [nw]∪{0} be such that rc(((ro,p,a,d),p), j) = k, if bj =

((ri,p,a),p), there is l ∈ [t] such that bl = ((ro,p,a,d),p), |bj+1bj+2 . . . bl−1 ¹
RRp| = 0, and pv(ql, p) = k. That is, rc(rd, j) = k if rd is the response to the

(read) instruction input during the transition from qj−1 to qj and the processor

view when rd is generated equals k.

Let oo : ((RI ∪ WI) × [t]) → [t] be such that oo(i, j) = k, if there is l ∈ [t],

p ∈ P such that i ∈ RIp ∪ WIp, bj = i, bl ∈ WRp ∪ RRp, |bj+1bj+2 . . . bl−1 ¹
(WRp ∪ RRp)| = 0, and |b1 . . . bl ¹ (WRp ∪ RRp)| = k. That is, oo(i, j) gives the

rank of the response for the instruction i input during the transition from qj−1 to

qj. The rank is one more than the number of responses generated in the prefix

q0b1q1 . . . ql−1.

Let us now define SCa
P,P (J,K). It has the same structure as SCP,P (J,K) except

that the entries of processor and commit queues have an extra parameter and there

is a variable no ∈ [t]. An entry of a processor queue is of the form (i, k) where

i ∈ IRW × P and k ∈ [nw] ∪ {0}. An entry of a commit queue is of the form (r, o),

where r ∈ ORW × P and o ∈ [t]. Intuitively, k for (i, k) of a processor queue entry

gives information about committing; hence k is called the commit order for (i, k).

The value of o in (r, o) of a commit queue entry tells when it is ok to generate r as

output; o is called the output order for (r, o).

Let the initial state of SCa
P,P (J,K) be the state where all queues are empty, ι

agrees with Mem on A and no = 1. Starting from j = 1, the following steps are

performed:

1. If bj = ((ri,p,a),p), then insert (bj, rc(bj, j)) into Procp
14.

2. If bj = ((wi,p,a,d),p), then insert (bj, wc(bj, j)) into Procp.

3. Let smin = oldest(qj). Let kmin be the minimum among the commit orders of

the head entries of all nonempty processor queues. If smin < kmin, go to next

step. Otherwise, that is, if smin ≥ kmin, there are two cases to consider (see

Lemma 3.7).

14As a notational convenience, Procp denotes the pth processor queue.

69

Depending on the satisfied predicate, one of the following steps is chosen and

performed:

(a) There is a head entry (i, kmin) where i ∈ WI. Commit this entry (and

remove it from the processor queue). Then repeat the same for all head

entries whose commit orders equal kmin. Repeat step 3.

(b) None of the entries with commit order kmin belong to a write instruction;

that is, if (i, kmin) is a head entry, then i /∈ WI. Commit all such

(i, kmin). Repeat step 3.

4. Let omin be the minimum output order of the head entries of all nonempty

commit queues. Let (r, omin) be the corresponding head entry. If omin =

no and r is committed, generate r, increment no by 1 and repeat step 4.

Otherwise, go to next step.

5. If j < t, increment j by 1 and go to step 1. Otherwise, terminate.

Observe that, if (i1, k1) is inserted into Procp before (i2, k2), then k1 ≤ k2. This is

because for the same processor, rc and wc are nondecreasing for increasing values

of j ∈ [t]. This implies that there cannot be an entry in the processor queues such

that it is not a head entry and its commit order is less than kmin of step 3.

Lemma 3.7 In step 3, either a head entry is (wr, kmin) where wr ∈ WI or the

entry (wr, kmin) with mc(wr, j) = kmin, for some j ∈ [t], has been committed

previously.

Proof (Lemma 3.7): Assume the contrary. Then, it must be inserted into some

Procp, p ∈ P , after at least another read instruction that has the same commit order

(it cannot be larger, by the above observation). Let these entries be (wr, kmin) and

(rd, kmin), for the write and read instructions, respectively. Note that, since they

were issued by the same processor (p), the read instruction must have completed,

its response must have been generated before the write instruction was input. Let

j < k < l be such that bj = rd, bl = wr and bk be the response for bj (rd). By

70

definition of rc, rc(rd, j) = kmin implies that |b1b2 . . . bk ¹ MW | = kmin. But also,

by the definition of wc, wc(wr, l) = kmin implies |a1a2 . . . ak . . . al ¹ MW | < kmin,

which is a contradiction.

¤
It remains to show that the sizes of queues need not be unbounded; that is, whenever

a step (1 or 2) dictates an insertion into Procp or Commitp
15, there cannot be

arbitrarily many entries in these queues.

Lemma 3.8 If J,K ≥ dnq(sin+sout)
2

e+ 1, the queues will not overflow.

Proof (Lemma 3.8): Let at state qj, or the jth iteration for SCa
P,P (J,K), the head

entry in Procp be (((ri,p,a),p), k). This means that there is m ∈ [t] such that

m ≤ j, bm = ((ri,p,a),p) and rc(bm,m) = k. Note that, before the response for

bm is generated by LCnq(sin, sout), no other input from processor p can be inserted

into Procp. So, let us also assume that bl = ((ro,p,a,d),p) is the response

to bm with l ≤ j. Now note that, by the definition LCnq(sin, sout) and the fact

that the write of mc−1(k) must be inserted into each In queue, at least right

before ql−1 (bl−1 = MWp(d, a)), for some p ∈ P , we have oldest(qlc) ≥ k, where

lc = min{t, l+nqsin}. Between ql−1 and qlc (which covers qj), there could be at most

dnqsin

2
e entries inserted into Procp. Since when oldest(qlc) ≥ k, (((ri,p,a),p), k)

can be committed, the size of the Procp queue will never exceed dnqsin

2
e + 1 when

the head entry of Procp is a read instruction.

Let us now assume that at qj, the head entry of Procp is (((wi,p,a,d),p), k).

This means that there is m ∈ [t] such that m ≤ j, bm = ((wi,p,a,d),p) and

mc(((wi,p,a,d),p)) = k. Similar to the previous argument, if the response to

bm has not been generated before qj, there could be no other entries. So, assume

that bl = ((wo,p,a,d),p) is the response to bm with l ≤ j. A response for a

write can be generated by processor p if Outp is not full. Assuming that prior

to ql, Outp had (sout − 1) entries (this corresponds to the worst case), it would

take at most nq(sin + sout) transitions for all processors to see the effects of this

15The pth commit queue.

71

write. That is, for lc = min{t, l + nq(sin + sout)}, oldest(qlc) ≥ k and therefore by

qlc , (((wi,p,a,d),p), k) is guaranteed to have been committed. That would mean

that there could be at most dnq(sin+sout)

2
e entries inserted after qm into Procp and

before its head entry is committed.

Therefore, for processor queues, we must have J ≥ dnq(sin+sout)

2
e+ 1.

Let us now consider the commit queues. First, observe that, if the next symbol

to be output belongs to processor p and the instruction to which this symbol would

be the response has not been input yet, Commitp must be empty and all the other

commit queues can have at most one entry.

Let, at state qj, the instruction whose response would be output next is inserted

into Commitp (as well as Procp). This entry will remain in the queue as long as

it is not committed. By previous arguments, we know that it will take at most

nq(sin + sout) transitions, which, in turn, means that at most dnq(sin+sout)

2
e new

instructions can be input. Now, note that initially there was at most one entry in

each Commit queue. So, K ≥ dnq(sin+sout)

2
e+ 1 is enough.

¤
So far, we have not shown that the logical order of the run r′ of SCa

P,P (J,K)

corresponding to r is indeed compatible16 with the logical order of r. Now, observe

that, mc is a bijection. Intuitively, the state of the global memory Mem changes

every time an MW transition is done. So, there are nw + 1 different17 states of

Mem, including the initial state and each write is uniquely associated with a state

of Mem. These temporally ordered states of Mem actually give the logical order

of the execution (for a proof, see [8]). Hence, by committing instructions according

to commit orders given by mc, SCa
P,P (J,K) generates a compatible logical order.

Since the instructions and responses are input and output in the order depicted by

16We are not saying the same logical order as for a given i-s program/execution pair, there
might be more than one logical order.

17Strictly speaking, Mem can attain a state more than once, but that is immaterial to the
present argument.

72

r̂ (the former, by steps 1 and 2; the latter, by step 4 and the definition of oo), the

label (r′i, r′o) is the same as (ri, ro).

Finally, note that SCa
P,P (J,K) actually defines but a subset of all the nonde-

terministic runs of SCP,P (J,K) as any transition enabled in the former is also

enabled in the latter. Therefore, r′ ∈ L(SCP,P (J,K)) and we conclude that

L(LCnq(sin, sout)) ⊂ L(SCP,P (J,K).

¤
What about the general case? There are two alternatives. First, we could prove

it sequentially consistent, using (nonregular) language containment. Or, we could

argue that the very fact that the language of LC(sin, sout) is not contained in the

language of any SCP,P (j, k) is an undesirable property of the lazy caching protocol.

Here, we will do both!

Define SC∞
P,C as the machine that behaves like any SCP,C(j, k) except that all

queues are unbounded.

Lemma 3.9 L(SC∞
P,C) = LP,C.

Proof (Lemma 3.9): Let ((p,n), (q,m)) ∈ L(SC∞
P,C). Then, ((p,n), (q,m)) ∈

L(SCP,C(|p|, |q|)). Hence, L(SC∞
P,C) ⊆ LP,C .

Let ((p,n), (q,m)) ∈ LP,C . Then, there exist infinitely many j and k such that

((p,n), (q,m)) ∈ L(SCP,C(j, k)). Take one such j, k pair. But, it is obvious that

L(SCP,C(j, k)) ⊂ L(SC∞
P,C). Therefore, ((p,n), (q,m)) ∈ L(SC∞

P,C) and LP,C ⊆
L(SC∞

P,C).

¤
By a similar argument to the one we did in the proof of Theorem 3.4, it can be

readily shown, then, that L(LC(sin, sout)) ⊂ L(SC∞
P,P). That, together with the

previous Lemma is enough to conclude that LC(sin, sout) is sequentially consistent.

Let us now consider the other option. In the lazy caching protocol, a processor

might delay the synchronization of its local cache for an arbitrary period of time.

73

Think of the following set of program/execution pairs:

((wi,1,1,1),1) (((ri,2,1),2) ((ri,1,1),1))∗

((wo,1,1,1),1) (((ro,2,1,0),2) ((ro,1,1,1),1))∗

In any program/execution pair of this set, processor P1 writes 1 to address 1,

but processor P2 ignores this value, at no point in time it updates its cache, and

keeps reading the initial value for address 1, which is assumed to be 0. This set

of program/execution pairs cannot be generated by any SC machine. Depending

on the queue sizes, at some point, processor P2 must see the updated value as the

write to address 1 must be logically committed. However, these program/execution

pairs can be generated by an implementation of the lazy caching protocol, as long

as the In and Out queues have sizes greater than 0.

This is clearly an issue of fairness. A nondeterministic self-loop usually abstracts

communication delays, or in general, uncertainties in temporal domain. However,

the program/execution pair, given above, although adhering to the definition of

sequential consistency, is not desired in an intuitively correct shared memory im-

plementation. Adding a fairness constraint is not really relevant as we defined

the problem in terms of finite programs/executions. If it were an infinite program

execution, we could say that the processor P2 eventually sees the updated value.

It would be of little comfort for a programmer to know that processor P2 would

eventually see the updated value, when it has not seen it for two days of execution.

There is actually a stronger notion, finitary fairness [11], that if a transition is

enabled, it cannot remain enabled and not taken for longer than k transitions,

where k is an unknown but finite number in N. The bound nq we employed could

be seen as this k applied to finite strings (program/execution pairs).

Actually, the clash between an intuitively correct shared memory and sequen-

tially consistent memory goes beyond the arguments presented here. Some prob-

lems, albeit somewhat less general than what could be, have been mentioned in

[44]. The problem is more in proposing a better formulation than pointing out

74

what is wrong with the definition of sequential consistency. For now, we would like

to classify this issue as a future research topic.

3.6 The General Case for Shared

Memory Models

Sequential consistency is but one among the myriad of memory models pro-

posed: PRAM, coherence, weak ordering, TSO and PSO, Itanium, to name a few.

Models like PRAM and coherence also are defined over the RW interface; that is,

they are specifications for RW . It is, however, a common practice to introduce

new operations for accessing and changing the memory. The motivation behind

a more complicated instruction set for memory accesses is that distinguishing

between ordinary accesses from synchronizing accesses can result in performance

improvement. Typically, the memory access instructions are categorized into weak

and strong. The memory model usually guarantees a stricter ordering for strong

instructions. For instance, in weak ordering, the program’s execution with respect

to the strong operations is sequentially consistent. The weak accesses, whose

arbitrary interleavings per processor having no bearing on the correctness of the

program, are usually ordered with respect to strong operations; ordering among

weak operations is usually left unspecified.

We have attacked the problem of verifying the sequential consistency of a given

implementation because sequential consistency is an important memory model,

evidenced by the sheer volume of work done on it. Besides, the most recent

verification results or theoretical work for shared memories usually concentrate

on sequential consistency which makes it easier to compare the current work with

similar research. However, what we have done in this chapter is in no way restricted

to sequential consistency.

Let us take a step back and examine what exactly we did to come up with the

SC machines.

1. We started with a certain memory interface: the rw-interface, RW . This

basically defined the communication primitives of the system.

75

2. With respect to this memory interface, we then described a shared memory

model, sequential consistency. The approach was to specify what it meant to

have a correct input stream/output stream pair, to require an implementation

have only correct input stream/output stream pairs in its language and have

at least one output stream for any possible input stream.

3. We observed that for any given input stream, generating all possible output

streams was not possible by a finite-state machine. Instead, we showed that

it is possible to finitely approximate the set of possible output streams for

a given input stream. We defined a hierarchy of finite-state machines whose

language limit is the same as the language of the memory model we were

interested in, sequential consistency. Each machine, depending on the size of

its processor and commit queues, can delay the committing of an instruction

or the generation of a response.

Abstracting away the details pertaining to the specific problem we have dealt

with, the above listing can be rewritten as follows:

1. Start with the required memory interface for the memory model.

2. Define what it means to have a correct output stream for an input stream.

3. Define the hierarchy of finite-state machines whose language limit will be

equal to the memory model.

This three step outline can be applied to the verification of any finite-state im-

plementation (in the sense introduced in this work), with respect to any memory

model. The first step is trivial.

For the second step, the “how to define” or “how to formulate” part results

in different formalisms. We have, in defining specifications, completely left what

formalism to use to the specifier. The only requirement, which should be the

requirement of any formalism, is that it be mathematically sound.

The third and final step, much like the previous step, might result in different

formulations. We used queues; for some memory models, queues might prove to be

76

useful; for others, multisets, partial orders, reorder buffers, etc. might be suitable.

A suite of possible structures along with their use in defining operational models

was given in [19]; the idea of using operational models to define and debug memory

models go back to [25]. But the basic underlying idea remains the same. The

operational description of each machine should be able to generate all possible

input/output stream pairs up to a certain size. If the input exceeds that size,

the part of the input that cannot be retained is assumed to have a certain logical

execution, which is reflected by the state of the machine. This way, it is guaranteed

to have all of the correct input/output stream pairs in the language of the hierarchy:

just pick the machine whose size is enough to hold all of the input stream before

being forced to generate an output symbol.

As for the verification of implementations, first check for completeness. If

complete, proceed to finding a finite-state machine, whose language would be the

superset of the language of the implementation, from the hierarchy.

3.7 Summary

In this chapter, we introduced a new approach to the formal verification of a

shared memory implementation with respect to sequential consistency. Through

the use of an updated alphabet (instructions and responses with colors), we were

able to formulate the verification problem as a regular language inclusion problem.

The SC machines whose language union gives all possible sequentially consistent

program/execution pairs are quite intuitive.

We demonstrated the use of this formulation by proving the sequential consis-

tency of the finite instances of the lazy caching protocol, restricted to bounded non-

determinism, the LCnq(sin, sout) machines, using (regular) language inclusion. We

argue that there is no finite bound to nondeterministic self-loops, the LC(sin, sout)

machine does possess an undesirable property which is precisely why its language

is not contained in the language of any SC machine. However, we also showed,

if desired, how to prove LC(sin, sout) sequentially consistent through a proof very

similar to the one we did.

77

Finally, we claimed that the method proposed in this chapter did not depend on

some specific properties of sequential consistency. Any shared memory implementa-

tion, modeled as an implementation, that is, as an immediate responder in normal

form, can be verified for any shared memory model, which is (re)defined as the

language union of an infinite family of implementations each of which approximates

the memory model under consideration.

CHAPTER 4

SEQUENTIAL CONSISTENCY AND

UNAMBIGUOUS EXECUTIONS

In this chapter, we will further look into the problem of checking sequential

consistency for a finite-state system. We will propose a novel approach to checking

the interleaved-sequentiality of an execution. We will prove the new problem,

called the constraint satisfaction problem, to be equivalent to checking interleaved-

sequentiality. Using this result, we will be able to obtain a decidability result for

the set of unambiguous executions.

4.1 Introduction

As we have seen in Chapter 2 where we defined sequential consistency, a shared

memory implementation is sequentially consistent if, besides other requirements,

each of its executions are correct; that is, interleaved-sequential. Therefore, a related

issue in the formal verification of sequential consistency is the correctness of a single

execution.

The work presented in this chapter, starts from an analysis of a single concurrent

execution which we coin the name interleaved-sequentiality checking. We first

observe that each processor, through the responses to the instructions it issued,

defines a set of possible orderings. Or, put in other words, it prohibits certain

orderings. A concurrent execution is interleaved-sequential if the set of all prohib-

ited orderings of all the processors is a proper subset of all possible (interleaved)

orderings. Based on this observation, we prove that any unambiguous concurrent

execution is interleaved-sequential if and only if a certain set of constraints on

the ordering of the write events of the execution is satisfiable. Besides being an

interesting formulation in itself, the constraint satisfaction problem can also be used

79

to extract the set of wrong instructions which make a concurrent execution violate

interleaved-sequentiality. We argue that this extraction in previous formulations

of the problem is not as trivial as it is under ours. Using this characterization,

we are able to obtain a finiteness result for sequential consistency checking: there

exists a number k, a function of the address and data value spaces, such that if

a shared memory implementation has noninterleaved-sequential and unambiguous

executions, there exists at least one such unambiguous execution in which no state

of the implementation is visited more than k times.

We should also note that we are trying to do away with one aspect common to

both the debugging and proving camps: we are not trying to restrict the domain

of our problem by assuming certain properties about the system. The assumptions

such as location monotonicity or symmetry [35, 50], restriction on temporal order

of writes per address [53], ruling out certain orderings of instruction completion

or requiring in-order completion [16] are usually essential in deriving results. The

theorems of this chapter do not rely on any assumption, although as we discuss in

the closing section, similar assumptions would help alleviate the complexity of the

solution.

It is worth adding that the existence of such assumptions is not uncalled for:

the general case for the formal verification of a finite-state system for sequential

consistency, when the formalization is based on execution only1 as in [12, 16, 53] is

undecidable; hence the efforts for carving out the largest subset of implementations

for which checking sequential consistency is decidable. The finiteness and decidabil-

ity result for unambiguous executions of this chapter shows that the undecidability

result is implicitly linked to the ambiguity of the execution.

In the following section, we explain the notation used in this chapter, which

is somewhat different than the notation used in the previous chapters. We also

give the definitions of the structures used throughout this chapter. In Section 4.3,

we state the original problem in our framework. In Section 4.4, we describe a new

1Recall that, in an execution based formalization, one views a memory as a machine generating
strings over the alphabet of completed instructions.

80

formulation of the interleaved-sequentiality checking and prove it to be equivalent to

the original. In Section 4.5, by making use of the result of the preceding section, we

propose a way of pruning the irrelevant instructions of a noninterleaved-sequential

execution. In Section 4.6, we prove that only a finite number of executions has to be

checked to conclude the nonexistence of any unambiguous noninterleaved-sequential

execution. We conclude the chapter with a summary of the results.

4.2 Notation

A shared memory implementation (smi, for short) is a system parameterized

over the sets of processors, addresses and data values; P , A and D, respectively.

Since we are only interested in implementations, we will take P , A and D as finite

subsets of N, with the further assumption, for convenience, that [|P |] = P (same for

A and D). When we talk about a single smi, the parameter values are understood

to be some P , A and D.

In this chapter, for the first part, we need not be concerned with the input part

of an execution, unlike the previous chapter. We will abstract away the input and

formulate the problem of checking interleaved-sequentiality in terms of executions.

Let S be an smi. Its alphabet, ΣS, consists of two classes of symbols. The first

class, RS, consists of read events. These are the symbols of the form r(p,a,d)2

where p ∈ P is the (index of) the processor that owns the read, a ∈ A is the

address that is being queried and d ∈ D ∪ {0} is the value returned for this read.

The second class, WS, consists of write events. These are the symbols of the form

w(p,a,d)3, where p and a are as above and d ∈ D4. Hence, ΣS, is the union of RS

and WS. We will usually drop the subscripts when no confusion is likely to arise.

We will use the variables p, p1, p2, etc. ranging over P , a, b, a1, a2, etc. ranging

over A, d, d′, d1, d2, etc. over D, i, j, etc. over N.

2This is equivalent to (ro,p,a,d) of the previous chapters. We are using this new notation to
emphasize that we are abstracting away input.

3Same as (wo,p,a,d).

4Without loss of generality, we are assuming that the value 0 is reserved for the initial value
of each address.

81

We will also define other partitions on a given smi alphabet Σ. Let ΣP
pj

be the

set of all symbols of the form r(pj,a,d) or w(pj,a,d) for a ∈ A, d ∈ D. This is

the partition based on processor, and each ΣP
pj

has only and all of events (read and

write alike) that belong to processor pj. Similarly, define ΣA
aj

to be the set of all

events that are to the address aj; ΣD
dj

to be the set of all events that have the data

value dj.

For any binary relation R over a set Z, we define the directed graph GR =

(VR, ER) such that VR = Z and ER = R. In such a case, graph GR is said to

represent the relation R.

For a given smi, a sequential execution of a processor pi, pi ∈ P , is a labelled,

directed (acyclic) graph, Gpi
= (Vpi

, Epi
, λpi

), where λpi
is a mapping from Vpi

to

ΣP
pi

. As is custom, Vpi
is the set of vertices of Gpi

and Epi
⊂ V 2

pi
, the set of edges.

We require that (Vpi
, Epi

) be a graph representing a total order over Vpi
.

Given two labelled graphs, G1, G2, which have disjoint vertex and edge sets, by

their union, we mean the labelled graph Gu = (Vu, Eu, λu), where Vu = VG1 ∪ VG2 ,

Eu = EG1 ∪ EG2 and λu(v) is equal to λG1 if v ∈ VG1 , equal to λG2 , otherwise.

A concurrent execution of an smi S, Gc = (Vc, Ec, λc), is the union of a collection

of sequential executions for each pi
5, pi ∈ P . We will call the concurrent execution

unambiguous if for any v1, v2 ∈ Vc such that λc(v1), λc(v2) ∈ W ∩ ΣA
a for some

a ∈ A, we have λc(v1) ∈ ΣD
d imply λc(v2) /∈ ΣD

d , for all d ∈ D. That is, a

concurrent execution is unambiguous if no two writes have the same address and

data values.

A concurrent execution G = (V,E, λ) is legal if for any v ∈ V such that λ(v) ∈
R, either λ(v) ∈ ΣD

0 or λ(v) ∈ ΣD
d ∩ ΣA

a and there exists v′ ∈ V with λ(v′) ∈
ΣD

d ∩ ΣA
a ∩W .

We shall be dealing only with legal and unambiguous concurrent executions in

the rest of this chapter.

We will usually employ diagrams to represent concurrent executions instead of

an extensional (and clumsy) description of the sets V , E and the labelling function

5We note that each pair of graphs has mutually disjoint vertex and edge sets.

82

λ. An explanation of some conventions used in these diagrams is in order. A typical

diagram is given in Fig. 4.1. We will let V ⊂ N. Each vertex is represented by

its value inside a circle. Each sequential execution is arranged vertically into a

column which is annotated by the name of the processor to which it belongs. For

instance, the vertices 1, 2, 3 all belong to the sequential execution of processor 1,

denoted by P1, 4 to processor 2, P2, etc. To make the diagrams more readable, we

do not draw all the edges; the total order (per sequential execution) would be the

transitive closure of the drawn edges. The label of each vertex is written next to it.

In Fig. 4.1, the labels of vertices 2 and 5 are r(1,b,0) and w(3,c,2), respectively.

The labels will also be referred to as instructions or responses depending on the

context.

4.3 Interleaved-Sequentiality Checking:

Present Situation

In this section, we will describe interleaved-sequentiality of a concurrent execu-

tion using the notation presented in this chapter. Let us recall that the original defi-

nition, given by Lamport in [43], states that an execution is interleaved-sequential if

“the result of any execution is the same as if the operations of all the processors were

executed in some sequential order, and the operations of each individual processor

appear in this sequence in the order specified by its program.” In what follows, we

will formally state this definition.

1

2

P1 P2 P3

w(2,b,3)

w(1,a,1)

r(1,b,0)

3

4 5

6

w(3,c,2)

r(1,b,3)

r(3,a,1)

Figure 4.1. Sample concurrent execution, G0.

83

Definition 4.1 (interleaved-sequential) Let G = (V, E, λ) be an (unambigu-

ous) concurrent execution. It is called interleaved-sequential if there exists a total

order <sc over V such that

1. For any v ∈ V such that λ(v) ∈ R ∩ΣA
a for some a ∈ A, one of the following

holds

(a) λ(v) ∈ ΣD
0 and there does not exist v′ such that λ(v′) ∈ W ∩ ΣA

a and

v′ <sc v.

(b) λ(v) ∈ ΣD
d , d 6= 0, there is a v1 ∈ V with λ(v1) ∈ W ∩ ΣA

a ∩ ΣD
d and

v1 <sc v, and there does not exist v2 ∈ V such that λ(v2) ∈ ΣA
a ∩ ΣD

d′ ,

d 6= d′ and v1 <sc v2 <sc v6.

2. (v1, v2) ∈ E implies v1 <sc v2.

Instead of generating a total order on all the vertices of a concurrent execution, the

existence of a certain partial order is enough to guarantee interleaved-sequentiality.

Let G be a concurrent execution. Let Wa be the set of vertices v such that λ(v) ∈
ΣA

a ∩W . For any v ∈ V , we let ω(v) be v if λ(v) ∈ W ∪ ΣD
0 . If λ(v) = r(pi,a,d)

and d 6= 0, then ω(v) = v′, where λ(v′) = w(pj,a,d), for some pj ∈ P and v′ ∈ V ;

that is, for λ(v) ∈ ΣD
d ∩ΣA

a , ω(v) gives the vertex whose label is in W ∩ΣD
d ∩ΣA

a .7

Let Ta be an arbitrary total order on Wa, for each a ∈ A. Let Ia be a relation over

V 2 such that (v1, v2) ∈ Ia if one of the following holds:

• (v1, v2) ∈ Ta.

• λ(v1) ∈ W , λ(v2) ∈ R and v1 = ω(v2).

• There is a v3 ∈ Ta such that v3 = ω(v1) and (v3, v2) ∈ Ta.

6The existence of such a v1 implies that G is legal.

7By virtue of unambiguity, this mapping is well-defined.

84

Let ICa be the transitive closure of Ia. Then, the coh-augmented concurrent

execution (coce) of a concurrent execution G is the graph Gt = (V, Et, λ) where

(v1, v2) ∈ Et if and only if either (v1, v2) ∈ E or (v1, v2) ∈ ICa for some a ∈ A.

It was shown in [53] that a concurrent execution is interleaved-sequential if and

only if its coce is acyclic.8 Unfortunately, this result does not bear much on the

formal verification of sequential consistency. There is not a single graph to be

checked as evidenced by the plurality of the candidates for the Ta relation defined

above.

Let iterG(Rel) for a relation Rel and a concurrent execution G be defined such

that (v1, v2) ∈ iterG(Rel), for v1, v2 ∈ V , if one of the following holds:

1. (v1, v2) ∈ Rel

2. v1 = ω(v2) and v2 6= ω(v2).

3. There exists v3 ∈ V such that (v3, v2) ∈ Rel and λ(v1), λ(v3) ∈ ΣA
a ∩ ΣD

d , for

some a ∈ A, d ∈ D.

Let Iinit over V 2 be defined such that (v1, v2) ∈ Iinit if and only if λ(v1) ∈ ΣD
0 ∩ΣA

a

and λ(v2) ∈ ΣA
a ∩ΣD

d , for some a ∈ A and 0 6= d ∈ D. Then, let IR be the transitive

closure of the fix-point of iterG(E ∪ Iinit).

The work in [50] was aimed to improve the result of [53]. It was claimed that

IR as defined above would be enough; that is, the graph representing IR itself

would be acyclic if and only if the concurrent execution is interleaved-sequential.

Unfortunately, that result turned out to be erroneous[33].

As an illustration of the above ideas, we provide a sample concurrent execution,

Gf , which is a simplified version of a counter example to the method of [50]. The

concurrent execution is given in Fig. 4.2.

In Fig. 4.3, the graph representing the relation IR is given. The edges due

to Ef are solid, whereas the other edges are depicted by the dashed edges. All

8Actually, in [57], a concurrent execution is defined to be interleaved-sequential, if its coce is
acyclic.

85

w(2,c,1)

P2

r(2,c,1)

r(2,a,2)

r(2,b,1)

5

6

7

8

P3

r(3,c,2)

w(3,a,1)

r(3,b,2)

w(3,b,2) 9

11

10

12

P1

w(1,c,2)

r(1,c,2)

w(1,a,2)

r(1,b,2)

1

2

3

4

P4

w(4,b,1)

r(4,b,1)

r(4,c,1)

r(4,a,1)

13

14

15

16

Figure 4.2. The concurrent execution Gf .

P1

w(1,c,2)

r(1,c,2)

w(1,a,2)

r(1,b,2)

w(2,c,1)

P2 P3 P4

r(2,c,1)

r(2,a,2)

r(2,b,1) r(3,c,2)

w(3,a,1)

r(3,b,2)

w(3,b,2) w(4,b,1)

r(4,b,1)

r(4,c,1)

r(4,a,1)

1

2

3

4

5

6

7

8

9

11

10

12

13

14

15

16

Figure 4.3. The graph representing the relation IR of [33].

of these dashed edges are due to the second item of the definition of IR. For

instance, there is an edge from 1 to 12, as 1 = ω(12). As can be seen from this

figure, the graph is acyclic, even though as we will see, it does not correspond to

an interleaved-sequential concurrent execution.

In Fig. 4.4, we show part of the graph which corresponds to the coce of Gf

when Ta is {(3, 11)} (for address a, the write of 2 is ordered before the write of

1), Tb is {(13, 9)} (for address b, the write of 1 is ordered before the write of 2),

86

P3

r(3,c,2)

w(3,a,1)

r(3,b,2)

w(3,b,2) 9

11

10

12

P4

w(4,b,1)

r(4,b,1)

r(4,c,1)

r(4,a,1)

13

14

15

16

w(2,c,1)

P2

r(2,c,1)

r(2,a,2)

r(2,b,1)

5

6

7

8

P1

w(1,c,2)

r(1,c,2)

w(1,a,2)

r(1,b,2)

1

2

3

4

Figure 4.4. Part of the coce of Gf exhibiting a cycle, for Ta = {(3, 11)},
Tb = {(13, 9)}, Tc = {(5, 1)}.

Tc is {(5, 1)} (for address c, the write of 1 is ordered before the write of 2). The

loop given by 2, 3, 7, 11, 15, 16, 2 shows that the orderings given by Ta, Tb and Tc

cannot be extended to a total order satisfying the requirements of the definition of

interleaved-sequentiality.

4.4 Constraints for Interleaved-Sequentiality:

A New Formulation

In this section, we will define a new way to check the interleaved-sequentiality

of a concurrent execution. The idea is to transform a concurrent execution to a set

of (impossibility) constraints, which we call the constraint satisfaction problem, csp

for short. We will prove that a concurrent execution is interleaved-sequential if and

only if its csp is satisfiable.

Before getting into the specifics, an intuitive explanation is in order. We

said that a concurrent execution is a combination of sequential executions, one

per processor9 and the concurrent execution is interleaved-sequential if a certain

interleaving of the sequential executions appears as if executed by a single processor.

Let us call this the logical order of a concurrent execution. The logical order, then,

9No emphasis should be placed on the word “processor”; it is just a name. We could be using
thread or process in its place.

87

is a fictitious order that conforms to all the requirements enforced by each processor.

But what exactly do we mean by these requirements?

Look at the concurrent execution G1 of Fig. 4.5. We have four instructions. The

requirement of processor 2 is that a write of value 1 to address a exists. Besides that,

it imposes no ordering with respect to any other instruction. Same with processor

3. Processor 1, on the other hand, requires that the read of value 1 precede the read

of value 2 at address a. This has an indirect effect on the write ordering: w(a,1)

(shorthand for w(p,a,1) for some p ∈ P ; since we are dealing with unambiguous

runs exclusively, there is at most one such write) must precede w(a,2). Hence, a

logical order, in case it exists, must satisfy all these requirements. For this instance,

3, 1, 4, 2 is the required logical order.

Now, look at a snippet of a concurrent execution G2, in Fig. 4.6. One re-

quirement is that r(1,a,1) precede r(1,b,1). By legality, it is also required that

w(a,1) and w(b,1) exist. However, it does not seem to relate these writes. We

might conclude that these are the only the requirements enforced by this pair of

reads to different addresses and we would be wrong!

The trick is in negation. Instead of expressing the requirements as enforced

orderings, we could express them as forbidden orderings. For instance, in Fig. 4.5,

we could say that processor 1 forbids the ordering where w(a,2) precedes w(a,1).

In the case of binary orderings, the difference is superfluous. However, for Fig. 4.6,

if we say that, for any other write to b, w(b,d) such that d 6= 1, we cannot have

w(b,1) precede w(b,d) when both precede w(a,1), we introduce a new requirement.

1

2

4

P1 P2 P3

w(2,a,1) w(3,a,2)

r(1,a,1)

r(1,a,2)

3

Figure 4.5. Sample concurrent execution, G1.

88

1

2

r(1,a,1)

r(1,b,1)

P1

Figure 4.6. Sample concurrent execution, G2.

It turns out that a formalization of the above ideas to form a set of impossible

orderings over the writes of a concurrent execution helps us form a new problem,

equivalent to interleaved-sequentiality checking.

Definition 4.2 Let G = (V,E, λ) be a concurrent execution. Let v1, v2 be in V

such that (v1, v2) ∈ E. Let ij = λ(vj), for j = 1, 2. The constraint set for (v1, v2),

κ((v1, v2)), is:

1. If i2 is r(p,b,d2) and

(a) If i1 is either w(p,a,d1) or r(p,a,d1), and a 6= b, then

{w(b,d2) ≺ w(b,d3) ≺ w(a,d1) |
∃p′ ∈ P, v′ ∈ V, d3 ∈ D .

λ(v′) = w(p′,b,d3) ∧ d3 6= d2}

(b) If i1 is either w(p,b,d2) or r(p,b,d2), then

∅

(c) If i1 is either w(p,b,d1) or r(p,b,d1), and d1 6= d2, then

{w(b,d2) ≺ w(b,d1)}

2. If i2 is w(p,b,d2) and

(a) If i1 is either w(p,a,d1) or r(p,a,d1), and a 6= b, then

{w(b,d2) ≺ w(a,d1)}

89

(b) If i1 is r(p,b,d2), then

{w(b,d2) ≺ w(b,d2)}

(c) If i1 is either w(p,b,d1) or r(p,b,d1), and d1 6= d2, then

{w(b,d2) ≺ w(b,d1)}

For any v ∈ V , let ι(v) = {w(a, d1)≺ w(a,0)}, when λ(v) is either w(p,a,d1) or

r(p,a,d1), d1 6= 0; otherwise, ι(v) = ∅.

In the above definition, the expressions x ≺ y or x ≺ y ≺ z are called constraints.

The terms x,y,z (x,y) are said to appear in the constraint x ≺ y ≺ z (x ≺ y). We

say that x appears in a constraint set if the set contains a constraint in which x

appears. Let the elements of a constraint set C, elem(C), be the set of all terms

which appear in C.

For a concurrent execution Gc, we define its constraint set, CSc, as the union of

the sets
⋃

e∈Ec
κ(e) and

⋃
v∈Vc

ι(v).

Example 3 Let us consider the constraints for the concurrent execution Gf of

Fig. 4.2. In the sequential execution of processor 1, P1, there are 4 responses: the

vertices 1, 2, 3, 4. Some of the constraints due to κ for P1, then, are given as

follows:

1. κ((1, 2)) = ∅. The rule for this edge is given by 1(b) in the definition of κ.

2. κ((1, 3)) = {w(a,2) ≺ w(c,2)}. The rule for this edge is given by 2(a).

3. κ((1, 4)) = {w(b,2) ≺ w(b,1) ≺ w(c,2)}. The rule for this edge is given by

1(a). Note that, since there are only two distinct values, 1 and 2, written to

address b, the constraint for this edge is a singleton.

The remaining constraints for Gf due to κ are formed similarly.

As for ι, we have ι(1) = ι(2) = ι(12) = {w(c,2) ≺ w(c,0)}. Note that, for

v, v′ ∈ Vf , if ω(v) = ω(v′), then ι(v) = ι(v′). For Gf , there are six different sets

formed by ι, as there are six different writes.

90

Definition 4.3 (Constraint satisfaction) A set of constraints, C, is satisfiable

if there exists a total order <t over elem(C) such that

1. If t1 ≺ t2 ∈ C, then t2 <t t1.

2. If t1 ≺ t2 ≺ t3 ∈ C, then either t2 <t t1 or t3 <t t2.

In such a case, <t is said to satisfy C.

Example 4 Let us consider Gf . We have the following constraints in the set CSf

for Gf :
w(a,2) ≺ w(c,2),
w(b,2) ≺ w(b,1) ≺ w(c,2),
w(b,2) ≺ w(b,1) ≺ w(a,2),

 P1

w(a,2) ≺ w(a,1) ≺ w(c,1),
w(b,1) ≺ w(b,2) ≺ w(c,1),
w(b,1) ≺ w(b,2) ≺ w(a,2),

 P2

w(a,1) ≺ w(b,2),
w(c,2) ≺ w(c,1) ≺ w(b,2),
w(c,2) ≺ w(c,1) ≺ w(a,1),

 P3

w(a,1) ≺ w(a,2) ≺ w(b,1),
w(c,1) ≺ w(c,2) ≺ w(b,1),
w(c,1) ≺ w(c,2) ≺ w(a,1)

 P4

The first three constraints are due to the responses in processor P1, the second three

due to P2, etc. Let <t be given by:

w(c,2) <t w(a,2) <t w(b,1) <t w(b,2) <t w(a,1) <t w(c,1)

Then, the first constraint w(a,2) ≺ w(c,2) is satisfied because w(c,2) <t w(a,2).

The second constraint w(b,2) ≺ w(b,1) ≺ w(c,2) is satisfied because w(c,2) <t

w(b,2). Continuing in this manner, we see that all the constraints due to the

responses of P1, P3 and P4 are satisfied. However, the first constraint due to P2,

w(a,2) ≺ w(a,1) ≺ w(c,1) is not satisfied as we also have w(a,2) <t w(a,1) <t

w(c,1). Since, none of the 6! possible orderings of the writess forms a satisfying

total order, we conclude that CSf is not satisfiable. It is no coincidence that Gf is

not i-s, as the next theorem demonstrates.

91

Let ωc(v) = w(a,d) if and only if ω(v) = w(p,a,d) for some p ∈ P . Let

WCc = {w(a,d) | w(a,d) ∈ elem(CSc), d 6= 0}. The set WCc is isomorphic to

elem(CSc) with the (fictitious) initial writes removed. Let ωp(w(p,a,d)) = w(a,d).

Note that ωp is a bijection from λc(Vc) ∩W to WCc. We are now ready to state

the main theorem of this chapter.

Theorem 4.1 Let Gc be a legal (unambiguous) concurrent execution and CSc be

its constraint set. Then, Gc is interleaved-sequential if and only if CSc is satisfiable.

Proof (Theorem 4.1): (⇒): Let <sc be the logical order of Gc. First, augment

<sc so that it is defined for all elements of elem(CSc). Let <o be an arbitrary total

order over {w(a,0) | a ∈ A}. Let <c be the order defined by

1. Let v1, v2 ∈ Vc be such that λc(v1), λc(v2) ∈ W . If v1 <sc v2, then ωp(λc(v1)) <c

ωp(λc(v2)).

2. if t1 <o t2, then t1 <c t2.

3. if t1 = w(a,0), t2 = w(b,d) and d 6= 0, then t1 <c t2.

It is clear that <c is also a total order. It can be proven that <c satisfies CSc

by contradiction. Assume it does not; go over all possible constraints, using the

definition of the constraint set and interleaved-sequentiality, and show that in each

case, unsatisfiability implies a violation of interleaved-sequentiality. To illustrate,

let us assume that w(a1,d1)≺w(a1,d2)≺w(a2,d3)∈ CSc is a constraint that is not

satisfied by <c, that is w(a1,d1)<cw(a1,d2)<cw(a2,d3). Let us assume that the

constraint was generated by (v1, v2) ∈ Ec such that λc(v1) = r(p1,a2,d3), λc(v2) =

r(p1,a1,d1) and a1 6= a2. Let v3, v4, v4 ∈ Vc such that v3 = ω(v1), v5 = ω(v2),

λc(v4) = ω−1
p (w(a1,d2)).

10. By int-seq(3), we have v1 <sc v2. There are 4 cases to

consider:

1. If d1 = d3 = 0, w(a2,d3)<cw(a1,d2), for any d2 6= 0, by the definition of <c.

So, this case is not possible.

10By the definition of κ (item 1(a)), v3, v4, v5 exist.

92

2. If d1 6= 0 and d3 = 0, then w(a2,d3)<cw(a1,d1), again by the definition of

<c. This case is not possible.

3. If d1 = 0 and d3 6= 0, then

(a) v3 <sc v1 <sc v2, by the int-seq(2-b,3).

(b) v2 <sc v4, by int-seq(2-a).

(c) v3 <sc v2 <sc v4, by (a) and (b).

So we have w(a2,d3)<cw(a1,d2), which contradicts the assumption.

4. If d1, d3 6= 0, then

(a) v5 <sc v2, by int-seq(2-b).

(b) v3 <sc v1, by int-seq(2-b).

(c) v5 <sc v2 <sc v4, by w(a1,d1)<cw(a1,d2) and int-seq(2-b).

(d) v1 <sc v2, by assumption.

Combining (a-d) above, we get v3 <sc v2 <sc v4, which again results in a

contradiction.

The remaining cases are proved similarly.

(⇐): Let CSc be satisfiable. Then, by definition, there is a total order over

elem(CSc) that satisfies CSc. Let <t′ be that total order. Define <t to be the

total order over λc(Vc) ∩ W such that if w1 = w(a1,d1), w2 = w(a2,d2), w′
1 =

w(p1,a1,d1) = ω−1
p (w1), w′

2 = w(p2,a2,d2) = ω−1
p (w2) and w1 <t′ w2, then w′

1 <t

w′
2. Note that, by the unambiguity of the concurrent execution, the order <t is

well-defined. The set WC is isomorphic to elem(CSc) with the (fictitious) initial

value writes removed. Using <t, define a partial order <p over Vc as follows:

1. If λc(v1) <t λc(v2), then v1 <p v2.

2. Let λc(v1)=w(p1,a,d1), λc(v2)=w(p2,a,d2) and λc(v1) <t λc(v2). Then, for

any v3 ∈ Vc with λc(v3) ∈ R and ω(v3) = v1, we have both v1 <p v3 and

v3 <p v2.

93

3. If we have both λc(v1) = r(p1,a,0) and λc(v2) = w(p2,a,d), then v1 <p v2

holds.

We will refer to the first requirement as def-p(1), to the second as def-p(2), etc.

Observe that, for two vertices v1 and v2:

1. if λc(v1) and λc(v2) are both writes, v1 <p v2 if and only if λc(v1) <t λc(v2).

2. if λc(v1) and λc(v2) are both reads, then they are not ordered by <p.

3. If λc(v1) is a read and λc(v2) is a write, then they are ordered by <p if and

only if both are to the same address.

We will refer to the first observation as obs(1), to the second as obs(2), etc.

Lemma 4.1 There does not exist a set of vertices, vi ∈ Vc, such that v1 <p v2 <p

. . . <p vn <p v1, for any n ∈ |Vc|.

Proof (Lemma 4.1): We will prove by induction on n.

Base case (n = 1): Then, we must have v1 <p v1. This cannot be the result of

the application of (1) in the definition of <p as that would contradict the fact that

<t is a total order. The remaining cases order different vertices; hence, cannot be

the reason for this ordering. Therefore, n cannot be 1.

Induction hypothesis: For all sets of cardinality k or less, assume the claim

holds.

Induction step (n = k + 1): Then, we have v1 <p . . . <p vk+1 <p v1. Note

that, both λc(v1) and λc(vk+1) cannot be both reads by obs(2). Let us examine the

possibilities for r1 = λc(v1) and rk+1 = λc(vk+1):

1. Assume that r1 = r(p1,a1,d1), rk+1 = w(p2,a1,d2). Then, since vk+1 <p v1,

they must be ordered due to def-p(2) and d1 = d2. This implies that λc(v2)

must be a write (by obs(2)). Due to the premise of def-p(2), we must have

rk+1 <t λc(v2), which would imply vk+1 <p v2. But, then v2 <p v3 <p . . . <p

vk+1 <p v2 with only k vertices holds. By induction hypothesis, this cannot

be.

94

2. Assume that r1 = w(p1,a1,d1), rk+1 = r(p2,a1,d2). There are two cases to

consider:

(a) d2 = 0. Examining def-p(1-3), we see that we cannot have another vertex

ordered before vk+1; in particular, vk <p vk+1 cannot hold.

(b) d2 6= 0. Then, by obs(2,3), it is easy to see that vk = ω(vk+1). By

def-p(1), we have rk <p r1. Hence, v1 <p v2 <p . . . <p vk <p v1 with k

vertices should hold. By induction hypothesis, this cannot be.

So, this case is not possible.

3. Assume that r1 = w(p1,a1,d1), rk+1 = w(p2,a2,d2). There are two cases to

consider:

(a) r2 = λc(v2) = w(p3,a3,d3), which would mean that v1 <p v2 due to

def-p(1), because of obs(1). Again, by obs(1), we have rk+1 <t r1 <t r2,

which implies that rk+1 <t r2 by the totality of <t. This in turn implies

that vk+1 <p v2. Then, v2 <p . . . <p vk+1 <p v2 with k vertices holds.

By induction hypothesis, this cannot be.

(b) r2 = λc(v2) = r(p3,a3,d3). Then, by obs(3), a1 = a3. Also, by def-p(2),

we have d1 = d3. Then, r3 = λc(v3) = w(p4,a1,d4), by obs(2-3). But,

this means that r1 <t r3, by def-p(2). We also have, by assumption,

rk+1 <t r1. By the transitivity of <t, we have rk+1 <t r3, which implies

vk+1 <p v3, by def-p(1). Then, v3 <p . . . <p vk+1 <p v3 with k − 1

vertices, holds. By induction hypothesis, this cannot be.

4. The other cases where r1 and rk+1 are to different addresses and at least one

of them is a read, cannot occur as by obs(3), they are not ordered by <p.

This completes the induction step as all possible cases are covered.

¤
Let <+

p denote the transitive closure of <p. It follows from Lemma 4.1 that <+
p

is a strict partial order; that is, it is irreflexive, antisymmetric and transitive.

95

Now, if two vertices are not ordered by <+
p , then either they are accessing

different addresses and at least one of them is a read, or they are both reads and

have the same address and data values. So, the next step is to augment this partial

order yet to another partial order, so that the sequential order per processor is

included.

Let <s be a relation over Vc satisfying the following:

1. If v1 <+
p v2, then v1 <s v2.

2. If (v1, v2) ∈ Ec, then v1 <s v2.

We refer to the first requirement as def-s(1), to the second as def-s(2).

This way, <s augments <+
p with the sequential order as mentioned above.

Similar to <+
p , it can be shown the the transitive closure of <s, <+

s , is also a

strict partial order.

Lemma 4.2 There does not exist a set of vertices vi ∈ Vc, such that v1 <s v2 <s

. . . vn <s v1, for any n ∈ |Vc|.

Proof (Lemma 4.2): We prove it by induction on n.

Base case (n = 1): v1 <s v1. This cannot be due to def-s(1), as <+
p was proved

to be irreflexive. It cannot be due to def-s(2) either as Ec is acyclic. So, such an

ordering does not exist.

Induction hypothesis: Assume that the claim holds for all n less than or equal

to k.

Induction step (n = k + 1): Then, we have v1 <s v2 <s . . . <s vk+1 <s v1. Note

that, if vi <+
p vi+1, then vi+1 <+

p vi+2 cannot be, as that would imply vi <+
p vi+2

and will contradict the induction hypothesis.

Similarly, if (vi, vi+1), (vi+1, vi+2), by the definition of Ec, (vi, vi+2) ∈ Ec which

again contradicts the induction hypothesis.

For convenience, when the ordering in <s is due to def-s(1), we will use <+
p ;

otherwise, we will use <s.

96

First, let us make the following observations for vi <+
p vj:

1. Either rj = λc(vj) = w(pj,aj,dj), for some pj, aj, dj or the chain vi <p vi1 <p

vi2 <p . . . vik <p vj has the following property: vik <p vj is due to def-p(2);

that is, λc(vik) = w(pik,aj,dj) and λc(vj) = r(pj,aj,dj); that is, vik = ω(vj).

2. Either λc(vi) = w(pi,ai,di) or the chain vi <p vi1 <p vi2 <p . . . <p vj has the

following property: vi <p vi1 is due to def-p(2); that is, λc(vi) = r(pi,ai,di),

and λc(vi1) = w(pi1,ai,di1), where di 6= di1 .

These are actually specific instances of the more general observations given prior

to Lemma 4.1. We will refer to the first observation as obs2(1), to the second as

obs2(2).

Let us prove that k cannot be 1, as a special case.

Without loss of generality, assume that v1 <+
p v2 <s v1 be such a chain. Let us

further assume that we have v1 <p vi1 <p vi2 <p . . . <p vim <p v2, for some m. By

obs2(1), there are two cases to consider:

1. r2 = λc(v2) is a write, that is, r2 = w(p2,a2,d2). Since v2 <s v1, we have

(v2, v1) ∈ Ec. There are two possibilities:

(a) r1 = λc(v1) = r(p1,a1,d1), a1 6= a2. Note that, p1 = p2 as (v2, v1) ∈
Ec. By obs2(2), we have s1 = λc(vi1) = w(pi1,a1,di1). We also have

ω(v1) <p v1 by def-p(2). Assuming ω(v1) is w(p′,a1,d1) for some p′ and

by obs(1), we get

w(a1,d1) <t′ w(a1,di1) <t′ w(a2,d2)

Now note that for (v2, v1) ∈ Ec, we have the following constraint in CSc

w(a1,d1) ≺ w(a1,di1) ≺ w(a2,d2)

This constraint, however, is not satisfied by <t′ , which contradicts the

assumption about <t′ satisfying CSc. So this case is not possible.

97

(b) r1 = λc(v1) = r(p1,a2,d1). Let v3 = ω(v1) = w(p′,a2,d1), for some p′.

Then, the following holds:

w(a2,d1) ≺ w(a2,d2) ∈ CSc

Then, since <t′ satisfies CSc and by def-p(1), we have v2 <p v3. But, we

also have v3 <p v1 <+
p v2, which implies v3 <+

p v2. This contradicts the

irreflexivity of <+
p . So this case is not possible.

(c) r1 = λc(v1) = w(p1,a1,d1). This implies that

w(a1,d1) ≺ w(a2,d2) ∈ CSc

Since <t′ satisfies CSc and by def-p(1), we have v2 <p v1. We also had

v1 <+
p v2 by assumption. This contradicts the irreflexivity of <+

p . So,

this case is not possible.

2. r2 = λc(v2) is a read, that is, r2 = r(p2,a2,d2). There are three possibilities:

(a) r1 = λc(v1) is a read to a different address; that is, r1 = r(p1,a1,d1).

Then, by obs(2), we cannot have v1 <p v2. Then, by obs2(1), we

have v1 <+
p vim <p v2 and λc(vim) = w(p′,a2,d2), for some p′. Also,

by obs2(2), we have v1 <p vi1 <+
p v2, where λc(vi1) = w(pi1,a1,di1),

such that vi1 6= vim . Let v3 = ω(v1). By def-p(2), we have v3 <p v1.

Combining all, we get v3 <p vi1 <p v2, which implies

w(a1,d1) <t′ w(a1,di1) <t′ w(a2,d2)

By the definition of CSc, we have

w(a1,d1) ≺ w(a1,di1) ≺ w(a2,d2) ∈ CSc

This contradicts the fact that <t′ satisfies CSc. So, this case is not

possible.

98

(b) r1 = λc(v1) is a read to the same address; that is, r1 = r(p1,a2,d1).

Then, the following holds:

w(a2,d1) ≺ w(a2,d2) ∈ CSc

Let us assume that v3 = ω(v1) and v4 = ω(v2). Then, since <t′ satisfies

CSc and by def-p(1), we have v4 <p v3. That, in turn, implies v4 <p

v2 <p v3 <p v1. But, we get v2 <+
p v1 and, by assumption, we have

v1 <+
p v2. That contradicts the irreflexivity of <+

p . So, this case is not

possible.

(c) r1 = λc(v1) is a write; that is, r1 = w(p1,a1,d1). Then, the following

holds:

w(a1,d1) ≺ w(a2,d2) ∈ CSc

Let v3 = ω(v2). Then, since <t′ satisfies CSc and by def-p(1), we have

v3 <p v1. By obs2(1), we have v1 <+
p . . . <p v3 <p v2. This implies

v1 <+
p v3, which is a contradiction. So this case is not possible.

Therefore, the chain cannot be of length 2. For the remainder of the proof, we are

assuming that k ≥ 2.

Let us turn back to the general case, v1 <s v2 <s . . . vk+1 <s v1. Without loss of

generality, assume that vk+1 <+
p v1. Hence, (v1, v2) ∈ Ec. For the following, assume

that rj denotes λc(vj) for any j ∈ [k + 1]. There are five cases to consider:

1. r1 and r2 are reads to different addresses; that is, r1 = r(p,a1,d1) and

r2 = r(p,a2,d2), and a1 6= a2. Let w1 = ω(v1). By obs2(1), one of the

following holds:

(a) vk+1 <+
p w1 <p v1, or

(b) vk+1 = w1 <p v1.

By obs2(2), there is a write w3 to a2 with λc(w3) = w(p′,a2,d3) for some

p′ ∈ P , such that either v2 <p w3 <+
p v3, or v2 <p w3 = v3.

99

Let w2 = ω(v2). We also have w2 <p v2. Since (v1, v2) ∈ Ec, we have

w(a2,d2) ≺ w(a2,d3) ≺ w(a1,d1) ∈ CSc

Since <t′ satisfies CSc and by def-p(1), one of the following must hold:

(a) w3 <p w2. Note that, since v2 <+
p w3, we must have w2 <+

p w3. Both

cannot hold, so this case is not possible.

(b) w1 <p w3. By the above arguments, vk+1 is either w1 or vk+1 <+
p w1

holds. Similarly, w3 is either v3 or w3 <+
p v3 holds. Combining, we get

vk+1 <+
p v3, which results in v3 <s v4 <s . . . vk+1 <s v3, contradicting

the induction hypothesis. So, this case is not possible.

Therefore, r1 and r2 cannot be both reads.

2. r1 = w(p,a1,d1) and r2 = r(p,a2,d2), for a1 6= a2. This is proved similar to

the previous case.

3. r1 = r(p,a1,d1) and r2 = w(p,a2,d2), for a1 6= a2. Since (v1, v2) ∈ Ec, we

have the following:

w(a2,d2) ≺ w(a1,d1) ∈ CSc

Let w1 = ω(v1). Since <t′ satisfies CSc and by def-p(1), we must have w1 <p

v2. That implies that vk+1 is either w1 or vk+1 <+
p w1. Then, we have

vk+1 <+
p v2, which results in v2 <s v3 <s . . . <s vk+1 <s v2, contradicting the

induction hypothesis. So this case is not possible.

4. r1 = w(p,a1,d1) and r2 = w(p,a2,d2). Then, the following holds:

w(a2,d2) ≺ w(a1,d1) ∈ CSc

Since <t′ satisfies CSc and by def-p(1), we have v1 <p v2. But that would

mean vk+1 <+
p v2, resulting in v2 <s v3 <s . . . vk+1 <s v2, contradicting the

induction hypothesis. So this case is not possible.

100

5. r1, r2 ∈ ΣA
a for some a. There are two possibilities:

(a) r1, r2 ∈ ΣD
d , for some d. Then, by previous arguments, vk+1 <+

p v1

implies vk+1 <+
p v2, resulting in v2 <s v3 <s . . . vk+1 <s v2, contradicting

the induction hypothesis.

(b) r1 and r2 have different data values. By def-p(2) and the transitivity

of <+
p , r1 and r2 are ordered by <+

p . Either ordering would result in a

cycle of length less than k + 1, contradicting the induction hypothesis.

So, this case is not possible.

This covers all possible cases all of which result in contradiction. We, therefore,

conclude that the claim of the lemma holds.

¤
Hence, <+

s is indeed a strict partial order.

The final step in the proof is to construct a total order <sc consistent with <+
s .

That such a total order exists follows from the fact that <+
s is a strict partial order.

Definition 4.4 Let <sc be a total order over Vc such that v1 <+
s v2 implies v1 <sc

v2.

As the name hints, <sc is actually a total order that satisfies all the requirements

of interleaved-sequentiality.

Lemma 4.3 <sc satisfies all the requirements of interleaved-sequentiality.

Proof (Lemma 4.3): Assume that it does not. Let us consider the possible

violations.

1. (Case 1(a)): Assume that, we have v1 <sc v0, for v0, v1 ∈ Vc such that λc(v0) ∈
ΣD

0 , λc(v1) ∈ ΣD
d , for some d 6= 0, and λc(v0), λc(v1) ∈ ΣA

a . Let w1 = ω(v1).

By definition of CSc and <t, and def-p(1), we must have v0 <sc w1. We also

have either w1 = v1 or w1 <sc v1. Combining, we get v0 <sc v1, contradicting

the fact that <sc is a total order. So, this case is not possible.

101

2. (Case 1(b)): Assume that, we have v1 <sc v2 <sc v such that λc(v1) ∈ W∩ΣA
a∩

ΣD
d for some a, d, λc(v2) ∈ ΣA

a ∩ΣD
d2

for some d2 6= d, and λc(v) ∈ R∩ΣA
a ∩ΣD

d .

Note that, v1 and v2 are necessarily ordered by <p. If v1 <sc v2, then we must

have v1 <p v2; otherwise, we would not have an irreflexive <+
p . By def-p(2),

we also have v <p v2. But that is a contradiction. So, this case is not possible.

3. (Case 2): Assume that (v1, v2) ∈ Ec and v2 <sc v1. By the definition of <s

we have v1 <s v2. This is a contradiction. So, this case is not possible.

Therefore, none of the requirements of interleaved-sequentiality can be violated by

<sc.

¤
Combining the results of all the above lemmas, we conclude that the concurrent

execution is interleaved-sequential.

¤

4.5 Minimal Sets

In the previous section, we proved that interleaved-sequentiality checking can

be reduced to an equivalent problem of constraint satisfaction. In this section, we

will make use of this new formulation.

Previous work on interleaved-sequentiality checking either completely ignored

the problem of finding the subset of the execution that violated the property [22],

or tried to characterize it in terms of cycles [50]. With the constraint sets, we

can define what it means to have a minimal subset of a noninterleaved-sequential

(non-i-s, for short) concurrent execution such that the minimal subset still is a

violating execution, but any execution subset of it is not.

Let us examine the concurrent execution G3 that is not i-s, given in Fig. 4.7. We

have added some edges (dotted and dashed lines) that are not part of the concurrent

execution for illustration purposes. These edges actually would have been added

by the algorithm given in [50] or the one we explained in Section 4.3 due to [53].

Assume that a logical order is being searched for this execution. Starting from

the requirement of processor 2, we see that 8 (w(2,a,1)) must be ordered before 9

102

1

2

3

4

5

6

7

8

9

10

11

12

w(1,b,1)

r(1,a,1)

w(1,c,1)

r(1,b,1)

r(1,a,4)

w(1,a,3)

r(1,c,1)

w(2,a,1)

w(2,a,2)

w(2,b,2)

w(2,c,2)

w(2,a,4)

Figure 4.7. Sample non-i-s concurrent execution G3 illustrating cycles and the
minimal set. The dashed lines are the result of ordering w(a,1) before w(a,2).
The dotted lines are the result of ordering w(a,4) before w(a,3).

(w(2,a,2)) since (8,9)∈ Ec. This ordering implies that 2 (r(1,a,1)) is ordered

before 9 (w(2,a,2)). Since (1,2)∈ Ec and (9,10)∈ Ec, we have to order 1 before

10 which implies the ordering of 4 before 10 (hence the dashed line from 4 to 10).

Continuing in this manner, we eventually come to a point where we have to order

5 before 12, which would violate a property of interleaved-sequentiality. A similar

analysis could be performed for the dotted lines, which are the implied edges by

the ordering of 12 before 6 due to the edge (5,6)∈ Ec.

Given the above example, it is not clear how, solely based on cycles, we can pick

a minimal set of vertices that still is not i-s. Clearly, just picking, say, vertices 4

and 10 because there is a cycle between the two will not be correct. Actually, this

concurrent execution is minimally non i-s, that is, any removal of a vertex from the

graph would make the remaining subset i-s. This is precisely where we can use the

constraint set.

103

Definition 4.5 Let Gc be a non-i-s concurrent execution and CSc its constraint

set. Then a minimal constraint set, subset of CSc, is a set that itself is unsatisfiable

but any proper subset of it is not.

Note that there can be more than one minimal set for a given Gc.

This definition allows us to define minimality with respect to the constraint

set. What we actually need is a collection of vertices whose constraints form a

minimal set. Let us modify the κ and ι functions of the previous section. Define

κ′(v1, v2) = {((C, (v1, v2)) | C ∈ κ(v1, v2)}, and ι′(v) = {(C, v) | C ∈ ι(v)}. That is,

we are pairing each constraint with the vertex or vertices that are the causes of the

constraint. For a concurrent execution Gc, let the augmented constraint set CAc

be the set (
⋃

e∈Ec
κ′(e))∪ (

⋃
v∈Vc

ι′(v)). We say that CAc is satisfiable if and only if

σ(CAc) = {C | ∃x ∈ Ec ∪ Vc, (C, x) ∈ CAs} is satisfiable.

For any C ′
1 = (C1, (v1, v2)) ∈ CAs, C ′

2 = (C2, v) ∈ CAs and v, v1, v2 ∈ Vc,

define νe(C
′
1) = {v1, v2, ω(v1), ω(v2)}, νv(C

′
2) = {v, ω(v)}. Let ν(C ′) = νe(C

′)

if C ′ ∈ dom(νe); ν(C ′) = νv(C
′) if C ′ ∈ dom(νv). We extend the definition of

minimal constraint set to augmented constraint sets in the obvious way and call it

the minimal augmented constraint set.

Definition 4.6 Let Gc be a non-i-s concurrent execution and Cmin be a minimal

augmented constraint set of CAc. Then, the set Vmin = {ν(C) | C ∈ Cmin} is called

the minimal instruction set.

Example 5 It can be readily verified that G3 of Fig. 4.7 has a single minimal

instruction set which is equal to V3.

Example 6 It turns out that Vf of Gf is a minimal instruction set as well. To

demonstrate this, let us consider Gf ′ where Vf ′ = Vf \{16} and Ef ′ is Ef restricted

to Vf ′. Then,

CSf ′ = CSf \ {w(c,1) ≺ w(c,2) ≺ w(b,2),
w(c,1) ≺ w(c,2) ≺ w(a,1)}

104

Let us define <t to be the total order

w(c,1) <t w(c,2) <t w(b,1) <t w(a,2) <t w(b,2) <t w(a,1)

Then, it can be readily verified that <t satisfies CSf ′. We conclude that Vf is a

minimal instruction set after trying all the other vertices as we did for 16 above.

For a constraint x ≺ y ≺ z, we say that x appears in the first position, y in

the middle position and z in the last position. Similarly, in the constraint x ≺ y, x

appears in the first position, y in the last.

We need one more result to conclude this section. We have to show that the

constraint set built out of a minimal instruction set contains the minimal augmented

constraint set that was used for constructing the minimal instruction set.

Lemma 4.4 Let Cm be a minimal constraint set and x ≺ y ≺ z be in Cm. Then,

there exists at least one constraint in Cm where y appears either in the first position

or the last position.

Proof (Lemma 4.4): Assume the contrary. Then all the constraints in which

y appears are of the form x1 ≺ y ≺ z1. Note that, by the definition of κ, x1 and

y must be writes to the same address and z1 must be a write to different address.

By the definition of Cm, C ′
m = Cm \ {x ≺ y ≺ z} is satisfiable. Furthermore, the

total order <t that satisfies C ′
m must have x <t y <t z since any other ordering will

satisfy Cm contradiction the unsatisfiability of Cm.

Now, let us assume that y is w(a,d), for some a ∈ A, d ∈ D. Let xmin be of

the form w(a,dmin) such that for any x′ = w(a,d′), d′ 6= dmin, we have xmin <t x′.

Let <n be defined as follows:

1. y <n xmin.

2. x′ <t xmin implies x′ <n y.

3. x′ <t z′, x′, z′ 6= y imply x′ <n z′.

105

By the previous argument, there must be at least one constraint in C ′
m that <n

does not satisfy. Such a constraint cannot be one in which y does not appear as

<t satisfies it and <n agress with <t on elem(C ′
m) \ {y}. So, the constraint must

be of the form x1 ≺ y ≺ z1. Now, note that if x1 6= xmin, then xmin <t x1. Then,

by definition of <n, y <n x1. But this satisfies the constraint, contradicting our

assumption (<n satisfies Cm, but Cm was assumed to be unsatisfiable). Therefore,

y must appear in either the first or the last position of a constraint in Cm.

¤

Corollary 4.1 If a term w(a,d) appears in a minimal augmented constraint set,

ω−1
c (w(a,d)) is in the corresponding minimal instruction set.

Proof (Corollary 4.1): By the previous lemma, we know that any write has to

appear either in the first or the last position of a constraint. By the definition of

κ′ and ι′, all such writes along with the instructions that cause the constraint, will

be included in the instruction set.

¤

Theorem 4.2 Let Vmin be a minimal instruction set for a concurrent execution

Gc. Then, (Vmin, Ec ∩ V 2
min) is a non-i-s concurrent execution.

Proof (Theorem 4.2): Follows from Corollary 4.1 and the definition of minimal

augmented constraint set.

¤

Example 7 Let us examine the concurrent execution Gd given in Fig. 4.8.

There are two minimal instruction sets in Gd:

1. V 1
min = {1, 5, 6, 8}

2. V 2
min = {3, 4}

If we consider the augmented constraint set CAd for Gd, we will have ((w(c,2) ≺
w(c,2)), (3, 4)) in CAd. The constraint w(c,2) ≺ w(c,2) is never satisfiable. So,

106

P1

w(1,a,1)

w(1,c,1)

r(1,c,2)

w(1,c,2)

1

2

3

4

w(2,b,1)

P2

r(2,a,0)

5

6

7

8

r(1,b,0)

r(2,c,1)

Figure 4.8. The concurrent execution Gd with two minimal instruction sets.

that constraint alone will give us a minimal instruction set, which happens to be

equal to V 2
min.

4.6 Finiteness Result for Unambiguous

Executions

In this section, we will show that we need to check only a bounded number

of concurrent executions to conclude that a system cannot generate unambiguous

non-i-s concurrent executions.

Lemma 4.5 Let P,A, D be all finite. Then the size of any minimal instruction set

of any non-i-s unambiguous concurrent execution is bounded.

Proof (Lemma 4.5): Let Gc be a non-i-s concurrent execution and CAc be its

augmented constraint set. Let kw = |A|× (|D|+1). Observe that there are at most

kw different (write) terms that can appear in σ(CAc). The number of different

constraints of three terms is then bounded by kw×|D|× (kw− (|D|+1)). Similarly,

the number of two termed constraints is bounded by k2
w. The size of any minimal

augmented constraint set, Cm, is also bounded as (C1, x), (C2, y) ∈ Cm implies

C1 6= C2. This in turn means that the minimal instruction set is bounded since

107

there can be at most 4kc vertices, where kc is the cardinality of Cm which is less

than k2
w(|D|+ 1).

¤
It is worth noting that since the constraints do not take the processor index into

account, the bound does not depend on the number P .

The problem of sequential consistency checking is to verify for the finite state

machine modelling an smi whether all its runs are i-s. We call the (finite-state)

machine to be verified the implementation.

At this point, let us relate the formalization used so far in this chapter to the

formalization we introduced in Chapter 2. The labels of the vertices of concurrent

executions are in a one-to-one correspondence with ORW . As alluded to before, a

label of the form r(p,a,d) in a concurrent exectution corresponds to the symbol

(ro,p,a,d). Similarly, w(p,a,d) corresponds to the symbol (wo,p,a,d). Let us

denote this correspondence by cor. Now, for a given input/output stream pair

σ = ((p,n), (q,m)),11 there is precisely one concurrent execution Gσ = (Vσ, Eσ, λσ)

defined as follows:

1. Vσ = [|q|].

2. λσ(v) = cor(qj), when η̃(v) = j. That is, the vertex v has the label corre-

sponding to the response of the vth input symbol.

3. (v1, v2) ∈ Eσ if and only if pv1 and pv2 belong to the same processor and

v1 < v2. That is, an edge from v1 to v2 of the concurrent execution exists if

and only if the instruction that caused the response λσ(v1) precedes that of

λσ(v2) in input/time and both belong to the same processor.

As an illustration, consider the temporal ordering of instructions, denoted by

ij, and responses, where the response of instruction ij is denoted by rj, and the

11We require that |p| = |q| = |n|, n and m be compatible, the mapping from input to output
symbols be given by the normal computation η̃ and whenever ηi = j we have ρRW (qj) = pi.
Without the first and last requirements, the concurrent execution is not well-defined. The other
(second and third) requirements are mainly for convenience and not essential.

108

corresponding execution depicted in Fig. 4.9. The direction of the dotted arrowed

edges gives the temporal ordering; i1 is the first, i4 the second, r4 is the last.

In the sequential execution of processor 1, P1, we have (r1, r2), (r2, r3) ∈ E1, even

though temporally r3 precedes r2, because we have i1 (temporally) precede i2 which

in turn (temporally) precedes i3. Note also that any temporal ordering between

instructions belonging to different processors is not represented in the concurrent

execution.

Lemma 4.6 Let Gc be a non-i-s unambiguous concurrent execution of an im-

plementation, CAc be its augmented constraint set, Cm be a minimal augmented

constraint set and Vm be the corresponding minimal instruction set. Then, the same

Cm can be generated by a run that does not visit any state of the implementation

more than 2|Vm|+ 1 times.

Proof (Lemma 4.6): Let r be the run of the implementation that generated

Gc (see Fig. 4.10). Let the states sij , j ∈ [2|Vm|] be the states at which either a

response λc(v) for a v ∈ Vm is generated or the instruction of that response is input,

i
1

i
4

2
i

i
5

r
1

r
1

r
2

r
3

r
4

r
5

1

2

P1 P2 P3

3

4 5

r
4

r
2

r
3

i
3

r
5

Corresponding
execution

P1 :

P2 :

P3 :
Time
progress

Figure 4.9. The relation between the temporal ordering of instructions/responses
and its associated corresponding concurrent execution; the top half gives the
temporal ordering.

109

i0

0
s

r :

r’ :

...

...

No repeating states

Arbitrary paths

s
i

T

s
i

T

s s
i

2

s
i

1

s
i

2

1

s

Figure 4.10. The arbitrary run r and the constructed run r′, where T = 2|Vm|+1.

such that sik temporally precedes sil if and only if k < l. Let s0 be the initial state

of the run r and si2|Vm|+1 denote the final state. Let r′ be the run that starts from

s0 such that on the path between any sij−1 and sij no state is visited twice. Since

we are preserving the relative order of instructions whose responses form the set

Vm, the set of constraints generated for the concurrent execution corresponding to

r′ will be a superset of Cm; hence, Cm will be a minimal set of this concurrent

execution as well. By construction, r′ does not visit any state more than 2|Vm|+ 1

times.

¤

Theorem 4.3 An implementation has a non-i-s unambiguous concurrent execution

if and only if there exists a run that does not visit any state more than 4|A|2(|D|+1)3

times, generating a non-i-s concurrent execution.

Proof (Theorem 4.3): The only if direction is obvious. The if direction follows

from the two previous lemmas.

¤
Even though, this result might seem intuitively trivial since there are only

finitely many different write events in the (infinite) set of unambiguous executions

for finite values of P , A and D, it was not possible to obtain it previously. The most

110

important aspect is that we have not resorted to making assumptions about the

concurrent executions, about certain relations between instructions and responses.

There is also an interesting open problem. When we talk about constraints, we

do not take into account the fact that the machine that generates the execution is

actually finite-state. Due to this finiteness, the executions cannot be arbitrary but

follow a certain regular pattern, which so far we have not been able to characterize.

That might render the definition of a certain equivalence relation, having only a

finite number of equivalence classes, possible.

4.7 Summary

In this chapter, we have defined a new problem, constraint satisfaction, which

we prove to be equivalent to the interleaved-sequentiality checking of a concurrent

execution. We have formalized the notion of a crux of a non-i-s execution which is

still non-i-s but any proper subset of it is i-s. Such a characterization of minimality

was not possible before and it is a direct consequence of the constraint satisfaction

problem. We further made use of this minimality definition to prove a strong

result about the formal verification for sequential consistency: an implementation

has a non-i-s unambiguous execution if and only if it has one of bounded size,

bound being a function of the number of different addresses and data values of the

implementation.

CHAPTER 5

CONCLUSION

In this final chapter, we will summarize the results presented in this dissertation

and propose several topics as possible future work.

5.1 Summary

The beginning of this dissertation can be traced back to the reading of [12]. The

undecidability result presented in that work had been used in succeeding works as

evidence to the undecidability of the formal verification of sequential consistency

even for finite state systems. Not quite convinced by that interpretation, further in-

vestigation led us to believe that this deduction was an artifact of the formalization

used in the problem (see Appendix). Appealing to the intuition one had regarding

a memory, we have then developed a new formalization. Similar formalizations,

where, even though not explicitly stated, a memory is viewed as a transducer, had

been previously suggested, but our approach has two novel aspects:

1. We differentiate between a shared memory model and a shared memory

system. The former, to which we coin the name specification, is a set of

program, execution pairs. It basically gives a set of possible executions for

each syntactically correct program. Hence, it is a binary relation and its

definition should not be behavioral. On the other hand, a shared memory

system, which we call an implementation, will have a behavioral description.

An implementation realizes a relation. The formal verification of a shared

memory model for a shared memory system then becomes the inclusion of

the relation realized by that system, the implementation, by the relation

defined by that shared memory model, or specification.

112

2. As is common for any hardware system, the most basic mathematical struc-

ture to be used for an implementation is a finite-state automaton. However,

since we are now dealing with relations over programs and executions, we

semantically differentiate instructions, inputs to memory, from responses,

outputs generated by the memory. We, therefore, slightly change the in-

terpretation of a string generated by a memory system. A string, in our

formalization, actually represents a combination of two substrings, one cor-

responding to a program, the other to its execution; hence, an element in a

relation over programs and executions.

There is one problem that should not be overlooked: the mapping between

instructions and responses per computation. That is, given a program, execution

pair where the program might possibly have several identical instructions (for

instance, same processor issuing several read queries for the same address) how can

we tell which response, not necessarily identical, corresponds to which instruction?

In specifications, this problem is rather easily solved. Permutations, which can

be represented as a string over natural numbers, can be used to represent this

mapping.

In implementations, where a finite alphabet is required as we are dealing with

finite state machines, using strings over the infinite set of natural numbers is

not possible. The alternative to this, which seems to have been the popular

approach taken in previous work [8, 12, 36, 38], is to assume certain orderings in

implementation. For instance, if in order completion per processor is assumed, the

mapping becomes trivial; a response is always mapped to the most recent pending

instruction. Trying to generalize our results as much as possible, we have again

appealed to the finiteness of the user that the memory interacts with. It is obvious

that the instructions and responses should be tagged for any sort of mapping.1 We

argue that for finite users and memory systems, we can do away with arbitrary

1A mapping that assumes in-order completion would need only a single tag per processor;
hence the index of the processor that issues the instruction will serve the purpose of a tag.

113

methods for tagging and without any loss of generality, deal with only a normal

tagging method which we call normal coloring.

We have demonstrated our formalization by defining sequential consistency as a

specification and lazy caching as an implementation. The ease with which we were

able to define these makes us believe that this formalization can be used extensively

in real world problems related to shared memories.

The next step was to formulate the problem of shared memory verification

in our formalization. This has been extensively studied in Chapter 3. We tried

to prove the sequential consistency of lazy caching using the definitions given in

Chapter 2. Using a novel approach whereby we approximate a given shared memory

model by an infinite hierarchy of (finite) implementations each of which is called a

memory model machine, or in this context an SC machine, we present the problem

as a regular language inclusion problem between two finite state automata whose

strings are over a pair of alphabets. We obtained two noteworthy results in this

endeavor:

1. There is a problem of fairness in the lazy caching protocol. This was glossed

over in the original paper that introduced the lazy caching [8]. In other works

where this problem was revisited, this point seems to have been ignored. The

problem is due to the possibility of delaying an instruction for an unbounded

amount of time. This nondeterminism causes the approximate approach to

fail: for any given SC machine, there is always a computation which the lazy

caching can perform but is not contained in the set of computations of that SC

machine. So, in a sense, the SC machines implicitly impose a certain fairness.

Assuming a finite yet undetermined bound, we were able to prove that the

language of a lazy caching implementation is indeed contained in the relation

of a certain SC machine. Considering that the undeterminedness of that value

is some sort of abstraction for the temporal execution of the implementation,

at some level that bound will have a determined value, corresponding to at

least a greatest bound, and the problem will be mechanically solved by a tool

that can perform regular language inclusion.

114

2. In the unfair case, where arbitrary delays are assumed, we can use a hypo-

thetical and infinite SC machine with unbounded queues to prove that the

lazy caching algorithm is sequentially consistent. This time, we will not be

able to have a regular language inclusion but the proof still depends on an

argument of language containment.

Another important aspect about the approach we propose for shared memory

verification is that the method of approximating memory machines is amenable to

improvement. Let us assume that we are given a memory model, S, and a memory

implementation, I. Assume further that, for this implementation we cannot find

any S machine whose language contains the language of I. If, through some other

means, we are able to prove that I indeed satisfies S, then we can use I to refine

the hierarchy of S machines: for any S machine, define the S ′ machine which

is the union of I and that S machine. This refined hierarchy will be a better

approximation for that memory model.

Changing the context a little, in Chapter 4, we have considered the prob-

lem of checking the interleaved-sequentiality of a single computation of a mem-

ory system. Any computation a sequentially consistent memory system performs

is interleaved-sequential. Previous works on this topic were graph based; the

interleaved-sequentiality of a computation was a property of a graph, or a set of

graphs, that was defined by the execution of the computation. We have concen-

trated on the set of unambiguous executions in which a data value to an address

is written at most one time. We have transformed this problem to an equivalent

problem of constraint satisfaction. The constraint satisfaction problem is satisfied

if and only if the execution on which it is based is interleaved-sequential. The

structure of the constraint satisfaction problem gives more insight why a formu-

lation based on binary relations, such as a graph, is not suitable. We then used

this equivalent problem to define the essential part of a non-interleaved-sequential

execution. This essential part is defined to be the minimal set of responses which

still form a non-interleaved-sequential execution but any proper subset of it is

interleaved-sequential. This pruning of the irrelevant responses from the execution

115

was previously not as obvious. Finally, we were able to show that for the set of

unambiguous executions in a finite implementation, there exists an execution that

violates interleaved-sequentiality if and only if there exists one such execution of a

computable bound, a bound that is a function of the data and address spaces of the

implementation. This result is deceitfully simple, yet was not as easily obtainable

with previous approaches.2

5.2 Future Work

One possible direction for further research on this subject is more or less obvious:

the development of a tool. We have been talking about, or even advocating, how the

problem of shared memory verification can be cast as a language inclusion problem.

We have even defined an approximate method where the language inclusion is

checked for two finite-state automata. It is obvious that these steps, once the

implementation and the specification are given, can be efficiently solved following

an algorithm. The tool we anticipate developing, hence, should have the following

two major operations:

1. It should be able to transform a length-preserving and rational transducer

from I to O to a finite-state automaton over I × O. This operation is

sometimes called the synchronization of the transducer.

2. It should be able to check regular language inclusion for any given pair of

finite-state automata.

These operations, however, are not computationally cheap. For instance, the second

operation is known to be PSPACE-complete for arbitrary finite-state automata.

As is true for these kinds of problems, the specific nature of the problem might

enable certain optimizations, optimizations that would not work for the general

case. We hope that such optimizations will result in a tool that can be used

efficiently by interested parties, such as the verification engineers in the industry

or shared memory designers.

2We are not sure, at this point, whether this result can be obtained at all with previous
approaches; the last part of this sentence should be read as cautionary rather than factual.

116

Another possible path for future research is rather theoretical. As we have

seen, the memory model machine approach depends on a sufficient condition: if the

language containment holds, then the implementation satisfies the memory model.

But, the result is inconclusive in the case the containment does not hold.

Let S be a given memory model. Let In be the set of all implementations

which have exactly n states and which satisfy S. Clearly, there are finitely many

implementations of n states and, hence, In is a finite set of transducers. Let I ′n
be the set, isomorphic to In, such that each transducer of In is converted to a

language equivalent finite-state automata (over pair of alphabets). Let In be the

automaton whose language is equal to the union of the languages of all automata

of I ′n. Then, it is easy to see that an implementation of n states satisfies S if and

only if its language is contained in that of In.

The argument above proves that for a given memory model S and a number

n, there is always a finite-state machine which will generate all program, execution

pairs each of which is generated by an n-state implementation satisfying S. Of

course, that argument is circular; we have to first form the set In which will need a

procedure to decide whether an n-state implementation satisfies S or not. However,

the point we are trying to make is that such a machine exists.

We conjecture that a machine whose language includes the language of In can

be effectively computed. We base this hypothesis on the intuition that a finite-state

machine can only retain a finite amount of information and it should be always

possible to reduce this information to a finite set of equivalent classes of information

templates.

Much like the sufficiency result of the third chapter, the previous chapter has a

necessity result. If the implementation does not have any unambiguous execution

violating the memory model, we cannot conclude whether the implementation does

indeed satisfy the memory model. Therefore, we think that it is more suitable to

perceive that part as a possible debugging method for sequential consistency.

The number of repetitions of a state to be checked we have provided for that part

is not tight. We have neglected certain simplifications in the constraint set, as our

117

only goal was to show the decidability of the problem itself. Furthermore, certain

assumptions, such as the symmetry of address or data spaces or even processors, can

considerably reduce the bound we have given. We intend to work on this problem

by making use of these observations. We hope that a much smaller bound on the

number of repetitions of a state will be enough to make this approach a valuable

and useful method for the debugging of sequentially consistent systems.

Coherence, which has been also defined as sequential consistency per address,

can be debugged using the approach of Chapter 4. In fact, we believe that a graph

approach is sufficient for coherence as constraints of the form x ≺ y ≺ z will

not appear in a constraint set constructed for coherence. Our initial work shows

that the number of repetitions per state cannot be larger than 4p, where p is the

number of processors in the implementation. We hope to formalize these results in

our (near) future work.

APPENDIX

EXECUTION BASED FORMALISM AND

THE UNDECIDABILITY RESULT

In [12], a shared memory implementation is defined to be a finite state machine.

Its alphabet consists of read and write events. The event r(p,a,d) denotes the

reading of data value d from address a by processor p. The event w(p,a,d)

denotes the writing of data value d into address a by processor p. We can think

of these events as the responses generated by the memory; the instructions, which

are the inputs to the memory and issued by the processors, are absent in this

formalization. The language of the finite state machine characterizes the shared

memory implementation.

It is claimed that in this framework, sequential consistency[43] can be defined as

a property of the language of the finite state machine. Any string in the language

of the finite state machine is treated as a trace, that is, a set of equivalent strings

where equivalence is defined with respect to a certain dependence relation. Suffice

it to say, at this point, that the dependence relation implicitly imposes a temporal

relation between the order of issuing per processor and their completion (sometimes

called commitment) times. If an instruction of a processor is issued before another

instruction of the same processor, the completion (commitment) time of the former

is assumed to be before that of the latter. This is reflected by the fact that the

response corresponding to the former instruction will appear before the response

corresponding to the latter instruction in the string representing the execution.

A string is serial if any read event of an address in the string returns the value

of the rightmost write to the same address of the prefix up to this read, or the

119

initial value in the absence of such a write. A string is sequentially consistent1 if

there exists at least one serial string in its equivalence class. A set of strings is

sequentially consistent if all its members are. A finite-state machine is sequentially

consistent if its language is.

This is a typical execution only definition. We are given a certain collection

of executions, in this particular instance, a set of strings, and the shared memory

model is defined as a property of this collection. However, we believe that this

approach is inadequate. Consider the following program and its execution, given

in the form of [12].

w(1,a,2) r(1,a)∗ r(2,a)∗ w(2,a,1)

w(1,a,2) r(1,a,1)∗ r(2,a,2)∗ w(2,a,1)

According to the definition of [12], the regular expression above and the finite-state

machine generating it are sequentially consistent as any string in its language is

serial. Let us assume that N is the cardinality of the state space of the finite-state

machine. Think of the program where we issue 2N r(1,a) instructions and 2N

r(2,a) instructions. By the execution string, we know that the first instruction to

commit is the w(1,a,2) instruction. This is followed by the commitment of one of

the read instructions r(1,a) with the value 1. However, this cannot be done by a

sequentially consistent and finite-state machine. Noting that the cardinality of the

state space of the machine was N , there are two possibilities:

1. The machine commits the read instruction before the issuing of the w(2,a,1)

instruction. If at the instant the machine commits this read instruction we

stop feeding the finite-state machine with instructions, it will either terminate

with a nonserial execution or it will hang waiting for the write instruction it

guessed. Either case belongs to an implementation that is not sequentially

consistent.

1In our terminology, interleaved-sequential.

120

2. The machine commits the read instruction after the issuing of the w(2,a,1)

instruction. This means that the machine has not committed any instruction

for at least 2N steps. This in turn implies that, since there are N states, there

exists at least one state, s, which was visited more than once such that on

one path from s to s, the machine inputs instructions but does not generate

any responses. Let us assume that the mentioned path from s to s was taken

k times. Consider a different computation where this path is taken 2k times;

each time this path is taken in the original computation, in the modified

computation it is taken twice. It is not difficult to see that this will change

the program, the number of instructions issued, but will leave the execution

the same; no output is generated on the path from s to s. Hence, we obtain

an execution that does not match its program; the program’s size becomes

larger than the size of execution. Put in other words, the finite-state memory

ignores certain instructions and does not generate responses. This clearly

does not correspond to a reasonable memory, let alone sequential consistency.

The basic fallacy here is the abstraction of input, or the program. An execution

alone is not sufficient to characterize a memory implementation; it is only suitable

for execution specific problems, as the problem presented in Chapter 4.

REFERENCES

[1] Adve, S. V. Designing Memory Consistency Models for Shared-Memory
Multiprocessors. PhD thesis, Computer Sciences Department, University of
Wisconsin-Madison, December 1993.

[2] Adve, S. V., and Gharachorloo, K. Shared memory consistency models:
A tutorial. IEEE Computer 29, 12 (December 1996), 66–76.

[3] Adve, S. V., and Hill, M. D. Weak ordering - a new definition and some
implications. Tech. Rep. 902, Computer Sciences, University of Wisconsin -
Madison, December 1989.

[4] Adve, S. V., and Hill, M. D. Implementing sequential consistency in
cache-based systems. In Proceedings of the 1990 International Conference on
Parallel Processing (August 1990), pp. 47–50.

[5] Adve, S. V., and Hill, M. D. Weak ordering - a new definition. In Proceed-
ings of the 17th Annual International Symposium on Computer Architecture
(ISCA’90) (May 1990), pp. 2–14.

[6] Adve, S. V., and Hill, M. D. A unified formalization of four shared-
memory models. IEEE Transactions on Parallel and Distributed Systems 4, 6
(June 1993), 613–624.

[7] Adve, S. V., Pai, V. S., and Ranganathan, P. Recent advances in
memory consistency models for hardware shared memory systems. Proceedings
of the IEEE 87, 3 (March 1999), 445–455.

[8] Afek, Y., Brown, G., and Merritt, M. Lazy caching. ACM Transac-
tions on Programming Languages and Systems 15, 1 (January 1993), 182–205.

[9] Ahamad, M., Bazzi, R. A., John, R., Kohli, P., and Neiger, G.
The power of processor consistency (extended abstract). In Proceedings of the
5th Annual ACM Symposium on Parallel Algorithms and Architectures (1993),
ACM Press, pp. 251–260.

[10] Ahamad, M., Neiger, G., Burns, J. E., Kohli, P., and Hutto, P. W.
Causal memory: Definitions, implementations and programming. Tech. Rep.
GIT-CC-93/55, College of Computing, Georgia Institute of Technology, July
1994.

[11] Alur, R., and Henzinger, T. A. Finitary fairness. ACM Transactions on
Programming Languages and Systems 20, 6 (1998), 1171–1194.

122

[12] Alur, R., McMillan, K., and Peled, D. Model-checking of correctness
conditions for concurrent objects. In Symposium on Logic in Computer Science
(1996), IEEE, pp. 219–228.

[13] Attiya, H., and Friedman, R. A correctness condition for high-
performance multiprocessors. SIAM Journal on Computing 27, 6 (December
1998), 1637–1670.

[14] Attiya, H., and Welch, J. Sequential consistency versus linearizability.
ACM Transactions on Computer Systems 12, 2 (May 1994), 91–122.

[15] Berstel, J. Transductions and Context-free Languages. Teubner, 1979.

[16] Bingham, J. D., Condon, A., and Hu, A. J. Toward a decidable notion
of sequential consistency. In Proceedings of the 15th annual ACM Symposium
on Parallel Algorithms and Architectures (2003), ACM Press, pp. 304–313.

[17] Braun, T., Condon, A., Hu, A. J., Juse, K. S., Laza, M., Leslie, M.,
and Sharma, R. Proving sequential consistency by model checking. Tech.
Rep. TR-2001-03, Dept. of Computer Science, Univ. of British Columbia, 2001.

[18] Brinksma, E. Cache consistency by design. Distributed Computing 12, 2-3
(1999), 61–74.

[19] Chatterjee, P. Formal specification and verification of memory consistency
models of shared memory multiprocessors. Master’s thesis, School of Comput-
ing, University of Utah, March 2002.

[20] Chatterjee, P., and Gopalakrishnan, G. Towards a formal model
of shared memory consistency for intel itanium. In Proceedings of the In-
ternational Conference on Computer Design, ICCD’01 (September 2001),
pp. 515–518.

[21] Chatterjee, P., and Gopalakrishnan, G. A specification and verifi-
cation framework for developing weak shared memory consistency protocols.
In Proceedings of the 4th International Conference on Formal Methods in
Computer-Aided Design (2002), Springer-Verlag, pp. 292–309.

[22] Collier, W. W. Reasoning about Parallel Architectures. Prentice-Hall, Inc.,
1992.

[23] Condon, A. E., and Hu, A. J. Automatable verification of sequential
consistency. In 13th Symposium on Parallel Algorithms and Architectures
(2001), ACM, pp. 113–121.

[24] de Melo, A. C. M. A. Defining uniform and hybrid memory consistency
models on a unified framework. In Proceedings of the 32nd Hawaii Interna-
tional Conference on System Sciences, Vol.VIII-Software Technology (January
1999), pp. 270–279.

123

[25] Dill, D., Park, S., and Nowatzyk, A. G. Formal specification of abstract
memory models. In Research on Integrated Systems : Proceedings of the 1993
Symposium (March 1993), MIT Press, pp. 38–52.

[26] Dubois, M., and Scheurich, C. Synchronization, coherence and event
ordering in multiprocessors. IEEE Computer 21, 2 (February 1988), 9–21.

[27] Dubois, M., Scheurich, C., and Briggs, F. Memory access buffering in
multiprocessors. In Proceedings of the 13th Annual International Symposium
on Computer Architecture (June 1986), pp. 434–442.

[28] Gao, G. R., and Sarkar, V. Location consistency: stepping beyond
the barriers of memory coherence and serializability. Tech. Rep. ACAPS-78,
ACAPS Laboratory, School of Computer Science, McGill University, December
1994.

[29] Gharachorloo, K., Adve, S. V., Gupta, A., Hennessy, J. L., and
Hill, M. D. Specifying system requirements for memory consistency models.
Tech. Rep. CSL-TR-93-594, Computer System Laboratory, Stanford Univer-
sity, 1993.

[30] Gibbons, P. B., and Merritt, M. Specifying nonblocking shared memo-
ries (extended abstract). In Proceedings of the 4th Annual ACM Symposium
on Parallel Algorithms and Architectures (1992), ACM Press, pp. 306–315.

[31] Gibbons, P. B., Merritt, M., and Gharachorloo, K. Proving sequen-
tial consistency of high-performance shared memories (extended abstract). In
Proceedings of the 3rd Annual ACM Symposium on Parallel Algorithms and
Architectures (1991), ACM Press, pp. 292–303.

[32] Goodman, J. R. Coherency for multiprocessor virtual address caches. In
Proceedings of the 2nd ASPLOS (1987), pp. 72–81.

[33] Gopalakrishnan, G. A formalization of test-model checking, completeness
results and case studies. In Workshop on Advances in Verification (2000).

[34] Graf, S. Characterization of a sequentially consistent memory and verifica-
tion of a cache memory by abstraction. Distributed Computing 12, 2-3 (1999),
75–90.

[35] Henzinger, T. A., Qadeer, S., and Rajamani, S. K. Verifying sequen-
tial consistency on shared-memory multiprocessor systems. In Proceedings
of the 11th International Conference on Computer-aided Verification (CAV)
(July 1999), no. 1633 in Lecture Notes in Computer Science, Springer-Verlag,
pp. 301–315.

[36] Herlihy, M. P., and Wing, J. M. Linearizability: a correctness condition
for concurrent objects. ACM Transactions on Programming Languages and
Systems 12, 3 (July 1990), 463–492.

124

[37] Higham, L., Kawash, J., and Verwaal, N. Defining and comparing mem-
ory consistency models. In Proceedings of the 10th International Symposium
on Parallel and Distributed Computing Systems (October 1997), pp. 349–356.

[38] Hojati, R., Mueller-Thuns, R., Loewenstein, P., and Brayton,
R. K. Automatic verification of memory systems which service their requests
out of order. In Proceedings of the ASP-DAC’95 (1995), pp. 623–630.

[39] Janssen, W., Poel, M., and Zwiers, J. The compositional approach to
sequential consistency and lazy caching. Distributed Computing 12, 2-3 (1999),
105–127.

[40] Jonsson, B., Pnueli, A., and Rump, C. Proving refinement using
transduction. Distributed Computing 12, 2-3 (1999), 129–149.

[41] Kohli, P., Neiger, G., and Ahamad, M. A characterization of scalable
shared memories. Tech. Rep. GIT-CC-93/04, College of Computing, Georgia
Institute of Technology, January 1993.

[42] Ladkin, P., Lamport, L., Olivier, B., and Roegel, D. Lazy caching
in tla+. Distributed Computing 12, 2-3 (1999), 151–174.

[43] Lamport, L. How to make a multiprocessor computer that correctly executes
multiprocess programs. IEEE Transactions on Computers 28, 9 (September
1979), 690–691.

[44] Lamport, L., Perl, S., and Weihl, W. When does a correct mutual
exclusion algorithm guarantee mutual exclusion? Information Processing
Letters 76, 3 (2000), 131–134.

[45] Landin, A., Hagersten, E., and Haridi, S. Race-free interconnection
networks and multiprocessor consistency. In Proceedings of the 18th Interna-
tional Symposium on Computer Architecture (1991), ACM Press, pp. 106–115.

[46] Laza, M., Sharma, R., Condon, A., and Hu, A. J. Protocols for which
proving sequential consistency is easy. Presented in the Workshop on Formal
Specification and Verification Methods for Shared Memory Systems, October
2000.

[47] Lowe, G., and Davies, J. Using csp to verify sequential consistency.
Distributed Computing 12, 2-3 (1999), 91–103.

[48] Mizuno, M., Raynal, M., and Zhou, J. Z. Sequential consistency in
distributed systems: theory and implementation. Tech. Rep. 871, IRISA,
October 1994.

[49] Mosberger, D. Memory consistency models. Tech. Rep. 93/11, Department
of Computer Science, University of Arizona, 1993.

[50] Nalumasu, R. Design and Verification Methods for Shared Memory Systems.
PhD thesis, Department of Computer Science, University of Utah, 1999.

125

[51] Nalumasu, R., Ghughal, R., Mokkedem, A., and Gopalakrishnan,
G. The ‘test model-checking’ approach to the verification of formal memory
models of multiprocessors. In Proceedings of the 10th International Conference
on Computer-aided Verification (CAV) (1998), pp. 464–476.

[52] Park, S., and Dill, D. L. An executable specification, analyzer and verifier
for rmo (relaxed memory order). In Proceedings of the 7th Annual ACM
Symposium on Parallel Algorithms and Architectures (July 1995), pp. 34–41.

[53] Qadeer, S. Verifying sequential consistency on shared-memory multiproces-
sors by model checking. Tech. Rep. 176, Compaq SRC, December 2001.

[54] Raynal, M., and Schiper, A. A suite of formal definitions for consistency
criteria in distributed shared memories. Tech. Rep. 968, Institut de Recherche
en Informatique et Systèmes Aléatoires, IRISA, November 1995.

[55] Sakarovitch, J. Éléments de Théorie des Automates. Les Classiques de
l’Informatique. Vuibert Informatique, September 2003.

[56] Scheurich, C., and Dubois, M. Correct memory operation of cache-based
multiprocessors. In Proceedings of the 14th Annual International Symposium
on Computer Architecture (June 1987), pp. 234–243.

[57] Shasha, D., and Snir, M. Efficient and correct execution of parallel
programs that share memory. ACM Transactions on Programming Languages
and Systems 10, 2 (April 1988), 282–312.

[58] Shi, W., Hu, W., and Tang, Z. An interaction of coherence protocols and
memory consistency models in dsm systems. Operating Systems Review 31, 4
(1997), 41–54.

[59] Sorin, D. J., Plakal, M., Hill, M. D., and Condon, A. E. Lamport
clocks: Reasoning about shared memory correctness. Tech. Rep. CS-TR-1998-
1367, Computer Science Department, University of Wisconsin - Madison, 1998.

[60] Steinke, R. C., and Nutt, G. J. A unified theory of shared memory consis-
tency. Obtained from ftp://ftp.cs.colorado.edu/pub/distribs/Nutt/jacm04.ps
(to appear in the Journal of the ACM).

[61] Weiwu, H., and Peisu, X. Out-of-order execution in sequentially consistent
shared-memory systems: theory and experiments. ACM SIGARCH Computer
Architecture News 25, 4 (September 1997), 3–10.

[62] Zucker, R. N. Relaxed consistency and synchronization in parallel proces-
sors. Tech. Rep. 92-12-05, Department of Computer Science and Engineering,
University of Washington, December 1992.

