SimTRaX: Simulation Infrastructure
for Exploring Thousands of Cores

Konstantin Shkurko Tim Grant Erik Brunvand
University of Utah University of Utah University of Utah
kshkurko@cs.utah.edu tgrant@cs.utah.edu elb@cs.utah.edu
Daniel Kopta Josef Spjut Elena Vasiou
University of Utah NVIDIA University of Utah
dkopta@cs.utah.edu josef.spjut@gmail.com elvasiou@cs.utah.edu
Ian Mallett Cem Yuksel
University of Utah University of Utah

imallett@cs.utah.edu

ABSTRACT

SimTRaX is a simulation infrastructure for simultaneous explo-
ration of highly parallel accelerator architectures and how applica-
tions map to them. The infrastructure targets both cycle-accurate
and functional simulation of architectures with thousands of simple
cores that may share expensive computation and memory resources.
A modified LLVM backend used to compile C++ programs for the
simulated architecture allows the user to create custom instructions
that access proposed special-purpose hardware and to debug and
profile the applications being executed. The simulator models a
full memory hierarchy including registers, local scratchpad RAM,
shared caches, external memory channels, and DRAM main mem-
ory, leveraging the USIMM DRAM simulator to provide accurate
dynamic latencies and power usage. SimTRaX provides a powerful
and flexible infrastructure for exploring a class of extremely parallel
architectures for parallel applications that are not easily simulated
using existing simulators.

CCS CONCEPTS

« Computing methodologies — Simulation tools; Graphics
processors; « Computer systems organization — Multiple in-
struction, multiple data;

KEYWORDS

Architecture simulation; single program multiple data; LLVM

ACM Reference Format:

Konstantin Shkurko, Tim Grant, Erik Brunvand, Daniel Kopta, Josef Spjut,
Elena Vasiou, Ian Mallett, and Cem Yuksel. 2018. SimTRaX: Simulation
Infrastructure for Exploring Thousands of Cores. In Proceedings of 2018
Great Lakes Symposium on VLSI (GLSVLSI ’18). ACM, New York, NY, USA,
4 pages. https://doi.org/10.1145/3194554.3194650

GLSVLSI ’18, May 23-25, 2018, Chicago, IL, USA
© 2018 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in Proceedings of 2018
Great Lakes Symposium on VLSI (GLSVLSI '18), https://doi.org/10.1145/3194554.3194650.

cem@cemyuksel.com

1 INTRODUCTION

When designing application-specific accelerator architectures, cycle-
accurate simulators are indispensable for rapid exploration of the
potential design space. Unlike trace-based simulators that can quickly
evaluate particular sub-systems under specific work-loads, cycle-
accurate simulators capture the precise inner-workings of the entire
system. Thus, they provide a testbed for software modifications to
make the target application more suitable for the custom accelerator
architecture.

This paper describes SimTRaX: a set of tools that resulted from
exploring the design space of massively parallel accelerator archi-
tectures made up of simple in-order cores combined with shared
compute and memory resources. Unlike most other simulators,
SimTRaX is designed to simulate thousands of concurrent hard-
ware threads with cycle-accuracy without introducing high-level
approximations. SimTRaX provides ample performance to run ap-
plications to completion. We support the LLVM compiler [13] to
provide simple software access to custom hardware features. We
can use source-level debugging symbols provided by LLVM to de-
bug and profile simulated architectures and applications on a wide
variety of metrics. Furthermore, accurate simulation of the DRAM
behavior produces reliable results especially for applications that
process a large amount of data with unpredictable access patterns.

2 BACKGROUND

Although existing simulators enable experimentation within their
own expected parameters, we have found that exploring a design
space that is more massively parallel can benefit from a new sim-
ulation infrastructure. We find that these architectures, and the
applications that map well to them, can often be categorized as
single-program multiple-data (SPMD) processing. In this case all
hardware processors execute the same program, but because they
have their own PCs, can be at different points in that program de-
pending on their own data and control flow?. This can leverage data

!Note that single-instruction multiple-thread (SIMT) processing as defined by
NVIDIA [15] is often considered similar to single-program multiple-data (SPMD).
However, SIMT support for divergent thread execution only tracks the divergence and
still must mask off the results from diverged threads within a SIMT group. SPMD in
our model allows threads to make individual progress while diverging.

https://doi.org/10.1145/3194554.3194650
https://doi.org/10.1145/3194554.3194650

™ Chip

| Cache | Cache
TMs L2 TMs
Thread Processors
L1 Data Cache
. TMs L2 TMs

Shared Execution Units

Figure 1: An example of a hierarchically organized parallel
architecture [12] supported by SimTRaX.

parallelism and simultaneously sharing of large and complex func-
tional units. Examples of such tiled architectures include TRaX [19],
Rigel [10], Copernicus [8], STRaTA [11], and SGRT [14].

There are, of course, many existing simulators for exploring new
computer architectures. CPU and multi-core simulators such as Sim-
pleScalar [3], Simics [16], and gem5 [2] are designed to simulate up
to tens of complex, typically out of order, thread processors with ad-
vanced features to accelerate individual thread latency. Simulators
for massively parallel architectures like GPUs typically target the
single-instruction multiple-data execution model. GPGPU-Sim [1]
executes unmodified CUDA and OpenCL workloads on a simulated
NVIDIA-like GPU architecture. However, keeping the simulator up
to date presents an ongoing challenge.

Tiled architectures generally achieve their performance through
massive parallelism via thousands of simple hardware threads. Sim-
ulators such as PriME [7], Zsim [18], Graphite [17], and Sniper [4]
are focused on increasing simulated parallelism with varying de-
grees of cycle-accuracy. Rigel [10] is probably the most similar to
SimTRaX. Rigel simulates thousands of execution threads, allows
configuration of the interconnect and the memory system, and
includes development tools based on LLVM. Rigel applications are
developed using a simple task-based bulk synchronous parallel
programming model to be executed in a SPMD paradigm. While
Rigel development seems to have stopped in 2012, it demonstrates
that simulation infrastructures that support massive parallelism
and compiler integrations are interesting in a variety of domains.

3 SIMULATOR ARCHITECTURE

SimTRaX was designed to help explore application-specific acceler-
ator architectures, modeled as a tiled, hierarchical, parallel architec-
ture with a few thousand processing units. An example is shown in
Figure 1. The lowest level is composed of simple in-order Thread
Processors (TPs) with limited execution resources. At the middle
level, Thread Multiprocessors (TMs) tile a number of TPs alongside
units they share access to. At the highest level, a chip can consist
of many TMs which share access to chip-wide resources, such as
L2 data caches. Such hardware representation offers the ability to
simulate a range of architectures, some of which would not map
easily to other simulation platforms.

The simulator is designed to keep overhead low when modeling
the execution flow for each TP. During each clock, first we simulate
all TM-wide units that can enqueue requests into globally-shared

Run Configuration Architecture Description

‘ Application Source

1 Hardware API
| Hardware Functional Source

— SimTRaX

‘ Statistics ‘ ‘ Application Output

Figure 2: Functional mode work flow. Application source
and architecture description are compiled into SimTRaX exe-
cutable specific to application. Blue color highlights inputs.

units, then global units and finally dynamic random access memory
(DRAM).

SimTRaX is accelerated via multiple software simulation threads,
each in charge of several TMs. Although access to TM-wide re-
sources requires no simulator synchronization, SimTRaX must se-
rialize access to chip-wide units. Thus simulation times depend in
part on the architecture design and the frequency of accesses to
globally-shared units. All simulation threads must also synchronize
after each simulated cycle. Although relaxing this synchronization
requirement increases simulator speed [17], it introduces errors in
predicted hardware performance.

4 IMPORTANCE OF ACCURATE DRAM
MODELING

The main memory of a simulated architecture typically consists of
DRAM. It must be modeled accurately because it can be a primary
consumer of both energy and time in data-bound applications. Due
to the internal structure and makeup of DRAM circuits, its operation
and performance is far more complex than SRAM. In addition to
being dynamic, and thus needing periodic refresh operations, the
latency and energy consumption of individual accesses can vary
widely based on the patterns and addresses of recent accesses.

When simulating memory-bound applications, particularly with
thousands of threads, the accuracy of the memory model can dras-
tically impact the results. SimTRaX relies on a modified version
of the Utah Simulated Memory Module (USIMM) simulator [5]
to accurately model DRAM behavior. SimTRaX reports detailed
memory access statistics to help the user tune and evaluate their
algorithmic/architectural innovations.

5 LLVM INTEGRATION

SimTRaX incorporates the LLVM toolchain [13] to facilitate de-
veloping applications used to benchmark new hardware units and
architecture design. The use of LLVM allows extending the in-
struction set architecture (ISA) with relative ease. Applications are
written in a high-level language, such as C++, and then compiled
to the modified ISA. In addition, we also include debugging and
profiling features within the simulator.

Each custom hardware unit may be supported by an API to
expose it to the application. When compiling as the standalone
functional simulator, each API call translates into a function call to

Architecture Description

‘ Application Source

l l Hardware API
]<- - -- Compile Backend 4—{ Intrinsics Description ‘

Run Configuration

[LLvm

—

=3

l_l_,

Hardware Functional Source

Debug Symbols

—»[SimTRaX]<4 - “ Compile Simulator i
‘ Statistics ‘ ‘ Application Output

Figure 3: Cycle-accurate mode work flow. The following rely
on architecture description during compilation: LLVM back-
end, application assembly which relies on this backend, and
SimTRaX executable. Blue color highlights inputs.

Time Profile FPU Energy Profile

Main 100.00% Main 100.00%
| Shade 47.57% | Shade 51.10%
| | BVH::Intersect 31.16% | | RandomReflection 15.61%
| | | Tri::Intersect 13.80% | | | Vec::Normal 11.48%
| | | | Vec::Cross 2.15% | | | | Vec::Length 7.40%
| | | | Vec::operator- 1.38% | 11 || sart 7.27%

Figure 4: An example profiler output showing the computa-
tion time (left) and energy use (right).

the appropriate implementation of the “instruction” Figure 2 shows
the work flow for the functional operation.

When the application source is compiled for the cycle-accurate
simulator, an assembly file is produced for input into the simula-
tor. Custom instructions exposed by the API calls invoke compiler
intrinsics that generate the appropriate assembly instructions. Fig-
ure 3 shows the work flow for the cycle-accurate operation.

The LLVM toolchain can embed debug symbols within the as-
sembly of the compiled application. SimTRaX parses and interprets
DWAREF [6] debugging symbols, and includes a built-in debugger
and profiler that operate on the full cycle-accurate state of the
simulated machine rather than sampling. Fig. 4 shows an example
of the profiler’s output with two metrics: a profile for time (left)
and the energy spent in floating point arithmetic units (right). The
profiler can expose, at the application source code level, the exact
source of various behaviors on the chip. As a result, SimTRaX can
provide a more complete understanding of the impact aspects of the
hardware have on performance when evaluating new architectures.

6 EVALUATION

We evaluate SimTRaX performance when simulating a typical tiled
massively parallel architecture targeted at accelerating computer
graphics: the TRaX architecture [19]. Selected graphics benchmarks,
shown in Figure 5, evaluate the effects of accessing memory on sim-
ulator performance. The Mandelbrot benchmark includes a large
percentage of computation, where the memory subsystem is ac-
cessed only for initial parameters and image output. Path tracing, an

(a) Mandelbrot

(b) Path tracing the “Cry- (c) Path tracing the “San

tek Sponza” scene Miguel” scene

Figure 5: Representative output images generated using
Mandelbrot and path tracing benchmark applications.

—o— USIMM —&— Free Memory —#— 100 cycles Correct Avg Latency
40
30
20

10

Simulated Frames / sec

0
128 256 512 1024 2048
Thread Processors

Figure 6: Effect of DRAM accuracy on simulated perfor-
mance of path tracing on TRaX for San Miguel scene.

algorithm that generates photo-realistic images [9], relies on iterat-
ing over tree data structures per pixel and thus can access memory
rather incoherently. Smaller scenes, like Crytek Sponza (262,000
triangles), generate more coherent accesses and thus higher cache
hit rates than larger scenes like San Miguel (10.5 million triangles).

The output image resolution is 1024x1024, and path tracing
benchmark uses maximum ray depth of three. Benchmarked TRaX
configuration combines 32-wide TMs into a chip with 128 to 2048
total TPs running at 1GHz. Each TM contains shared execution
units and a 32KB L1 data cache. The L1 data cache from each TM is
assigned to one of four global 512KB L2 data caches. They connect
to the DRAM memory controller set up as 8 channel GDDRS5 for a
maximum of 512GB/s bandwidth. The performance of the simulated
architecture is measured in frames per second (FPS). The simulator
is evaluated on a hexa-core Intel i7-5820K CPU running at 3.3GHz
and 32GB of DDR4 memory.

6.1 DRAM

To compare the effects of simulating DRAM accurately, consider
simulated performance executing path tracing on a TRaX archi-
tecture with varying number of TPs, shown in Figure 6. This test
includes four different models for DRAM accesses. USIMM simu-
lates DRAM behavior correctly. The other modes use a constant
access latency: one cycle for Free Memory, 100 cycles for 100 cycles,
and 60 — 470 cycles for Correct Avg Latency which matches latencies
from USIMM simulations. The simulated performance plateaus for
the San Miguel scene at 512 TPs when simulating DRAM accurately
because the configuration is DRAM bandwidth-limited. However,

—e— Mandelbrot Crytek Sponza —4— San Miguel

s 3

o 7

3

26

2 5 —
.D

E 4 //_\'

>

£33

£ 2

©

g1

=

=}

g 128 256 512 1024 2048

Thread Processors

Figure 7: SimTRaX performance measured in millions of
simulated instructions per second.

without accurate DRAM simulation, this behavior cannot be accu-
rately captured, and the simulated performance results scale almost
linearly with the number of TPs. It is clear that the accuracy of
simulating the DRAM dynamic behavior can have a profound effect
on reported results of the simulator.

6.2 Simulator Performance

Although cycle-accurate simulators enable highly accurate and
detailed evaluation of proposed architectures, they are typically
considered slow. However, the combination of architectural choices,
using multi-threading and general improvements in processor per-
formance help make cycle-accurate simulations feasible. Figure 7
shows SimTRaX performance measured in millions of simulated
instructions per second (MSIPS) as a function of number of TPs
while using four simulator threads. SimTRaX simulates at a rate of
0.33 to 7.38 MSIPS depending on how frequently the workload and
hardware communicate with chip-wide units. This performance is
good enough to enable co-processors with thousands of threads
and new hardware units, and benchmark applications running to
completion. The performance dips for both Crytek Sponza and
San Miguel scenes around 1024 TPs because those configurations
become DRAM bandwidth-limited. This results in higher DRAM
latencies and more simultaneous requests to the DRAM simulation
component, requiring heavy utilization of software locks.

7 CONCLUSION AND FUTURE WORK

We have described SimTRaX, a simulator designed to explore highly
parallel co-processor architectures with thousands of simple threads
sharing access to expensive computation and memory resources.
The simulation infrastructure provides several components essen-
tial for quick exploration of possible architecture designs con-
currently with targeted software modifications: combined cycle-
accurate and functional simulation capability, flexibility in how
functional units are connected, a highly accurate DRAM model,
and integration of the LLVM toolchain for easy ISA extensions and
compiling applications written in a high-level language.

The combination of LLVM debugging information and cycle-
accurate system state can be used to generate a highly detailed
profile with information beyond just execution time. For example,
a user could generate a profile of energy spent in the various chip
components during execution. This focus on massively parallel
architecture, integration with LLVM, and the resulting ability to

profile simulated code in detail on the simulated architecture is not
available on other simulator platforms that we are aware of.

An interesting future direction is extending SimTRaX to support
more sophisticated memory sharing mechanisms, which would
enable SimTRaX to simulate more general architectures. It would
also be interesting to explore how we can enable simulations to
rely on task-based parallelism while relaxing how often simulation
threads need to synchronize. To aid in evaluating radically different
architectures faster, SimTRaX’s modularity should extend further
and enable a node-based graphical interface to configure how func-
tional units are connected and shared. Finally, an automatic system
can be used to find optimal architecture configurations by using
gradient-descent-like algorithms to optimize a metric produced by
the simulator (like energy or performance).

ACKNOWLEDGMENTS

This material is supported in part by the National Science Founda-
tion under Grant No. 1409129. The authors thank Solomon Boulos,
Al Davis, Spencer Kellis, Andrew Kensler, Steve Parker, Paymon
Saebi, Pete Shirley, and Utah Architecture group for discussions
and simulator contributions. Crytek Sponza is from Frank Meinl
at Crytek and Marko Dabrovic and San Miguel is from Guillermo
Leal Laguno.

REFERENCES

[1] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt. 2009.
Analyzing CUDA workloads using a detailed GPU simulator. In ISPASS. 163-174.

[2] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness,
D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D.
Hill, and D. A. Wood. 2011. The Gem5 Simulator. SIGARCH Comput. Arch. News
39, 2 (Aug. 2011).

[3] D.Burger and T. Austin. 1997. The Simplescalar Toolset, Version 2.0. Technical
Report TR-97-1342. University of Wisconsin-Madison.

[4] T.E. Carlson, W. Heirman, and L. Eeckhout. 2011. Sniper: Exploring the Level of
Abstraction for Scalable and Accurate Parallel Multi-core Simulation. In SC.

[5] N. Chatterjee, R. Balasubramonian, M. Shevgoor, S. Pugsley, A. Udipi, A. Shafiee,
K. Sudan, M. Awasthi, and Z. Chishti. 2012. USIMM: the Utah SImulated Memory
Module. Technical Report UUCS-12-02. Univ. of Utah.

[6] DWARF Debugging Information Format Committee. 2010. DWARF Debugging
Information Format V. 4. http://www.dwarfstd.org/doc/DWARF4.pdf. (2010).

[7] Y. Fu and D. Wentzlaff. 2014. PriME: A parallel and distributed simulator for
thousand-core chips. In ISPASS. IEEE, 116-125.

[8] V. Govindaraju, P. Djeu, K. Sankaralingam, M. Vernon, and W. R. Mark. 2008.
Toward A Multicore Architecture for Real-time Ray-tracing. In IEEE/ACM Micro.

[9] J.T.Kajiya. 1986. The Rendering Equation. In Proceedings of SGGRAPH. 143-150.

[10] J. H. Kelm, D. R. Johnson, M. R. Johnson, N. C. Crago, W. Tuohy, A. Mahesri, S. S.
Lumetta, M. I. Frank, and S. J. Patel. 2009. Rigel: an architecture and scalable
programming interface for a 1000-core accelerator. In ISCA.

[11] D.Kopta, K. Shkurko, J. Spjut, E. Brunvand, and A. Davis. 2013. An energy and
bandwidth efficient ray tracing architecture. In Proc. HPG. 121-128.

[12] D. Kopta, K. Shkurko, J. Spjut, E. Brunvand, and A. Davis. 2015. Memory Consid-

erations for Low Energy Ray Tracing. Comp. Gr. Forum 34, 1 (2015), 47-59.

C. Lattner. 2008. LLVM and Clang: Next generation compiler technology. In The

BSD Conference. 1-2.

[14] W. Lee, Y. Shin, J. Lee, J. Kim, J. Nah, S. Jung, S. Lee, H. Park, and T. Han. 2013.

SGRT: A mobile GPU architecture for real-time ray tracing. In Proc. HPG.

E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. 2008. NVIDIA Tesla: A

Unified Graphics and Computing Architecture. Micro, IEEE 28, 2 (2008), 39-55.

[16] P.S Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J. Hogberg,
F. Larsson, A. Moestedt, and B. Werner. 2002. Simics: A full system simulation
platform. Computer 35, 2 (2002), 50-58.

[17] J.E. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann, C. Celio, J. Eastep,
and A. Agarwal. 2010. Graphite: A distributed parallel simulator for multicores.
In HPCA. IEEE, 1-12.

[18] D. Sanchez and C. Kozyrakis. 2013. ZSim: Fast and Accurate Microarchitectural

Simulation of Thousand-core Systems. In ISCA.

J. Spjut, A. Kensler, D. Kopta, and E. Brunvand. 2009. TRaX: A Multicore Hardware

Architecture for Real-Time Ray Tracing. IEEE Trans on CAD 28, 12 (2009).

=
&

[15

[19

http://www.dwarfstd.org/doc/DWARF4.pdf

	Abstract
	1 Introduction
	2 Background
	3 Simulator Architecture
	4 Importance of Accurate DRAM Modeling
	5 LLVM integration
	6 Evaluation
	6.1 DRAM
	6.2 Simulator Performance

	7 Conclusion and Future Work
	References

