
1

TRaX: A Multicore Hardware Architecture for
Real-Time Ray Tracing

Josef Spjut,Student Member, IEEE,Andrew Kensler, Daniel Kopta,Student Member, IEEE,
and Erik Brunvand,Member, IEEE

Abstract—TRaX (Threaded Ray eXecution) is a highly parallel
multi-threaded, multicore processor architecture designed for
real-time ray tracing. The TRaX architecture consists of a set
of thread processors that include commonly used functional
units for each thread and that share larger functional units
through a programmable interconnect. The memory system takes
advantage of the application’s read-only access to the scene
database and write-only access to the frame buffer output to
provide efficient data delivery with a relatively simple memory
system. One specific motivation behind TRaX is to accelerate
single-ray performance instead of relying on ray-packets in SIMD
mode to boost throughput, which can fail as packets become
incoherent with respect to the objects in the scene database.
In this paper we describe the TRaX architecture and our
performance results compared to other architectures used for
ray tracing. Simulated results indicate that a multicore version
of the TRaX architecture running at a modest speed of 500 MHz
provides real-time ray traced images for scenes of a complexity
found in video games. We also measure performance as secondary
rays become less coherent and find that TRaX exhibits only minor
slowdown in this case while packet-based ray tracers show more
significant slowdown.

Index Terms—Ray tracing, multicore architectures, computer
graphics

I. I NTRODUCTION

A T present almost every personal computer has a dedicated
processor that enables interactive 3D graphics. These

graphics processing units (GPUs) implement thez-buffer al-
gorithm introduced in Catmull’s landmark University of Utah
dissertation [1]. In this algorithm the inner loop iteratesover
all triangles in the scene and projects those triangles to the
screen. It computes the distance to the screen (the z-value)at
each pixel covered by the projected triangle and stores that
distance in the z-buffer. Each pixel is updated to the color
of the triangle (perhaps through a texture lookup or through
a procedural texturing technique) unless a smaller distance,
and thus a triangle nearer to the screen, has already been
written to the z-buffer (see Figure 1). A huge benefit of this
approach is that all triangles can be processed independently
with no knowledge of other objects in the scene. Current
mainstream graphics processors use highly efficient z-buffer
rasterization hardware to achieve impressive performancein
terms of triangles processed per second. This hardware gener-
ally consists of deep non-branching pipelines of vector floating
point operations as the triangles are streamed through the GPU
and specialized memory systems to support texture lookups.

J. Spjut, A. Kensler, D. Kopta, and E. Brunvand are with the School of
Computing, University of Utah, Salt Lake City, UT, 84112

Fig. 1. The z-buffer algorithm projects a triangle toward the nine pixel screen
and updates all pixels with the distance to the eye (the “z” value) and the
triangle’s color unless a smaller distance is already written in the z-buffer.

However, the basic principle of z-buffer rasterization, that
triangles are independent, becomes a bottleneck for highly
realistic images. This assumption limits shading operations
to per-triangle or per-pixel computations and does not al-
low for directly computing global effects such as shadows,
transparency, reflections, refractions, or indirect illumination.
Tricks are known to approximate each of these effects indi-
vidually, but combining them is a daunting problem for the
z-buffer algorithm.

Modern GPUs can interactively display several million
triangles in complex 3D environments with image-based (look-
up) texture and lighting. The wide availability of GPUs has
revolutionized how work is done in many disciplines, and has
been a boon to the hugely successful video game industry.
While the hardware implementation of the z-buffer algorithm
has allowed excellent interactivity at a low cost, there are
(at least) three classes of applications that have not benefited
significantly from this revolution

• those that have datasets much larger than a few million
triangles such as vehicle design, landscape design, man-
ufacturing, and some branches of scientific visualization;

• those that have non-polygonal data not easily converted
into triangles;

• those that demand high quality shadows, reflection, re-
fraction, and indirect illumination effects such as archi-
tectural lighting design, rendering of outdoor scenes, and
vehicle lighting design.

These classes of applications typically use Whitted’s ray

2

tracing algorithm [2], [3], [4]. The ray tracing algorithm is bet-
ter suited to huge datasets than the z-buffer algorithm because
its natural use of hierarchical scene structuring techniques
allows image rendering time that is sub-linear in the number
of objects. While z-buffers can use some hierarchical culling
techniques, the basic algorithm is linear with respect to the
number of objects in the scene. It is ray tracing’s larger time
constant and lack of a commodity hardware implementation
that makes the z-buffer a faster choice for data sets that
are not huge. Ray tracing is better suited for creating shad-
ows, reflections, refractions, and indirect illumination effects
because it can directly simulate the physics of light based
on the light transport equation [5], [6]. By directly and
accurately computing composite global visual effects using ray
optics ray tracing can create graphics that are problematicfor
the z-buffer algorithm. Ray tracing also allows flexibilityin
the intersection computation for the primitive objects, which
allows non-polygonal primitives such as splines or curves
to be represented directly. Unfortunately, computing these
visual effects based on simulating light rays is computationally
expensive, especially on a general purpose CPU. The ray
tracing algorithm currently requires many high-performance
CPUs to be interactive at full-screen resolution.

While the ray tracing algorithm is not particularly parallel at
the instruction level, it is extremely (embarrassingly) parallel at
the thread level. Ray tracing’s inner loop considers each pixel
on the screen. At each pixel a 3d half-line (a “ray”) is sent
into the set of objects and returns information about the closest
object hit by that ray. The pixel is colored (again, perhaps
using texture lookups or a procedurally computed texture)
according to this object’s properties (Figure 2). This linequery,
also known as “ray casting” can be repeated recursively to
determine shadows, reflections, refractions, and other optical
effects. In the extreme, every ray cast in the algorithm can
be computed independently. What is required is that every
ray have read-only access to the scene database, and write-
only access to a pixel in the frame buffer. Importantly, threads
never have to communicate with other threads (except to
partition work among the threads, which is done using an
atomic increment instruction in our implementation). Thistype
of memory utilization means that a relatively simple memory
system can keep the multiple threads supplied with data.

To summarize, the parallelization of rasterizing happens
by processing triangles in parallel through multiple triangle-
processing pipelines that can operate concurrently. Ray tracing
processes pixels/rays in parallel. Each pixel correspondsto
a primary ray (or set of primary rays in an oversampled
implementation) from the eye into the scene. These primary
rays may spawn additional secondary rays but all those rays
can continue to be processed concurrently with every other
ray.

This paper is an extended version of a previous conference
paper [7] in which we propose a custom processor architecture
for ray tracing called TRaX (Threaded Ray eXecution). This
paper adds to that paper additional details of the memory
system, and significant results related to TRaX’s ability to
handle non-coherent secondary rays.

The TRaX processor exploits the thread rich nature of

Fig. 2. The ray tracing algorithm sends a 3D half-line (a “ray”) into the set
of objects and finds the closest one. In this case the triangleT2 is returned.

ray tracing by supporting multiple thread contexts (thread
processors) in each core. We use a form of dynamic data-
flow style instruction issue to discover parallelism between
threads, and share large, less frequently used functional units
between thread processors. We explore trade-offs between the
number of thread processors versus the number of functional
units per core. The memory access style in ray tracing means
that a relatively simple memory system can keep the multiple
threads supplied with data. However, adding detailed image-
based (look-up) textures to a scene can dramatically increase
the required memory bandwidth (as it does in a GPU). We
also explore procedural (computed) textures as an alternative
that trades computation for memory bandwidth. The resulting
multiple-thread core can be repeated on a multicore chip
because of the independent nature of the computation threads.
We evaluate performance of our architecture using two dif-
ferent ray tracing applications: a recursive Whitted-style ray
tracer [2], [3], [4] that allows us to compare directly to other
hardware ray tracing architectures, and a path tracer [6], [8]
that allows us to explore how the TRaX architecture responds
to incoherent secondary rays, arguably the most important
types of rays when considering a ray tracer [9].

This work does not analyze TRaX’s ability to handle dy-
namically changing scenes. We assume that the necessary data
structures are updated on the host machine as needed, so the
performance we measure is for rendering a single frame. We
are, however, currently exploring the possibility of dynamic
scene updating on the TRaX architecture.

II. BACKGROUND

Because most applications are using larger and larger mod-
els (Greenberg has argued that typical model sizes are doubling
annually [10]), and because most applications are demanding
increasingly more visual realism, we believe the trends favor
ray tracing (either alone or in combination with rasterization
for some portions of the rendering process). Following the
example of graphics processing units (GPUs), we also believe
that a special purpose architecture can be made capable of
interactive ray tracing for large geometric models. Such special
purpose hardware has the potential to make interactive ray

3

tracing ubiquitous. Ray tracing can, of course, be implemented
on general purpose CPUs, and on specially programmed
GPUs. Both approaches have been studied, along with a few
previous studies of custom architectures.

A. Graphics Processing Units

Graphics processing is an example of a type of computation
that can be streamlined in a special purpose architecture
and achieve much higher processing rates than on a general
purpose processor. This is the insight that enabled the GPU
revolution in the 1980’s [11], [12], [13], [14]. A carefully
crafted computational pipeline for transforming triangles and
doing depth checks along with an equally carefully crafted
memory system to feed those pipelines makes the recent
generation of z-buffer GPUs possible [15], [16]. Current GPUs
have up to hundreds of floating point units on a single GPU
and aggregate memory bandwidth of 20-80 Gbytes per second
from their local memories. That impressive local memory
bandwidth is largely to support framebuffer access and image-
based (look-up) textures for the primitives. These combine
to achieve graphics performance that is orders of magnitude
higher than could be achieved by running the same algorithms
on a general purpose processor.

The processing power of a GPU depends, to a large degree,
on the independence of each triangle being processed in the
z-buffer algorithm. This is what makes it possible to stream
triangles through the GPU at rapid rates, and what makes it
difficult to map ray tracing to a traditional GPU. There are
three fundamental operations that must be supported for ray
tracing.

Traversal: traversing the acceleration structure, a spatial in-
dex that encapsulates the scene objects to identify a set
of objects that the ray is likely to intersect with.

Intersection: intersecting the ray with the primitive objects
contained in the element of the bounding structure that
is hit.

Shading: computing the illumination and color of the pixel
based on the intersection with the primitive object and the
collective contributions from the secondary ray segments.
This can also involve texture lookups or procedural
texture generation.

The traversal and intersection operations require branching,
pointer chasing, and decision making in each thread, and
global access to the scene database: operations that are rel-
atively inefficient in a traditional z-buffer-based architecture.

While it is possible to perform ray tracing on GPUs [17],
[18], [19], until recently these implementations have not been
faster than the best CPU implementations, and they require
the entire model to be in graphics card memory. While some
research continues on improving such systems, the traditional
GPU architecture makes it unlikely that the approach can be
used on large geometric models. In particular the inefficiency
of branching based on computations performed on the GPU,
and the restricted memory model are serious issues for ray
tracing on a traditional GPU.

The trend, however, in general-purpose GPU (GPGPU)
architecture is towards more and more programmability of

the graphics pipeline. Current high-end GPGPUs such as the
G80 architecture from nVidia, for example [20], support both
arbitrary memory accesses and branching in the instruction
set, and can thus, in theory, do both pointer chasing and
frequent branching. However, a G80-type GPGPU assumes
that every set of 32 threads (a “warp”) essentially executesthe
same instruction, and that they can thus be executed in SIMD
manner. Branching is realized by (transparently) masking out
threads. Thus, if branching often leads to diverging threads
very low utilization and performance will occur (similar argu-
ments apply to pointer chasing). Results for parts of the ray
tracing algorithm on a G80 have been reported [19], and a
complete ray tracer has been demonstrated by nVidia using a
collection of four of their highest performance graphics cards,
but little has been published about the demo [21].

B. General CPU Architectures

General purpose architectures are also evolving to be per-
haps more compatible with ray tracing type applications.
Almost all commodity processors are now multicore and
include SIMD extensions in the instruction set. By leveraging
these extensions and structuring the ray tracer to trace coherent
packets of rays, researchers have demonstrated good frame
rates even on single CPU cores [22], [23]. The biggest
difference in our approach is that we don’t depend on the
coherence of the ray packet to extract thread-level parallelism.
Thus our hardware should perform well even for diverging
secondary rays used in advanced shading effects for which
grouping the individual rays into coherent packets may not be
easy.

In addition to general multicore chips, direct support for
multithreading is becoming much more common and appears
even in some commercially released processors such as the
Intel Netburst architecture [24], the IBM Power5 architec-
ture [25], and the Sun Niagara [26]. The biggest limiting factor
for these general architectures is that the individual processors
are heavily under-utilized while performing ray tracing. This
is due largely to the relatively small number of floating point
resources on a CPU and the highly branch-dependent behavior
of ray tracing threads. We believe that a larger number of
simpler cores will perform better than fewer more complex
cores of a general CPU due to providing a more targeted set
of computation resources for the application.

The IBM Cell processor [27], [28] is an example of an ar-
chitecture that might be quite interesting for ray tracing.With a
64-bit in-order power processor element (PPE) core (based on
the IBM Power architecture) and eight synergistic processing
elements (SPE), the Cell architecture sits somewhere between
a general CPU and a GPU-style chip. Each SPE contains a
128×128 register file, 256kb of local memory (not a cache),
and four floating point units operating in SIMD. When clocked
at 3.2 GHz the Cell has a peak processing rate of 200GFlops.
Researchers have shown that with careful programming, and
with using only shadow rays (no reflections or refractions) for
secondary rays, a ray tracer running on a Cell can run 4 to
8 times faster than a single-core x86 CPU [29]. In order to
get those speedups the ray tracer required careful mapping

4

Fig. 3. Test scenes rendered on our TRaX architectural simulator. From left to right: Cornell (rendered with our Whitted-style ray tracer), Sponza (rendered
with our Whitted-style ray tracer), Sponza (rendered with our Whitted-style ray tracer with procedural textures), Conference (rendered with our path-tracer).
These are standard benchmarking scenes for ray tracing.

into the scratch memories of the SPEs and management of
the SIMD branching supported in the SPEs. We believe that
our architecture can improve on those performance numbers
while not relying on coherent packets of rays executing in a
SIMD fashion, and while using considerably less programmer
effort because we don’t rely on programmer-managed scratch
memory.

C. Ray Tracing Hardware

Other researchers have developed special-purpose hardware
for ray tracing [30], [31]. The most complete of these are
the SaarCOR [32], [33] and Ray Processing Unit (RPU) [34],
[35] architectures from Saarland University. SaarCOR is a
custom hard-coded ray trace processor, and RPU has a cus-
tom kd-tree traversal unit with a programmable shader. Both
are implemented and demonstrated on an FPGA. All high-
performance ray tracers organize the scene being rendered
into an “acceleration structure” of some sort that permits fast
traversal of the scene volume to quickly arrive at the primitive
geometry. Common structures are kd-trees, bounding volume
hierarchies (BVH), oct-trees and grids. The traversal of this
structure is done in hardware in the Saarland architectures
and requires that a kd-tree be used. Only when a primitive is
encountered is the programmable shader called to determine
the color at that primitive (and thus the color of the pixel).

The programmable portion of the RPU is known as the
Shading Processor (SP) and is used to determine the shading
(color) of each pixel once the intersected triangle primitive is
determined. This portion consists of four 4-way vector cores
running in SIMD mode with 32 hardware threads supported
on each of the cores. Three caches are used for shader data,
kd-tree data, and primitive (triangle) data. Cache coherence is
quite good for primary rays (initial rays from the eye to the
scene) and adequate for secondary rays (shadows, reflections,
etc.). With an appropriately described scene (using kd-trees
and triangle data encoded with unit-triangle transformations)
the RPU can achieve very impressive frame rates, especially
when extrapolated to a potential CMOS ASIC implementa-
tion [35].

Our design is intended to be more flexible than the RPU
by having all portions of the ray tracing algorithm be pro-

grammable, allowing the programmer to decide the appropriate
acceleration structure and primitive encoding, and by acceler-
ating single ray performance rather than using 4-ray SIMD
packets. There is, of course, a cost in terms of performance
for this flexibility, but if adequate frame rates can be achieved
it will allow our architecture to be used in a wider variety of
situations. There are many other applications that share the
thread-parallel nature of ray tracing.

Most recently, there have been proposals for multicore
systems based on simplified versions of existing instruction
set architectures that may be useful for ray tracing. These ap-
proaches are closest in spirit to our architecture and represent
work that is concurrent with ours so detailed comparisions are
not yet possible. Both of these projects involve multiple sim-
plified in-order cores with small-way multithreading, and both
explicitly evaluate ray tracing as workload. The Copernicus
approach [36] attempts to leverage existing general purpose
cores in a multi-core organization rather than developing a
specialized core specifically for ray tracing. As a result, it
requires more hardware to achieve the same performance, and
will not exceed 100 million rays per second unless scaling
to 115 cores at a 22nm process. A commerial approach,
Larrabee [37], is clearly intended for general purpose comput-
ing and rasterizing graphics as well as ray tracing and makes
heavy use of SIMD in order to gain performance. Because it is
intended as a more general purpose processor, Larrabee also
includes coherency between levels of its caches, something
which TRaX avoids because of its more specialized target.
This coherency is accomplished using a ring network that
communicates between local caches, which adds complexity
to the archiecture.

D. Target applications

There are several applications such as movies, architecture
and manufacturing that rely on image quality and need shad-
ows and reflections. These applications already use batch ray
tracing but would benefit greatly from interactive ray tracing.

Other applications are not currently close to being interac-
tive on GPUs regardless of image quality because their number
of primitive objectsN is very large. These include many sci-
entific simulations [38], the display of scanned data [39], and

5

terrain rendering [40]. While level-of-detail (LOD) techniques
can sometimes make display of geometrically simplified data
possible, such procedures typically require costly preprocess-
ing and can create visual errors [41].

Simulation and games demand interactivity and currently
use z-buffer hardware almost exclusively. However, they spend
a great deal of computational effort and programmer time
creating complicated procedures for simulating lighting effects
and reducingN by model simplification. In the end they have
imagery of inferior quality to that generated by ray tracing.
We believe those industries would use ray tracing if it were
fast enough.

We have customized the hardware in our simulator to
perform well for ray tracing, which is our primary motivation.
While TRaX is programmable and could be used for other
applications, we have not explored TRaX’s performance for a
more robust range of applications. There are certainly other
multi-threaded applications that might perform very well.
However, one major restriction on other applications running
on TRaX is the (intentional) lack of coherence between the
caches on the chip which would hinder applications with
substantial communication between threads.

III. TR AX A RCHITECTURE

Threads represent the smallest division of work in the ray-
traced scene, so the performance of the entire system depends
on the ability of the architecture to flexibly and efficiently
allocate functional resources to the executing threads. Assuch,
our architecture consists of a set of thread processors that
include some functional units in each processor and that share
other larger functional units between thread processors. A
collection of these thread processors, their shared functional
units, issue logic, and shared L2 cache are collected into a
“core.”

A full chip consists of many cores, each containing many
thread processors, sharing an on-chip L2 cache and off-chip
memory and I/O bandwidth. Because of the parallel nature
of ray-tracing, threads (and thus cores) have no need to
communicate with each other except to atomically divide the
scene. Therefore, a full on-chip network is neither provided
or needed. In order to support multi-chip configurations, off-
chip bandwidth is organized into lanes, which can be flexibly
allocated between external memory and other I/O needs.

A. A Thread Processor

Each thread processor (TP) in a TRaX core can execute its
own thread code, where a software thread corresponds to a ray.
Each thread maintains a private program counter, register file,
and small instruction cache. The register file is a simple 2-read,
1-write SRAM block. Because of the complexity involved in
forwarding data between functional units, all results are written
back to the register file before they can be accessed by the
consuming instruction. Figure 6 shows these functional units
as well as the register file. The type and number of these
functional units is variable in our simulator. More complex
functional units are shared by the TPs in a core.

Instructions are issued in-order in each Thread Processor
to reduce the complexity at the thread level. The execution is
pipelined with the fetch and decode each taking one cycle. The
exeuction phase requires a variable number of cycles depend-
ing on the functional unit required, and the writeback takesa
final cycle. Instructions issue in-order, but may complete out of
order. Thread processing stalls primarily if needed data isnot
yet available in the register file (using a simple scoreboard),
or if the desired functional unit is not available, but correct
single-thread execution is guaranteed.

Because issue logic is external to the thread state (im-
plemented at the core-level), there is very little complexity
in terms of dependence checking internal to each thread. A
simple table maintains instructions and their dependencies.
Instructions enter the table in FIFO fashion, in program order,
so that the oldest instruction is always the next available
instruction. Issue logic checks only the status of this oldest
instruction. Single thread performance is heavily dependent
on the programmer/compiler who must order instructions in-
telligently to hide functional unit latencies as often as possible.

B. A Collection of Threads in a Core

Each of the multiple cores on a chip consists of a set
of simple thread processors with shared L1 data cache and
shared functional units as shown in Figure 5. Each thread
processor logically maintains a private L1 instruction cache
(more accurately, a small set of thread processors share a
multi-banked I-cache). However, all threads in a core shareone
multi-banked L1 data cache of a modest size (2K lines of 16-
bytes each, direct mapped, with four banks, see Section VI-A).
All cores on a multicore chip share an L2 unified instruction
and data cache. Graphics processing is unique in that large
blocks of memory are either read-only (e.g., scene data) or
write-only (e.g., the frame buffer). To preserve the utility of
the cache, write-once data are written around the cache. For
our current ray tracing benchmarks no write data needs to be
read back, so all writes are implemented to write around the
cache (directly to the frame buffer). Separate cached and non-
cached write assembly instructions are provided to give the
programmer control over which kind of write should occur.
This significantly decrease thrashing in the cache by filtering
out the largest source of pollution. Hence, cache hit rates are
high and threads spend fewer cycles waiting on return data
from the memory subsystem. In the future we plan to explore
using read-around and streaming techniques for certain types
of data that are known to be touch-once. Currently the choice
of read-around or write-around versus normal cached memory
access is made by the programmer.

Each shared functional unit is independently pipelined to
complete execution in a given number of cycles, with the
ability to issue a new instruction each cycle. In this way,
each thread is potentially able to issue any instruction on any
cycle. With the shared functional units, memory latencies and
possible dependence issues, not all threads may be able to
issue on every cycle. The issue unit gives threads priority to
claim shared functional units in a round robin fashion.

Each thread processor controls the execution of one ray-
thread. Because the parallelism we intend to exploit is at the

6

Core
0

Core
1

Store,

Frame

Buff

L2

Core
n

Chip

Atomic
Inc

TP
0

TP
1

TP
31

Flexible Interconnect

IMem / Issue

FP
*

FP
*

int int

 1 1
x

(4x)

(4x)

(2x)

(3cy)

(2cy)

(15cy)

(1cy)

L1
(size variable,

see text)

Core (32-thread version)

(2x)
Store,
Frame
Buff

L2 (4cy)(20cy)

Atomic

Load / Store / Atomic IncLoad / Store / Atomic Inc

 1 1
x

Shared

Functional

Units

Inc

3232

1
2

8
1

2
8 RF

Thread Processor

Cmp/Min/Max
(1cy)

Add/Sub
(2cy)

Logical
(1cy)

Add/Sub
(1cy)

Convert
(1cy)

Branch
(1cy)

Control

Int

FP

* *

Fig. 4. Multi-Core Chip Layout Fig. 5. Core Block Diagram Fig. 6. Thread Processor State

thread level, and not at the instruction level inside a thread,
many features commonly found in modern microprocessors,
such as out-of-order execution, complex multi-level branch
predictors, and speculation, are eliminated from our archi-
tecture. This allows available transistors, silicon area,and
power to be devoted to parallelism. In general, complexity is
sacrificed for expanded parallel execution. This will succeed
in offering high-performance ray tracing if we can keep a large
number of threads issuing on each cycle. Our results show that
with 32 thread processors per core, close to 50% of the threads
can issue on average in every cycle for a variety of different
scenes using an assembly-coded Whitted-style ray tracer [7]
and a path tracer coded in a C-like language [9].

TRaX is specifically designed to accelerate single-ray per-
formance and to exploit thread-level parallelism using multiple
thread processors and cores. Many other ray tracing archi-
tectures [33], [34], [29], [19], [42], [43], [36], [37] exploit
parallelism using SIMD to execute some number of the same
instructions at the same time. This technique does not scale
well if the rays in the SIMD bundle become less coherent
with respect to the scene objects they intersect [9]. In thatcase
what was a single SIMD instruction will have to be repeated
for each of the threads as they branch to different portions of
the scene and require different intersection tests and shading
operations. Because our threads are independent we do not
have to mask off results of our functional unit operations.

C. Multi-Core Chip

Our overall chip design (Figure 4) is a die consisting
of an L2 cache with an interface to off-chip memory and
a number of repeated identical cores with multiple thread
processors each. Due to the low communication requirements
of the threads, each core only needs access to the same
read only memory and the ability to write to the frame
buffer. The only common memory is provided by an atomic
increment instruction that provides a different value eachtime
the instruction is executed

The L2 cache is assumed to be banked similarly to the L1
cache to allow parallel accesses from the L1 caches of the
many cores on the chip. A number of MSHRs are provided

per core and both the number banks and number of MSHRs are
parameterized in our simulations. It should be noted that for
the work reported in this paper, the L2 cache was not modeled
explicitly (See Section V for more details). Instead all misses
in the L1 cache were treated as a fixed latency to memory
intended to approximate the average L2 latency. The modeled
latency to L2 was on the order of twenty times the latency
of L1 hits. Ongoing simulations have added explicit models
for the L2 cache and DRAM, but those numbers are not all
avaiable yet. We are finding that our original assumptions are
not too far off though.

IV. RAY TRACING APPLICATIONS

Some of our test programs are written directly in assembly
language. Others are written in a higher level language de-
signed for our architecture. The TRaX programming language
is a simple C-like language with some extensions inspired by
the RenderMan shading language [44] to allow for ease of
writing a ray tracing application. The language is compiled
into TRaX assembly for the simulator by our simple custom
compiler.

To evaluate our architecture we have developed two differ-
ent ray tracing systems.

Whitted-Style Ray Tracer: This implements a recursive ray
tracer that provides various shading methods, shadows
from a single point light source and BVH traversal. It is
written in thread processor assembly language.

Path Tracer: This application is written in TRaX language
described previously. It computes global illumination in
the scene using a single point light source and using
Monte-Carlo sampled Lambertian shading [4].

The test scenes we are using, listed in Table I with some
basic performance numbers, exhibit some important properties.
The Cornell Box is important because it represents the simplest
type of scene that would be rendered. It gives us an idea of the
maximum performance possible by our hardware. Sponza on
the other hand has over 65000 triangles and uses a BVH with
over 50000 nodes. The Conference Room scene is an example
of a reasonably large and complex scene with around 300k
triangles. This is similar to a typical modern video game scene.

7

TABLE I
SCENE DATA WITH RESULTS FOR1 AND 16 CORES, EACH WITH 32

THREAD PROCESSORS, AND PHONG SHADING ESTIMATED AT 500MHZ

Scene Triangles BVH Nodes FPS (1) FPS (16)
conference 282664 266089 1.4282 22.852
sponza 66454 58807 1.1193 17.9088
cornell 32 33 4.6258 74.012

Even more complicated scenes including dynamic components
will be included in testing as more progress is made.

A. Whitted-Style Ray Tracer

This is a basic recursive ray tracer that provides us with a
baseline that is easily compared to other published results. In
addition to controlling the depth and type of secondary rays,
another parameter that can be varied to change its performance
is the size of the tiles assigned to each thread to render at one
time. Originally the screen would be split into 16×16 pixel
squares and each thread would be assigned one tile to render.
While this is a good idea for load balancing among the threads,
we found that it did not produce the best performance. Instead,
we changed the tiles to be single pixels and assigned those to
threads in order. This seemingly minor change was able to
increase the coherence of consecutive primary rays (putting
them closer together in screen space), and make the cache hit
rate much higher. The increased coherence causes consecutive
rays to hit much of the same scene data that has already been
cached by recent previous rays, as opposed to each thread
caching and working on a separate part of the scene.

Currently the pixels are computed row by row straight
across the image. As we advance the ray-tracer further, we
will use a more sophisticated space filling method such as a
Z curve. This method will trace rays in a pattern that causes
concurrent rays to stay clustered closer together, which makes
them more likely to hit the same nodes of the BVH, increasing
cache hit rate.

1) Shading Methods:Our ray tracer implements two of
the most commonly used shading methods in ray tracing:
simple diffuse scattering, and Phong lighting for specular
highlights [45], [46]. We also include simple hard shadows
from a point light source. Shadow rays are generated and cast
from each intersected primitive to determine if the hit location
is in shadow (so that it is illuminated only with an ambient
term) or lit (so that it is shaded with ambient, diffuse and
Phong lighting).

Diffuse shading assumes that light scatters in every direction
equally, and Phong lighting adds specular highlights to simu-
late shiny surfaces by increasing the intensity of the lightif the
view ray reflects straight into a light source. These two shading
methods increase the complexity of the computation per pixel,
increasing the demand on our FUs. Phong highlights especially
increase complexity, as they involve taking an integer power,
as can be seen in the standard lighting model:

Ip = kaia + ∑
lights

(kd(L ·N)id +ks(R·V)α is

The Ip term is the shade value at each point which uses
constant terms for the ambientka, diffuse kd, and specular
ks components of the shading. Theα term is the Phong
exponent that controls the shininess of the object by adjusting
the specular highlights. Thei terms are the intensities of the
ambient, diffuse, and specular components of the light sources.

2) Procedural Texturing:We also implement procedural
textures, that is, textures which are computed based on the
geometry in the scene, rather than an image texture which
is simply loaded from memory. Specifically, we use Perlin
noise with turbulence [47], [48]. These textures are computed
using pseudo-random mathematical computations to simulate
natural materials which adds a great deal of visual realism and
interest to a scene without the need to store and load complex
textures from memory. The process of generating noise is
quite computationally complex. First, the texture coordinate
on the geometry where the ray hit is used to determine a
unit lattice cube that encloses the point. The vertices of the
cube are hashed and used to look up eight pre-computed
pseudo-random vectors from a small table. For each of these
vectors, the dot product with the offset from the texture
coordinate to the vector’s corresponding lattice point is found.
Then, the values of the dot products are blended using either
Hermite interpolation (for classic Perlin noise [47]) or a quintic
interpolant (for improved Perlin noise [49]) to produce the
final value. More complex pattern functions such as turbulence
produced through spectral synthesis sum multiple evaluations
of Perlin noise for each point shaded. There are 672 floating
point operations in our code to generate the texture at each
pixel. We ran several simulations comparing the instruction
count of an image with and without noise textures. We found
that there are on average 50% more instructions required to
generate an image where every surface is given a procedural
texture than an image with no textures.

Perlin noise increases visual richness at the expense of
computational complexity, while not significantly affecting
memory traffic. The advantage of this is that we can add
more FUs at a much lower cost than adding a bigger cache or
more bandwidth. Conventional GPUs require an extremely fast
memory bus and a very large amount of RAM for storing tex-
tures [15], [16]. Some researchers believe that if noise-based
procedural textures were well supported and efficient, that
many applications, specifically video games, would choose
those textures over the memory-intensive image-based textures
that are used today [50]. An example of a view of the Sponza
scene rendered with our Perlin noise-based textures can be
seen in Figure 3

B. Path Tracer Application

In order to explore the ability of our architecture to maintain
performance in the face of incoherent rays that don’t respond
well to packets, we built a path tracer designed so that we
could carefully control the coherence of the secondary rays.
Our path tracer is written in the TRaX language described
previously and is designed to eliminate as many variables
as possible that could change coherence. We use a single
point light source, and limit incoherence to Monte-Carlo

8

sampled Lambertian shading with no reflective or refractive
materials [4]. Every ray path is traced to the same depth:
there is no Russian Roulette or any other dynamic decision
making that could change the number of rays cast. This is all
to ensure that we can reliably control secondary ray coherence
for these experiments. A more fully functional path tracer with
these additional techniques could be written using the TRaX
programming language, and we expect it would have similar
performance characteristics.

Each sample of each pixel is controlled by a simple loop.
The loop runs D times, where D is the specified max depth. For
each level of depth we cast a ray into the scene to determine
the geometry that was hit. From there, we cast a single shadow
ray towards the point light source to determine if that point
receives illumination. If so, this ray contributes light based on
the material color of the geometry and the color of the light.
As this continues, light is accumulated into the final pixel
color for subsequent depth levels. The primary ray direction
is determined by the camera, based on which pixel we are
gathering light for. Secondary (lower depth) rays are cast from
the previous hit point and are randomly sampled over a cosine-
weighted hemisphere, which causes incoherence for higher ray
depths.

Secondary rays are randomly distributed over the hemi-
sphere according to a Bidirectional Reflectance Distribution
Function (BRDF) [51], [52]). To compute a cosine-weighted
Lambertian BRDF, a random sample is taken on the area of a
cone with the major axis of the cone parallel to the normal of
the hit geometry and the vertex at the hit point. As an artificial
benchmark, we limit the angle of this cone anywhere from 0
degrees (the sample is always taken in the exact direction of
the normal) to 180 degrees (correct Lambertian shading on a
full hemisphere). By controlling the angle of the cone we can
control the incoherence of the secondary rays. The wider the
cone angles the less coherent the secondary rays become as
they are sampled from a larger set of possible directions. The
effect of this can be seen in Figure 7.

V. DESIGN EXPLORATION

We have two TRaX simulators: a functional simulator that
executes TRaX instructions by running them on the PC, and
a cycle accurate simulator that simulates in detail the exe-
cution of a single core with 32 threads and associated shared
functional units. The functional simulator executes much more
quickly and is very useful for debugging applications and for
generating images.

The cycle-accurate simulator runs much more slowly than
the functional simulator and is used for all performance
results. Given the unique nature of our architecture, it wasnot
reasonable to adapt available simulators to our needs. In the
style of Simplescalar [53], our cycle-accurate simulator allows
for extensive customization and extension. Memory operations
go through the L1 cache and to the L2 with conservative
latencies and variable banking strategies.

For each simulation we render one frame in one core from
scratch with cold caches. The instructions are assumed to
be already in the instruction cache since they don’t change

from frame to frame. The results we show are therefore an
accurate representation of changing the scene memory on
every frame and requiring invalidating the caches. The results
are conservative because even in a dynamic scene, much of
the scene might stay the same from frame to frame and
thus remain in the cache. Statistics provided by the simulator
include total cycles used to generate a scene, functional unit
utilization, thread utilization, thread stall behavior, memory
and cache bandwidth, memory and cache usage patterns, and
total parallel speedup.

Our ray tracing code was executed on simulated TRaX cores
having between 1 and 256 thread processors, with issue widths
of all function units except memory varying between 1 and 64
(memory was held constant at single-issue). Images may be
generated for any desired screen size. Our primary goal for the
current design phase is to determine the optimal allocation
of transistors to thread-level resources, including functional
units and thread state, in a single core to maximize utilization
and overall parallel speedup. We are also looking carefully
at memory models and memory and cache usage to feed the
parallel threads (and parallel cores at the chip level).

A. Functional Units

For a simple ray casting application, large, complex in-
struction sets such as those seen in modern x86 processors
are unnecessary. Our architecture implements a basic set
of functional units with a simple but powerful ISA. We
include bitwise instructions, branching, floating point/integer
conversion, memory operations, floating point and integer add,
subtract, multiply, reciprocal, and floating point compare. We
also include reciprocal square root because that operation
occurs with some frequency in graphics code for normalizing
vectors.

Functional units are added to the simulator in a modu-
lar fashion, allowing us to support arbitrary combinations
and types of functional units and instructions. This allows
very general architectural exploration starting from our basic
thread-parallel execution model. We assume a conservative
500 MHz clock which was chosen based on the latencies of the
functional units that were synthesized using Synopsys Design
Compiler and DesignWare libraries [54] and well characterized
commercial CMOS cell libraries from Artisan [55]. Custom
designed function units such as those used in commercial
GPUs would allow this clock rate to be increased.

We first chose a set of functional units to include in our
machine-level language, shown in Table II. This mix was
chosen by separating different instruction classes into separate
dedicated functional units. We implemented our ray casting
benchmarks using these available resources, then ran numerous
simulations varying the number of threads and the width of
each functional unit. All execution units are assumed to be
pipelined including the memory unit.

Each thread receives its own private FP Add/Sub execution
unit. FP multiply is a crucial operation as cross and dot
products, both of which require multiple FP multiplies, are
common in ray tracing applications. Other common operations
such as blending also use FP multiplies. The FP multiplier is

9

Fig. 7. The Cornell Box scene showing the visual change as thesampling angle increases in our path tracer. Starting on theleft: 0 degrees, 30 degrees, 60
degrees, and 180 degrees on the right.

TABLE II
DEFAULT FUNCTIONAL UNIT M IX (500MHZ CYCLES)

Latency
Unit Name Number of units (cycles)
IntAddSub 1 / thread 1
IntMul 1 / 8 threads 2
FPAddSub 1 / thread 2
FPMul 1 / 8 threads 3
FPComp 1 / thread 1
FPInvSqrt 1 / 16 threads 15
Conversion 1 / thread 1
Branch 1 / thread 1
Cache 1 (mult. banks) varies

TABLE III
AREA ESTIMATES (PRE-LAYOUT) FOR FUNCTIONAL UNITS

USING ARTISAN CMOSLIBRARIES AND SYNOPSYS. THE
130NM LIBRARY IS A HIGH PERFORMANCE CELL LIBRARY

AND THE 65NM IS A LOW POWER CELL LIBRARY. SPEED IS

SIMILAR IN BOTH LIBRARIES .

Area (µm2)
Resource Name 130nm 65nm
2k×16byte cache 1,527,5719 804,063
(four banks / read ports)
128×32 RF 77,533 22,000(est.)
(1 Write 2 Read ports)
Integer Add/Sub 1,967 577
Integer Multiply 30,710 12,690
FP Add/Sub 14,385 2,596
FP Multiply 27,194 8,980
FP Compare 1,987 690
FP InvSqrt 135,040 44,465
Int to FP Conv 5,752 1,210

a shared unit because of its size, but due to its importance,
it is only shared among a few threads. The FP Inv functional
unit handles divides and reciprocal square roots. The majority
of these instructions come from our box test algorithm, which
issues three total FP Inv instructions. This unit is very large
and less frequently used hence, it is shared among a greater
number of threads. We are also exploring the possibility of
including a custom noise function as a shared functional unit
that would allow the rapid generation of gradient noise used
for procedural texturing (see Section IV-A2).

VI. RESULTS

Results are generated for a variety of thread processor
configurations and using both our Whitted-style ray tracer and
our path tracer.

A. Single Core Performance

Many millions of cycles of simulation were run to charac-
terize our proposed architecture for the ray-tracing application.
We used frames per second as our principle metric extrapolated
from single-core results to multi-core estimates. This evalua-
tion is conservative in many respects since much of the scene
data required to render the scene would likely remain cached
between consecutive renderings in a true 30-fps environment.
However, it does not account for re-positioning of objects,
light sources, and viewpoints. The results shown here describe
a preliminary analysis based on simulation.

1) Area: We target 200mm2 as a reasonable die size for a
high-performance graphics processor. We used a low power
65nm library to conservatively estimate the amount of perfor-
mance achievable in a high density, highly utilized graphics
architecture. We also gathered data for high performance
130nm libraries as they provide a good comparison to the
Saarland RPU and achieve roughly the same clock frequency
as the low power 65nm libraries.

Basic functional units, including register files and caches,
were synthesized, placed and routed using Synopsys and
Cadence tools to generate estimated sizes. These estimatesare
conservative, since hand-designed execution units will likely
be much smaller. We use these figures with simple extrapo-
lation to estimate the area required for a certain number of
cores per chip given replicated functional units and necessary
memory blocks for thread state. Since our area estimates do
not include an L2 cache or any off-chip I/O logic, our estimates
in Table IV and Table V are limited to 150mm2 in order to
allow room for the components that are currently unaccounted
for.

2) Performance: For a ray tracer to be considered to
achieve real-time performance, it must have a frame rate of
around 30 fps. The TRaX architecture is able to render the
conference scene at 31.9 fps with 22 cores on a single chip at
130nm. At 65nm with 79 cores on a single chip performance
jumps to 112.3 fps.

10

TABLE IV
CORE AREA ESTIMATES TO ACHIEVE 30 FPSON CONFERENCE.
THESE ESTIMATES INCLUDE THE MULTIPLE CORES AS SEEN IN
FIGURES4 AND 5, BUT DO NOT INCLUDE THE CHIP-WIDE L2

CACHE, MEMORY MANAGEMENT, OR OTHER CHIP-WIDE UNITS.

Thrds CoreAreamm2 Core DieAreamm2

/Core 130 65 FPS Cores 130 65
nm nm nm nm

16 4.73 1.35 0.71 43 203 58
32 6.68 1.90 1.42 22 147 42
64 10.60 2.99 2.46 15 138 39
128 18.42 5.17 3.46 9 166 47

TABLE V
PERFORMANCE COMPARISON FORCONFERENCE ANDSPONZA

ASSUMING A FIXED CHIP AREA OF150mm2. THIS FIXED CHIP AREA

DOES NOT INCLUDE THEL2 CACHE, MEMORY MANAGEMENT, AND

OTHER CHIP-WIDE UNITS. IT IS ASSUMED THAT THOSE UNITS
WOULD INCREASE THE CHIP AREA BY A FIXED AMOUNT.

Threads # of Cores Conference Sponza
/Core 130 65 130 65 130 65

nm nm nm nm nm nm
16 32 111 22.7 79.3 17.7 61.7
32 22 79 31.9 112.3 24.1 85.1
64 14 50 34.8 123.6 24.0 85.4
128 8 29 28.2 100.5 17.5 62.4

The number of threads able to issue in any cycle is a
valuable measure of how well we are able to sustain parallel
execution by feeding threads enough data from the memory
hierarchy and offering ample issue availability for all execution
units. Figure 9 shows, for a variable number of threads in a
single core, the average percentage of threads issued in each
cycle. For 32 threads and below, we issue nearly 50% of all
threads in every cycle on average. For 64 threads and above,
we see that the issue rate drops slightly ending up below 40%
for the 128 threads rendering the Sponza scene, and below
30% for the Conference scene.

Considering a 32 thread core with 50% of the threads
issuing each cycle, we have 16 instructions issued per cycle
per core. In the 130nm process, we fit 16 to 22 cores on a
chip. Even at the low end, the number of instructions issued
each cycle can reach up to 256. With a die shrink to 65 nm we
can fit more than 64 cores on a chip allowing the number of
instructions issued to increase to 1024 or more. Since we never
have to flush the pipeline due to incorrect branch prediction
or speculation, we potentially achieve an average IPC of more
than 1024. Even recent GPUs with many concurrent threads,
issue a theoretical maximum IPC of around 256 (128 threads
issuing 2 floating point operations per cycle).

Another indicator of sustained performance is the average
utilization of the shared functional units. The FP Inv unit
shows utilization at 70% to 75% for the test scenes. The
FP Multiply unit has 50% utilization and Integer Multiply
has utilization in the 25% range. While a detailed study of
power consumption was not performed in this work, we expect
the power consumption of TRaX to be similar to that of
commercial GPUs.

 0

 1

 2

 3

 4

 5

 6

1 2 3 4

F
P

S

Cache Issue Width

Cornell
Sponza

Conference

Fig. 8. Single core performance as Cache Issue Width is
varied.

 0

 10

 20

 30

 40

 50

 60

16 32 64 128

%
 Is

su
ed

Number of Threads

Cornell
Sponza

Conference

Fig. 9. Thread Performance (% Issued)

3) Cache Performance:We varied data cache size and issue
width to determine an appropriate configuration offering high
performance balanced with reasonable area and complexity.
For scenes with high complexity a cache with at least 2K
lines (16-bytes each) satisfied the data needs of all 32 threads
executing in parallel with hit rates in the 95% range. We
attribute much of this performance to low cache pollution
because all stores go around the cache. Although performance
continued to increase slightly with larger cache sizes, theextra
area required to implement the larger cache meant that total
silicon needed to achieve 30fps actually increased beyond a
2K L1 data cache size. To evaluate the number of read ports
needed, we simulated a large (64K) cache with between 1 and
32 read ports. Three read ports provided sufficient parallelism
for 32 threads. This is implemented as a four-bank direct
mapped cache.

The L2 cache was not modeled directly in these exper-
iments. Instead a fixed latency of 20 cycles was used to
conservatively estimate the effect of the L2 cache. Ongoing
simulations include detailed L2 and DRAM models where
it appears that a 512kbyte L2 cache shows good hit rates.
Although those simulations are not complete, initial indica-
tions are that our estimate was, in fact, conservative. The
ongoing simulations are currently showing memory band-
widths between L1 cache and the register file that range from
10-100 GB/s depending on the size of the scene. The L2-
L1 bandwith ranges from 4-50 GB/s, and DRAM-L2 from

11

TABLE VI
PERFORMANCE COMPARISON FORCONFERENCE AGAINSTCELL AND

RPU. COMPARISON IN FRAMES PER SECOND AND MILLION RAYS PER
SECOND(MRPS). ALL NUMBERS ARE FOR SHADING WITH SHADOWS.

TRAX AND RPUNUMBERS ARE FOR1024×768 IMAGES. CELL NUMBERS

ARE FOR1024×1024IMAGES AND SO THECELL IS BEST COMPARED

USING THE MRPS METRIC WHICH FACTORS OUT IMAGE SIZE.

TRaX IBM Cell[29] RPU[35]
130nm 65nm 1 Cell 2 Cells DRPU4 DRPU8

fps 31.9 112.3 20.0 37.7 27.0 81.2
mrps 50.2 177 41.9 79.1 42.4 128
process 130nm 65nm 90nm 90nm 130nm 90nm
area (mm2) ≈ 200 ≈ 200 ≈ 220 ≈ 440 ≈ 200 ≈ 190
Clock 500MHz 500MHz 3.2GHz 3.2GHz 266MHz 400MHz

250Mb/s to 6GB/s for reads. These clearly cover a broad range
depending on the size and complexity of the scene, and we are
currently running additional simulations to better understand
the memory system.

The I-caches are modeled as 8kbyte direct mapped caches,
but because the code size of our current applications is small
enough to fit in those caches, we assume they are fully warmed
and that all instruction reference come from those caches.
The ongoing, more detailed simulations do not make this
assumption, but because of the current code size there are
few impacts of L1 I-cache on processing times.

4) Comparison:Comparing against the Saarland RPU [34],
[35], our frame rates are higher in the same technology, and
our flexibility is enhanced by allowing all parts of the ray
tracing algorithm to be programmable instead of just the
shading computations. This allows our application to use (for
example) any acceleration structure and primitive encoding,
and allows the hardware to be used for other applications that
share the thread-rich nature of ray tracing.

A ray tracing application implemented on the cell processor
[29] shows moderate performance as well as the limitations
of an architecture not specifically designed for ray tracing.
In particular our hardware allows for many more threads
executing in parallel and trades off strict limitations on the
memory hierarchy. The effect can be seen in the TRaX
performance at 500MHz compared to Cell performance at
3.2GHz. Table VI shows these comparisons.

B. Secondary Ray Performance

We call the initial rays that are cast from the eye-point into
the scene to determine visibility “visibility rays” (sometimes
these are called “primary rays”) and all other rays that are
recursively cast from that first intersection point “secondary
rays.” This is something of a misnomer, however, because it
is these secondary rays, used to compute optical effects, that
differentiate ray traced images from images computed using
a z-buffer. The secondary rays are not less important then the
visibility rays. They are in fact the essential rays that enable
the highly realistic images that are the hallmark of ray tracing.
We believe that any specialized hardware for ray tracing must
be evaluated for its ability to deal with these all-important
secondary rays.

A common approach to accelerating visibility rays is to use
“packets” of rays to amortize cost across sets of rays [56], [23],

[57]. However, secondary rays often lose the coherency that
makes packets effective and performance suffers on the image
as a whole. Thus, an architecture that accelerates individual ray
performance without relying on packets could have a distinct
advantage when many secondary rays are desired.

To study this effect we use our path tracer application,
which we have designed so that we can control the degree
of incoherence in the secondary rays (see Section IV-B). We
do this by controlling the sampling cone angle for the cosine-
weighted Lambertian BRDF used to cast secondary rays.

We compare our path tracer to Manta, a well-studied packet
based ray/path tracer [57]. Manta uses packets for all levels of
secondary rays unlike some common ray tracers that only use
packets on primary rays. The packets in Manta shrink in size
as ray depth increases, since some of the rays in the packet
become uninteresting. We modified Manta’s path tracing mode
to sample secondary rays using the same cone angles as in our
TRaX path tracer so that comparisons could be made.

Manta starts with a packet of 64 rays. At the primary level,
these rays will be fairly coherent as they come from a common
origin (the camera) and rays next to each other in pixel space
have a similar direction. Manta intersects all of the rays in
the packet with the scene bounding volume hierarchy (BVH)
using the DynBVH algorithm [22]. It then repartitions the
ray packet in memory based on which rays hit and which
do not. DynBVH relies on coherence with a frustum-based
intersection algorithm and by using SSE instructions in groups
of four for ray-triangle intersection tests. If rays in the packet
remain coherent then these packets will stay together through
the BVH traversal and take advantage of SSE instructions and
frustum-culling operations. However, as rays in the packet
become incoherent they will very quickly break apart, and
almost every ray will be traversed independently.

To test how our path tracer performs relative to the level
of coherence of secondary rays we ran many simulations
incrementally increasing the angle of our sampling cone and
measuring rays per second and speedup (slowdown) as the
angle was increased and secondary rays become less coherent.
For all of our tests, we used a ray depth of three (one primary
ray, and two secondary rays). We believe that three rays
taken randomly on a hemisphere is sufficient for complete
incoherence and will allow secondary rays to bounce to any
part of the scene data. This will cause successive rays to have
a widely ranging origin and direction, and packets will become
very incoherent.

With a cone angle close to 0 degrees, secondary rays will be
limited to bouncing close to the normal which will force rays
to a limited area of the scene. In a packet based system using a
narrow cone angle successive samples will have a much higher
probability of hitting the same BVH nodes as other samples
in the packet allowing for multiple rays to be traced at the
same time with SIMD instructions. Increasing the angle of
the cone will decrease this probability allowing for fewer,if
any, SIMD advantages. With a cone angle of 180 degrees a
packet of secondary rays will be completely incoherent and
the probability of multiple rays hitting the same primitives is
very slim. We used the same cone angle sampling scheme in
Manta, and tested TRaX versus Manta on common benchmark

12

scenes to show the degrees of slowdown that each path tracer
suffers as rays become incoherent.

As explained above, we used a fixed ray depth of three. We
varied the size of the image and the number of samples per
pixel and gathered data for the number of rays per second for
each test for both path tracers. For TRaX we also recorded L1
cache hit rates and thread issue rates within the single corethat
was simulated. The images themselves can be seen in Figure 3
with data about the images shown in Table I.

Our primary interest is the speed for each path tracer
relative to itself as the cone angle is modified. The results
are shown in Table VII. We show that as the secondary rays
become incoherent the TRaX architecture slows to between
97% and 99% of the speed with a narrow cone angle. On
the other hand, the Manta path tracer on the same scene with
the same cone angles slows to between 47% to 53% of its
speed on the narrow angle cone. We believe that this validates
our approach of accelerating single-ray performance without
relying on packets and SIMD instructions.

In addition to showing that the TRaX architecture maintains
performance better than a packet-based path tracer in the face
of incoherent secondary rays, we need to verify that this is
not simply due to TRaX being slow overall. So, we also
measure millions of rays per second (MRPS) in each of the
path tracers. The Manta measurements are made by running
the code on one core of a an Intel Core2 Duo machine running
at 2.0GHz. The TRaX numbers are from our cycle-accurate
simulator assuming a 500MHz speed and using just a single
core with 32 thread processors. We expect these numbers to
scale very well as we tile multiple cores on a single die. As
mentioned in Section III, chips with between 22 to 78 cores
per die would not be unreasonable.

In order to show why TRaX slows down as it does, we also
include the cache hit rate from our simulator, and the average
percentage of total threads issuing per cycle in Table VII. As
the cone angle increases, rays are allowed to bounce with a
wider area of possible directions, thus hitting a larger range
of the scene data. With a smaller cone angle, subsequent rays
are likely to hit the same limited number of triangles, allowing
them to stay cached. As more threads are required to stall due
to cache misses, we see fewer threads issuing per cycle. This
is a smaller thread-issue percentage than we saw in previous
work [7] which indicates that smaller cores (cores with fewer
Thread Processors) may be interesting for path tracing.

Because of the time required to run a cycle-accurate simula-
tion the results from this paper are restricted to relatively low
resolution and ray depth. However, if we consider the effect
of dynamic ray depth computations on an average scene, rays
often lose enough energy to be cut off on or before three
bounces especially if Russian-Roulette is employed. If deeper
ray depths are required this would likely have the effect of
improving the TRaX advantage over a packet-based path tracer
like Manta as the percentage of incoherent rays would increase
(the primary rays would be a smaller percentage of the total
rays cast).

VII. C ONCLUSION

We have shown that a simple, yet powerful, multicore
multi-threaded architecture can perform real-time ray tracing
running at modest clock speeds on achievable technology. By
exploiting the coherence among primary rays with similar
direction vectors, the cache hit rate is very high, even for small
caches. There is still potential to gain even more benefit from
primary ray coherence by assigning nearby threads regions of
the screen according to a space filling curve.

With the help of our cycle-accurate simulator we expect
to improve the performance of our system along many di-
mensions. In particular, there may be potential for greater
performance by using a streaming memory model for an
intelligently selected subset of memory accesses in parallel
with the existing cache memory. Ray/BVH intersection in
particular will likely benefit dramatically from such a memory
system [58]. We will also improve the memory system in the
simulator to more accurately simulate L2 cache performance.

It is, of course, not completely clear yet that our non-SIMD
approach is superior to a SIMD approach. The main overhead
of a non-SIMD core is replication of the I-cache and decode
logic. We are currently exploring sharing a multi-banked I-
cache among a number of thread processors to amortize this
overhead. However, the size of the I-caches are small com-
pared to the D-caches and the functional units so we believe
that the general overhead of including more I-caches for a
non-SIMD approach will be fairly small. More importantly,
the performance advantage on non-coherent secondary rays
seems to be large and TRaX seems to scale well for these
very important rays.

In order to explore whether our TRaX architecture per-
forms well with incoherent secondary rays we implemented
a path tracer with an artificially narrowed Lambertian BRDF
benchmark as a simple way to quantify ray coherence. We
find that TRaX has only minor slowdown of 97% to 99%
of top speed on our test scenes when the secondary rays
become highly incoherent. Manta slowed down to 47% to 53%
of top speed on the same scenes with the same mechanism
for controlling coherency. We attribute the difference to the
overhead of dealing with small packets and the breakdown of
the SIMD operation as the packets become highly incoherent.

We are in the process of improving our ray tracing ap-
plications to drive architectural exploration further. The goal
is to allow for Cook style ray tracing [59] with support for
multisampling. We will also add support for image based
textures as a comparison against procedural textures, and
explore hardware support for gradient noise used in procedural
textures. Some researchers anticipate that a strong niche for
real time ray tracing will involve shallow ray trees (i.e. few
reflections), and mostly procedural textures [50]. Procedural
textures using, for example, Perlin noise techniques [47],[48]
increase FP ops by about 50% in the worst case, but have
a negligible impact on memory bandwidth. This can have a
positive impact on performance by trading computation for
memory bandwidth.

We have described an architecture which achieves physi-
cally realistic, real-time ray tracing with realistic sizecon-

13

TABLE VII
RESULTS ARE REPORTED FOR THE CONFERENCE AND SPONZA SCENES AT TWO DIFFERENT RESOLUTIONS WITH A DIFFERENT NUMBER OF RAYS PER

PIXEL. PATH TRACED IMAGES USE A FIXED RAY DEPTH OF THREE. TRAX RESULTS ARE FOR A SINGLE CORE WITH32 THREAD PROCESSORS RUNNING
AT A SIMULATED 500 MHZ. WE EXPECT THESE NUMBERS TO SCALE WELL AS THE NUMBER OFTRAX CORES IS INCREASED. MANTA NUMBERS ARE

MEASURED RUNNING ON A SINGLE CORE OF ANINTEL CORE2 DUO AT 2.0GHZ. SPEED RESULTS ARE NORMALIZED TO PATH TRACING WITH A10
DEGREE CONE.

Conference: 256×256 with 4 samples per pixel
ray casting only 10 degrees 60 degrees 120 degrees 180 degrees

Manta MRPS 1.61 0.8625 0.5394 0.4487 0.4096
Manta speed 1.87 1 0.63 0.52 0.47
TRaX MRPS 1.37 1.41 1.43 1.43 1.40
TRaX speed .97 1 1.01 1.01 0.99
Cache hit % 88.9 85.1 83.9 83.5 83.2
Thread issue % 52.4 52.4 52.5 52.5 52.4

Sponza: 128×128 with 10 samples per pixel
ray casting only 10 degrees 60 degrees 120 degrees 180 degrees

Manta MRPS 1.391 0.7032 0.4406 0.3829 0.3712
Manta speed 1.98 1 0.63 0.54 0.53
TRaX MRPS 0.98 1.01 0.98 0.97 0.98
TRaX speed 0.97 1 0.97 0.96 0.97
Cache hit % 81.5 77.4 76.3 76.0 76.0
Thread issue % 50.6 50.9 50.9 50.7 50.9

straints. Our evaluation has shown that TRaX performs com-
petitively or outperforms other ray tracing architectures, and
does so with greater flexibility at the programming level.

ACKNOWLEGEMENT

The authors thank the other current and former members
of the HWRT group: Solomon Boulos, Al Davis, Spencer
Kellis, Steve Parker, Karthik Ramani, and Pete Shirley. This
material is based upon work supported by the National Science
Foundation under Grant No. CCF0541009.

REFERENCES

[1] E. Catmull, “A subdivision algorithm for computer display of curved
surfaces,” Ph.D. dissertation, University of Utah, December 1974.

[2] T. Whitted, “An improved illumination model for shaded display,”
Communications of the ACM, vol. 23, no. 6, pp. 343–349, 1980.

[3] A. Glassner, Ed.,An introduction to ray tracing. London: Academic
Press, 1989.

[4] P. Shirley and R. K. Morley,Realistic Ray Tracing. Natick, MA: A.
K. Peters, 2003.

[5] D. S. Immel, M. F. Cohen, and D. P. Greenberg, “A radiositymethod
for non-diffuse environments,” inProceedings of SIGGRAPH, 1986, pp.
133–142.

[6] J. T. Kajiya, “The rendering equation,” inProceedings of SIGGRAPH,
1986, pp. 143–150.

[7] J. Spjut, D. Kopta, S. Boulos, S. Kellis, and E. Brunvand,“TRaX:
A multi-threaded architecture for real-time ray tracing,”in 6th IEEE
Symposium on Application Specific Processors (SASP), June 2008.

[8] E. Lafortune and Y. D. Willems, “Bi-directional path-tracing,” in Pro-
ceedings of Compugraphics, Portugal, December 1993, pp. 145–153.

[9] D. Kopta, J. Spjut, E. Brunvand, and S. Parker, “Comparing incoherent
ray performance of TRaX vs. Manta,” inIEEE Symposium on Interactve
Ray Tracing (RT08), August 2008.

[10] D. P. Greenberg, K. E. Torrance, P. Shirley, J. Arvo, E. Lafortune, J. A.
Ferwerda, B. Walter, B. Trumbore, S. Pattanaik, and S.-C. Foo, “A
framework for realistic image synthesis,” inProceedings of SIGGRAPH,
1997, pp. 477–494.

[11] J. H. Clark, “The geometry engine: A vlsi geometry system for graph-
ics,” in SIGGRAPH ’82: Proceedings of the 9th annual conference on
Computer graphics and interactive techniques. New York, NY, USA:
ACM Press, 1982, pp. 127–133.

[12] J. Poulton, H. Fuchs, J. D. Austin, J. G. Eyles, J. Heineche, C. Hsieh,
J. Goldfeather, J. P. Hultquist, and S. Spach, “PIXEL-PLANES: Building
a VLSI based raster graphics system,” inChapel Hill Conference on
VLSI, 1985.

[13] H. Fuchs, J. Goldfeather, J. P. Hultquist, S. Spach, J. D. Austin,
J. Frederick P. Brooks, J. G. Eyles, and J. Poulton, “Fast spheres,
shadows, textures, transparencies, and imgage enhancements in pixel-
planes,” inSIGGRAPH ’85: Proceedings of the 12th annual conference
on Computer graphics and interactive techniques. New York, NY,
USA: ACM Press, 1985, pp. 111–120.

[14] M. Deering, S. Winner, B. Schediwy, C. Duffy, and N. Hunt, “The
triangle processor and normal vector shader: a vlsi system for high
performance graphics,” inSIGGRAPH ’88: Proceedings of the 15th
annual conference on Computer graphics and interactive techniques.
New York, NY, USA: ACM Press, 1988, pp. 21–30.

[15] ATI, “Ati products from AMD,” http://ati.amd.com/products/index.html.
[16] nVidia Corporation, www.nvidia.com.
[17] T. J. Purcell, I. Buck, W. R. Mark, and P. Hanrahan, “Ray tracing

on programmable graphics hardware,”ACM Transactions on Graphics,
vol. 21, no. 3, pp. 703–712, 2002.

[18] D. Balciunas, L. Dulley, and M. Zuffo, “Gpu-assisted ray casting
acceleration for visualization of large scene data sets,” in Proceedings
of the IEEE Symposium on Interactive Ray Tracing RT06, sep 2006.

[19] J. Günther, S. Popov, H.-P. Seidel, and P. Slusallek, “Realtime ray
tracing on GPU with BVH-based packet traversal,” inProceedings of
the IEEE/Eurographics Symposium on Interactive Ray Tracing RT07,
Sep. 2007, pp. 113–118.

[20] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “Nvidia tesla:
A unified graphics and computing architecture,”Micro, IEEE, vol. 28,
no. 2, pp. 39–55, March-April 2008.

[21] nVidia SIGGRAPH Ray Tracing Demo, August 2008,
http://developer.nvidia.com/object/nvision08-IRT.html.

[22] I. Wald, S. Boulos, and P. Shirley, “Ray Tracing Deformable Scenes
using Dynamic Bounding Volume Hierarchies,”ACM Transactions on
Graphics, vol. 26, no. 1, 2007.

[23] S. Boulos, D. Edwards, J. D. Lacewell, J. Kniss, J. Kautz, P. Shirley,
and I. Wald, “ Packet-based Whitted and Distribution Ray Tracing,” in
Proc. Graphics Interface, May 2007.

[24] D. Koufaty and D. T. Marr, “Hyperthreading technology in the netburst
microarchitecture,”IEEE Micro, vol. 23(2), pp. 56–65, March-April
2003.

[25] R. Kalla, B. Sinharoy, and J. M. Tendler, “IBM Power5 chip: a dual-core
multithreaded processor,”IEEE Micro, vol. 24(2), pp. 40–47, March-
April 2004.

[26] P. Kongetira, K. Aingaran, and K. Olukotun, “Niagara: A32-Way
Multithreaded Sparc Processor,”IEEE Micro, vol. 25(2), pp. 21–29,
March-April 2005.

14

[27] IBM, “The Cell project at IBM research,”
http://www.research.ibm.com/cell.

[28] H. P. Hofstee, “Power efficient processor architectureand the cell pro-
cessor,” inHPCA ’05: Proceedings of the 11th International Symposium
on High-Performance Computer Architecture, 2005.

[29] C. Benthin, I. Wald, M. Scherbaum, and H. Friedrich, “Ray Tracing
on the CELL Processor,” inProceedings of the IEEE Symposium on
Interactive Ray Tracing RT06, Sep. 2006.

[30] H. Kobayashi, K. Suzuki, K. Sano, and N. O. ba, “Interactive Ray-
Tracing on the 3DCGiRAM Architecture,” inProceedings of ACM/IEEE
MICRO-35, 2002.

[31] D. Hall, “The AR350: Today’s ray trace rendering processor,” in Pro-
ceedings of the EUROGRAPHICS/SIGGRAPH workshop on Graphics
Ha rdware - Hot 3D Session, 2001.

[32] J. Schmittler, I. Wald, and P. Slusallek, “SaarCOR – A Hardware
Architecture for Realtime Ray-Tracing,” inProceedings of EURO-
GRAPHICS Workshop on Graphics Hardware, 2002, available at
http://graphics.cs.uni-sb.de/Publications.

[33] J. Schmittler, S. Woop, D. Wagner, P. Slusallek, and W. J. Paul, “Real-
time ray tracing of dynamic scenes on an FPGA chip,” inProceedings
of Graphics Hardware, 2004, pp. 95–106.

[34] S. Woop, J. Schmittler, and P. Slusallek, “RPU: a programmable ray
processing unit for realtime ray tracing,” inProceedings of International
Conference on Computer Graphics and Interactive Techniques, 2005, pp.
434–444.

[35] S. Woop, E. Brunvand, and P. Slusallak, “Estimating performance of
an ray tracing ASIC design,” inIEEE Symposium on Interactive Ray
Tracing (RT06), September 2006.

[36] V. Govindaraju, P. Djeu, K. Sankaralingam, M. Vernon, and W. R.
Mark, “Toward a multicore architecture for real-time ray-tracing,” in
IEEE/ACM International Conference on Microarchitecture, October
2008.

[37] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey,
S. Junkins, A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski,
T. Juan, and P. Hanrahan, “Larrabee: A many-core x86 architecture
for visual computing,”ACM Transactions on Graphics, vol. 27, no. 3,
August 2008.

[38] E. Reinhard, C. Hansen, and S. Parker, “Interactive raytracing of time
varying data,” in Eurographics Workshop on Parallel Graphics and
Visualization, 2002, pp. 77–82.

[39] S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P.-P. Sloan, “Interactive
ray tracing for isosurface rendering,” inProceedings of IEEE Visualiza-
tion, 1998, pp. 233–238.

[40] W. Martin, P. Shirley, S. Parker, W. Thompson, and E. Reinhard,
“Temporally coherent interactive ray tracing,”Journal of Graphics Tools,
vol. 7, no. 2, pp. 41–48, 2002.

[41] D. Luebke, B. Watson, J. D. Cohen, M. Reddy, and A. Varshney, Level
of Detail for 3D Graphics. New York: Elsevier Science Inc., 2002.

[42] M. Anid, N. Bagherzadeh, N. Tabrizi, H. Du, and M. S.-E. M.,
“Interactive ray tracing using a simd reconfigurable architecture,” sbac-
pad, vol. 0, p. 0020, 2002.

[43] H. Du, A. Sanchez-Elez, N. Tabrizi, N. Bagherzadeh, M. Anido, and
M. Fernandez, “Interactive ray tracing on reconfigurable simd mor-
phosys,”Design Automation Conference, 2003. Proceedings of the ASP-
DAC 2003. Asia and South Pacific, pp. 471–476, 21-24 Jan. 2003.

[44] The RenderMan Interface,
http://renderman.pixar.com/products/rispec/rispecpdf/RISpec32.pdf.

[45] P. Shirley,Fundamentals of Computer Graphics. Natick, MA, USA:
A. K. Peters, Ltd., 2002.

[46] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes,Computer
graphics: principles and practice (2nd ed.). Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1990.

[47] K. Perlin, “An image synthesizer,”ACM SIGGRAPH Computer Graph-
ics, vol. 19, no. 3, pp. 287–296, 1985.

[48] J. C. Hart, “Perlin noise pixel shaders,” inHWWS ’01: Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware.
New York, NY, USA: ACM Press, 2001, pp. 87–94.

[49] K. Perlin, “Improving noise,”ACM Transactions on Graphics, vol. 21,
no. 3, pp. 681–682, 2002.

[50] P. Shirley, K. Sung, E. Brunvand, A. Davis, S. Parker, and S. Boulos,
“Rethinking graphics and gaming courses because of fast raytracing,”
in SIGGRAPH ’07: ACM SIGGRAPH 2007 educators program, 2007.

[51] F. E. Nicodemus, “Directional reflectance and emissivity of an opaque
surface,” Appl. Opt., vol. 4, no. 7, p. 767, 1965. [Online]. Available:
http://ao.osa.org/abstract.cfm?URI=ao-4-7-767

[52] G. J. Ward, “Measuring and modeling anisotropic reflection,” in SIG-
GRAPH ’92: Proceedings of the 19th annual conference on Computer
graphics and interactive techniques. New York, NY, USA: ACM, 1992,
pp. 265–272.

[53] D. Burger and T. Austin, “The Simplescalar Toolset, Version 2.0,”
University of Wisconsin-Madison, Tech. Rep. TR-97-1342, June 1997.

[54] “Synopsys inc.” http://www.synopsys.com.
[55] “Artisan cmos standard cells,” Available from ARM Ltd.,

http://www.arm.com/products/physicalip/standardcell.html.
[56] I. Wald, P. Slusallek, C. Benthin, and M. Wagner, “Interactive rendering

with coherent ray tracing,” inComputer Graphics Forum (Proc. EURO-
GRAPHICS 2001), vol. 20, no. 3, 2001, pp. 153–164.

[57] J. Bigler, A. Stephens, and S. Parker, “Design for parallel interactive
ray tracing systems,”Interactive Ray Tracing 2006, IEEE Symposium
on, pp. 187–196, Sept. 2006.

[58] C. Gribble and K. Ramani, “Coherent ray tracing via stream filtering,”
in IEEE Symposium on Interactive Ray Tracing (RT08), August 2008.

[59] R. L. Cook, T. Porter, and L. Carpenter, “Distributed ray tracing,” in
Proceedings of SIGGRAPH, 1984, pp. 165–174.

Josef Spjut received the B.S. degree from the
University of California, Riverside in Riverside, Cal-
ifornia in 2006 in Computer Engineering.

He is currently a Ph.D. student at the University of
Utah in Salt Lake City, Utah. His research interests
include computer architecture, VLSI circuits, and
computer graphics.

Andrew Kensler is a Ph.D. student in the School of
Computing at the University of Utah and a research
assistant with the Scientific Computing and Imaging
(SCI) Institute. He received the B.A. degree in
computer science from Grinnell College in 2001.
His research focuses on interactive ray tracing, with
interests in hardware ray tracing and photorealistic
rendering.

Daniel Kopta received the M.S. degree from the
University of Utah in 2008. He is currently a Ph.D.
student, also at the University of Utah, Salt Lake
City, Utah. His research interests are in computer
graphics, ray tracing, and machine learning.

Erik Brunvand received the M.S. degree from the
University of Utah, Salt Lake City, Utah in 1984 and
the Ph.D. degree from Carnegie Mellon University,
Pittsburgh, Pennsylvania in 1991.

He is currently an Associate Professor in the
School of Computing at the University of Utah in
Salt Lake City, Utah. His research interests include
computer architecture, VLSI circuits, asynchronous
and self-timed circuits and systems, and computer
graphics.

