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Abstract— Ray tracing efficiently models complex illumina-
tion effects to improve visual realism in computer graphics.
Typical modern GPUs use wide SIMD processing, and have
achieved impressive performance for a variety of graphics
processing including ray tracing. However, SIMD efficiency can
be reduced due to the divergent branching and memory access
patterns that are common in ray tracing codes. This paper
explores an alternative approach using MIMD processing cores
custom-designed for ray tracing. By relaxing the requirement
that instruction paths be synchronized as in SIMD, caches
and less frequently used area expensive functional units may
be more effectively shared. Heavy resource sharing provides
significant area savings while still maintaining a high MIMD
issue rate from our numerous light-weight cores. This paper
explores the design space of this architecture and compares
performance to the best reported results for a GPU ray tracer
and a parallel ray tracer using general purpose cores. We show
an overall performance that is six to ten times higher in a
similar die area.

I. INTRODUCTION

Application specific architectures have proven to be partic-
ularly successful for accelerating computer graphics. Modern
graphics processing units (GPUs) can process huge numbers
of primitive objects (usually triangles) to render complex
scenes. However, significant improvements to the visual
quality of the rendered scenes may require a fundamental
change in the graphics pipeline. Global optical effects that
are the key to enhanced realism are not well supported by
current rasterization-based GPUs. Ray Tracing [1]–[3] is a
different algorithm that is very well suited to highly realistic
rendering.

A number of researchers have leveraged SIMD processing
to enhance the speed of ray tracing (e.g. [4]–[8]), but ray
tracing’s divergent branching and memory access patterns
suggest an alternate approach may be beneficial. In this paper
we consider a MIMD execution model to expose design
options that are well-suited to the ray tracing workload. This
is a fundamental shift from the current commercial GPU-
based approach. We perform a detailed design space explo-
ration using a custom cycle-accurate simulator and a detailed
ray tracing application on a variety of standard benchmark
scenes. We show that by having multiple independent thread
processors customized for ray tracing, overall performance
measured in millions of rays per second (MRPS) can be
extremely high. We also show that the lack of ray synchrony
can be exploited to reduce the complexity of the MIMD ray
processor cores through sharing expensive but infrequently
used functional units and multi-banked caches. The key is
that this lack of synchrony results in reduced stalls from the

shared resources and allows a high instruction issue rate to
be sustained across multiple cores. Our architecture achieves
performance per area (MRPS/mm2) that is 6-10x higher on
average than the best reported results for ray tracing on a
commercial (SIMD) GPU or on a MIMD architecture that
uses general-purpose cores as building blocks.

II. BACKGROUND AND MOTIVATION

Interactive computer graphics today is dominated by
extensions to Catmull’s original Z-buffer rasterization al-
gorithm [9]. These highly specialized graphics processors
stream all image primitives through the rasterization pipeline
using wide SIMD techniques and multiple parallel SIMD
pipelines to boost performance. This type of parallelism is
possible because all primitives in the scene can be processed
independently. However this basic principle becomes a bot-
tleneck for highly realistic images since it limits shading
operations to per-triangle or per-pixel computations and
does not allow direct computation of global effects such
as shadows, transparency, reflections, refractions, or indirect
illumination. Known techniques approximate these effects,
but they can take significant effort and combining them is
non-trivial.

Ray tracing is the major algorithmic alternative to ras-
terization. Ray tracing is relatively simple in principle: At
each pixel a primary ray is sent from the viewer’s eye
point through the screen into the virtual set of objects
and returns information about the closest object hit by that
ray. The pixel is then colored (shaded) based on material
properties, lighting and perhaps using texture lookups or
a procedurally computed texture. Most modern ray tracers
use a hierarchical acceleration structure to prune the scene
prior to ray intersection tests. This results both in divergent
branching behavior for that traversal and in non-coherent
memory access to the scene database. From each point hit
by a primary ray secondary rays can be traced to recursively
determine shadows, reflections, refractions, soft shadows,
diffuse inter-reflections, caustics, depth of field, and other
global optical effects. Ray tracing naturally allows all of
these effects to be combined cleanly. Even systems based
on rasterization as the primary visibility method can benefit
from the addition of ray tracing to provide these global
effects.

Software ray tracers often collect groups of rays into
packets to amortize the cost of cache misses and to use SIMD
extensions that are available on the underlying architecture
(e.g. [4]–[8]. The primary drawback to using wide SIMD for



ray tracing relates to ray coherence. If the rays are processed
together in SIMD bundles, each ray in the bundle must follow
exactly the same code path in order to keep the SIMD packet
intact. Primary rays can be quite coherent, but this quickly
breaks down for secondary rays which rarely have the same
trajectory. The loss of ray coherence reduces consistency in
control-flow branching which can limit SIMD efficiency [6],
[10], [11].

Hardware acceleration for ray tracing can be very broadly
categorized into SIMD approaches [11]–[17] and MIMD
approaches [18]–[22]. In some sense the endpoints of this
continuum of approaches are well represented by Aila et
al.’s detailed exploration of ray tracing on existing SIMD
GPU hardware [11] which represents the best GPU ray
tracing performance reported to date, and Govindaraju et
al.’s exploration of a MIMD approach called Copernicus
using a tiled architecture of general-purpose cores [18].
The Aila paper describes a detailed analysis of how a ray
tracer interacts with the NVIDIA GT200 architecture [23],
specifically looking in detail at the efficiency of the 32-
way SIMD used in that architecture, and how primary and
secondary rays behave differently. The Govindaraju paper
looks at how a more general purpose core, based on the
Intel Core2, could be used in a tiled MIMD architecture
to support ray tracing using their Razor ray tracing appli-
cation [24]. Although these two approaches to improving
ray tracing performance are extremely different, they end
up with remarkably similar performance when scaled for
performance/area (see Table IV). Mahesri et al proposed a
custom MIMD architecture similar to ours, but for a broader
range of benchmarks, and with fewer shared resources [25].
This requires them to consider more advanced architectural
features such as thread synchronization and communication,
out-of-order execution, and branch prediction. Given the
unpredictable and “embarassingly parallel” nature of ray
tracing, these features are either not required, or may be
an inefficient use of area. We believe that simplifying the
architecture, sharing functional units, and providing more
customization specifically for ray tracing can dramatically
increase performance/area. We therefore explore a MIMD ar-
chitectural approach, but with lightweight thread processors
that aggressively share resources. We compare with other
designs using, as much as possible, the same benchmark
scenes and the same shading computations.

III. ARCHITECTURAL EXPLORATION PROCEDURE

The main architectural challenge in the design of a ray
tracing processor is to provide support for the many inde-
pendent ray-threads that must be computed for each frame.
Estimates for scenes with moderately high quality global
lighting range from 4M to 40M rays/image [11], [18], [19].
At even a modest real-time frame rate of 30Hz. This means
that performance in the range of 120 to 1200 MRPS will
be desirable. Our approach is to optimize single-ray MIMD
performance. This single-ray programming model loses some
primary ray performance. However, it makes up for this
by handling secondary rays nearly as efficiently as primary

rays, which SIMD style ray tracers struggle with. In addition
to providing high performance, this approach can also ease
application development by reducing the need to orchestrate
coherent ray bundles.

We analyze our architectural options using four standard
ray tracing benchmark scenes, shown in Figure 1, that
provide a representative range of performance characteristics,
and were also reported in [11]. Our design space exploration
is based on 128x128 resolution images with one primary
ray and one shadow ray per pixel. This choice reduces
simulation complexity to permit analysis of an increased
number of architectural options. The low resolution will have
the effect of reducing primary ray coherence, but with the
beneficial side-effect of steering our exploration towards a
configuration that is tailored to the important incoherent rays.
However our final results are based on the same images, the
same image sizes, the same mixture of rays, and the same
shading computations as reported for the SIMD GPU [11].
Our overall figure of merit is performance per area, reported
as MRPS/mm2, and is compared with other designs for which
area is either known or estimable.

Our overall architecture is similar to Copernicus [18] in
that it consists of a MIMD collection of processors. However,
it actually has more in common with the GT200 [23] GPU
architecture in the sense that it consists of a number of small,
optimized, in-order cores collected into a processing cluster
that shares resources. Those processing clusters (Streaming
Multiprocessors (SMs) for GT200, and Thread Multiproces-
sors (TMs) in our case) are then tiled on the chip with
appropriate connections to chip-wide resources. The main
difference is that our individual cores can each be executing
a different thread rather than being tied together in wide
SIMD “warps.”

The lack of synchrony between ray threads reduces re-
source sharing conflicts between the cores and reduces the
area and complexity of each core. With a shared multi-
banked Icache, the cores quickly reach a point where they
are each accessing a different bank. Shared functional unit
conflicts can be similarly reduced. Given the appropriate
mix of shared resources and low-latency Dcache accesses,
we can sustain a high instruction issue rate without relying
on latency hiding via thread context switching. This results
in a different ratio of registers to functional resources for
the cores in our TMs. The GPU approach involves sharing
a number of thread states per core, only one of which
can attempt to issue on each cycle. Our TMs contain one
thread state per core, each of which can potentially issue
an instruction to a private per-core FU or one of the shared
FUs. We believe this single thread-state approach is a more
efficient use of register resources.

We rely on asynchrony to sustain a high issue rate to our
heavily shared resources, which enables simpler cores with
reduced area, breaking the common wisdom that the SIMD
approach is more area efficient than the MIMD model for
ray tracing. It should be noted that this asynchrony is fine-
grained and occurs only at the instruction level. Threads do
not get significantly out of sync on the workload as a whole,
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Fig. 1. Test scenes used to evaluate performance

thus maintaining coherent access to the scene data structure,
and results in high cache hit rates.

Our exploration procedure defines an unrealistic,
exhaustively-provisioned MIMD multiprocessor as a starting
point. This serves as an upper bound on raw performance,
but requires an unreasonable amount of chip area. We then
explore various multi-banked Dcaches and sharing Icaches
using Cacti v6.5 to provide area and speed estimates for
the various configurations [26]. Next, we consider sharing
large functional units which are not heavily used in order
to reduce area with a minimal performance impact. Finally
we explore a chip-wide configuration that uses shared L2
caches for a number of TMs.

Our simulation infrastructure includes a custom cycle-
accurate simulator that runs our ray tracing test application.
This application can be run as a simple ray tracer with
ambient occlusion, or as a path tracer which enables more
detailed global illumination effects using Monte-Carlo sam-
pled Lambertian shading [3] which generates many more
secondary rays. Our ray tracer supports fully programmable
shading and texturing and uses a bounding volume hierarchy
acceleration structure. In this work we use the same shading
techniques as in [11], which do not include image-based
texturing. Our test application was written in C++ and
compiled with a custom compiler based on LLVM [27].

A. Thread Multiprocessor (TM) Design

Our baseline TM configuration is designed to provide
an upper bound on the thread issue rate. Because we have
more available details of their implementation our primary
comparison is against the NVIDIA GTX285 [11] of the
GT200 architecture family. The GT200 architecture operates
on 32-thread SIMD “warps.” The “SIMD efficiency” metric
is defined in [11] to be the percentage of SIMD threads
that perform computations. Note that some of these threads
perform speculative branch decisions which may perform
useless work, but this work is always counted as efficient.
In our architecture the equivalent metric is thread issue rate.
This is the average number of independent cores that can
issue an instruction on each cycle. These instructions always
perform useful work. The goal is to have thread issue rates as
high or higher than the SIMD efficiency reported on highly

optimized SIMD code. This implies an equal or greater level
of parallelism, but with more flexibility and due to our unique
architecture, less area.

We start with 32 cores in a TM to be comparable to
the 32 thread warp in a GT200 SM. Each core processor
has 128 registers, issues in order, and employs no branch
prediction. To discover the maximum possible performance
achievable, each initial core will contain all of the resources
that it can possibly consume. In this configuration, the data
caches are overly large (enough capacity to entirely fit the
dataset for two of our test scenes, and unrealistically large for
the others), with one bank per core. There is one functional
unit (FU) of each type available for every core. Our ray
tracing code footprint is relatively small, which is typical
for most advanced interactive ray tracers (ignoring custom
artistic material shaders) [2], [3] and is similar in size to the
ray tracer evaluated in [11]. Hence the Icache configurations
are relatively small and therefore fast enough to service two
requests per cycle at 1GHz according to Cacti v6.5 [26], so
16 instruction caches are sufficient to service the 32 cores.
This configuration provides an unrealistic best-case issue rate
for a 32-core TM.

Table I shows the area of each functional component in a
65nm process, and the total area for a 32 core TM, sharing
the multi-banked Dcache and the 16 single-banked Icaches.
Memory area estimates are from Cacti v6.51. Memory la-
tency is also based on Cacti v6.5: 1 cycle to L1, 3 cycles to
L2, and 300 cycles to main memory. FU area estimates are
based on synthesized versions of the circuits using Synop-
sys DesignWare/Design Compiler and a commercial 65nm
CMOS cell library. These functional unit area estimates are
conservative as a custom-designed functional unit would
certainly have smaller area. All cells are optimized by Design
Compiler to run at 1GHz and multi-cycle cells are fully
pipelined. The average core issue rate is 89% meaning that
an average of 28.5 cores are able to issue on every cycle.
The raw performance of this configuration is very good, but
the area is huge. The next step is to reduce core resources
to save area without sacrificing performance. With reduced

1We note that Cacti v6.5 has been specifically enhanced to provide more
accurate size estimates than previous versions for relatively small caches of
the type we are proposing.



TABLE I
FEATURE AREAS AND PERFORMANCE FOR THE BASELINE

OVER-PROVISIONED 1GHZ 32-CORE TM CONFIGURATION. IN THIS

CONFIGURATION EACH CORE HAS A COPY OF EVERY FUNCTIONAL UNIT.

Unit Area Cycles Total Area
(mm2) (mm2)

4MB Dcache (32 banks) 1 33.5
4KB Icaches 0.07 1 1.12
128x32 RF 0.019 1 0.61
FP InvSqrt 0.11 16 3.61
Int Multiply 0.012 1 0.37
FP Multiply 0.01 2 0.33
FP Add/Sub 0.003 2 0.11
Int Add/Sub 0.00066 1 0.021
FP Min/Max 0.00072 1 0.023
Total 39.69

Avg thread issue MRPS/core MRPS/mm2

89% 5.6 0.14

area the MRPS/mm2 increases and provides an opportunity
to tile more TMs on a chip.

IV. EXPLORING CONSTRAINED RESOURCE
CONFIGURATIONS

We now consider constraining caches and functional units
to evaluate the design points with respect to MRPS/mm2.
Cache configurations are considered before shared functional
units, and then revisited for the final multi-TM chip con-
figuration. All performance numbers in our design space
exploration are averages from the four scenes in Figure 1.

A. Caches

Our baseline architecture shares one or more instruction
caches among multiple cores. Each of these Icaches is
divided into one or more banks, and each bank has a read
port shared between the cores. Our ˜1000-instruction ray
tracer program fits entirely into 4KB instruction caches and
provides a 100% hit-rate while being double pumped at
1 GHz. This is virtually the same size as the ray tracer
evaluated in [11].

Our data cache model provides write-around functionality
to avoid dirtying the cache with data that will never be read.
The only writes the ray tracer issues are to the write-only
frame buffer; this is typical behavior of common ray tracers.
Our compiler stores all temporary data in registers, and does
not use a call stack. Stack traversal is handled with a special
set of registers designated for stack nodes. Because of the
lack of writes to the cache, we achieve relatively high hit-
rates even with small caches, as seen in Figure 2. The data
cache is also banked similarly to the instruction cache. Data
cache lines are 8 4-byte words wide.

We explore L1 Dcache capacities from 2KB to 64KB
and banks ranging from 1 to 32, both in power of 2 steps.
Similarly, numbers and banks of Icaches range from 1 to
16. First the interaction between instruction and data caches
needs to be considered. Instruction starvation will limit
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Fig. 2. L1 data cache performance for a single TM with over-provisioned
functional units and instruction cache.

instruction issue and reduce data cache pressure. Conversely,
perfect instruction caches will maximize data cache pressure
and require larger capacity and increased banking. Neither
end-point will be optimal in terms of MRPS/mm2. This
interdependence forces us to explore the entire space of data
and instruction cache configurations together.

Other resources, such as the FUs, will also have an
influence on cache performance, but the exponential size
of the entire design space is intractable. Since we have
yet to discover an accurate pruning model, we have chosen
to evaluate certain resource types in order. It is possible
that this approach misses the optimal configuration, but our
results indicate that our solution is adequate. After finding
a “best” TM configuration, we revisit Dcaches and their
behavior when connected to a chip-wide L2 Dcache shared
among multiple TMs. For single-TM simulations we pick
a reasonable L2 cache size of 256KB. Since only one TM
is accessing the L2 this results in unrealistically high L2
hit-rates, and diminishes the effect that the L1 hit-rate has
on performance. We rectify this inaccuracy in section IV-C,
but for now this simplified processor, with caches designed
to be as small as possible without having a severe impact
on performance, provides a baseline for examining other
resources, such as the functional units.

B. Shared Functional Units

The next step is to consider sharing lightly used and area-
expensive FUs for multiple cores in a TM. The goal is area
reduction without a commensurate decrease in performance.
Table I shows area estimates for each of our functional
units. The integer multiply, floating-point (FP) multiply, FP
add/subtract, and FP inverse-square-root units dominate the
others in terms of area, thus sharing these units will have
the greatest effect on reducing total TM area. In order to
maintain a reasonably sized exploration space, these are
the only units considered as candidates for sharing. The
other units are too small to have a significant effect on the
performance per area metric.

We ran many thousands of simulations and varied the
number of integer multiply, FP multiply, FP add/subtract
and FP inverse-square-root units from 1 to 32 in powers
of 2 steps. Given N shared functional units, each unit is
only connected to 32/N cores in order to avoid complicated



TABLE II
OPTIMAL TM CONFIGURATIONS IN TERMS OF MRPS/MM2 .

INT FP FP FP MRPS/ Area MRPS/
MUL MUL ADD INV core (mm2) mm2

2 8 8 1 4.2 1.62 2.6
2 4 8 1 4.1 1.58 2.6
2 4 4 1 4.0 1.57 2.6
4 8 8 1 4.2 1.65 2.6

TABLE III
GTX285 SM VS. MIMD TM RESOURCE COMPARISON. AREA

ESTIMATES ARE NORMALIZED TO OUR ESTIMATED FU SIZES FROM

TABLE I, AND NOT FROM ACTUAL GTX285 MEASUREMENTS.

GTX285 MIMD
SM (8 cores) TM (32 cores)

Registers 16384 4096
FPAdds 8 8
FPMuls 8 8

INTAdds 8 32
INTMuls 8 2
Spec op 2 1

Register Area (mm2) 2.43 0.61
Compute Area (mm2) 0.43 0.26

connection logic and area that would arise from full connec-
tivity. Scheduling conflicts to shared resources are resolved
in a round-robin fashion. Figure 3 shows that the number of
FUs can be reduced without drastically lowering the issue
rate, and table II shows the top four configurations that were
found in this phase of the design exploration. All of the top
configurations use the cache setup found in section IV-A:
two instruction caches, each with 16 banks, and a 4KB L1
data cache with 8 banks and approximately 8% of cycles as
data stalls for both our core-wide and chip-wide simulations.

Area is drastically reduced from the original over-
provisioned baseline but performance remains relatively un-
changed. Note that the per-core area is quite a bit smaller
than the area we estimate for a GTX285 core. Table III
compares raw compute and register resources for our TM
compared to a GTX285 SM. This is primarily due to our
more aggressive resource sharing, and our smaller register
file since we do not need to support multithreading in the
same way as the GT200. While many threads on the GT200
are context switched out of activity and do not attempt to
issue, every single thread in our 32 core TM attempts to
issue on each cycle, thereby remaining active. Our design
space included experiments where additional thread contexts
were added to the TMs, allowing context switching from a
stalled thread. These experiments resulted in 3-4% higher
issue rate, but required much greater register area for the
additional thread contexts.

C. Chip Level Organization

Given the TM configurations found in Section IV-B that
have the minimal set of resources required to maintain high

performance, we now explore the impact of tiling many of
these TMs on a chip. Our chip-wide design connects one or
more TMs to an L2 Dcache, with one or more L2 caches on
the chip. Up to this point, all of our simulations have been
single-TM simulations which do not realistically model L1 to
L2 memory traffic. With many TMs, each with an individual
L1 cache and a shared L2 cache, bank conflicts will increase
and the hit-rate will decrease. This will require a bigger, more
highly banked L2 cache. Hit-rate in the L1 will also affect
the level of traffic between the two levels of caches so we
must explore a new set of L1 and L2 cache configurations
with a varying number of TMs connected to the L2.

Once many TMs are connected to a single L2, relatively
low L1 hit-rates of 80-86% reported in some of the candidate
configurations for a TM will likely put too much pressure
on the L2. Figure 4(b) shows the total percentage of cycles
stalled due to L2 bank conflicts for a range of L1 hit-
rates. The 80-86% hit-rate, reported for some initial TM
configurations, results in roughly one third of cycles stalling
due to L2 bank conflicts. Even small changes in L1 hit-rate
from 85% to 90% will have an effect on reducing L1 to L2
bandwidth due to the high number of cores sharing an L2.
We therefore explore a new set of data caches that result in
a higher L1 hit-rate.

We assume up to four L2 caches can fit on a chip with a
reasonable interface to main memory. Our target area is under
200mm2, so 80 TMs (2560 cores) will fit even at 2.5mm2

each. Section IV-B shows a TM area of 1.6mm2 is possible,
and the difference provides room for additional exploration.
The 80 TMs are evenly spread over the multiple L2 caches.
With up to four L2 caches per chip, this results in 80, 40,
27, or 20 TMs per L2. Figure 4(c) shows the percentage of
cycles stalled due to L2 bank conflicts for a varying number
of TMs connected to each L2. Even with a 64KB L1 cache
with 95% hit-rate, any more than 20 TMs per L2 results in
>10% L2 bank conflict stalls. We therefore chose to arrange
the proposed chip with four L2 caches serving 20 TMs each.

Figure 5 shows how individual TMs of 32 threads might
be tiled in conjunction with their L2 caches. The result
of the design space exploration is a set of architectural
configurations that all fit in under 200mm2 and maintain high
performance. A selection of these are shown in Table IV and
are what we use to compare to the best known GPU ray
tracer in Section IV-D. Note that the GTX285 has close to
half the die area devoted to texturing hardware, and none of
the benchmarks reported in [11] or in our own studies use
image-based texturing. Thus it may not be fair to include
texture hardware area in the MRPS/mm2 metric. On the other
hand, the results reported for the GTX285 do use the texture
memory to hold scene data for the ray tracer so although
it is not used for texturing, that memory (which is a large
portion of the hardware) is participating in the benchmarks.

Optimizing power is not a primary goal of this exploration,
and because we endeavor to keep as many units busy
as possible we expect power to be relatively high. Using
energy and power estimates from Cacti v6.5 and Synopsys
DesignWare, we calculated a rough estimate of our chip’s
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total power consumption on the benchmark scenes. Given
the top chip configuration reported in Table IV, and activity
factors reported by our simulator, we roughly estimate a chip
power consumption of 83 watts which we believe is in the
range of power densities for commercial GPUs.

D. Results

To evaluate the results of our design space exploration we
chose two candidate architectures from the top performers:

one with small area (147mm2) and the other with larger area
(175mm2) but higher raw performance (as seen in Table IV).
We ran detailed simulations of these configurations using
the same three scenes as in [11] and using the same mix
of primary and secondary rays. Due to the widely differing
scenes and shading computations used in [11] and [18], a
direct comparison between both architectures is not feasible.
We chose to compare against [11] because it represents the
best reported performance to date for a ray tracer running on
a GPU, and their ray tracing application is more similar to
ours. We do however give a high level indication of the range
of performance for our MIMD architecture, GTX285, and
Copernicus in table IV. In order to show a meaningful area
comparison, we used the area of a GTX280, which uses a
65nm process, and other than clock frequency, is equivalent
to the GTX285. Copernicus area is scaled up from 22nm
to 65nm. Assuming that their envisioned 240mm2 chip is
15.5mm on each side, a straightforward scaling from 22nm
to 65nm would be a factor of three increase on each side, but
due to certain process features not scaling linearly, we use a
more realistic factor of two per side, giving a total equivalent
area of 961mm2 at 65nm. We then scaled clock frequency
from their assumed 4GHz down to the actual 2.33GHz of



TABLE IV
A SELECTION OF OUR TOP CHIP CONFIGURATIONS AND PERFORMANCE COMPARED TO AN NVIDIA GTX285 AND COPERNICUS. COPERNICUS AREA

AND PERFORMANCE ARE SCALED TO 65NM AND 2.33 GHZ TO MATCH THE XEON E5345, WHICH WAS THEIR STARTING POINT. EACH OF OUR MIMD
THREAD MULTIPROCESSORS (TM) HAS 2 INTEGER MULTIPLY, 8 FP MULTIPLY, 8 FP ADD, 1 FP INVSQRT UNIT, AND 2 16-BANKED ICACHES.

L1 L1 L2 L2 L1 L2 Per Cache Bandwidth (GB/s) Thread Area MRPS/
Size Banks Size Banks Hitrate Hitrate L1−>reg L2−>L1 main−>L2 Issue (mm2) MRPS mm2

32KB 4 256KB 16 93% 75% 42 56 13 70% 147 322 2.2
32KB 4 512KB 16 93% 81% 43 57 10 71% 156 325 2.1
32KB 8 256KB 16 93% 75% 43 57 14 72% 159 330 2.1
32KB 8 512KB 16 93% 81% 43 57 10 72% 168 335 2.0
64KB 4 512KB 16 95% 79% 45 43 10 76% 175 341 1.9

GTX285 (area is from 65nm GTX280 version for better comparison) 75% 576 111 0.2
GTX285 SIMD core area only — no texture unit (area is estimated from die photo) 75% ˜300 111 0.37
Copernicus at 22nm, 4GHz, 115 Core2-style cores in 16 tiles 98% 240 43 0.18
Copernicus at 22nm, 4GHz, with their envisioned 10x SW improvement 98% 240 430 1.8
Copernicus with 10x SW improvement, scaled to 65nm, 2.33GHz 98% 961 250 0.26

the 65nm Clovertown core on which their original scaling
was based. The 10x scaling due to algorithmic improvements
in the Razor software used in the Copernicus system is
theoretically envisioned in their paper [18].

The final results and comparisons to GTX285 are shown in
Table V. It is interesting to note that although GTX285 and
Copernicus take vastly different approaches to accelerating
ray tracing, when scaled for performance/area they are quite
similar. It is also interesting to note that although our two
candidate configurations perform differently in terms of raw
performance, when scaled for MRPS/mm2 they offer similar
performance, especially for secondary rays.

When our raw speed is compared to the GTX285 our
configurations are between 2.3x and 5.6x faster for primary
rays (average of 3.5x for the three scenes and two MIMD
configurations) and 2.3x to 9.8x faster for secondary rays
(5.6x average). This supports our view that a MIMD ap-
proach with appropriate caching scales better for secondary
rays than SIMD. We can also see that our thread issue rates
do not change dramatically for primary vs. secondary rays,
especially for the larger of the two configurations. When
scaled for MRPS/mm2 our configurations are between 8.0x
and 19.3x faster for primary rays (12.4x average), and 8.9x
to 32.3x faster for secondary rays (20x average). Even if we
assume that the GTX285 texturing unit is not participating in
the ray tracing, and thus use a 2x smaller area estimate for
that processor, these speed-ups are still approximately 6x-
10x on average. The fact that our MIMD approach is better
in terms of performance per area than the SIMD approach is
non-intuitive at first glance. This is mostly because we keep
our cores very small due to aggressive resource sharing and
by not including extra register resources for multithreading
(see Table III).

We believe that MRPS and MRPS/mm2 are fair units
of measurement for ray tracing hardware because they are
relatively independent of the resolutions at which the scenes
are rendered. To put these MRPS numbers into perspective,

if an interesting image is assumed to take between 4-10m
rays to render (see Section III), then our MIMD approach
would render between 13 (10M rays / 131 MRPS) and 100
(4M rays / 402 MRPS) frames per second (fps) depending
on the mix and complexity of the rays. A scene requiring
8M rays (which is a relatively complex scene) at 300 MRPS
would achieve 37.5fps.

V. CONCLUSION

Current custom and GPU architectures used for ray tracing
have achieved impressive raw performance at a high level of
visual realism. However, we believe that wide SIMD GPUs
and general purpose MIMD cores are over-provisioned for
the specific ray tracing workload and can be an inefficient use
of die area for a ray tracing processor. We have proposed an
architecture that makes better use of available area, allowing
for a greater amount of useful hardware and ultimately higher
performance. Our numerous light-weight cores use shared
resources to take advantage of the divergent nature of ray
tracing code paths and still sustain a high issue rate.

Our architectural exploration has identified a range of
solutions that demonstrate speed-ups from 2.3x to 9.8x in
raw performance and 8x-32x faster (6x-10x on average
with generous area scaling for the GPU) in performance
per area over the best reported GPU-based ray tracer. We
compare primarily against the GTX285 ray tracing perfor-
mance because specific data about the architecture and ray
tracer is readily available, and it represents some of the
best published numbers for ray tracing. We also provide a
high-level comparison to the MIMD Copernicus architec-
ture. The new Fermi (GF100) architecture from NVIDIA
has caches that would bring its performance closer to our
MIMD performance. The initial white paper [28] claims
performance gains of 4x with twice the compute resources.
Our proposed designs are relatively small at 147-175mm2.
This is encouraging because these designs could potentially
be used as a co-processor for accelerating ray performance
on existing or future GPUs or CPUs.



TABLE V
COMPARING OUR PERFORMANCE ON TWO DIFFERENT CORE CONFIGURATIONS TO THE GTX285 FOR THREE BENCHMARK SCENES [11]. PRIMARY

RAY TESTS CONSISTED OF 1 PRIMARY AND 1 SHADOW RAY PER PIXEL. DIFFUSE RAY TESTS CONSISTED OF 1 PRIMARY AND 32 SECONDARY GLOBAL

ILLUMINATION RAYS PER PIXEL.

Conference (282k triangles) Fairy (174k triangles) Sibenik (80k triangles)
MIMD Ray MIMD MIMD MIMD MIMD MIMD MIMD

Type Issue Rate MRPS Issue Rate MRPS Issue Rate MRPS
147mm2 Primary 74% 376 70% 369 76% 274

Diffuse 53% 286 57% 330 37% 107
175mm2 Primary 77% 387 73% 421 79% 285

Diffuse 67% 355 70% 402 46% 131
SIMD Ray GTX GTX GTX GTX GTX GTX

Type SIMD eff. MRPS SIMD eff. MRPS SIMD eff. MRPS
GTX285 Primary 74% 142 76% 75 77% 117

Diffuse 46% 61 46% 41 49% 47
MIMD MRPS/mm2 ranges from 2.56 (Conference, primary rays) to 0.73 (Sibenik, diffuse rays) for both configs
SIMD MRPS/mm2 ranges from 0.25 (Conference, primary rays) to 0.07 (Fairy, diffuse rays)
SIMD (no texture area) MRPS/mm2 ranges from 0.47 (Conference, primary) to 0.14 (Fairy, diffuse)

We have used a relatively full-featured, but traditional ray
tracer. Future work will involve adapting the application to
better fit the architecture. We envision leveraging the high
performance of the system to perform bounding volume
hierarchy (BVH) updates on the GPU for dynamic scenes
rather than relying on BVH re-builds on the CPU as is
currently done, and adapting the ray tracer to handle run-time
procedurally generated geometry to name just two areas of
interest. There are also other applications used in real time
situations, including video games, that could benefit from
this type of architecture.
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