
Games as Motivation in Computer Design Courses:
I/O is the Key

Erik Brunvand
School of Computing

University of Utah
elb@cs.utah.edu

ABSTRACT
The design of computer games can be a powerful motivator
as students learn about computer architecture and design.
Students in classes where computer designs are developed
and implemented (usually on Field Programmable Gate Ar-
rays (FPGAs)) seem much more highly motivated if their
computer design can be used for something visual and inter-
active when the project is complete. However, ensuring that
the student teams can have a working game by the end of
a semester requires careful planning of how their computer
designs will interact with the world. Keyboard inputs and
VGA outputs are a relatively simple set of I/O interfaces
that open up significant new potential for development of
game applications on the student’s own computer designs.
In this paper we describe the curriculum of a computer de-
sign course that uses game design as a “carrot” to encour-
age active student exploration and deeper understanding of
computer architecture, I/O subsystems, and computer im-
plementation.

Categories and Subject Descriptors:
K.3.2 [Computer and Information Science Eduction],
C.5.3 [Microcomputers]

General Terms: Design

Keywords: Games, Computer Design, FPGA

1. INTRODUCTION
Good motivation for learning is a powerful part of any

successful curriculum. Especially in project courses where
students design and build an artifact, the time spent work-
ing on the project, and the depth of knowledge that comes
out of the project, are dramatically increased if there is some
strong internal motivation to go beyond the basics and delve
into the project details [3, 7]. In particular we focus on a
course where students learn about computer design by de-
signing and building a computer from scratch on a Field
Programmable Gate Array (FPGA). We believe, as do oth-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’11, March 9–12, 2011, Dallas, Texas, USA.
Copyright 2011 ACM 978-1-4503-0500-6/11/03 ...$10.00.

ers [8], that the best way to learn about computer design is
to design a computer. For many students the opportunity
to develop interactive games on a computer they designed
is a strong motivator. Without some form of graphical I/O,
however, computer design projects are often limited to an
interface where programs are loaded into memory, programs
are run, and memory is uploaded to see if the correct an-
swer is in the correct memory location. While computing
Fibonacci numbers into a correct memory location may be
interesting to some students, interactive games with colorful
graphics are a much more exciting demonstration applica-
tion. Exotic I/O devices are not necessary, but something
beyond switches and seven segment LEDs is definitely re-
quired. Relatively simple interfaces such as PS/2 keyboard
input and VGA output are standard I/O systems that dra-
matically increase the potential for students to design visu-
ally interesting games. However, success in using these I/O
systems with student-designed processors requires that the
details of these systems and the infrastructure to support
them be carefully planned.

Designing a computer processor on an FPGA in a com-
puter design course is certainly not novel. A number of pa-
pers have described interesting variations on this curriculum
(e. g. [9, 4, 1, 11, 12]). Likewise, using games as motivators
in CS software classes is also a well-studied area (e.g. [14, 15,
2, 10, 16]). What we argue in this paper is that games can
also be a strong motivator in a hardware-centric computer
design course, but that to facilitate games the curriculum
should include specific information about I/O interfaces that
support game development.

A focus on interactive games as a driving application for
computer design courses has a significant positive side effect
of forcing the students to pay careful attention to details of
the I/O system that are too frequently overlooked in system
design projects. Designing a computer that can use VGA
outputs to display an interactive game requires that students
understand not only the VGA controller itself, but also how
game information relates to screen (frame buffer) locations,
how to organize the frame buffer into a reasonable set of
memory requirements, how to use pre-designed glyphs which
may be stored in a separate memory, how time, clock cycles,
and memory are shared between the processor and the VGA
controller, and other issues that contribute to a much deeper
understanding of the computer system as a whole.

It’s also interesting that the increased complexity of the
computer design projects to support games is largely student-
driven. That is, the goal of the class has not changed (build
a computer and demonstrate it), but there has been a signifi-

cant jump in complexity of the projects when games become
the preferred demonstration application. The teams that
target games also tend to increase their own software sup-
port more than other teams by developing assemblers and
other support systems for their own code development. The
results are reasonably complex and realistic 16-bit computer
systems demonstrating interactive games though standard
keyboard and VGA interfaces. These are all the more im-
pressive as they are the result of only the second course in
digital design in our curriculum.

In this paper we discuss the curriculum of the junior-
level Computer Design Lab course at the University of Utah
(CS/ECE 3710) that uses game design as a motivator for
computer design and implementation projects. We also high-
light the projects from three student teams. The games
that have been implemented on these student-designed 16-
bit computers will not put Playstation or Xbox out of busi-
ness any time soon, but they are visually interesting, run
on completely student-designed hardware, and motivate the
students to have a much richer experience in their computer
design course.

2. CURRICULUM
The course described in this paper is an undergraduate

semester-long project-based computer design course. It is
typically taken in the Fall semester of a student’s junior year.
It is essentially a second semester of digital system design,
but with a computer design as the focus. The prerequisites
are:

Digital System Design I: This course is a semester-long
lab-based course that covers the fundamental concepts
of digital system theory and design. The course covers
digital logic, Boolean algebra, binary number repre-
sentation, design of combinational and sequential cir-
cuits, arithmetic circuits, finite state machines, the
Verilog hardware description language, and includes
labs where students build, test, and demonstrate cir-
cuits on an FPGA board.

Computer Organization: This course is a semester-long
course in computer architecture where students exam-
ine the design of modern computers with an empha-
sis on understanding computer performance. Topics
include RISC instruction sets, number systems, CPU
design, pipelining, memory and caches, and multicore
issues. Labs in this course currently involve assembly
language programming and the MARS simulator [18].

Based on these prerequisites we can assume that the stu-
dents have an understanding of computer architecture, specif-
ically as it relates to executing an instruction set architec-
ture. They also have a working knowledge of a hardware de-
scription language such as Verilog. Students who have their
earlier class in VHDL find that although it seems daunting,
it takes only a short time to make the switch to a different
HDL. The main activity in the computer design class de-
scribed in this paper is to take the architecture knowledge
and the circuit knowledge from previous classes, and com-
bine them together in a semester-long project to design and
implement (on an FPGA) a fully-functioning computer pro-
cessor. Computer Design Lab is an elective course for Com-
puter Science and for Electrical Engineering majors, and a
required course for Computer Engineering majors.

Figure 1: Spartan3e FPGA Prototyping Board

The course proceeds with lectures and individual assign-
ments for the first five weeks of the semester. Teams of 3-4
students are then formed to work on designing and building
their project computer for the rest of the semester. The class
culminates with an open-house where the students demon-
strate their processors and applications.

Currently we use FPGA boards from Xilinx [20] that use a
Xilinx Spartan3 FPGA, and a variety of ancillary circuits in-
cluding SDRAM, flash memory, LEDs, a variety of switches,
PS/2 and VGA connectors, and a 2-line 16-character LCD
display. The board is shown in Figure 1. It is important to
note that the I/O connectors on the board are just that, con-
nectors. Any circuits that interface to those connectors must
be designed by the students and mapped onto the FPGA.
We use the free ISEWebpack tools, also from Xilinx, for sys-
tem design, simulation, and mapping to the FPGA board.

The main lecture topics in the first part of the course are:

Digital design review Finite state machines
Arithmetic/logic circuits
RTL descriptions

Verilog language review FSM examples
Arithmetic code examples

Processor design overview Simple MIPS architecture
Class baseline ISA
and memory map

I/O systems Memory mapped I/O
PS/2 and VGA
Serial communications:
RS232, SPI

Programming support Assembler basics

This curriculum is a fairly standard lead-in to a computer
design project, but includes a focus on I/O that is specifi-
cally intended to lead to a games-capable computer design.
The labs done by individuals prior to forming teams are:

Lab1 - Finite State Machine: In this lab the students
design a simple finite state machine that takes inputs
from the buttons on the FPGA board and produces
output on the LEDs on the FPGA board. This lab re-
freshes the students’ understanding about FSMs and
Verilog, and introduces them to the design tools and
the specifics of the FPGA board we use.

Lab2 - MIPS architecture: In this lab students are given
a complete Verilog description of a small MIPS-inspired
processor. We use the 8-bit mini-MIPS from the VLSI
text of Harris and Weste [19]. The task is to add a
new instruction to this machine, ADDI (Add Immedi-
ate), include memory mapped I/O to the switches and
LEDs on the FPGA board, and then write the dreaded
Fibonacci program using that new instruction. The
program is required to compute the first 14 Fibonacci
numbers and store them in consecutive memory loca-
tions starting at location 128 (the mini-MIPS has only
an 8-bit address space so this is the high half of the
accessible memory). It should then enter a loop where
it reads the value on the switches on the FPGA board,
and uses that as an address to the memory. The pro-
gram should display the value stored in that memory
location. That is, by changing the switches once the
program has entered the loop phase, the corresponding
Fibonacci number will be displayed on the LEDs.

This lab is essentially a tiny version of the project in
a nutshell. The students will see a complete (albeit
tiny) processor, understand it well enough to modify
the code to add new features, learn how to use the in-
ternal memory on the FPGA, how to map that mem-
ory into the processor’s address space, and to write
and run a small assembly language program on that
processor.

Lab3 - VGA: In this lab every student in the class imple-
ments a simple VGA controller. Students implement
a control and timing circuit for a 640x480 VGA out-
put circuit. They demonstrate that they can paint the
entire screen in a different color based on reading the
switches on the FPGA board (our board allows only
one bit each of R, G, and B so there are eight colors
possible without designing a new VGA output circuit).
They also take the state machine from Lab1 and drive
regions of the VGA screen to correspond to the LEDs
that lit up in Lab 1. This lab uses the same state ma-
chine from Lab 1, but maps its output to the VGA
screen instead of to the LEDs on the FPGA board.

This lab is a response to experience in the course re-
lated to the VGA controller. We have found that teams
that get VGA working earlier in the semester have a
much higher chance of finishing and polishing their
project. With this lab, every student in the class will
have designed and built a simple VGA interface before
the team project starts which will give all students a
running start on the main project’s I/O requirements.

The project portion of this course is defined rather loosely
as “design and implement a computer system and demon-
strate it doing something interesting.” Unless the students
have a specific alternative project in mind, the “something
interesting” is defined to be an interactive game running on
the computer and displaying on a VGA display. Students
are given a baseline instruction set architecture (ISA) for
a 16-bit computer architecture. To this baseline ISA the
students add extra instructions as desired, and I/O inter-
faces. The teams usually also develop assemblers for their
customized versions of the baseline ISA and write their game
applications in assembly language. Some groups have gone
even further and written simple compilers for their machines
but this is certainly not required.

ADD, ADDI Addition
SUB, SUBI Subtraction
CMP, CMPI Compare

Subtract with no writeback to RF
AND, ANDI Logical AND

OR, ORI Logical OR
XOR, XORI Logical XOR
MOV, MOVI Move data
LSH, LSHI Logical shift by one

Direction is in extended opcode
LUI Load and 8-bit left shift

LOAD, STOR Memory load and store
Bcond Branch to PC-relative

signed displacement (16 conditions)
Jcond Jump to address in

Rtarget (16 conditions)
JAL Jump and save PC in link register

Figure 2: Baseline ISA

In the project phase of the course there are no further
lectures unless specific topics come up that the whole class
would benefit from hearing. Instead the teams each meet
with the instructor and the TA once a week to discuss the
project, describe their current state, and make goals for the
following week. The general plan is to demonstrate a series
of checkpoints (that may not occur in the same order for
each team). The checkpoints are:

– Functioning register file and ALU
– Complete datapath including a connection to the block
RAM on the FPGA
– Memory map including the I/O mappings
– Instruction decoding and interactions with the datapath
– I/O system demonstration
– Full system demonstration

The final report consists of written documentation in the
form of a conference-style paper, a collection design docu-
ments including Verilog code, schematics, etc., and a user
guide to the group’s processor and programming environ-
ment.

2.1 Baseline Architecture
For our baseline we have developed an ISA based on the

National Semiconductor CR-16 microcontroller [6]. Our ver-
sion of this ISA has a subset of the full CR-16 instruction set,
and simplified instruction encoding, but it retains the flavor
of a “real” microcontroller rather than an overly-simplified
pedagogical architecture. The instruction set is a basic two-
address load-store format with the result being written to
the same register as one of the arguments. That is, ADD R1

R2 performs the function R1 ← R1 + R2. Instructions are
encoded in single 16-bit words, and memory is accessed in
a word-aligned way. ALU operations (ADD, SUB, CMP)
set the conditions in the condition code register (FLCNZ
flags). Instructions ending with “I” are immediate and use
the eight least-significant bits of the instruction as data
(sign-extended or zero-extended to 16 bits). The baseline
instruction set is shown in Figure 2.

There are unused opcodes (up to 28 depending on how
instructions are grouped) that allow the student groups to

Clock

Data Start 0 Parity Stop1 2 3 4 5 6 7

Figure 3: PS/2 keyboard interface serial protocol

add additional instructions to this baseline instruction set.
Typical additions included arithmetic shift, unsigned arith-
metic, multiple precision arithmetic (add with carry, for
example), multiplication, multiply-accumulate, and instruc-
tions to support interrupt processing. The baseline architec-
ture uses a 16-bit PC which allows an address space of 128k
bytes (word-aligned), and 16 16-bit registers. The memory
map is defined by the students but a starting point is to use
the top two address bits to define I/O space so that 1/4 of
the address space is usable for memory mapped I/O such
as a frame buffer. This ISA serves as a good generic base-
line from which the students can branch out and explore
enhancements to the basic architecture.

3. I/O INTERFACES
The main distinction in this course’s curriculum is a spe-

cific focus on I/O in the computer architecture. Our argu-
ment is that by spending time talking about I/O we create
an environment where the students pursue the project with
extra enthusiasm because the final result is visually inter-
esting. We spend time making sure that the students have
been exposed not only to the I/O protocols themselves, but
also how those I/O devices are typically mapped into the
computer’s memory space. The two main I/O systems that
we cover are PS/2 (keyboards) and VGA (graphic output).

3.1 PS/2 Interface
A PS/2 interface allows the students to use a standard

keyboard as an input device. There is a PS/2 socket on
the FPGA board, but no built-in controller so the interface
circuit is designed by students. The low-level PS/2 protocol
is a relatively simple serial interface: Codes are sent serially
using two wires: a Clock and a Data wire as seen in Figure 3
(see [13] for more information). Data changes when the
clock is high and is valid when the clock is low. Frames
are always 11 bits long and begin with a start bit followed
by eight data bits, an odd parity bit, and one stop bit. The
key-mapping protocol is more complex than simple ASCII
with one or two bytes being sent then the key is pressed
(called the make code), and two or three bytes sent when
the key is released (called the break code). Teams typically
implement this interface by mapping the PS/2 data registers
to a memory location which can be read by their processor
for decoding.

3.2 VGA Interface
Game outputs are all about graphics. Augmenting the

processor with a VGA output interface is critical to making
the processor usable for games. A VGA interface can seem
daunting to a student at first, but once understood it can
be fairly easily added to the processor design. The main
point is that the monitor is always moving the electron beam
across and down the screen at some rate. The VGA interface
keeps track of where the beam is on the screen and provides
intensity data on the R, G, and B signals that correspond

to the pixel color at that spot on the screen (see [17, 5] for
details). What the VGA interface really controls is when the
beam stops tracing and moves back (retraces) to the starting
point. To cause the beam to stop tracing a row and retrace
back to start tracing the next row the VGA interface sends
a low-going pulse on the Hsync wire. To cause the beam to
stop moving down the screen and move back to the top the
VGA interface sends a low-going pulse on the Vsync wire.

The VGA timing interface is essentially just a pair of coun-
ters that keep track of the horizontal and vertical position
of the beam and generate the required retrace timing sig-
nals. The timing for these signals is straightforward, and
as seen in Figure 4, there are “official” timings, and there
are relaxed timings that students can use with fewer pixels
on the screen. The on-screen graphics happen between the
retrace signals when the circuit sends signals to the display
to make colors on the screen. This leads to essentially three
different modes of generating an image on the screen:

Bitmap mode: In this mode a color value is stored for ev-
ery pixel on the screen. The VGA controller reads the
colors from that memory (the frame buffer) as it tra-
verses the screen. This is the most flexible approach,
and the most memory-intensive.

Glyph mode: In this mode the screen is broken up into
multiple pixel chunks (8x8 pixels for example), and for
each chunk a pointer is stored instead of a color. The
pointer references a glyph which is stored in a separate
memory. If there are (for example) 256 glyphs, then
an 8-bit pointer is stored for every 8x8 chunk on the
screen. Character maps are often stored as glyphs.

Direct mode: In direct mode the drawing circuit checks
the horizontal and vertical counters directly and de-
cides when to change the beam color. This mode is
useful for drawing backgrounds or other static struc-
tures on the screen. It is also the mode most likely to
be used in the VGA lab described in Section 2.

4. EXAMPLE SYSTEMS
The following examples demonstrate what the students

teams can achieve in the semester-long class. These are ad-
mittedly among the better projects that students have done
in the recent offerings of the course, but most groups achieve
similar, if slightly less polished, results. These examples all
use the same baseline 16-bit ISA described in Section 2.1.
Each group has extended the baseline ISA in some way, and
integrated memory-mapped I/O suitable for their project.
Screen shots and pictures of these example projects are seen
in Figure 5.

4.1 Slalom/Chicken
This group targeted a 512x480 VGA screen with 64 colors

using a 25MHz VGA clock. They created an 8x16 pixel
character set which was stored in the flash memory on the
FPGA board. This allowed them to fit 64x30 characters
on the screen which could include text characters as well
as glyphs used for their game applications. By shrinking
the logical frame buffer to only 64x30 locations where each
location contains a pointer to an 8x16 character glyph they
were easily able to map that frame buffer (under 2k bytes)
into their main memory map.

A

B

C

D

E

 640x480 128x256
A = Scanline time 31.77 us 30 us
B = Hsync pulse 3.77 us 2.0 us
C = Back porch 1.89 us 10.7 us
D = Bright time 25.17 us 12.8 us
E = Front porch 0.94 us 4.5 us
Pixel clock frequency 24.4 MHz 10 MHz

 640x480 128x256
A = Frame time 16.68 ms 16.68 ms
B = Vsync pulse 0.06 ms 0.09 ms
C = Back porch 1.02 ms 4.86 ms
D = Bright time 15.25 ms 7.65 ms
E = Front porch 0.35 ms 4.08 ms
Vertical Frequency 60 Hz 60 Hz

Horizontal Timing Vertical Timing

“Bright” signal

Sync pulse

Figure 4: VGA interface signal timing

In addition to an assembler for their ISA, this group also
built a character editor web application so that the task of
designing characters and game glyphs could be shared by all
group members. Because they focused on getting their VGA
controller working early in the project, they actually used
their VGA output to help debug their code as the project
progressed by writing diagnostic data to the screen in their
assembly programs. This group wrote three different games
for their system which involved approximately 2000 lines of
assembly code:

Giant Slalom: The skier tries to make it down a course
without hitting trees or other obstacles.

Chicken: a two-player game based on the arcade classic
Frogger. Each player tries to get their chicken across
the road without being hit by any of the cars.

Tron: based on the classic arcade classic Tron. Players
move around a playing field leaving trails.

4.2 Pong/Breakout
This group emulated classic video games Pong and Break-

out by taking a different approach to their VGA output.
They used 128x96 pixel resolution where these pixels are
expanded on the screen such that the 128x96 pixels took up
the entire screen space. In order to save frame buffer space
each 16-bit location in their frame buffer memory held four
4-bit pixel color values. They implemented a library of as-
sembly language graphics functions including painting single
pixels, drawing a line from point to point using Bresenham’s
line drawing algorithm, drawing a box, and drawing charac-
ters on a screen using a simple font map stored in a separate
area of memory.

4.3 Dance Dance Revolution
This group used dance pads from a home version of this

popular arcade game as inputs, and used a combination of
splash screens stored in flash memory and glyph-based VGA
to control the moving arrows during game play. They syn-
chronized the movement of the arrows to a song playing on
an attached mp3 player. The mp3 player’s controls were
mapped into the processor’s I/O space so that the start and
stop of the music could be controlled by the program along
with the graphics. This game was by far the most popular
during the class open house at the end of the semester.

5. CONCLUSIONS
We have presented some details of a semester-long project-

based course on computer design from the University of
Utah. In this course the ability to design interactive games
on student-designed computer hardware has greatly increased
student excitement about their projects, and also increased
the depth of student learning related to computer design
and implementation. In order to target games as an ap-
plication area important, but often overlooked, project fea-
tures such as I/O must be dealt with in a strong way. While
we did not do detailed assessment, it was clear to us from
the final project reports that the game teams ended with a
deeper understanding of many core computer design issues
than non-game teams. The infrastructure required to add
this dimension to project courses is not overwhelming, and
the payoff is large. Not only do the students learn more
about computer design, architecture, and implementation,
but they have more fun doing it and they are much more
likely to keep their projects to show off to friends, family,
and prospective employers.

6. ACKNOWLEDGMENTS
I thank my students in the Computer Design Lab course

over the years who have risen to the challenge and designed
great projects. In particular I thank the students who de-
signed the projects described in this paper. For Slalom
/ Chicken / Tron: Ryan Anderson, Whit Johnson, Brad
Macdonald, and Adam Walker. For Pong/Breakout: Mike
Green, Derik Jolley, Vic Lopez, Erik Nordstrom, and Vinh
Pham. For DDR Colby Litnak, Paul Willoughby, Jacob
Johns, and Jason Hansen.

7. REFERENCES
[1] J. Amaral, P. Berube, and P. Mehta. Teaching digital

design to computing science students in a single
academic term. IEEE Transactions on Education,
48(1), feb. 2005.

[2] T. Barnes, H. Richter, E. Powell, A. Chaffin, and
A. Godwin. Game2learn: building CS1 learning games
for retention. In SIGSCE conference on ITi ’07,
Dundee, Scotland, 2007.

[3] J. Brophy. Motivating Students to Learn. Lawrence
Erlbaum Associates, 2nd edition, 2004.

[4] N. Calazans and F. Moraes. Integrating the teaching
of computer organization and architecture with digital

Figure 5: Images from the interactive games developed by students. From left to right on top: Slalom Super-
G, Chicken, and Breakout. On the bottom from left to right: Dance Dance revolution — dance pads, splash
screen, and game.

hardware design early in undergraduate courses. IEEE
Transactions on Education, 44(2), may. 2001.

[5] P. Chu. FPGA Prototyping by Verilog Examples:
Xilinx Spartan-3 Version. Wiley Interscience, 2008.

[6] National semiconductor CR16 microcontroller
http://www.national.com/appinfo/cr16.

[7] K. Eble. The Craft of Teaching: A Guide to Mastering
the Professor’s Art. Jossey-Bass, 2nd edition, 1994.

[8] D. Harris. The microprocessor as a microcosm: a
hands-on approach to VLSI design education. In
Frontiers in Education Conf., Boston, MA, Nov 2002.

[9] M. Holland, J. Harris, and S. Hauck. Harnessing
FPGAs for computer architecture education. In
Microelectronic Systems Education, 2003., jun. 2003.

[10] S. Leutenegger and J. Edgington. A games first
approach to teaching introductory programming.
SIGCSE Bull., 39(1):115–118, 2007.

[11] R. Paharsingh and J. Skobla. A novel approach to
teaching microprocessor design using FPGA and
hierarchical structure. In Microelectronic Systems
Education, 2009., jul. 2009.

[12] M. Pearson, D. Armstrong, and T. McGregor. Design
of a processor to support the teaching of computer

systems. In Electronic Design, Test and Applications,
2002., 2002.

[13] PS/2 protocol description.
http://www.computer-engineering.org/ps2protocol/.

[14] S. Shabanah, J. Chen, H. Wechsler, D. Carr, and
E. Wegman. Designing computer games to teach
algorithms. In Information Technology: New
Generations (ITNG), 2010, apr. 2010.

[15] K. Sung. Computer games and traditional CS courses.
Commun. ACM, 52(12):74–78, 2009.

[16] E. Sweedyk, M. deLaet, M. C. Slattery, and
J. Kuffner. Computer games and CS education: why
and how. In SIGCSE ’05, St. Louis, Missouri, USA,
2005.

[17] VGA timing description.
http://www.epanorama.net/documents/pc/vga timing.html.

[18] K. Vollmar and P. Sanderson. MARS: an
education-oriented mips assembly language simulator.
SIGCSE Bull., 38(1):239–243, 2006.

[19] N. Weste and D. Harris. CMOS VLSI Design: A
Circuits and Systems Perspective. Pearson Education,
3 edition, 2006.

[20] Xilinx corporation web page. http://www.xilinx.com.

