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Abstract

Conveying complex objectives to reinforcement
learning (RL) agents can often be difficult, in-
volving meticulous design of reward functions
that are sufficiently informative yet easy enough
to provide. Human-in-the-loop RL methods al-
low practitioners to instead interactively teach
agents through tailored feedback; however, such
approaches have been challenging to scale since
human feedback is very expensive. In this work,
we aim to make this process more sample- and
feedback-efficient. We present an off-policy, in-
teractive RL algorithm that capitalizes on the
strengths of both feedback and off-policy learn-
ing. Specifically, we learn a reward model by
actively querying a teacher’s preferences between
two clips of behavior and use it to train an agent.
To enable off-policy learning, we relabel all the
agent’s past experience when its reward model
changes. We additionally show that pre-training
our agents with unsupervised exploration substan-
tially increases the mileage of its queries. We
demonstrate that our approach is capable of learn-
ing tasks of higher complexity than previously
considered by human-in-the-loop methods, in-
cluding a variety of locomotion and robotic ma-
nipulation skills. We also show that our method
is able to utilize real-time human feedback to ef-
fectively prevent reward exploitation and learn
new behaviors that are difficult to specify with
standard reward functions.

1. Introduction

Deep reinforcement learning (RL) has emerged as a power-
ful method whereby agents learn complex behaviors on
their own through trial and error (Kohl & Stone, 2004;
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Kober & Peters, 2011; Kober et al., 2013; Silver et al.,
2017; Andrychowicz et al., 2020; Kalashnikov et al., 2018;
Vinyals et al., 2019). Scaling RL to many applications,
however, is yet precluded by a number of challenges. One
such challenge lies in providing a suitable reward function.
For example, while it may be desirable to provide sparse
rewards out of ease, they are often insufficient to train suc-
cessful RL agents. Thus, to provide adequately dense signal,
real-world problems may require extensive instrumentation,
such as accelerometers to detect door opening (Yahya et al.,
2017), thermal cameras to detect pouring (Schenck & Fox,
2017) or motion capture for object tracking (Kormushev
et al., 2010; Akkaya et al., 2019; Peng et al., 2020).

Despite these costly measures, it may still be difficult to con-
struct a suitable reward function due to reward exploitation.
That is, RL algorithms often discover ways to achieve high
returns by unexpected, unintended means. In general, there
is nuance in how we might want agents to behave, such
as obeying social norms, that are difficult to account for
and communicate effectively through an engineered reward
function (Amodei et al., 2016; Shah et al., 2019; Turner
et al., 2020). A popular way to avoid reward engineering is
through imitation learning, during which a learner distills
information about its objectives or tries to directly follow an
expert (Schaal, 1997; Ng et al., 2000; Abbeel & Ng, 2004;
Argall et al., 2009). While imitation learning is a powerful
tool, suitable demonstrations are often prohibitively expen-
sive to obtain in practice (Calinon et al., 2009; Pastor et al.,
2011; Akgun et al., 2012; Zhang et al., 2018).

In contrast, humans often learn fairly autonomously, rely-
ing on occasional external feedback from a teacher. Part of
what makes a teacher effective is their ability to interactively
guide students according to their progress, providing correc-
tive or increasingly advanced instructions as needed. Such
an interactive learning process is also alluring for artificial
agents since the agent’s behavior can naturally be tailored
to one’s preference (avoiding reward exploitation) without
requiring extensive engineering. This approach is only fea-
sible if the feedback is both practical for a human to provide
and sufficiently high-bandwidth. As such, human-in-the-
loop (HiL) RL (Knox & Stone, 2009; Christiano et al., 2017;
MacGlashan et al., 2017) has not yet been widely adopted.
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Figure 1. Illustration of our method. First, the agent engages in unsupervised pre-training during which it is encouraged to visit a diverse
set of states so its queries can provide more meaningful signal than on randomly collected experience (left). Then, a teacher provides
preferences between two clips of behavior, and we learn a reward model based on them. The agent is updated to maximize the expected
return under the model. We also relabel all its past experiences with this model to maximize their utilization to update the policy (right).

In this work, we aim to substantially reduce the amount
of human effort required for HiL learning. To this
end, we present PEBBLE: unsupervised PrE-training and
preference-Based learning via relaBeLing Experience, a
feedback-efficient RL algorithm by which learning is largely
autonomous and supplemented by a practical number of bi-
nary labels (i.e. preferences) provided by a supervisor. Our
method relies on two main, synergistic ingredients: unsu-
pervised pre-training and off-policy learning (see Figure 1).
For generality, we do not assume the agent is privy to re-
wards from its environment. Instead, we first allow the
agent to explore using only intrinsic motivation (Oudeyer
et al., 2007; Schmidhuber, 2010) to diversify its experience
and produce coherent behaviors. Collecting a breadth of
experiences enables the teacher to provide more meaningful
feedback, as compared to feedback on data collected in an
indeliberate manner. The supervisor then steps in to teach
the agent by expressing their preferences between pairs of
clips of the agent’s behavior (Christiano et al., 2017). The
agent distills this information into a reward model and uses
RL to optimize this inferred reward function.

Leveraging unsupervised pre-training increases the effi-
ciency of the teacher’s initial feedback; however, RL re-
quires a large enough number of samples such that super-
vising the learning process is still quite expensive for hu-
mans. It is thus especially critical to enable off-policy al-
gorithms that can reuse data to maximize the agent’s, and
thereby human’s, efficiency. However, on-policy methods
have typically been used thus far for HiL. RL because of
their ability to mitigate the effects of non-stationarity in
reward caused by online learning. We show that by sim-
ply relabeling all of the agent’s past experience every time
the reward model is updated, we can make use and reuse
of all the agent’s collected experience to improve sample
and feedback efficiency by a large margin. Source code
and videos are available at https://sites.google.
com/view/icml2lpebble.

‘We summarize the main contributions of PEBBLE:

* For the first time, we show that unsupervised pre-training
and off-policy learning can significantly improve the
sample- and feedback-efficiency of HiLL RL.

* PEBBLE outperforms prior preference-based RL base-
lines on complex locomotion and robotic manipulation
tasks from DeepMind Control Suite (DMControl; Tassa
et al. 2018; 2020) and Meta-world (Yu et al., 2020).

* We demonstrate that PEBBLE can learn behaviors for
which a typical reward function is difficult to engineer
very efficiently.

* We also show that PEBBLE can avoid reward exploita-
tion, leading to more desirable behaviors compared to
an agent trained with respect to an engineered reward
function.

2. Related Work

Learning from human feedback. Several works have suc-
cessfully utilized feedback from real humans to train agents
where it is assumed that the feedback is available at all
times (Pilarski et al., 2011; MacGlashan et al., 2017; Aru-
mugam et al., 2019). Due to this high feedback frequency,
these approaches are difficult to scale to more complex
learning problems that require substantial agent experience.

Better suited to learning in complex domains is to learn a
reward model so the agent can learn without a supervisor’s
perpetual presence. One simple yet effective direction in
reward learning is to train a classifier that recognizes task
success and use it as basis for a reward function (Pinto &
Gupta, 2016; Levine et al., 2018; Fu et al., 2018; Xie et al.,
2018). Positive examples may be designated or reinforced
through human feedback (Zhang et al., 2019; Singh et al.,
2019; Smith et al., 2020). Another promising direction
has focused on simply training a reward model via regres-
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sion using unbounded real-valued feedback (Knox & Stone,
2009; Warnell et al., 2018), but this has been challenging to
scale because it is difficult for humans to reliably provide a
particular utility value for certain behaviors of the RL agent.

Much easier for humans is to make relative judgments, i.e.,
comparing behaviors as better or worse. Preference-based
learning is thus an attractive alternative because the supervi-
sion is easy to provide yet information-rich (Akrour et al.,
2011; Pilarski et al., 2011; Akrour et al., 2012; Wilson et al.,
2012; Sugiyama et al., 2012; Wirth & Fiirnkranz, 2013;
Wirth et al., 2016; Sadigh et al., 2017; Biyik & Sadigh,
2018; Leike et al., 2018; Biyik et al., 2020). Christiano et al.
(2017) scaled preference-based learning to utilize modern
deep learning techniques—they learn a reward function,
modeled with deep neural networks, that is consistent with
the observed preferences and use it to optimize an agent us-
ing RL. They choose on-policy RL methods (Schulman
et al., 2015; Mnih et al., 2016) since they are more ro-
bust to the non-stationarity in rewards caused by online
learning. Although they demonstrate that preference-based
learning provides a fairly efficient (requiring feedback on
less than 1% of the agent’s experience) means of distilling
information from feedback, they rely on notoriously sample-
inefficient on-policy RL, so a large burden can yet be placed
on the human. Subsequent works have aimed to improve the
efficiency of this method by introducing additional forms
of feedback such as demonstrations (Ibarz et al., 2018) or
non-binary rankings (Cao et al., 2020). Our proposed ap-
proach similarly focuses on developing a more sample- and
feedback-efficient preference-based RL algorithm without
adding any additional forms of supervision. Instead, we
enable off-policy learning as well as utilize unsupervised
pre-training to substantially improve efficiency.

Unsupervised pre-training for RL. Unsupervised pre-
training has been studied for extracting strong behavioral pri-
ors that can be utilized to solve downstream tasks efficiently
in the context of RL (Daniel et al., 2016; Florensa et al.,
2018; Achiam et al., 2018; Eysenbach et al., 2019; Sharma
et al., 2020). Specifically, agents are encouraged to expand
the boundary of seen states by maximizing various intrinsic
rewards, such as prediction errors (Houthooft et al., 2016;
Pathak et al., 2017; Burda et al., 2019), count-based state
novelty (Bellemare et al., 2016; Tang et al., 2017; Ostrovski
et al., 2017), mutual information (Eysenbach et al., 2019)
and state entropy (Hazan et al., 2019; Lee et al., 2019; Hao
& Pieter, 2021). Such unsupervised pre-training methods
allow learning diverse behaviors without extrinsic rewards,
effectively facilitating accelerated learning of downstream
tasks. In this work, we show that unsupervised pre-training
enables a teacher to provide more meaningful signal by
showing them a diverse set of behaviors.

3. Preliminaries

Reinforcement learning. We consider a standard RL
framework where an agent interacts with an environment
in discrete time. Formally, at each timestep ¢, the agent
receives a state s; from the environment and chooses an
action a; based on its policy 7. The environment returns
a reward r; and the agent transitions to the next state s; ;.
The return R; = EEOZO w’fer is the discounted sum of
rewards from timestep ¢ with discount factor v € [0,1). RL
then maximizes the expected return from each state s;.

Soft Actor-Critic. SAC (Haarnoja et al., 2018) is an off-
policy actor-critic method based on the maximum entropy
RL framework (Ziebart, 2010), which encourages explo-
ration and greater robustness to noise by maximizing a
weighted objective of the reward and the policy entropy.
To update the parameters, SAC alternates between a soft
policy evaluation and a soft policy improvement. At the
soft policy evaluation step, a soft Q-function, which is mod-
eled as a neural network with parameters 6, is updated by
minimizing the following soft Bellman residual:

[SAC

critic

=En~8 [ (QG(Sm ay) — 1y — VV(SHl))Q } , (1)
with V<St> = ]Eat"'ﬂ'qs [Qe_(sta at) - OélOg 7T¢(at|st)]7

where 7, = (s, a,S¢4+1,7¢) is a transition, B is a replay
buffer, 6 are the delayed parameters, and « is a temperature
parameter. At the soft policy improvement step, the policy
7 is updated by minimizing the following objective:

L35 = Es,nBasom, |alog Tg(aclsy) — Qolse, ar)|. (2)

SAC enjoys good sample-efficiency relative to its on-policy
counterparts by reusing its past experiences. However, for
the same reason, SAC is not robust to a non-stationary re-
ward function.

Reward learning from preferences. We follow the basic
framework for learning a reward function 7, from prefer-
ences in which the function is trained to be consistent with
observed human feedback (Wilson et al., 2012; Christiano
et al., 2017). In this framework, a segment o is a sequence
of observations and actions {s, ay, ..., Sk+ 1, ak+m }. We
elicit preferences y for segments o and o', where y is a
distribution indicating which segment a human prefers, i.e.,
y €{(0,1),(1,0), (0.5,0.5)}. The judgment is recorded in
a dataset D as a triple (¢°, o', ). By following the Bradley-
Terry model (Bradley & Terry, 1952), we model a preference
predictor using the reward function 7, as follows:

o, Folshal)

Pylo! =0’ = Ak WA
} Dic{o,1} €XP X, Ty (s}, ay)

where o = o7 denotes the event that segment i is prefer-
able to segment j. Intuitively, this can be interpreted as
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assuming the probability of preferring a segment depends
exponentially on the sum over the segment of an underly-
ing reward function. While 7, is not a binary classifier,
learning 7, amounts to binary classification with labels y
provided by a supervisor. Concretely, the reward function,
modeled as a neural network with parameters v, is updated
by minimizing the following loss:

£Reward — _

ool p (Y0108 Pylo® = o]

+y(1)log Pylo* = o%]|. (4)

4. PEBBLE

In this section, we present PEBBLE: unsupervised PrE-
training and preference-Based learning via relaBeLing
Experience, an off-policy actor-critic algorithm for HiLL
RL. Formally, we consider a policy 7y, Q-function Q9 and
reward function 7y, which are updated by the following
processes (see Algorithm 2 for the full procedure):

* Step O (unsupervised pre-training): We pre-train the
policy 7y only using intrinsic motivation to explore
and collect diverse experiences (see Section 4.1).

o Step I (reward learning): We learn a reward function
7, that can lead to the desired behavior by getting
feedback from a teacher (see Section 4.2).

* Step 2 (agent learning): We update the policy 7y and
Q-function @y using an off-policy RL algorithm with
relabeling to mitigate the effects of a non-stationary
reward function 7, (see Section 4.3).

* Repeat Step 1 and Step 2.

4.1. Accelerating Learning via Unsupervised
Pre-training

In our setting, we assume the agent is given feedback in the
form of preferences between segments. In the beginning of
training, though, a naive agent executes a random policy,
which does not provide good state coverage nor coherent
behaviors. The agent’s queries are thus quite limited and
likely difficult for human teachers to judge. As a result, it
requires many samples (and thus queries) for these methods
to show initial progress. Recent work has addressed this
issue by means of providing demonstrations; however, this
is not ideal since these are notoriously hard to procure (Ibarz
et al., 2018). Instead, our insight is to produce informative
queries at the start of training by utilizing unsupervised pre-
training to collect diverse samples solely through intrinsic
motivation (Oudeyer et al., 2007; Schmidhuber, 2010).

Specifically, we encourage our agent to visit a wider
range of states by using the state entropy H(s) =

Algorithm 1 EXPLORE: Unsupervised exploration

1: Initialize parameters of Qp and 74 and a replay buffer B < ()
2: for each iteration do

3:  for each timestep ¢ do
4: Collect ;41 by taking a; ~ 7y (at|s:)
5: Compute intrinsic reward 73" < 7" (s;) as in (5)
6: Store transitions B < B U { (s, as, St4+1, 7:")}
7:  end for
8:  for each gradient step do
9: Sample minibatch {(s;, a;,s;4+1,7;" )}, ~ B
10: Optimize £, in (1) and £ in (2) with respect to 6
and ¢
11:  end for
12: end for

13: return B, 7y

—Egp(s) [logp(s)] as an intrinsic reward (Hazan et al.,
2019; Lee et al., 2019; Hao & Pieter, 2021; Seo et al., 2021).
By updating the agent to maximize the sum of expected
intrinsic rewards, it can efficiently explore an environment
and learn how to generate diverse behaviors. However, this
intrinsic reward is intractable to compute in most settings.
To handle this issue, we employ the simplified version of
particle-based entropy estimator (Beirlant et al., 1997; Singh
et al., 2003) (see the supplementary material for more de-
tails):

H(s) O<Zlog(llsz’—82"|\)7

where 7{ denotes the particle-based entropy estimator and
sf is the k-th nearest neighbor (k-NN) of s;. This implies
that maximizing the distance between a state and its nearest
neighbor increases the overall state entropy. Inspired by
this, we define the intrinsic reward of the current state s;
as the distance between s; and its k-th nearest neighbor by
following the idea of Hao & Pieter (2021) that treats each
transition as a particle:

% (s) = log((ls: — s7l)- o)

In our experiments, we compute k-NN distances between a
sample and all samples in the replay buffer and normalize
the intrinsic reward by dividing it by a running estimate of
the standard deviation. The full procedure of unsupervised
pre-training is summarized in Algorithm 1.

4.2. Selecting Informative Queries

As previously mentioned, we learn our reward function by
modeling the probability that a teacher prefers one sampled
segment over another as proportional to the exponentiated
sum of rewards over the segment (see Section 3). Ideally,
one should solicit preferences so as to maximize expected
value of information (EVOI; Savage 1972): the improve-
ment of an agent caused by optimizing with respect to the re-
sulting reward model (Viappiani, 2012; Akrour et al., 2012).
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Algorithm 2 PEBBLE

Require: frequency of teacher feedback K
Require: number of queries M per feedback session
1: Initialize parameters of Qg and 7
Initialize a dataset of preferences D < ()
// EXPLORATION PHASE
B, 1y <— EXPLORE() in Algorithm 1
// POLICY LEARNING
for each iteration do
/I REWARD LEARNING
if iteration % K == 0 then
forminl... M do
(6°,0') ~ SAMPLE () (see Section 4.2)
Query instructor for y
Store preference D + DU {(c°, 0", 9)}
end for
for each gradient step do
Sample minibatch {(0°, o', y);} 2, ~ D
Optimize £****¢ in (4) with respect to 1)

DD = = = e e e
SOPRXAFDIDNHEDXNTORIIDINRDD

end for
Relabel entire replay buffer B using 7,
end if
for each timestep ¢ do
21: Collect s¢+1 by taking a; ~ 7y (a¢|s:)
22: Store transitions B <— B U {(s¢, a¢,S¢+1, 7y (st)) }
23:  end for
24:  for each gradient step do
25: Sample random minibatch {(;)}/2, ~ B
26: Optimize £325,;. in (1) and £ in (2) with respect to 0
and ¢, respectively
27:  end for
28: end for

Computing the EVOLI is intractable since it involves taking
an expectation over all possible trajectories induced by the
updated policy. To handle this issue, several approximations
have been explored by prior works to sample queries that
are likely to change the reward model (Daniel et al., 2014;
Christiano et al., 2017; Ibarz et al., 2018). In this work, we
consider the sampling schemes employed by Christiano et al.
(2017): (1) uniform sampling and (2) ensemble-based sam-
pling, which selects pairs of segments with high variance
across ensemble reward models. We explore an additional
third method, entropy-based sampling, which seeks to dis-
ambiguate pairs of segments nearest the decision boundary.
That is, we sample a large batch of segment pairs and select
pairs that maximize (P, ). We evaluate the effects of these
sampling methods in Section 5.

4.3. Using Off-policy RL with Non-Stationary Reward

Once we learn a reward function 7, we can update the pol-
icy my and Q-function (g using any RL algorithm. A caveat
is that the reward function ', may be non-stationary because
we update it during training. Christiano et al. (2017) used
on-policy RL algorithms, TRPO (Schulman et al., 2015)
and A2C (Mnih et al., 2016), to address this issue. How-
ever, their poor sample-efficiency leads to poor feedback-
efficiency of the overall HiL method.
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Figure 2. Examples from the environments we test on. We consider
learning a variety of complex locomotion and manipulation skills
through interacting with a scripted or human trainer.

In this work, we use an off-policy RL algorithm, which
provides for sample-efficient learning by reusing past ex-
periences that are stored in the replay buffer. However, the
learning process of off-policy RL algorithms can be unsta-
ble because previous experiences in the replay buffer are
labeled with previous learned rewards. To handle this issue,
we relabel all of the agent’s past experience every time we
update the reward model. We find that this simple technique
stabilizes the learning process and provides large gains in
performance (see Figure 5(a) for supporting results). The
full procedure of PEBBLE is summarized in Algorithm 2.

5. Experiments
We design our experiments to investigate the following:

1. How does PEBBLE compare to existing methods in
terms of sample and feedback efficiency?

2. What is the contribution of each of the proposed tech-
niques in PEBBLE?

3. Can PEBBLE learn novel behaviors for which a typi-
cal reward function is difficult to engineer?

4. Can PEBBLE mitigate the effects of reward exploita-
tion?

5.1. Setups

We evaluate PEBBLE on several continuous control tasks
involving locomotion and robotic manipulation from Deep-
Mind Control Suite (DMControl; Tassa et al. 2018; 2020)
and Meta-world (Yu et al., 2020). In order to verify the effi-
cacy of our method, we first focus on having an agent solve
a range of tasks without being able to directly observe the
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Figure 3. Learning curves on locomotion tasks as measured on the ground truth reward. The solid line and shaded regions represent the
mean and standard deviation, respectively, across ten runs. Asymptotic performance of PPO and Preference PPO is indicated by dotted

lines of the corresponding color.

ground truth reward function. Instead, similar to Christiano
et al. (2017) and Ibarz et al. (2018), the agent learns to per-
form a task only by getting feedback from a scripted teacher
that provides preferences between trajectory segments ac-
cording to the true, underlying task reward. Because this
scripted teacher’s preferences are immediately generated
by a ground truth reward, we are able to evaluate the agent
quantitatively by measuring the true average return and do
more rapid experiments. For all experiments, we report the
mean and standard deviation across ten runs.

We also run experiments with actual human trainers (the au-
thors) to show the benefits of human-in-the-loop RL. First,
we show that human trainers can teach novel behaviors
(e.g., waving a leg), which are not defined in original bench-
marks. Second, we show that agents trained with the hand-
engineered rewards from benchmarks can perform the task
in an undesirable way (i.e., the agent exploits a misspec-
ified reward function), while agents trained using human
feedback can perform the same task in the desired way. For
all experiments, each trajectory segment is presented to the
human as a 1 second video clip, and a maximum of one hour
of human time is required.

For evaluation, we compare to Christiano et al. (2017),
which is the current state-of-the-art approach using the same
type of feedback. The primary differences in our method
are (1) the introduction of unsupervised pre-training, (2)
the accommodation of off-policy RL, and (3) entropy-based
sampling. We re-implemented Christiano et al. (2017) using
the state-of-the-art on-policy RL algorithm: PPO (Schulman
et al., 2017). We use the same reward learning framework
and ensemble disagreement-based sampling as they pro-
posed. We refer to this baseline as Preference PPO.

As an upper bound, since we evaluate against the task re-
ward function, we also compare to SAC (Haarnoja et al.,
2018) and PPO using the same ground truth reward. For our
method, we pre-train an agent for 10K timesteps and include
these pre-training steps in all learning curves. We do not
alter any hyperparameters of the original SAC algorithm and

use an ensemble of three reward models. Unless stated oth-
erwise, we use entropy-based sampling. More experimental
details including model architectures, sampling schemes,
and reward learning are in the supplementary material.

5.2. Benchmark Tasks with Unobserved Rewards

Locomotion tasks from DMControl. Figure 3 shows the
learning curves of PEBBLE with 1400, 700 or 400 pieces
of feedback' and that of Preference PPO with 2100 or 1400
pieces of feedback on three complex environments: Cheetah-
run, Walker-walk and Quadruped-walk. Note that we ex-
plicitly give preference PPO an advantage by providing it
with more feedback. We find that given a budget of 1400
queries, PEBBLE (green) reaches the same performance
as SAC (pink) while Preference PPO (purple) is unable to
match PPO (black). That PEBBLE requires less feedback
than Preference PPO to match its respective oracle perfor-
mance corroborates that PEBBLE is indeed more feedback-
efficient. These results demonstrate that PEBBLE can en-
able the agent to solve the tasks without directly observing
the ground truth reward function.

For further analysis, we incorporated our pre-training with
Preference PPO (red) and find that it improves performance
for Quadruped and Walker. We emphasize that our insight
of using pre-training is able to improve both methods in
terms of feedback-efficiency and asymptotic performance,
but PEBBLE is uniquely positioned to benefit as it is able
to utilize unsupervised experience for policy learning.

Robotic manipulation tasks from Meta-world. One ap-
plication area in which HiLL methods could have significant
real-world impact is robotic manipulation, since learning of-
ten requires extensive engineering in the real world (Yahya
et al., 2017; Schenck & Fox, 2017; Kormushev et al.,
2010; Rusu et al., 2017; Akkaya et al., 2019; Peng et al.,
2020). However, the common approach is to perform goal-
conditioned learning with classifiers (Singh et al., 2019),

'One piece of feedback corresponds to one preference query.
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mean and standard deviation, respectively, across ten runs. Asymptotic performance of PPO and Preference PPO is indicated by dotted

lines of the corresponding color.
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Figure 5. Ablation study on Quadruped-walk. (a) Contribution of each technique in PEBBLE, i.e., relabeling the replay buffer (relabel)
and unsupervised pre-training (pre-train). (b) Effects of sampling schemes to select queries. (c) PEBBLE with varying the length of the
segment. The results show the mean and standard deviation averaged over ten runs.

which can only capture limited information about what goal
states are, and not about how they can be achieved. To study
how we can utilize preference-based learning to perform
more complex skills, we also consider six tasks covering
a range of fundamental robotic manipulation skills from
Meta-world (see Figure 2). As shown in Figure 4, PEB-
BLE matches the performance of SAC using the ground
truth reward and outperforms Preference PPO, given compa-
rable (and more) feedback, on every task. By demonstrating

the applicability of PEBBLE to learning a variety of robotic
manipulation tasks, we believe that we are taking an impor-
tant step towards anyone (non-experts included) being able
to teach robots in real-world settings.

5.3. Ablation Study

Contribution of each technique. In order to evaluate the
individual effects of each technique in PEBBLE, we incre-
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Counter clock-wise windmill

Clock-wise windmill

Quadruped waving its left front leg

Quadruped waving its right front leg

Hopper backflip

Figure 6. Novel behaviors trained using feedback from human trainers. The corresponding videos and examples of selected queries are

available at the supplementary material.

(b) Agent trained with hand-engineered reward

Figure 7. Five frames from agents trained with (a) human prefer-
ence and (b) hand-engineered reward from DM Control benchmark.

mentally apply unsupervised pre-training and relabeling.
Figure 5(a) shows the learning curves of PEBBLE with
1400 queries on Quadruped-walk. First, we remark that
relabeling significantly improves performance because it
enables the agent to be robust to changes in its reward
model. By additionally utilizing unsupervised pre-training,
both sample-efficiency and asymptotic performance of PEB-
BLE are further improved because showing diverse behav-
iors to a teacher can induce a better-shaped reward. This
shows that PEBBLE’s key ingredients are fruitfully wed,
and their unique combination is crucial to our method’s
success.

Effects of sampling schemes. We also analyze the effects
of different sampling schemes to select queries. Figure 5(b)
shows the learning curves of PEBBLE with three different
sampling schemes: uniform sampling, disagreement sam-
pling and entropy sampling on Quadruped-walk. For this
complex domain, we find that the uncertainty-based sam-
pling schemes (using ensemble disagreement or entropy) are
superior to the naive uniform sampling scheme. However,
we note that they did not lead to extra gains on relatively
simple environments, like Walker and Cheetah, similar to
observations from Ibarz et al. (2018) (see the supplementary
material for more results).

Comparison with step-wise feedback. We also measure
the performance of PEBBLE by varying the length of seg-
ments. Figure 5(c) shows that feedback from longer seg-
ments (green curve) provide more meaningful signal than
step-wise feedback (red curve). We believe that this is be-
cause longer segments can provide more context in reward
learning.

5.4. Human Experiments

Novel behaviors. We show that agents can perform various
novel behaviors based on human feedback using PEBBLE in
Figure 6. Specifically, we demonstrate (a) the Cart agent
swinging a pole (using 50 queries), (b) the Quadruped agent
waving a front leg (using 200 queries), and (c) the Hopper
performing a backflip (using 50 queries). We note that the
human is indeed able to guide the agent in a controlled
way, as evidenced by training the same agent to perform
several variations of the same task (e.g., waving different
legs or spinning in opposite directions). The videos of all
behaviors and examples of selected queries are available in
the supplementary material.

Reward exploitation. One concern in utilizing hand-
engineered rewards is that an agent can exploit unexpected
sources of reward, leading to unintended behaviors. Indeed,
we find that the Walker agent learns to walk using only one
leg even though it achieves the maximum scores as shown
in Figure 7(b). However, using 200 human queries, we were
able to train the Walker to walk in a more natural, human-
like manner (using both legs) as shown in Figure 7(a). This
result clearly shows the advantage of HiLL RL to avoid re-
ward exploitation.

6. Discussion

In this work, we present PEBBLE, a feedback-efficient algo-
rithm for HiL RL. By leveraging unsupervised pre-training
and off-policy learning, we show that sample- and feedback-
efficiency of HiL RL can be significantly improved and this
framework can be applied to tasks of higher complexity
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than previously considered by previous methods, including
a variety of locomotion and robotic manipulation skills. Ad-
ditionally, we demonstrate that PEBBLE can learn novel
behaviors and avoid reward exploitation, leading to more de-
sirable behaviors compared to an agent trained with respect
to an engineered reward function. We believe by making
preference-based learning more tractable, PEBBLE may
facilitate broadening the impact of RL beyond settings in
which experts can carefully craft reward functions to those
in which laypeople can likewise utilize the advances of robot
learning in the real world.
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Appendix

A. State Entropy Estimator

To approximate state entropy, we employ the simplified version of particle-based entropy estimator (Beirlant et al., 1997;
Singh et al., 2003). Specifically, let s be a random variable with a probability density function p whose support is a set
S C RY. Then its differential entropy is given as H(s) = —Eg.p(s)[logp(s)]. When the distribution p is not available,
this quantity can be estimated given N i.i.d realizations of {s;}}¥, (Beirlant et al., 1997). However, since it is difficult to
estimate p with high-dimensional data, particle-based k-nearest neighbors (k-NN) entropy estimator (Singh et al., 2003) can
be employed:

N ~4q
I N [ s
— 1 L C 6
H(s) N;O F T+ + Cy (6)
| X
ocﬁizglogHsifsng, @)

where 7 is the ratio of a circle’s circumference to its diameter, s¥ is the k-NN of s; within a set {s;}¥,, Cy = logk — U (k)
a bias correction term, ¥ the digamma function, I' the gamma function, ¢ the dimension of s, and the transition from (6) to
(7) always holds for ¢ > 0. Then, from Equation 7, we define the intrinsic reward of the current state s; as follows:

% (s¢) = log((ls: — s7l)-

Hyperparameter Value \ Hyperparameter Value

Initial temperature 0.1 Hidden units per each layer 1024 (DMControl), 256 (Meta-world)

Learning rate 0.0003 (Meta-world), 0.001 (cheetah) | Batch Size 1024 (DMControl), 512 (Meta-world)
0.0001 (qauadruped), 0.0005 (walker) | Optimizer Adam (Kingma & Ba, 2015)

Critic target update freq 2 Critic EMA 7 0.005

(81, B2) (.9,.999) Discount y .99

Table 1. Hyperparameters of the SAC algorithm. Most hyperparameters values are unchanged across environments with the exception for
learning rate.

Hyperparameter Value \ Hyperparameter Value
GAE parameter A 0.92 Hidden units per each layer 1024 (DMControl), 256 (Meta-world)
Learning rate 0.0003 (Meta-world), 0.0001 (quadruped) | Batch Size 512 (cheetah), 128 (Otherwise)

5¢~° (quadruped, Walker) # of timesteprs per rollout 100 (cheetah, Walker), 500 (quadruped)
# of environments per worker 16 (quadruped, cheetah), 32 (Walker) PPO clip range 0.2
Entropy bonus 0.0 Discount «y .99

Table 2. Hyperparameters of the PPO algorithm. Most hyperparameters values are unchanged across environments with the exception for
learning rate.

B. Experimental Details

Training details. For our method, we use the publicly released implementation repository of the SAC algorithm (https:
//github.com/denisyarats/pytorch_sac) with a full list of hyperparameters in Table 1. On the DMControl
environments, we use segments of length 50 and a frequency of teacher feedback (K in Algorithm 2) of 20K timesteps,
which corresponds to roughly 20 episodes. We choose the number of queries per feedback session M = 140, 70, 40 for
the maximum budget of 1400, 700, 400 on Walker and Cheetah, and choose M = 70, 35, 20 for the maximum budget of
1400, 700, 400 on Quadruped. For Meta-world, we use segments of length 10 and set M = 64, K = 2400 for the maximum
budget of 2500, 5000, and 10000 on Drawer Close, Window Open, Door Open, and Button Press and M = 128, K = 4800
for maximum budget of 25000, 50000 on Sweep Into and Drawer Open.
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For preference PPO, we use the publicly released implementation repository of the PPO algorithm (https://github.
com/DLR-RM/stable-baselines3) with a full list of hyperparameters in Table 2. We choose the number of queries
per feedback session M = 70, 45 for the maximum budget of 2100, 1400 on the DMControl environments. For the reward
model, we use same setups for our method. For Meta-world, we use segments of length 10 and set M = 256, K = 2400 for
all environments and budgets of feedback.

Reward model. For the reward model, we use a three-layer neural network with 256 hidden units each, using leaky ReLUs.
To improve the stability in reward learning, we use an ensemble of three reward models, and bound the output using tanh
function. Each model is trained by optimizing the cross-entropy loss defined in (4) using ADAM learning rule (Kingma &
Ba, 2015) with the initial learning rate of 0.0003.

Environments. We follow the standard evaluation protocol for the benchmark locomotion tasks from DMControl. The
Meta-world single-task benchmark involves training and testing on a single instantiation (fixed reset and goal) of the task. To
constitute a more realistic single-task manipulation setting, we randomize the reset and goal positions in all our experiments.
We also use new reward function, which are nicely normalized and make the tasks stable.

C. Effects of Sampling Schemes

Figures 8 and 9 show the learning curves of PEBBLE with various sampling schemes. For Quadruped, we find that the
uncertainty-based sampling schemes (using ensemble disagreement or entropy) are superior to the naive uniform sampling
scheme. However, they did not lead to extra gains on relatively simple environments, like Walker and Cheetah, similar to
observations from Ibarz et al. (2018). Similarly, on the robotic manipulation tasks, we find little difference in performance
for simpler tasks (Drawer Close, Window Open). However, we find that the uncertainty-based sampling schemes generally
fare better on the other environments.

1000 PEBBLE with uniform 1,000 - 1,000
! - PEBBLE with disagreement \I[
== PEBBLE with entropy
c c 750 c 750
S 750 £ £
2 2 2
« & &
S 500 g 500 g 500
2 2 2
2 2 3
w
250 * 250 250
0 T 0 0 v
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
Environment Steps (x10°) Environment Steps (x106) Environment Steps (x106)
(a) Quadruped (b) Walker (c) Cheetah

Figure 8. Learning curves of PEBBLE with 1400 pieces of feedback by varying sampling schemes. The solid line and shaded regions
represent the mean and standard deviation, respectively, across ten runs.

D. Examples of Selected Queries

Figure 10, 11 and 12 show some examples from the selected queries to teach the agents.
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Figure 9. Learning curves of PEBBLE with various sampling schemes on the Meta-world tasks. The solid line and shaded regions
represent the mean and standard deviation, respectively, across ten runs.
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Figure 10. Examples from the selected queries to teach the Cart agent.
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Figure 11. Examples from the selected queries to teach the Quadruped agent.
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Figure 12. Examples from the selected queries to teach the Hopper agent.



