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Learning to Share Autonomy from
Repeated Human-Robot Interaction
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Abstract—Assistive robot arms try to help their users perform
everyday tasks. One way robots can provide this assistance is
shared autonomy. Within shared autonomy, both the human and
robot maintain control over the robot’s motion: as the robot
becomes confident it understands what the human wants, it
intervenes to automate the task. But how does the robot know
these tasks in the first place? State-of-the-art approaches to
shared autonomy often rely on prior knowledge. For instance, the
robot may need to know the human’s potential goals beforehand.
During long-term interaction these methods will inevitably break
down — sooner or later the human will attempt to perform a
task that the robot does not expect. Accordingly, in this paper
we formulate an alternate approach to shared autonomy that
learns assistance from scratch. Our insight is that operators
repeat important tasks on a daily basis (e.g., opening the fridge,
making coffee). Instead of relying prior knowledge, we therefore
take advantage of these repeated interactions to learn assistive
policies. We formalize an algorithm that recognizes the human’s
task, replicates similar demonstrations, and returns control when
unsure. We then combine learning with control to demonstrate
that the error of our approach is uniformly ultimately bounded.
We perform simulations to support this error bound, compare
our approach to imitation learning baselines, and explore its
capacity to assist for an increasing number of tasks. Finally, we
conduct a user study with industry-standard methods and shared
autonomy baselines. Our results indicate that learning shared
autonomy across repeated interactions (SARI) matches existing
approaches for known goals, and outperforms the baselines on
tasks that were never specified beforehand.

Index Terms—Human-Centered Robotics, Learning from
Demonstration, Teleoperation, Shared Autonomy

I. INTRODUCTION

IMAGINE teleoperating a wheelchair-mounted robot arm to
open your refrigerator door (see Figure 1). This robot has

never interacted with your fridge before: accordingly, for the
first few times you open the fridge, you must carefully guide
the robot throughout the entire process of reaching, pulling,
and opening the door. But after you’ve interacted with this
robot for several weeks — and opened your fridge many times
— an intelligent robot should learn to assist you. The next time
you start teleoperating the arm towards your fridge, the robot
should recognize what you want, and partially automate the
process of opening the door.

The robot’s assistance in this working example is an in-
stance of shared autonomy. Shared autonomy for assistive
robot arms blends the user’s inputs with autonomous actions so
that both the human and robot contribute to the robot’s overall
motion. When surveyed, disabled adults who operate assistive
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Figure 1. User teleoperating an assistive robot arm to open their fridge door.
The robot does not have any prior knowledge about this task; however, the
human and robot have completed similar tasks many times before. Instead of
making the human teleoperate the robot throughout every step of this task, we
hypothesize that robot arms can learn to assist humans and share autonomy
by exploiting the repeated nature of everyday tasks.

robots preferred shared autonomy to either fully autonomous
or fully human-guided systems [1], [2]. In practice, however,
today’s shared autonomy approaches rely on prior information
about the human’s tasks. Methods such as [3]–[10] require a
pre-defined list of goals the human might want to reach: the
robot infers the human’s most likely goal from these discrete
options, and autonomously moves towards that goal. Other
approaches need demonstrations [11]–[13], feedback [14], or
constraints [15]–[18] that specify which tasks the human might
want to perform: the robot then maps the human’s inputs to
task relevant motions, and overrides or corrects inputs that do
not align with the robot’s anticipated tasks.

These existing approaches work well when the user wants to
perform a task that the robot knows a priori. But what happens
when the human inevitably wants to complete some new or un-
expected task? Going back to our working example, the robot
has no prior information about opening the refrigerator. When
the user teleoperates the robot towards the fridge door, today’s
assistive arms assume that the human has made a mistake:
instead of helping for the fridge task, shared autonomy guides
the robot towards one of its known tasks. Even worse, the
robot remains confused — and provides incorrect assistance
— no matter how many times the operator tries to repeat the
process of opening the fridge [19].

For assistive arms to be practical across long-term interac-
tion, these robots must be capable of learning a spectrum of
new tasks. This would be extremely challenging if every task
was a unique one-off that the robot had never seen before. But
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our insight is that, over the many weeks, months, and years a
human operator works with their assistive robot:

Humans constantly repeat tasks
that are important in their everyday life.

We emphasize that these repetitions are never exactly the same.
Each time the assistive robot opens the refrigerator it may
have a different start position or follow a different trajectory.
Hence, we cannot simply record and playback the motions
that the human has shown — instead, we need to generalize
assistance across similar tasks. Applying our insight enables
assistive robot arms to learn to share autonomy by exploiting
the repeated interactions inherent within assistive applications.
Here the robot remembers how the user controlled the arm to
open the fridge in the past, recognizes that the user is providing
similar inputs during the current interaction, and assists by
autonomously mimicking the behavior that user previously
demonstrated. Across repeated human-robot interactions these
assistive arms should learn to share autonomy for tasks that
include not only discrete goals (e.g., reaching a cup) but also
continuous skills (e.g., opening a door).

In this paper we propose, analyze, and evaluate our algo-
rithm SARI: Shared Autonomy across Repeated Interaction.
Overall, we make the following contributions1:

Capturing Latent Intent. We formalize the problem of shar-
ing autonomy across repeated human-robot interaction. During
each interaction the human has in mind some desired task:
we introduce an end-to-end algorithm that learns to recognize
the human’s current intent and provide autonomous assistance
without any pre-defined tasks or prior information.

Returning Control when Uncertain. Our approach should
assist during previously seen tasks without overriding the
human whenever they try to perform a new task. We introduce
a discriminator to measure the confidence of our learned
assistance so that the robot returns control to the human when
it is unsure about what the human really wants.

Analyzing Stability. We combine learning with control theory
to bound the error between the robot’s actual state and the
human’s desired state. We theoretically demonstrate that —
even in the worst case — our approach is uniformly ultimately
bounded with respect to some radius about the human’s
goal. We derive this radius as a function of the variance
in the human’s input commands and the similarity between
previously learned task(s) and the human’s current task.

Comparing to Baselines. We perform experiments with a real
robot arm and simulated human users to compare our approach
to state-of-the-art imitation learning baselines. We show that
our approach provides assistance when appropriate, and makes
it easier for humans to perform new skills that are similar to
previously seen tasks. We also test our method’s capacity to
learn assistance for an increasing number of goals or skills.

1Parts of this work have been previously published in the IEEE/RSJ
International Conference on Intelligent Robots and Systems [20]. Novel
contributions include the stability analysis (Section V, Appendix) as well
as the experiments on SARI capacity in Section VI-D. This added material
provides formal guarantees about the performance of our approach, and offers
a new understanding of how our approach works in practice.

Conducting a User Study. We assess our resulting algorithm
in a three-part user study where participants teleoperate a robot
arm to reach discrete goals and perform continuous skills. We
compare with existing shared autonomy methods that rely on
prior information, and explore scenarios where the robot is
faced with known and new tasks. We ultimately find that our
SARI algorithm enables the robot to learn to assist for initially
unknown tasks across repeated interactions.

II. RELATED WORK

Our approach learns to share autonomy across repeated
human-robot interaction without predefined tasks or offline
demonstrations. Our work is motivated by assistive applica-
tions where disabled users teleoperate robot arms on a daily
basis. Instead of forcing the user to repeatedly guide the robot
throughout every step of the motion, we learn to recognize the
human’s task, imitate their previous interactions, and arbitrate
control between the human and robot.

Application – Assistive Robot Arms. Over 13% of American
adults living with physical disabilities have difficulty with
at least one activity of daily living (ADL) [21]. Assistive
robots — such as wheelchair-mounted robot arms [22]–[24] —
have the potential to help users perform these everyday tasks
without relying on caregivers. Recent work on assistive arms
has focused on automating ADLs such as eating dinner [12],
[25], [26], getting dressed [27]–[29], and reaching household
objects [30]. Our research takes inspiration from the fact that
disabled adults need assistance when performing tasks they
repeat on a daily basis. However, it is mentally tedious and
physically burdensome for the human to precisely teleoperate
the robot throughout each step of these everyday tasks [31].
When surveyed, adults who operate assistive arms indicated
that they prefer to share autonomy with robots [1], [2].

Shared Autonomy. In shared autonomy both the human and
robot arbitrate control over the robot’s motion. We separate
related research on shared autonomy into two classes of algo-
rithms (see Figure 2). First, there are approaches which infer
the human’s goal and then partially automate the arm’s motion
towards that goal. Second, there are methods which map the
human’s inputs to constrained and task-relevant actions.

Within inference works the robot is given a discrete set of
possible goals the human may want to reach a priori [3]–
[10]. Based on the human’s teleoperation inputs so far the
robot determines which goal(s) are likely, and takes assistive
actions to move towards the inferred goal(s). For example,
Javdani et al. formulate this as a partially observable Markov
decision process where the human’s goal is the latent state
and the human’s teleoperation inputs are observations about
that latent goal [5]. We emphasize that this class of algorithms
requires prior knowledge about the human’s tasks. In the long-
term these priors will inevitably fall short: sooner or later the
human will reach for a goal that the robot did not expect, and
the robot will be unable to provide assistance.

Other works on shared autonomy map the human’s joystick
inputs to motions that are relevant for the current task [11]–
[18]. When the human provides a suboptimal input (e.g., an
input that moves the robot away from its goal) the robot
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Figure 2. We separate prior work on shared autonomy for assistive robot arms
into two groups. (Top) Some methods are given a discrete set of possible goals,
and infer the human’s goal from this list. (Bottom) Other methods learn to map
the human’s joystick inputs to constrained, task-relevant motions. Although
both shared autonomy algorithms help the human reach for the cups, neither
can assist the human for a new, unexpected task (like opening the fridge).

overrides and corrects this human’s action. For instance, Reddy
et al. [14] learn a reward function from the human and
then constrain the robot to take actions with high long-term
rewards. Similarly, Losey et al. [11] map the human’s joystick
inputs to robot actions that are learned from offline task
demonstrations. Overall, this class of algorithms makes sense
when the user wants to perform task(s) that the robot has
learned to assist. But if the human attempts to perform a new
or unexpected task, then these constraints become counter-
productive: the robot mistakenly overrides the human and may
force them to perform the wrong task.

Beyond these two classes of algorithms we highlight recent
shared autonomy work that learns new tasks during interaction
[19], [32]. Here the robot starts with a discrete set of options
and tries to infer the human’s current task. If the human’s
inputs do not match any of these known tasks, shared au-
tonomy stops: the robot returns full control to the human
and the human demonstrates their new task to the robot.
This task is then added to the discrete library of options and
shared autonomy restarts at the next interaction. Like [19]
and [32] our approach continually learns to assist for new
tasks. However, we do not separate our approach into distinct
phases for sharing autonomy or learning tasks. Instead, our
robot learns to assist the human each time the user interacts
with the robot, regardless of whether they are completing a
previously seen task or performing a new skill.

Interactive Imitation Learning. Our technical approach
builds on interactive imitation learning [33], [34]. Specifically,
we draw connections between shared autonomy and imitation
learning techniques where the robot and human periodically

switch control. Within these settings the robot attempts to
perform the task autonomously; but at times where the human
notices that the robot is making a mistake [35]–[38], or in
states where the robot is uncertain about what it should do
[39]–[41], the human takes over and guides the robot. Across
repeated interactions the robot adds these human corrections
to its training data and learns to imitate the human’s behavior.
Here we leverage a similar approach to learn to share auton-
omy. More specifically, our technical approach integrates prior
work on both interactive imitation learning and representation
learning [11], [42], [43]. We develop representation learning to
identify the space of possible tasks, and then incorporate imi-
tation learning to mimic how the human previously performed
these tasks and provide autonomous assistance.

III. FORMALIZING SHARED AUTONOMY
DURING REPEATED HUMAN-ROBOT INTERACTION

Let us return to our motivating example from Figure 1 where
the user is teleoperating their assistive robot arm. Each time the
human interacts with the robot, they have in mind a task they
want the robot to perform: some of these tasks are new (e.g.,
moving a coffee cup), while others the robot may have seen
before (e.g., opening the fridge). We represent the human’s
current task as z ∈ Z , so that during interaction i, the human
wants to complete task zi. Within this paper tasks include
both discrete goals and continuous skills: i.e., a task z could
be reaching the cup or opening a drawer. We test both types
of tasks z in our experiments. The assistive robot’s goal is
to help the human complete their current task. However, the
robot does not know (a) which task the human currently has
in mind or (b) how to correctly perform that task.
Dynamics. The robot is in state s ∈ Rd and takes action
a ∈ Rd. Within our experiments, s is the robot’s joint position,
a is the robot’s joint velocity, and the robot has dynamics:

st+1 = st + ∆t · at (1)

The human uses a joystick to tell the robot what action to
take. Let aH be the human’s commanded action — i.e., the
joint velocity corresponding to the human’s joystick input2.
The robot assists the human with an autonomous action aR,
so that the overall action a is a linear blend of the human’s
joystick input and the robot’s assistive guidance [3], [4], [7]:

a = β · aR + (1− β) · aH (2)

Here β ∈ [0, 1] arbitrates control between human and robot.
When β → 0, the human always controls the robot, and when
β → 1, the robot acts autonomously.
Human. So how does the human choose inputs aH? During
interaction i we assume the human has in mind a desired task
zi. We know that this task guides the human’s commanded
actions; similar to prior work [5], we accordingly write the
human’s policy as πH(aH | s, zi). This policy is the gold
standard, because if we knew πh we would know exactly how

2Although we use joysticks in our user study, our approach is not tied to
any teleoperation interface. Users could alternatively control the robot with
sip-and-puff devices [4], body-machine interfaces [44], or brain-computer
interfaces [45]. All of these interfaces output a commanded action aH.
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Figure 3. Our proposed approach for learning to share autonomy across repeated interaction. (Left) The robot embeds the human’s behavior τ i during the
current interaction to a distribution over latent tasks z. (Middle) The robot then chooses assistive actions aR conditioned on its state s and latent task z.
Policy πR is trained to match the user’s behavior from previous interactions. (Right) To decide whether or not to trust this assistive action, the robot turns to a
discriminator C. The discriminator assesses whether the current interaction τ i is similar to any previously seen interaction: if so, the robot increases autonomy.
In this example the robot remembers how the human has opened the fridge in the past, and assists for that task. But when the human does something new
(reaching for the cup) the robot realizes that it does not know how to help, and arbitrates control back to the human.

the human likes to perform each task z ∈ Z . It’s important
to recognize that this policy is highly personalized. Imagine
that the current task is to reach a coffee cup at state s∗: one
human might prefer to move directly towards the cup with
actions aH ∝ (s∗ − s), while another user takes a circuitous
route to stay farther away from obstacles. Our approach should
personalize, and learn the policy that the current user prefers.

Repeated Interaction. In practice the assistive robot cannot
directly observe either zi or πh. Instead, the robot observes the
states that it visits and the commands that the human provides.
Let τ = {(s1, a1

H), . . . , (sT , aTH)} be the entire sequence of
robot states and human commands that the robot observed
over the course of an interaction. As the human and robot
repeatedly collaborate and interact, the robot collects a dataset
of these sequences: D = {τ1, τ2, . . . , τ i−1}. Notice that here
we distinguish the current interaction τ i. Because the robot
only knows the states and human inputs up to the present
time, τ i = {(s1, a1

H), . . . , (st−1, at−1
H )}.

Robot. In settings where an assistive robot arm repeatedly
interacts with a human, the robot has access to three pieces
of information. The robot knows its state s, the human’s
current behavior τ i, and the events of previous interactions
D. Given (s, τ i,D), the robot needs to decide: (a) what
assistance aR to provide and (b) how to arbitrate control with
β. We emphasize that here the robot makes no assumptions
about either the human’s underlying tasks or how to complete
them — instead, the robot must extract this information from
previous interactions. In practice, the designer may choose
to initialize the robot with some tasks before the assistive
arm encounters the current user. Under our formulation this
prior information takes the form of offline demonstrations: the
designer provides interactions Doffline, so that D → D∪Doffline.
Moving forward, the robot must leverage the demonstrations
D to learn to share autonomy with the current human operator.

IV. LEARNING TO SHARE AUTONOMY
ACROSS REPEATED INTERACTION (SARI)

Our proposed approach is guided by the intuition that —
if the robot recognizes the human’s behavior is similar to
a previous interaction — the robot can assist the human by
imitating that past interaction. Take our motivating example of
opening the fridge door: the next time the human starts guiding

the robot towards this door, the robot should infer which task
the human is trying to perform, and then autonomously open
the door just like the human did. There are three key challenges
to this problem. First, the robot must recognize the human’s
task zi during the current interaction. Next, the robot should
replicate any previous interactions that are similar to this task.
Finally, the robot must know when it is unsure, and return
control to the human if the task is new or unexpected. In this
section we outline how our approach tackles these three main
challenges (see Figure 3). We refer to our method as SARI:
Shared Autonomy across Repeated Interactions.

A. Recognize: Embedding Interactions to a Latent Space

Our first step is to extract the user’s high-level task zi from
the robot’s low-level observations. Recall that the human’s
behavior during the current interaction (i.e., their commanded
actions at each robot state) is captured by τ i. This behavior is
guided by the human’s desired task: when the human wants
to open the fridge, they provide commands aH that move the
robot towards that door, and when the human wants to pick
up a coffee cup, they provide a different set of commands to
reach that cup. Accordingly, we leverage τ i to recognize the
underlying task zi. More formally, we introduce an encoder:

z ∼ E( · | τ i) (3)

This encoder embeds the human’s behavior into a probability
distribution over the latent space Z ⊆ Rd. We learn the en-
coder network from previous human interactions as described
in the following subsection (IV-B).

Our encoder E is analogous to goal prediction from prior
works on shared autonomy [3]–[10]. In these prior works the
robot observes the human’s current behavior τ i, and then
applies Bayesian inference to predict the human’s goal zi.
Our encoder E(z | τ i) accomplishes the same thing: it outputs
a distribution over tasks the human may want to complete.
The difference is that — when using Bayesian inference —
the robot needs to know the set of possible tasks a priori.
When training the encoder we make no such assumption.
However, one practical concern here is that the robot could
convince itself of its own prediction: i.e., because the robot is
autonomously moving towards a goal, the robot might think
that goal is increasingly likely [5]. We avoid this loop by
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purposely encoding the sequence τ i. Since τ i only includes
the human’s action aH (and not the robot’s assistance aR), the
robot cannot infer a latent task from its own behavior.

B. Replicate: Imitating the Demonstrated Behavior

As the human uses their joystick to teleoperate the robot
towards the fridge door, we leverage our encoder to recognize
the human’s task. But what does the robot do once it knows
that task? And how do we train the encoder in the first place?
We address both issues by introducing a policy (i.e., a decoder)
that maps our task predictions into assistive robot actions:

aR = πR(s, z) (4)

The policy πR determines how the robot assists the human. We
want this policy to imitate previous demonstrations, so that if
the human’s current behavior is similar to another interaction
τ ∈ D, the robot will generalize the human’s actions from that
previous interaction.

We accomplish this by training the encoder and policy
models using the dataset of interactions D. More specifically,
we take snippets of the human’s behavior during previous
interactions, embed those snippets to a task prediction, and
then reconstruct the human’s demonstrated behavior. For some
past interaction τ ∈ D, let ξ = {(s1, a1

H), . . . (sk−1, ak−1
H )}

be the human’s behavior up to timestep k, and let (sk, akH) be
the human’s behavior at timestep k. We train the encoder and
policy to minimize the loss function:

L = Ez∼E(·|ξ) ‖akH − πR(sk, z)‖2 (5)

across the dataset D. In other words, once we train E and
πR, we can take a snippet of the human’s past behavior
and accurately predict the human’s next action. Equation (5)
encourages the robot to mimic the human, so that when the
robot encounters a familiar task, the arm will take autonomous
actions that match commands which the human previously
provided. As a reminder, here the robot is not simply sav-
ing and replaying the human’s demonstrations: because each
interaction is slightly different, the robot learns a policy πR
to generalize the human’s demonstrations to nearby states.

We contrast our policy to trajectory prediction [3], [4] or
task constraints [11], [14]–[17] from previous research on
shared autonomy. Under these approaches the robot assumes
that it knows the correct way to perform each task; e.g., if
the human wants to reach for a cup, the robot assumes that it
should move in a straight line towards that goal. But we know
that tasks are personalized, and different users will complete
the same task in different ways. Instead of constraining robot
assistance to a pre-specified task definition, we therefore learn
to imitate how the current user performs each task.

C. Return: Knowing What We Do Not Know

If the human repeats a task that the robot has seen many
times before (e.g., opening the fridge), we can rely on our
model to assist the human. But what happens if the human
tries to perform a new or rarely seen task? Here we do not
trust the robot’s assistive actions since this task is out of
the robot’s training distribution. In general, deciding where

to arbitrate control requires a trade-off: we want the robot to
take as many autonomous actions as possible (reducing the
human’s burden), but we do not want the assistive robot to
over-commit to incorrect autonomous actions and prevent the
human from doing what they actually intended.

To solve this problem we take inspiration from recent work
on interactive imitation learning [38]–[41]. Our objective is to
determine when the robot should trust the collective output of
Equations (3) and (4). Intuitively, if the human’s behavior τ i is
unlike any seen behavior τ ∈ D we should return control to the
human. We therefore train a discriminator C that distinguishes
seen behavior from unseen behavior. Unseen behavior is cheap
to produce: we can generate this behavior by applying noisy
deformations to the observed interactions τ ∈ D [46]. At run
time, our discriminator outputs a scalar confidence over the
human’s current behavior, which we then utilize to arbitrate
control between human and robot:

β ∝ C(τ i) (6)

In our experiments we implement C(τ i) = C(st, atH), where
(st, atH) is the most recent state-action pair from τ i, and the
output of C is normalized using a softmax function [47] to
obtain the arbitration parameter β(st, atH) ∈ [0, 1]. Recall that
β from Equation (2) blends aR and aH. If τ i deviates from
previously seen input patterns, β → 0, and the robot returns
control to the human operator. By contrast, if the discriminator
recognizes τ i as similar to previous experience, β → 1 and
the robot arm partially automates its motion.

Continual Learning. During each interaction the robot applies
Equations (3), (4), and (6) to assist the human. But what
about between interactions? Let us say we train our encoder,
policy, and discriminator after the human has collaborated with
the robot for a single week. Over the next week the human
uses their robot they will inevitably perform new tasks. An
intelligent assistive robot should also learn these tasks and
continuously adapt to the human. At the end of interaction
i, we therefore add τ i to dataset D. We then retrain SARI
between interactions, updating E , πR, and C. Intermittent
retraining enables the robot to continually learn and refine
tasks over long-term interaction.

V. ANALYZING STABILITY WITH SARI

The SARI algorithm we developed in Section IV learns to
recognize tasks, replicate demonstrations, and return control.
Here we apply stability theory to this learning approach.
Specifically, we explore the performance of SARI when the
human attempts to complete a new, previously unseen task.
We know that the robot should recognize its uncertainty and
arbitrate control back to the human. But the robot is also trying
to provide assistance and reduce the human’s burden — and if
the robot mistakenly thinks it knows the human’s intent, our
system may override the user and autonomously perform the
wrong task. For example, in Figure 3 this false positive causes
the robot to open the fridge (a previously seen skill) instead
of reaching for the cup (a new and unexpected goal).

In this section we bound the error between the robot’s final
state and the human’s desired goal. We start with a single
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degree-of-freedom system for the sake of clarity, and then
extend our analysis to d-dimensional robot arms. Overall, we
prove that the final state error of a SARI robot — i.e., the
distance between s and the human’s goal — is uniformly
ultimately bounded. The radius of this bound is a function
of the SARI design parameters, the distance between the
human’s new task and previously seen tasks, and the variance
in the human teleoperator’s inputs. Throughout this section we
conduct experiments with simulated humans and simulated or
real robot arms: we find that our theoretical error bounds align
with the measured error in these studies. Finally, we extract
practical guidelines that designers can leverage to tune the
hyperparameters of our SARI algorithm.

A. Single Degree-of-Freedom System

To more clearly explain our theoretical analysis we start by
considering a 1-DoF assistive robot. Here the state s ∈ R, the
human command aH ∈ R, and the robot assistance aR ∈ R are
all scalars. The human is teaching this robot to reach for static
goals3. At every previous interaction the human teleoperated
the robot towards a known goal g. Now the human changes
their mind and attempts to reach a new goal g∗. Returning to
our motivating example from Figure 3, perhaps the human has
repeatedly teleoperated their assistive arm to open the fridge,
and now at interaction i the user wants to pick up a cup.

Robot. During past interactions the human guided the robot
towards g. We assume these past human actions were sampled
from a Gaussian distribution aH ∼ N

(
(g−s), σ2

D)
)

that nosily
moved from s to g. Applying SARI, the robot collects these
state-action pairs into sequences τ = {(s1, a1

H), . . . , (sT , aTH)}
and a dataset D = {τ1, . . . , τ i−1}. The robot then learns to
recognize and replicate the human’s behavior by minimizing
Equation (5) across the dataset D. We assume a best-case
robot that learns to perfectly match the human’s past behavior
such that the robot’s assistive policy is aR ∼ N

(
(g−s), σ2

D)
)
.

Similarly, this best-case robot learns to return control such that
the discriminator — i.e., β in Equation (6) — is the robot’s
learned policy evaluated at the human’s current action:

β(s, aH) =
1√

2πσ2
D

exp

(
−
(
aH − (g − s)

)2
2σ2
D

)
(7)

We emphasize that σD captures the precision and consistency
of the human’s previous interactions. Here σD → 0 indicates
that the human directly guided the robot to the known goal g,
while σD → ∞ indicates that the human’s past interactions
were noisy and imperfect (i.e., the human may have pressed
the joystick in the wrong direction or overshot their goal).

Human. During the current interaction the human reaches for
a new, unexpected goal g∗. As before, we assume the human
follows a Gaussian distribution aH ∼ N

(
(g∗ − s), σ2

H)
)
. The

standard deviation σH captures the precision of the human’s
inputs when reaching for this new goal. We recognize it might
be easier (or harder) for the human to teleoperate the robot to
the new goal, and thus σH does not necessarily equal σD.

3Our analysis can also be extended to dynamic skills by assuming that the
human’s goal is the closest waypoint along the skill’s trajectory.

Lyapunov Stability Analysis. The desired equilibrium of the
human-robot system is s = g∗, i.e., we want the robot to move
to the human’s new goal. We therefore propose the Lyapunov
candidate function:

V (t) =
1

2
e(t)2, e(t) = g∗ − s(t) (8)

where e(t) ∈ R is the error between the robot’s state s and
the human’s goal g∗ during the current interaction. Taking the
time derivative of Equation (8), and substituting in the robot’s
dynamics from Equation (1) and Equation (2), we obtain:

V̇ (t) = −(g∗ − s)2 + βaH(g∗ − s)− βaR(g∗ − s) (9)

Recall that aH, aR, and β are all probabilistic quantities. We
accordingly take the expectation of V̇ to reach:

E[V̇ (t)] = −(g∗ − s)2 + E[βah](g∗ − s)
−E[β](g∗ − s)(g − s)

(10)

Intuitively, we want Equation (10) to be negative so that V (t)
decreases over time and the human-robot system approaches
equilibrium e(t) = 0 in expectation.

For our next steps is critical to understand the role of the
arbitration factor β. Recalling that aH ∼ N

(
(g∗ − s), σ2

H)
)
,

we take the expectation of Equation (7) to reach:

E[β] =
1√

2π(σ2
D + σ2

H)
exp

(
−(g∗ − g)2

2(σ2
D + σ2

H)

)
(11)

This function does not always hold. From our original def-
inition in Equation (8) we remember that β ∈ [0, 1], where
β → 0 corresponds to full human control and β → 1 is
fully autonomous behavior. In practice, designers may further
limit β ≤ βmax, βmax ∈ (0, 1], so that the human always
retains some level of control over the assistive robot [3], [7].
Accordingly, we here reach two cases for our stability analysis:
(a) when E[β] ≥ βmax and (b) when E[β] < βmax. Below we
derive two separate stability results for both of these cases.

Theorem 1. Consider a 1-DoF robot using SARI. Given the
robot’s learned policy is aR ∼ N

(
(g− s), σ2

D)
)
, the human’s

current policy is aH ∼ N
(
(g∗ − s), σ2

H)
)
, and E[β] ≥ βmax

in Equation (11), the error is uniformly ultimately bounded.
The ultimate bound is:

|g∗ − s| > βmax · |g∗ − g| (12)

Proof. Since E[β] ≥ βmax we set β = βmax. Accordingly,
we have that E[β] = βmax and E[βaH] = βmax · E[aH] in
Equation (10). Rearranging the updated Equation (10), we find
that E[V̇ (t)] < 0 when Equation (12) is satisfied. It follows
that the human-robot system is uniformly ultimately bounded
[48], [49]. See our Appendix for more details.

We can intuitively think of Theorem 1 as a false-positive
situation: here β = βmax and the robot is fully convinced that
the human’s current goal is g. Fortunately, our SARI algorithm
is designed to prevent false-positives by returning control when
the robot is faced with new or previously unseen behaviors.
This leads to our second setting where E[β] < βmax.
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Figure 4. Error bounds for the 1-DoF system as a function of human noise. All
values are in meters. Plots generated using Equation (12) and Equation (13)
with βmax = 1. (Left) For a fixed σH = 1 we increase σD . This captures a
human that provided increasingly noisy inputs during past interactions when
they were reaching for the known goal g. (Right) For a fixed σD = 1 we
increase σH. This corresponds to a human that provides increasingly noisy
inputs during the current interaction while reaching for the new goal g∗. We
conclude that σD and σH have opposite effects on the theoretical error bound.

Theorem 2. Consider a 1-DoF robot using SARI. Given the
same conditions as in Theorem 1, but now E[β] < βmax, the
error is uniformly ultimately bounded. The ultimate bound is:

|g∗ − s| > E[β] · σ2
D

σ2
D + σ2

H
· |g∗ − g| (13)

Proof. Since E[β] < βmax we set β = β(s, aH). We now
have that β depends upon aH: to compute E[βaH], we turn
to the law of the unconscious statistician (LOTUS) [50]:

E[βaH] =
(g − s)σ2

H + (g∗ − s)σ2
D√

2π(σ2
D + σ2

H)3/2
exp

(
− (g∗ − g)2

2(σ2
D + σ2

H)

)
Substituting both Equation (11) and E[βaH] back into Equa-
tion (10), we find that E[V̇ (t)] < 0 when Equation (13) is
satisfied. From this it follows that the human-robot system is
uniformly ultimately bounded [48], [49].

Implications for SARI. We here highlight three design guide-
lines that emerge from the stability analysis of a 1-DoF system.
First, looking at Theorem 1, we find that lower values of
βmax lead to a decreased error |g∗ − s|. This aligns with our
expectations: when β → 0 the human always retains control
and guides the robot without any autonomous intervention. But
smaller values of βmax also limit the maximum assistance the
robot can provide, forcing the human to continually teleoperate
the robot arm. Hence, choosing βmax is a trade-off between
increased error bounds and increased human effort.

Second, from Theorem 2 the precision of the human’s
previous interactions (σD) and current interaction (σH) have
opposite effects on the error bound (see Figure 4). Humans that
accurately moved to goal g will have lower error bounds when
reaching for the new goal; i.e., decreasing σD reduces the error
|g∗ − s|. Conversely, after the human starts moving towards
the new goal g∗, noisy motions are beneficial: increasing σH
reduces the error |g∗− s|. We tie both of these trends back to
the discriminator in Equation (6). When the human’s inputs are
easily distinguished from previous interactions — i.e., when
the human takes actions the robot has not seen before — SARI
returns control and the human can reach their new goal.

Finally, by combining Theorem 1 and Theorem 2 we have
that the worst-case error occurs when the human’s new goal
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Figure 5. Error bound and experimental results for a 1-DoF SARI system.
All values are in meters. Here a simulated Gaussian human provided 250
demonstrations reaching for their original goal g. These demonstrations were
used to train the SARI algorithm; at test time the simulated human reached
for a series of new goals g∗ with SARI assistance. For each g∗ we collected
10, 000 runs — the shaded region is the standard deviation across these runs.
While reaching for the previous goal g and new goal g∗ the human had
noise σD = σH = 1. For all choices of g∗ we have that E[β] < βmax in
Equation (11), and thus the theoretical bound is Equation (13).
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Figure 6. Error bound and experimental results for a 1-DoF SARI system.
All values are in meters. We followed the same protocol as in Figure 5, but
here the simulated human was less noisy: σD = σH = 0.1. We accordingly
had two different theoretical error bounds. When g∗ is close to g then E[β] ≥
βmax and Equation (12) applies; but as g∗ get farther from g we have that
E[β] < βmax, and thus the bound is Equation (13). The bound appears tight
when E[β] < βmax and more conservative when E[β] ≥ βmax.

g∗ is close to — but not the exact same as — the human’s
previous goal g. As |g∗− g| increases E[β]→ 0 and the error
bound in Equation (13) approaches zero. Similarly, when |g∗−
g| → 0 we have that |g∗ − g| → 0 in both Equation (12) and
Equation (13). Our results here are consistent with [51], where
the authors demonstrate that nearby goals are an adversarial
setting for existing shared autonomy algorithms.

Experimental Validation. In our analysis we have made two
important assumptions about SARI. First, we assumed that the
robot’s learned policy aH ∼ N

(
(g−s), σ2

D)
)

exactly replicates
the human’s previous behavior. Second, we assumed that the
robot’s discriminator learns Equation (7), i.e., the discriminator
outputs the likelihood of the human’s current action under the
robot’s learned policy. In Figure 5 and Figure 6 we test both of
those assumptions by comparing the theoretical bounds from
Equation (12) and Equation (13) to the experimental behavior
of our SARI algorithm.

To generate these plots we simulated a 1-DoF point-mass
robot and human operator. The simulated human repeatedly
guided the robot to a known goal g with actions aH ∼ N

(
(g−

s), σ2
D)
)
, and we followed the procedure from Section IV to

train our SARI algorithm on these interactions. The simulated
human then takes actions aH ∼ N

(
(g∗ − s), σ2

H)
)

to reach a
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new goal g∗ while receiving SARI assistance. For values of g∗

where Theorem 2 applies (i.e., when E[β] < βmax) we find a
close correspondence between Equation (13) and the robot’s
measured error e(t). For values of g∗ where E[β] ≥ βmax
it appears that Theorem 1 becomes overly conservative: the
experimental error is consistently lower than Equation (12).

B. Multiple Degree-of-Freedom System
So far we have explored the stability and error bounds of a

1-DoF system. We now extend these results to the general case.
Here the state s ∈ Rd, the human command aH ∈ Rd, and
the robot assistance aR ∈ Rd are all d-dimensional vectors.
To better distinguish that we are working with vectors we
will bold these symbols. Our problem setup is the same as
in Section V-A: during past interactions the human guided the
robot towards goal g, and we want to evaluate error during the
current interaction when the human is teleoperating the robot
to a new, previously unseen goal g∗.
Assumptions. As before, we assume that the human’s actions
during past interactions were sampled from a multivariate
Gaussian distribution aH ∼ N

(
(g − s),ΣD

)
. During the

current interaction the human noisily moves towards their new
goal by following the policy aH ∼ N

(
(g∗ − s),ΣH

)
. We

make two key assumptions about SARI. (a) Our approach
learns to perfectly recognize and replicate the human’s past be-
havior, and provides assistive actions aR ∼ N

(
(g− s),ΣD

)
.

(b) Our discriminator learns to output a scalar β that matches
the robot’s policy evaluated at the human’s action aH. These
assumptions are the same as in Section V-A. We note that the
covariance matrix ΣD captures the human’s noise during past
interactions, and ΣH is the noise during the current interaction.
Lyapunov Stability Analysis. We want SARI to drive the
human-robot system towards the equilibrium s = g∗. We
accordingly propose the Lyapunov candidate function:

V (t) =
1

2
‖e(t)‖2, e(t) = g∗ − s(t) (14)

Taking the time derivative of Equation (14), plugging in the
robot’s dynamics from Equation (1) and Equation (2), and then
taking the expectation, we obtain:

E[V̇ (t)] = −eT
(
e− E[βaH] + E[β](g − s)

)
(15)

Our goal here is to find a condition that ensures E[V̇ (t)] < 0
so that the human-robot system approaches equilibrium e(t) =
0. Importantly, the next steps of our analysis depend on the
expected value of β. Given our assumptions about SARI, for
a d-dimensional system we find that:

E[β] =
1√

(2π)d det Σ
exp

(
−1

2
‖g∗ − g‖2Σ−1

)
(16)

where Σ = ΣD + ΣH is the sum of the covariance matrices.
Recalling that the arbitration factor β must be within [0, βmax],
we again reach two two cases for our stability analysis: (a)
when E[β] ≥ βmax and (b) when E[β] < βmax. Below we
list the general stability results for each case.

Theorem 3. Consider a d-DoF robot using SARI. Given the
robot’s learned policy is aH ∼ N

(
(g−s),ΣD

)
, the human’s

Bound SARI
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Figure 7. Error bound and experimental results for a 3-DoF SARI system. All
values are in meters, and ideally ‖s‖ = ‖g∗‖. A simulated Gaussian human
provided 25 demonstrations reaching for their original (x, y, z) goal position
on the Franka robot arm. These demonstrations were used to train the SARI
algorithm; at test time the simulated human reached a series of new goals g∗

with SARI assistance. For each g∗ we collected 5 runs. While reaching for the
previous goal g and new goal g∗ the human had noise ΣD = ΣH = 1e−4 ·I ,
where I is the identity matrix. For choices of ‖g∗‖ close to 0.56, we have that
E[β] ≥ βmax and the bound is given by Equation (17). As ‖g∗‖ increases
beyond 0.57, we find E[β] < βmax and the bound is Equation (18).

current policy is aH ∼ N
(
(g∗ − s),ΣH

)
, and E[β] ≥ βmax

in Equation (16), the error is uniformly ultimately bounded.
The ultimate bound is:

‖g∗ − s‖ > βmax · ‖g∗ − g‖ (17)

Proof. Since E[β] ≥ βmax we set β = βmax. Hence E[β] =
βmax and E[βaH] = βmax(g∗ − s). Substituting this into
Equation (15) and applying the Cauchy–Schwarz inequality,
E[V̇ (t)] < 0 when Equation (17) is satisfied. It follows that
the human-robot system is uniformly ultimately bounded [48],
[49]. See our Appendix for more details.

Theorem 4. Given a d-DoF SARI robot under the same
conditions as in Theorem 3, but now with E[β] < βmax, the
error is uniformly ultimately bounded. The ultimate bound is:

‖g∗ − s‖ > λE[β] · ‖g∗ − g‖ (18)

where λ is the maximum eigenvalue of (ΣD + ΣH)−1ΣD.

The full proof for Theorem 4 can be found in the Appendix.
We highlight that if d = 1 and we have a single DoF
robot, then Equation (17) and Equation (18) are equivalent to
our univariate results from Equation (12) and Equation (13).
Overall, the SARI error bounds are a function of the designer’s
choice of βmax, the amount of noise in the operator’s joystick
inputs, and the distance between the previous and new goals.

Experimental Validation. To support our stability analysis we
compared the theoretical error bounds from Equation (17) and
Equation (18) to the actual behavior of our SARI algorithm.
We conducted this study on a Franka Emika Robot arm with
a simulated human teleoperator.

The results are shown in Figure 7. The simulated human
used a Gaussian policy when reaching for g, and we trained
SARI using the state-action pairs collected from these interac-
tions. SARI then assisted the simulated human as they reached
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Figure 8. Comparison to DAgger [33], an imitation learning baseline that
does not use latent embeddings. A simulated user controls the robot for the
first 0.5 seconds of the interaction: the robot must recognize the human’s task
and complete the rest of the reaching motion autonomously. We measure the
final state error for each goal after training with 3 or 5 repeated interactions.
Comparing all DAgger runs to all SARI runs, we find that the final state error
is lower with SARI: t(29) = 3.215, p < 0.05.

towards a previously unseen goal g∗. We observe a close
correspondence between Equation (18) and the measured error
when E[β] < βmax. For goal positions where E[β] ≥ βmax
we find that Equation (17) is conservative, and the actual error
is less than our theoretical bound. Viewed together, our results
from Sections V-A and V-B support our stability analysis, and
suggest that SARI correctly returns control when the human
reaches for new and unexpected goals.

VI. SIMULATIONS

We have introduced an algorithm that learns to assist users
over repeated interaction. Our algorithm (SARI) breaks down
into three parts: recognizing the task, replicating prior demon-
strations, and returning control when uncertain. In this section
we perform simulations to determine how each component
of SARI contributes to its overall performance. We recog-
nize that — in practice — human operators will use SARI
to assist for multiple everyday tasks. Accordingly, we also
test the capacity of our approach, and evaluate how SARI’s
performance changes as it encounters and increasing number
of goals and skills. Throughout this section we compare our
approach to state-of-the-art imitation learning baselines that
also learn from repeated human-robot interaction. We conduct
these experiments on both simulated and real robot arms with
simulated human operators.

Experimental Setup. For different simulations we implement
SARI on either a 7-DoF Franka Emika robot or a 6-DoF
Universal Robots UR10 robot. We test with two different
arms to show that our approach is not hardware specific. A
simulated user controls the robot to reach discrete goals (e.g.,
grasping a can) and perform continuous skills (e.g., opening
a drawer). This simulated user is not perfect: the user selects
commanded actions aH with varying levels of Gaussian white
noise, similar to the noisy human models from Section V.

A. Do We Need Recognition?

In our first experiment we explore whether we need two
separate modules for task recognition and replication. Recall
that in Section IV-A we introduced an encoder which embeds
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Figure 9. Comparison to DropoutDAgger [40], a safe imitation learning
baseline where the robot’s learned policy πR evaluates its own confidence.
Simulated users attempt to lift a glass. Although the robot has seen this
continuous skill 5 times before, with Dropout the robot is overly sensitive to
minor deviations from previous interactions and rarely provides assistance.

the current interaction τ i into a latent task prediction z ∈ Z .
Within Section IV-B we then mapped z to an assistive robot
actions using πR(s, z). Here we test whether we need this
encoder in the first place: in other words, can we obtain
similar performance without embedding to latent space Z? We
consider an imitation learning baseline that directly maps the
current interaction τ i to robot actions aR using a learned pol-
icy πR(s, τ i). Specifically, we compare SARI against Dataset
Aggregation (DAgger) [33].

This experiment was performed on the Franka Emika robot
arm with a simulated human operator (see Figure 8). The
environment consisted of three potential goals: a can of soup,
a notepad, or a tape measure. The human first teleoperated
the robot along 3 or 5 demonstrations to reach each goal. We
trained SARI and DAgger from these repeated interactions
such that both approaches had access to the same training
data. At test time, the human guided the robot for the first
0.5 s of the task: based on this input, the robot had to (a)
recognize which task the human was trying to perform and
(b) automate the rest of the reaching motion. We plot the
resulting error between the human’s goal and the robot’s final
state in Figure 8. Comparing the results when trained with 3
past interactions to the results with 5 previous interactions,
we find that the robot is better able to provide assistance after
additional interactions. Regardless of whether DAgger had 3
or 5 demonstrations, however, SARI more accurately reached
the human’s goal given the same simulated human operator.
These results suggest that incorporating a separate encoder for
task recognition does improve the robot’s assistance.

B. Do We Need Help Returning Control?

In our second experiment we explore the opposite end
of our pipeline: determining when the robot should provide
assistance. The stability analysis from Section V indicates
that SARI will return control when the operator attempts to
perform a new task. However, it is equally important for the
robot to retain control (and provide assistance) when it en-
counters a known task. Here we test if the robot will correctly
recognize a previously seen skill. Recall that SARI decides
whether or not to provide assistance based on the output of the
discriminator from Section IV-C: this discriminator detects if
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Figure 10. Simulated humans with increasingly noisy behavior. Here the
human is always attempting to open the drawer (a previous seen skill). We
find that SARI correctly recognizes and assists for this task despite noisy and
imperfect human teleoperation inputs: aH ∼ N

(
a∗H, diag(σ2, . . . , σ2)

)
.

the state-action pairs in τ i are similar to previous interactions.
Instead of training a separate discriminator, one alternative is
to rely on the confidence of our learned policy itself. Here we
turn to prior work on safe imitation learning where the robot
samples its learned policy multiple times at the current state,
and assesses the similarity of the resulting actions aR. If all
of these actions are almost identical, the robot is confident it
knows what to do; conversely, if the model outputs have high
variance, the robot is unsure. We therefore compare SARI to
DropoutDAgger [40] (Dropout).

This experiment was performed on a Franka Emika robot
arm with a simulated human teleoperator (see Figure 9).
The simulated human and real robot attempted to complete
a continuous manipulation task where the robot must reach
and lift a glass. During test time, the human and robot shared
control throughout the entire interaction using Equation (2).
The robot had seen the human perform this task in five past
interactions, and so it should have been confident when provid-
ing assistance. We visualize the robot’s actual confidence β in
Figure 9. Interestingly, we find that Dropout is overly sensitive
to minor deviations from previous interactions, and incorrectly
returns control to the human even when the robot can still
provide useful assistance. SARI remains confident throughout
this known task, suggesting that our separate discriminator
better arbitrates control than the learned policy itself. This is
practically important: human operators will never perform the
same task in the exact same way, and thus the robot must
remain confident on known tasks despite operator variability.

C. What if the Operator is Increasingly Noisy?

So far we have focused on the robot’s perspective, and
have tested each component of our SARI approach. For our
third experiment we instead focus on the human, and explore
how the behavior of the human operator affects SARI. We
consider simulated humans with different levels of noise as
they attempt to complete previously seen or new tasks. For
previously seen tasks, we want to make sure that the robot
continues to provide assistance even as the human becomes
an increasingly noisy and imperfect operator. For new tasks,
we recognize that the robot should not resist the human or
force them along a previously seen trajectory. This problem
becomes particularly challenging when the human is noisy,
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Figure 11. Simulated users alternate between a previously seen task (opening
the drawer) and a new task (reaching a cup). With No Assist, both new and
previous tasks take about the same amount of Human Effort. SARI learns
to partially automate the previously seen task without resisting or overriding
humans when they try to complete the new task.

since the robot must determine whether the imperfect human
is trying to repeat the known task or complete a new task.

This experiment was performed on a Franka Emika robot
arm with a simulated human teleoperator (see Figure 10 and
Figure 11). The human provided inputs a∗H to optimally com-
plete the task, and we then injected Gaussian white noise with
covariance matrix ΣH = diag(σ2, . . . , σ2). The environment
contained a previously seen skill (opening a drawer) and a
new goal (reaching a cup). SARI was trained with 5 repeated
interactions of the drawer skill; however, SARI had no prior
experience with the cup goal. We compared our approach to
a No Assist baseline where the human directly teleoperated
the robot’s end-effector without any shared autonomy. In this
experiment we measured Human Effort. We define Human
Effort as the amount of time the human teleoperates the robot
(i.e., the total time the human is providing joystick inputs)
normalized by the average time required to complete the task.
Lower values of Human Effort signify that the robot correctly
automated the motion, while higher values mean that the
human had to teleoperate the robot throughout the task.

We first tested the previous seen drawer skill with increasing
levels of human noise σ (see Figure 10). Interestingly, we
found that SARI consistently reduced Human Effort while
remaining robust to this range of σ. We then had the simulated
human alternate between the new and previous tasks while
varying the amount of Gaussian white noise (see Figure 11).
As expected, SARI made it easier for the human to repeatedly
open the drawer — but on the new task, SARI also correctly
returned control back to the human. Performing the new task
took no more effort than the No Assist baseline; indeed, it
often required less human effort. To explain this result, we
note that the start of the cup task was similar to the start of
the drawer skill, and thus SARI could automate the beginning
of this motion (resulting in less Human Effort).

D. How Many Tasks Can We Learn?

For our final experiment with simulated humans we explore
SARI’s capacity to learn goals and skills. Remember that our
motivating application is an assistive robot arm for everyday
use: over long-term interaction, this robot will encounter many
repeated tasks for which it should provide assistance. More
formally, the robot observes an increasing number of interac-
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tions τ and aggregates a growing dataset D = {τ1, . . . , τ i}.
Here we test the performance of SARI as it is trained on
this iteratively increasing dataset. We separate the experiment
into two parts: in the first environment the robot encounters
an increasing number of goals, and in the second setting the
robot must learn to assist for an increasing number of skills.
Ideally the robot will have the capacity to learn assistance for
all of these new tasks, without forgetting or failing to assist
for previously seen tasks.

In both parts of this experiment we compare our proposed
approach (SARI) to EnsembleDAgger [52]. Ensemble is an
interactive imitation learning approach that trains multiple
policies on the human’s dataset. Unlike SARI — which has
separate models to recognize, replicate, and return — under
Ensemble the robot only learns policies πR(s, τ i) that map the
human’s behavior directly to robot assistance. The robot trains
an ensemble of these policies and compares their outputs:
when the actions aR of each policy agree the robot is confident
(i.e., higher β), and when the actions have high variance the
robot is uncertain (i.e., lower β).

Goals. To explore our method’s capacity to learn goals we
simulated a Franka Emika robot arm and human operator in
PyBullet [53] (see Figure 12). At the start of the experiment
the simulated human repeatedly reached for a single goal, and
the robot learned to assist for that goal. Next, the human
repeatedly reached for two goals (with new goal positions
that were randomly generated), and we tested the robot’s
ability to assist for both goals. Following this pattern, the
human iteratively reached for up to 20 goals; during each
iteration we tested the robot’s ability to assist for all the goals
it had observed. To standardize our results, we trained 20
separate SARI and Ensemble models at every iteration. Each
individual SARI model assisted the simulated human for a
single goal 5 times. For Ensemble, we had the ensemble of
20 models assist the human 100 times; put another way, both
methods reached for a given goal 100 total times.

Since we focused on how accurately the human-robot sys-
tem reached goals, we measured the Final State Error between
the human’s actual goal and the robot’s final state. Our results
are shown in Figure 12. Overall, we observe that both SARI
and Ensemble are constant as the number of goals increases:
e.g., the error after learning 10 goals is similar to the error
after learning all 20 goals. But while both approaches have
the capacity to learn multiple goals, we find that SARI results
in lower error across the board. Our results here are consistent
with Section VI-A, and suggest that the recognize and return
modules in SARI lead to improved performance.

Skills. To explore our method’s capacity to learn continuous
skills we paired a simulated Gaussian human with a real 6-DoF
UR10 arm. Here the simulated human attempted to perform
kitchen tasks such as opening a drawer, stabbing a piece of
fruit, or pushing a bowl (see Figure 13). Similar to Goals,
we followed an iterative process: first the human and robot
repeatedly performed one skill, then two skills, and so on. At
each iteration we evaluated the robot’s ability to assist for all
the skills it had seen so far. We had a total of 8 skills, and to
remove any ordering bias we repeated the experiment twice:
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Figure 12. Capacity to assist for an increasing number of goals. A simulated
user repeatedly reached for up to 20 randomly generated goals. The simulated
human then teleoperates the robot to reach for all of the goals it has seen so far
using two different methods: Ensemble [52] and SARI. SARI has separate
modules to recognize, replicate, and return, while Ensemble trains multiple
replicate modules and returns control when these policies disagree. Final
state error is the difference between the robot’s final state and the human’s
intended goal; the shaded region is the standard error about the mean. SARI
maintains roughly constant performance as the number of goals increases, and
consistently has lower error than Ensemble.
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Figure 13. Capacity to assist for an increasing number of skills. A simulated
Gaussian human teleoperated the UR10 robot to perform up to 8 different
kitchen skills (e.g., opening a drawer, stabbing a fruit, pushing a bowl).
The simulated human then completed these skills when assisted by either
Ensemble [52] or SARI. Regret is the difference between the maximum pos-
sible reward and the robot’s actual reward: lower values of regret indicate the
human-robot system completed the skills correctly. Shaded region indicates
standard error about the mean. Unlike Figure 12, we observe that performance
decreases as the number of skills increases.

once while observing skills 1→ 8, and once while observing
skills 8→ 1. To standardize our results, we trained SARI and
Ensemble 20 separate times at each iteration, and evaluated
each model’s performance 5 times per skill.

We measured Regret to understand if human-robot system
performed each skill correctly. Let R∗(ξ) be the maximum
reward that the system can achieve on skill ξ; we define Regret
as R∗(ξ) − Ractual(ξ), i.e., the difference between the best-
case reward and the robot’s actual reward. Our results are
plotted in Figure 13. Unlike Goals, we find that the system’s
performance decreases as the number of skills increases. There
are two reasons for this: (a) skills are more complicated than
goals, and require more assistance than just a straight point-to-
point motion and (b) the robot encounters similar states when
performing different skills. This could lead to confusion: if the
robot observes state s when pushing the bowl and stabbing the
fruit, it is unclear which task the human is currently attempting
to perform (and what assistance the robot should provide).
Despite these challenges, SARI maintains consistently lower
regret when compared to the Ensemble baseline. Overall, our



12

results from both Goals and Skills suggest that SARI has the
capacity to learn assistance for multiple tasks. We recognize
that this assistance may degrade as the robot continues to
aggregate new demonstrations, particularly for skills.

VII. USER STUDY

In Sections V and VI we studied the theoretical and practical
performance of SARI with simulated human users. In this
section we now turn to user studies with actual participants.
Recall that our target application is assistive robot arms: we
want to enable these arms to share autonomy during everyday
tasks. Motivated by this application, we conducted an in-
person user study where participants teleoperated a 7-DoF
Franka Emika robot arm with a handheld joystick interface
(see Figures 1 and 14). We compared our approach (SARI) to
two different state-of-the-art baselines: (a) direct end-effector
teleoperation that is used on commercial assistive robot arms
[24], [54] and (b) an existing shared autonomy algorithm that
infers the human’s goal from a discrete set of options [3]. We
divided the overall study into three parts to explore known
and new tasks as well as discrete goals and continuous skills.
Participants started by reaching for known goals, then taught
the robot new skills, and finally returned to the original tasks4.
Independent Variables and Experimental Setup. Our user
study was divided into the three sections described below. Each
participant completed every section.

In the first part of the user study participants teleoperated the
robot to reach for two discrete goals placed on the table. These
potential goals were known a priori, and the robot had prior
experience reaching for them. Here we compare our proposed
approach (SARI) to an existing shared autonomy baseline
(Bayes) [3]. For Bayes we gave the robot prior information
about the location of each goal; during interaction the robot
inferred which goal the human wanted and provided assistance
towards that goal. For SARI we repeatedly teleoperated the
robot to both goals during previous, offline interactions (col-
lecting dataset Doffline). We then trained SARI on this dataset;
during interaction the robot used our approach to recognize
the user’s goal and assist the human for that task.

The shared autonomy baseline is the gold standard when the
human wants to complete a task the robot already knows —
but what happens during new tasks? In the second part of our
user study participants iteratively performed two new tasks a
total of 9 times each. One task was a discrete goal (reaching
a cup), while the other was a continuous skill (opening a
drawer). Here we compare SARI to a No Assist baseline. No
Assist is direct end-effector teleoperation, and is an industry
standard approach for assistive robot arms (e.g., pressing right
on the joystick causes the robot to move right) [54]. The No
Assist baseline never learns from interactions; but for SARI
we retrained our approach every three trials during both tasks.
We expect that SARI should increasingly assist the user as it
gets more familiar with these new tasks.

One concern with our approach is that — as the robot
continues to encounter new tasks — it will specialize in just
one or two recent tasks without remembering how to share

4For video footage of the user study, see: https://youtu.be/Plh4t3wQeIA
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Figure 14. Experimental setup and objective results from the first part of
our user study. Here participants teleoperated the Franka Emika robot arm to
reach for two goals that were known a priori. We compared our approach
(SARI) to a shared autonomy baseline (Bayes [3]) and an industry standard
mapping for assistive arm teleoperation (No Assist [54]). When the robot has
prior knowledge about the human’s potential tasks, we find that SARI learns
to offer assistance on par with Bayes, and both methods reduce the human’s
effort when compared to No Assist. Note that Bayes fails to provide helpful
assistance when the human wants to perform new, unexpected tasks (e.g.,
reaching the cup or opening the drawer), as shown in Figure 15.

autonomy for older tasks. Accordingly, in the last part of the
user study participants take the final learned model from both
new tasks and use it to revisit the original reaching tasks. Here
we compare three conditions: No Assist, where the human
acts alone, SARI (task), the robot’s learned assistance with
just the user’s data from that specific task, and SARI (all), our
approach trained on the user’s full dataset of all interactions.

Dependent Measures – Objective. Across all three parts of
the user study we measured Human Effort. Human effort is
the total time the human teleoperated the robot during the
task divided by the average time taken to complete the task.
Higher values of human effort indicate that the human had to
guide the robot throughout its entire motion, and lower values
indicate that the robot partially automated the task.

Dependent Measures – Subjective. We administered a 7-
point Likert scale survey after users completed the study
(see Figure 17). Questions were organized along five scales:
how confident users were that the robot Recognized their
objective, how helpful the robot’s behavior was (Replicate),
how trustworthy users thought the robot was (Return), whether
the robot improved after successive demonstrations (Improve),
and if they would collaborate with the robot again (Prefer).

Participants and Procedure. A total of 10 members of the
Virginia Tech community participated in our study (3 female,
1 non-binary, average age 22 ± 7 years). All participants
provided informed written consent prior to the experiment
under Virginia Tech IRB #20-755.

Hypotheses. We tested three main hypotheses:
H1. In cases where the robot has prior knowledge about
the human’s potential goals, SARI will perform similarly
to a shared autonomy baseline
H2. In cases where the human repeatedly performs new
and previously unseen tasks, SARI will learn to provide
meaningful assistance from scratch
H3. SARI will remember how to assist users on previously
seen tasks even after learning new ones

https://youtu.be/Plh4t3wQeIA
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Figure 15. Representative failure case for an existing shared autonomy approach that relies on prior knowledge (Bayes [3]). Gray circles indicate the human
leading the robot, while purple and orange indicate the the robot is providing assistance. The user attempts to complete the drawer task with end-effector
control (No Assist), with Bayes, and with SARI. None of the methods have prior knowledge about the drawer task; Bayes only knows about the notepad and
tape goals, and SARI has observed six repeated interactions for the drawer task. The user is able to successfully open the drawer by themselves (top) and
with our method (bottom). With SARI we see that the user is initially leading the robot towards the drawer, but once the robot recognizes this task, it takes
charge and offers appropriate assistance (orange circles). By contrast, Bayes (middle) mistakes the initial trajectory as towards the notepad, and continually
tries to guide the robot to this known goal. Since both the drawer and the notepad are in front of the robot, the robot is initially able to move in the correct
direction. However, after the user’s inputs diverge from the notepad and go towards the drawer, the robot gets stuck due to conflicting commands.
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Figure 16. Objective results from the second and third parts of our user study. (Left) The human teleoperates the robot to reach for a goal it did not know
about beforehand. The first few times they interact, the user must lead the robot throughout the entire task. After training SARI on six repeated interactions,
the robot recognizes the human’s intent and automates the rest of the motion; by contrast, with No Assist the human always has to teleoperate the robot.
(Center) Across 3−6 repeated interactions the robot learns to provide assistance for a new goal (reaching a cup) and skill (opening a drawer). This assistance
reduces the human’s effort as compared to completing the task alone. (Right) We take our resulting model trained on all user demonstrations and revisit the
original tasks. SARI (all) offers similar assistance to SARI (task), a version of our approach trained only with the user’s task-specific data. These results
suggest our SARI robot has the capacity learn assistance for new tasks without forgetting older ones.

Results. The results from each part of our user study are
visualized in Figures 14, 15, 16, and 17. In the rest of this
section we summarize our main findings.

In the first part of the user study participants completed a
reaching task with Bayes (a shared autonomy baseline) and
SARI (our proposed approach). Here both methods had prior
information about the potential goals: for Bayes the robot was
given both goal positions, and for SARI we recorded offline
interactions reaching for each goal. During the user study the
robot had to recognize which goal the human was reaching for
(i.e., either the notepad or tape) and then assist the user while
reaching for that target. Our results are shown in Figure 14. To
analyze these results we first performed a repeated measures
ANOVA, and found that the robot’s algorithm had a significant
effect on human effort (Notepad: F (2, 58) = 106, p < .001;

Tape: F (2, 58) = 36.9, p < .001). Post hoc comparisons
revealed that both Bayes and SARI led to less human effort
than No Assist, but the differences between Bayes and SARI
were not statistically significant (Notepad: p = .370; Tape:
p = .203). These results suggest that users could reach for
known, discrete goals just as easily with SARI as they could
with the shared autonomy baseline.

So SARI is on par with Bayes when the human wants
to perform a known task — what happens when the human
wants to complete a new, unexpected task? To highlight one
shortcoming of state-of-the-art shared autonomy approaches
and explain why Bayes is not a baseline in the second and third
parts of our user study, we illustrate a new task in Figure 15.
Here the user attempted to open the drawer, but the robot only
had prior knowledge about the notepad and the tape. Recall
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that under Bayes the robot infers which discrete goal the
human is trying to reach and then assists towards that goal [3]–
[5]. But in this scenario the robot does not know beforehand
that the human may want to open the drawer. As a result,
Bayes misinterpreted the user’s inputs and gradually became
convinced that the human’s target was actually the notepad
next to the drawer. This interaction ended in a deadlock: the
human constantly teleoperated the robot towards the drawer,
while the robot continually resisted and refused to return
control. Note that the trajectories for SARI and No Assist are
similar — the main difference is that in SARI the robot takes
the lead and automates the continuous skill. Moving forward
we will focus on new tasks, and will compare SARI to industry
standard teleoperation mappings (No Assist).

In the second part of our user study participants repeatedly
teleoperated the robot to perform new tasks. This includes the
drawer skill in Figure 15 and the cup goal in Figure 16. During
the first few interactions SARI returned control and the user
guided the robot throughout the entire task. But after training
SARI on 3 and 6 repeated interactions, the robot was able to
recognize and partially automate these new tasks. One user
commented that “by the end I didn’t provide any assistance
and the robot continued to move in the correct direction.” We
emphasize that — throughout our entire user study — the robot
was never told what task the participant wanted to do. Instead,
the robot had to recognize the participant’s current task based
on that user’s joystick inputs. Our results from Figure 16
suggest that SARI got better at providing assistance for new
tasks over repeated interactions. For example, in the drawer
skill the human’s effort was significantly less with SARI after
6 repeated interactions (t(29) = 10.5, p < .001).

In the final step of the user study we tested the capacity
of our approach. We compared SARI trained on all previous
interactions to SARI trained only on interactions for the
given task (see Figure 16). Intuitively, we expected that the
more specialized SARI (task) would provide the best possible
performance: this method has only seen data for the current
task and therefore cannot misinterpret the human’s inputs. Our
results suggest that SARI can maintain this performance even
when trained with multiple tasks. For three separate goals tasks
(cup, tape, and notepad) we first conducted repeated measures
ANOVAS, and found that the robot’s algorithm had a signifi-
cant effect on human effort (Cup: F (2, 38) = 51.9, p < .001;
Tape: F (2, 38) = 47.7, p < .001; Notepad: F (2, 38) = 74.1,
p < .001). Although our approach consistently outperformed
No Assist, differences between SARI (task) and SARI (all)
were not statistically different (Cup: p = .416; Tape: p = .876;
Notepad: p = .792). We therefore conclude that — similar to
our simulations in Figure 12 — SARI has the capacity to
learn assistance for new goals without forgetting how to share
autonomy on previously seen tasks.

Taken together, these results support H1, H2, and H3. Our
approach leveraged repeated interactions to learn to share
autonomy across new and old tasks that included discrete goals
and continuous skills. Participants generally perceived the
robot’s assistance as helpful. Looking at the subjective results
from Figure 17, users thought the robot correctly recognized
their intent, made the task easier to complete, and got better
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Figure 17. Subjective results from our in-person user study. Higher ratings
indicate user agreement. Overall, participants thought SARI provided useful
assistance, and they preferred this assistance to trying to complete the tasks
with direct end-effector teleoperation (No Assist). These scores were provided
after participants had completed the entire experiment, including: completing
known tasks, assisting for new tasks, and remembering old tasks.

at providing assistance over the course of the study.

VIII. CONCLUSION

State-of-the-art shared autonomy algorithms often rely on
prior knowledge: e.g., the robot needs to know all of the
human’s potential tasks a priori, or the robot is constrained
to actions that assist for previously seen tasks. In this paper
we introduce an alternate approach to shared autonomy that
leverages the repeated nature of everyday human-robot inter-
action. Our insight is that — if a assistive arm is teleoperated
through similar tasks many times — the robot should learn to
partially automate those tasks. Our approach (SARI) contains
separate models that (a) learn to recognize the human’s current
task, (b) replicate the human’s behavior from past task-related
interactions, and (c) return control back to the human when the
robot is unsure. We leveraged stability analysis that combines
learning with control to demonstrate that the error between
the human’s goal and the SARI robot is uniformly ultimately
bounded. We then conducted simulations to support our the-
oretical error bounds, compare our approach to interactive
imitation learning baselines, and explore the capacity of SARI
to learn new tasks. Finally, we performed a user study to
demonstrate that SARI assists for both discrete goals and
continuous skills, and learns online from a practical number
of human-robot interactions (< 10). Overall, our theoretical
and experimental analysis suggests that SARI personalizes to
the current user, and learns to share autonomy for the tasks
that user often performs.

Limitations. So far we have focused on how assistive robot
arms can adapt to their human users. But as the robot arm gets
better at sharing autonomy, the human will also co-adapt and
modify their own teleoperation strategy. For example, once
the human is confident the robot recognizes their current task,
the user may stop providing joystick inputs and rely on the
robot entirely. One limitation of our approach is that it does
not explicitly account for this co-adaptation.

Another potential limitation of SARI may be its capacity.
From Section VI-D we recognize that the robot’s assistance
decreases as the number of skills increases. More generally,
it may not be feasible for a single model to learn assistance
for all of the human’s everyday tasks. One practical solution
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is switching models depending on context. For example, we
could train one instance of SARI to assist for cooking tasks,
and another instance of SARI to assist for dining tasks. During
run-time the robot selects which SARI models to use based
on the current context (e.g., cooking or eating).

IX. APPENDIX

Below we provide additional details for the error bounds
that were presented in Section V.

Proof for Theorem 4. Because we have assumed that E[β] <
βmax, we set β = β(s,aH). Note that β depends upon aH.
We will therefore apply the law of the unconscious statistician
(LOTUS) [50] to compute the expectation:

E[βaH] =
Σ−1

(
ΣD(g∗ − s) + ΣH(g − s)

)√
(2π)d det Σ

·

exp

(
−1

2
‖g∗ − g‖2Σ−1

)
(19)

where Σ = ΣD + ΣH. Substituting Equation (16) and Equa-
tion (19) back into Equation (15), we have E[V̇ (t)] < 0 when:

‖g∗ − s‖2 > E[β] · (g∗ − s)TΣ−1ΣD(g∗ − g) (20)

Here we apply the Cauchy–Schwarz inequality and Rayleigh
quotient to identify a more relaxed condition. Specifically, we
find that E[V̇ (t)] < 0 if the following inequality holds:

‖g∗ − s‖2 > ‖g∗ − s‖ · λE[β] · ‖g∗ − g‖ (21)

where λ is the maximum eigenvalue of Σ−1ΣD. Rearranging
this result yields Equation (18). We conclude that E[V̇ (t)] < 0
when Equation (18) is satisfied, and it therefore follows that
the human-robot system is uniformly ultimately bounded.

Ultimate Bounds. In our proofs for Theorems 1–4 we have
shown that the SARI system is uniformly ultimately bounded,
and we have listed the ultimate bounds. However, we have
not formally demonstrated why Equations (12), (13), (17), and
(18) are the ultimate bounds. Here we provide a more rigorous
derivation for these results. We focus on Theorem 4, but the
same approach applies to each of our Theorems.

Recall from Equation (14) that the Lyapunov candidate
function depends on the error e, and remember that e = g∗−s.
Let α1 and α2 be two class κ functions such that:

α1

(
‖e‖
)
≤ V (e) ≤ α2

(
‖e‖
)

(22)

Here the ultimate bound on error e can be taken as [49]:

b = α−1
1

(
α2(µ)

)
(23)

where µ > 0 is selected such that E[V̇ (t)] < 0 for all ‖e‖ > µ.
Looking back at Equation (18) and the previous proof from
the Appendix, we have already identified µ = λE[β]·‖g∗−g‖.
We now propose α1 = α2 = 1

2‖e‖
2. These choices are valid

because (a) they satisfy Equation (22) and (b) they are class
κ functions. Plugging µ, α1, and α2 back into Equation (23),
we find that the ultimate bound is:

b = λE[β] · ‖g∗ − g‖ (24)

Intuitively, this result means that the expected error between
the human’s new goal g∗ and the robot’s state s will eventually
become smaller than b, and will remain smaller than b for the
rest of the interaction [48].
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