
Controlling Assistive Robots with Learned Latent Actions

Dylan P. Losey1, Krishnan Srinivasan1, Ajay Mandlekar1, Animesh Garg2, Dorsa Sadigh1

Abstract— Assistive robotic arms enable users with physical
disabilities to perform everyday tasks without relying on a
caregiver. Unfortunately, the very dexterity that makes these
arms useful also makes them challenging to teleoperate: the
robot has more degrees-of-freedom than the human can directly
coordinate with a handheld joystick. Our insight is that
we can make assistive robots easier for humans to control
by leveraging latent actions. Latent actions provide a low-
dimensional embedding of high-dimensional robot behavior:
for example, one latent dimension might guide the assistive
arm along a pouring motion. In this paper, we design a
teleoperation algorithm for assistive robots that learns latent
actions from task demonstrations. We formulate the control-
lability, consistency, and scaling properties that user-friendly
latent actions should have, and evaluate how different low-
dimensional embeddings capture these properties. Finally, we
conduct two user studies on a robotic arm to compare our
latent action approach to both state-of-the-art shared autonomy
baselines and a teleoperation strategy currently used by assistive
arms. Participants completed assistive eating and cooking tasks
more efficiently when leveraging our latent actions, and also
subjectively reported that latent actions made the task easier
to perform. The video accompanying this paper can be found
at: https://youtu.be/wjnhrzugBj4.

Index Terms— Physically assistive devices, cognitive human-
robot interaction, human-centered robotics

I. INTRODUCTION

For the nearly one million American adults that need assis-
tance when eating, taking a bite of food or pouring a glass
of water presents a significant challenge [1]. Wheelchair-
mounted robotic arms and other physically assistive robotic
devices provide highly dexterous tools for performing these
tasks without relying on help from a caregiver. In order to
be effective, however, these assistive robots must be easily
controllable by their users.

Consider a person controlling a robotic arm to pour water
into a glass. Because of the physical limitations of their
users, today’s assistive arms utilize low-dimensional control
interfaces, such as joysticks [2]. But the robot arm is high-
dimensional: it has many degrees-of-freedom (DoFs), and the
human must precisely coordinate all of these interconnected
DoFs to pour the water without spilling. In practice, user
studies have demonstrated that controlling assistive arms is
quite challenging due to the unintuitive mapping from low-
DoF human inputs to high-DoF robot actions [3], [4].

Current approaches solve this problem when the human’s
goals are discrete: e.g., when the robot should pour water
into either glass A or glass B. By contrast, we here propose

1Stanford Intelligent and Interactive Autonomous Systems Group (IL-
IAD), Dept of Computer Science, Stanford University, Stanford, CA 94305.
2Animesh Garg is with University of Toronto, Vector Institute, and Nvidia.
(e-mail: dlosey@stanford.edu)

an approach for controlling the robot in continuous spaces
using low-DoF actions learned from data. Our insight is that:

High-DoF robot actions can often be embedded into
intuitive, human-controllable, and low-DoF latent actions

Latent actions are a low-DoF representation that captures the
most important aspects of high-DoF actions. Returning to our
pouring example: the human wants the robot arm to (a) carry
the cup level with the table and (b) perform a pouring action.
Intuitively, this should be reflected in the latent actions: one
latent dimension should cause the robot to move the cup
along the table, while the other should make the robot pour
more or less water (see Fig. 1).

We explore methods for learning these low-DoF latent
actions from task-specific training data. We envision settings
where the robot has access to demonstrations of related tasks
(potentially provided by the caregiver), and the user—in an
online setting—wants to control the robot to perform a new
task: e.g., now the cup is located in a different place, and
the person only wants half a glass of water. In practice, we
find that some models result in expressive and intuitive latent
actions, and that users can control robots equipped with these
models to complete eating and cooking tasks.

Overall, we make the following contributions:
Formalizing Desirable Properties of Latent Actions. We
formally specify a list of properties that user-friendly latent
actions should satisfy. This includes controllability, i.e., there
must be a sequence of latent actions that move the robot
to the desired state, and consistency, i.e., the robot should
always behave similarly under a given learned latent action.
Learning Latent Actions through Autoencoders. We learn
latent actions using different autoencoder models, and com-
pare how these models perform with respect to our desired
properties. We find that models which are conditioned on the
robot’s current state accurately reconstruct high-DoF actions
from human-controllable, low-DoF inputs.
Evaluating Latent Actions with User Studies. We imple-
ment our approach on a robot arm, and compare to state-
of-the-art shared autonomy baselines and a current control
strategy for assistive robotic arms. We find that—during eat-
ing and cooking user studies—learned latent actions resulted
in improved objective and subjective performance.

II. RELATED WORK

In this paper we leverage learning techniques to identify
low-DoF latent actions for teleoperating high-DoF robots.
Prior works on shared autonomy have addressed (a) using
predefined mappings from low-DoF human inputs to robot
actions, and (b) learning mappings when the human’s action

2020 IEEE International Conference on Robotics and Automation (ICRA)
31 May - 31 August, 2020. Paris, France

978-1-7281-7395-5/20/$31.00 ©2020 IEEE 378

Authorized licensed use limited to: The University of Utah. Downloaded on September 07,2023 at 02:38:21 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Human teleoperating a robot arm using latent actions. Because the robot has more DoFs than the human can directly control, we leverage low-DoF
embeddings to learn a latent space z for the user to intuitively interact with. Here the robot has been trained on demonstrations of pouring tasks, and learns
a 2-DoF latent space. The first latent dimension z1 moves the cup level with the table, and the second latent dimension z2 tilts the cup. We explore how
conditional autoencoders—such as the one shown on right—can be leveraged to learn these intuitive and human-controllable latent actions. We train an
encoder that finds our low-DoF embedding z given the state s and high-DoF action a. The decoder then recovers a high-DoF action â based on z and s.
During control, the low-DoF human input z is enough to reconstruct their intended high-DoF, continuous robot action â conditioned on the current state s.

space has the same number of DoFs as the robot. Previous
research on latent representations (c) focused on autonomous
robots that are acting without a human in-the-loop.

Shared Autonomy. Under shared autonomy, the robot com-
bines user inputs with autonomous assistance: this method
has been applied to settings where the human’s input is low-
dimensional [4]–[6]. Recent works explored tasks where the
human wants their assistive arm to reach a goal (e.g., pick
up a cup) [2], [7]–[10]. Here the robot maintains a belief
over possible goals, and increasingly assists the human as
it becomes confident about their intended goal [7], [8]. We
point out that—similar to [11]—the mapping between the
human’s low-DoF input and the robot’s high-DoF action is
pre-defined, and not learned from data.

Other shared autonomy works consider settings where the
human’s input has the same number of DoFs as the robot’s
action space [12]–[15]. Our paper is most related to shared
autonomy research by Reddy et al. [15], where the robot
learns a mapping between humans inputs and their intended
actions using reinforcement learning; however, in [15] the
human inputs are the same dimension as the robot action,
and thus there is no need to learn an embedding for control.

Learning Latent Representations. Recent works have
shown that alternate action representations can facilitate
learning efficiency in manipulation [16], however this action
space is hand designed. Instead, we aim to identify low-DoF
embeddings of complex state-space models. Hence we turn
to works that learn latent representations from data. Recent
research has learned latent dynamics [17], trajectories [18],
plans [19], policies [20], and skills for reinforcement learning
[21]. These methods typically leverage autoencoder models
[22], but do not include a human in-the-loop or teleoperation.

Here, we leverage autoencoders to learn a consistent and
controllable latent representation for assistive robotics. Previ-
ous teleoperation literature has explored principal component
analysis (PCA) for reducing the user’s input dimension [23],
[24]. We will compare our method to this PCA baseline.

III. PROBLEM STATEMENT

We formulate a task as a discrete-time Markov Decision
Process (MDP) M = (S,A, T , R, γ, ρ0). Here s ∈ S ⊆ Rn

is the state space, a ∈ A ⊆ Rm is the action space, T (s, a)
is the transition function, R(s) = 1{task is solved in s} is a
sparse reward function that indicates task success, γ ∈ [0, 1)
is the discount factor, and ρ0(·) is the initial state distribution.
We assume access to a dataset of task demonstrations, and
want to learn the latent action space by leveraging this
dataset. Formally, we have a dataset of state-action pairs
D = {(s0, a0), (s1, a1), . . .}, and seek to learn a latent action
space Z ⊂ Rd that is of lower dimension than the original
action space (d < m), along with a function φ : Z×S 7→ A
that maps latent actions to robot actions.

Recall our motivating example, where the human is lever-
aging latent actions to make their assistive robot pour water.
There are several properties that the human expects latent
actions to have: e.g., the human should be able to guide the
robot by smoothly changing the joystick direction, and the
robot should never abruptly become more sensitive to the
human’s inputs. In what follows, we formalize the properties
that make latent actions intuitive. These properties will guide
our approach, and provide a principled way of assessing the
usefulness of latent actions with humans in-the-loop.

Latent Controllability. Let si, sj ∈ D be two states from
the dataset of demonstrations, and let s1, s2, ..., sK be the
sequence of states that the robot visits when starting in
state s0 = si and taking latent actions z1, ..., zK . The robot
transitions between the visited states using the learned latent
space: sk = T (sk−1, φ(zk−1, sk−1)). Formally, we say that
a latent action space Z is controllable if for every such pairs
of states (si, sj) there exists a sequence of latent actions
{zk}Kk=1, zk ∈ Z such that sj = sK . In other words, a latent
action space is controllable if it can move the robot between
pairs of start and goal states from the dataset.

Latent Consistency. We define a latent action space Z as
consistent if the same latent action z ∈ Z has a similar effect
on how the robot behaves in nearby states. We formulate
this similarity via a task-dependent metric dM : e.g., in
pouring tasks dM could measure the orientation of the robot’s
end-effector. Applying this metric, consistent latent actions
should satisfy: dM (T (s1, φ(z, s1)), T (s2, φ(z, s2))) < ε for
‖s1 − s2‖ < δ for some ε, δ > 0.

Latent Scaling. Finally, a latent action space Z is scalable if

379

Authorized licensed use limited to: The University of Utah. Downloaded on September 07,2023 at 02:38:21 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Learning Latent Control for Assistive Robots
1: Collect dataset D = {(s0, a0), (s1, a1), . . .} from kines-

thetic demonstrations
2: Train autoencoder to minimize loss L(s, a) on D
3: Align the learned latent space
4: for t← 1, 2, . . . , T do
5: Set latent action zt as human’s joystick input
6: Execute reconstructed action ât ← φ(zt, st)
7: end for

applying larger latent actions leads to larger changes in state.
In other words, we would like ‖s− s′‖ → ∞ as ‖z‖ → ∞,
where s′ = T (s, φ(z, s)).

IV. METHODS

Now that we have formally introduced the properties that a
user-friendly latent space should satisfy, we will explore low-
DoF embeddings that capture these properties. We are inter-
ested in models that balance expressiveness with intuition:
the embedding must reconstruct high-DoF actions while
remaining controllable, consistent, and scalable. We assert
that only models which reason over the robot’s state when
decoding the human’s inputs can accurately and intuitively
interpret the latent action. Our approach for training and
leveraging these models is shown in Algorithm 1.

A. Models

Reconstructing Actions. Let us return to our pouring exam-
ple: when the person applies a low-DoF joystick input, the
robot completes a high-DoF action. We use autoencoders
to move between these low- and high-DoF action spaces.
Define ψ : S × A → Z as an encoder that embeds the
robot’s behavior into a latent space, and define φ′ : Z →
A as a decoder that reconstructs a high-DoF robot action
â ∈ A from this latent space (see Fig. 1). To encourage
models to learn latent actions that accurately reconstruct
high-DoF robot behavior, we incorporate the reconstruction
error ‖a−â‖2 into the model’s loss function, which measures
the difference between the demonstrated action a and the
model’s estimate â.
Regularizing Latent Actions. When the user slightly tilts
the joystick, the robot should not suddenly pour its entire
glass of water. To better ensure this consistency and scalabil-
ity, we incorporate a normalization term into the model’s loss
function. Let us define ψ : S ×A → Rd×Rd

+ as an encoder
that outputs the mean µ and covariance σ of the latent action
space. We penalize the divergence between this latent action
space and a normal distribution: KL(N (µ, σ) ‖ N (0, 1)).
Variational autoencoder (VAE) models trade-off between this
normalization term and reconstruction error [22].
Conditioning on State. Importantly, we recognize that the
meaning of the human’s joystick input often depends on what
the robot is doing. When the robot is holding a glass, pressing
down on the joystick indicates that the robot should pour
water; but—when the robot’s gripper is empty—it does not
make sense for the robot to pour! So that robots can associate

meanings with latent actions, we condition the interpretation
of the latent action on the robot’s current state. Define φ :
Z×S → A as a decoder that now makes decisions based on
both z and s. We expect that conditional autoencoders (cAE)
and conditional variational autoencoders (cVAE) which use
φ will learn more expressive and controllable actions than
their non-state conditioned counterparts.

V. SIMULATIONS

To test if the proposed low-DoF embeddings capture our
desired user-friendly properties, we perform simulations on
robot arms. The simulated robots have more DoF than needed
to complete the task, and thus must learn to coordinate their
redundant joints when decoding human inputs.
Setup. We simulate one- and two-arm planar robots, where
each arm has five revolute joints and links of equal length.
The state s ∈ Rn is the robot’s joint position, and the
action a ∈ Rn is the robot’s joint velocity. Hence, the robot
transitions according to: st+1 = st + at · dt, where dt is
the step size. Demonstrations consist of trajectories of state-
action pairs: in each of different simulated tasks, the robot
trains with a total of 10000 state-action pairs.
Tasks. We consider four different tasks. Two are reported
here, and two additional tasks are included in our supple-
mental material (https://arxiv.org/abs/1909.09674)

1) Sine: a single 5-DoF robot arm moves its end-effector
along a sine wave with a 1-DoF latent action

2) Rotate: two robot arms are holding a box, and rotate
that box about a fixed point using a 1-DoF latent action

Model Details. We examine models such as PCA, AE, VAE,
and state conditioned models such as cAE and cVAE. The
encoders and decoders contain between two and four linear
layers (depending on the task) with a tanh(·) activation
function. The loss function is optimized using Adam with
a learning rate of 1e−2. Within the VAE and cVAE, we set
the normalization weight < 1 to avoid posterior collapse.
Dependent Measures. To determine accuracy, we measure
the mean-squared error between the intended actions a and
reconstructed actions â on a test set of state-action pairs
(s, a) drawn from the same distribution as the training set.

To test model controllability, we select pairs of start and
goal states (si, sj) from the test set, and solve for the latent
actions z that minimize the error between the robot’s current
state and sj . We then report this minimum state error.

We jointly measure consistency and scalability: to do this,
we select 25 states along the task, and apply a fixed grid of
latent actions zi from [−1,+1] at each state. For every (s, z)
pair we record the distance and direction that the end-effector
travels (e.g., the direction is +1 if the end-effector moves
right). We then find the best-fit line relating z to distance
times direction, and report its R2 error.

Our results are averaged across 10 trained models of the
same type, and are listed in the form mean± SD.
Hypotheses. We have the following two hypotheses:

H1. Only models conditioned on the state will ac-
curately reconstruct actions from low-DoF inputs.

380

Authorized licensed use limited to: The University of Utah. Downloaded on September 07,2023 at 02:38:21 UTC from IEEE Xplore. Restrictions apply.

C D

Desired cVAEVAE

A B

z=-1 z=+1Latent Action

start

Fig. 2. Results for the Sine task. (A) mean-squared error between intended
and reconstructed actions normalized by PCA test loss. (B) effect of the
latent action z at three states along the sine wave for the cVAE model.
Darker colors correspond to z > 0 and lighter colors signify z < 0. Above
we plot the distance that the end effector moves along the sine wave as a
function of z at each state. (C) rollout of robot behavior when applying a
constant latent input z = +1, where both VAE and cVAE start at the same
state. (D) end-effector trajectories for multiple rollouts of VAE and cVAE.

H2. State conditioned models will learn a latent
space that is controllable, consistent, and scalable.

Sine Task. This task and our results are shown in Fig. 2.
We find that including state conditioning greatly improves
accuracy when compared to the PCA baseline: AE and VAE
incur 98.0 ± 0.6% and 100 ± 0.8% of the PCA loss, while
cAE and cVAE obtain 1.37 ± 1.2% and 3.74 ± 0.4% of
the PCA loss, respectively. We likewise observe that the
state conditioned models are more controllable than their
alternatives. When using the learned latent actions to move
between 1000 randomly selected pairs of states along the
sine wave, cAE and cVAE are on average 5.6% and 11.1%
as far from the goal as PCA. By contrast, models without
state conditioning (i.e., AE and VAE) performed worse than
the PCA baseline, with 104% error and 106% error.

When evaluating consistency and scalability, we discover
that every model’s relationship between latent actions and
robot behavior can be modeled as approximately linear: PCA
has the highest R2 = 0.99, while cAE and cVAE have the
lowest R2 = 0.94± 0.04 and R2 = 0.95± 0.01.
Rotate Task. We summarize the results for this two-arm task
in Fig. 3. Like in the Sine task, the models conditioned on the
current state are more accurate than their non-conditioned
counterparts: AE and VAE have 28.7±4.8% and 38.0±5.8%
of the PCA baseline loss, while cAE and cVAE reduce this
to 0.65 ± 0.05% and 0.84 ± 0.07%. The state conditioned
models are also more controllable: when using the learned z
to rotate the box, AE and VAE have 56.8±9% and 71.5±8%
as much end-effector error as the PCA baseline, whereas cAE
and cVAE achieve 5.4± 0.1% and 5.9± 0.1% error.

When testing for consistency and scalability, we measure
the relationship between the latent action z and the change in

BA

Fig. 3. Results for the Rotate task. (A) the robot uses two arms to hold a
light blue box, and learns to rotate this box around the fixed point shown in
teal. Each state corresponds to a different fixed point, and positive z causes
counterclockwise rotation. On right we show how z affects the rotation of
the box at each state. (B) rollout of the robot’s trajectory when the user
applies z = +1 for VAE and cVAE models, where both models start in the
same state. Unlike the VAE, the cVAE model coordinates its two arms.

Fig. 4. Experimental setup for our first user study. (Left) in this eating task,
the participant uses a two-DoF joystick to guide the robot to pick up their
desired morsel from a discrete set. (Right) we compare our latent action
approach to shared autonomy baselines from the HARMONIC dataset.

orientation for the end-effectors of both arms (i.e., ignoring
their location). Each model exhibits a linear relationship
between z and orientation: R2 = 0.995±0.004 for cVAE and
R2 = 0.996 ± 0.002 for cVAE. In other words, there is an
approximately linear mapping between z and the orientation
of the box that the two arms are holding.
Summary. The results of our Sine and Rotate tasks support
hypotheses H1 and H2. The state conditioned models more
accurately reconstruct high-DoF actions from low-DoF em-
beddings (H1), and also exhibit the user-friendly properties
of controllability, consistency, and scalability (H2).

VI. USER STUDIES

To evaluate whether actual humans can use learned latent
actions to teleoperate robots and perform everyday tasks, we
conducted two user studies on a 7-DoF robotic arm (Fetch,
Fetch Robotics). In the first study, we compared our proposed
approach to state-of-the-art shared autonomy methods when
the robot has a discrete set of possible goals. In the second
study, participants completed a cooking task with continuous
goal spaces using either a teleoperation method currently
employed by assistive arms or our learned latent actions. For
both studies the participants controlled the robot arm with a
low-DoF teleoperation interface (a handheld joystick).

A. Discrete Goal Space: Latent Actions vs. Shared Autonomy

In our first user study we implemented the assistive eating
task from the HARMONIC dataset [25] (see Fig. 4). Here the
human is guiding the robot to pick up a bite of food. There
are three morsels near the robot—i.e., three possible goals—
and the human wants the robot to reach one of these discrete

381

Authorized licensed use limited to: The University of Utah. Downloaded on September 07,2023 at 02:38:21 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. End-effector trajectories from High Assist and cVAE conditions.
The robot starts at the black dot, and moves to position itself over the plate.

goals. The HARMONIC dataset reports the performance of
24 people who completed this task with different levels
of shared autonomy [7]. Under shared autonomy, the robot
infers from the human’s inputs which goal they are trying
to reach, and then provides assistance towards that goal. We
here conduct an additional experiment to compare our latent
action method to this set of baselines.

Independent Variables. We manipulated the robot’s tele-
operation strategy with five levels: the four conditions from
the HARMONIC dataset plus our proposed cVAE method.
In the first four conditions, the robot provided no assistance
(No Assist), or interpolated between the human’s input and
an assistive action (Low Assist, High Assist, and Full Assist).
High Assist was the most effective strategy from this group:
when interpolating, here the assistive action was given twice
the weight of the human’s input. In our cVAE approach, the
human’s joystick inputs were treated as latent actions z (and
the robot provided no other assistance). We trained our cVAE
model on demonstrations from the HARMONIC dataset.

Dependent Measures. We measured the fraction of trials
in which the robot picked up the correct morsel of food
(Success Rate), the amount of time needed to complete the
task (Completion Time), the total magnitude of the human’s
input (Joystick Input), and the distance traveled by the robot’s
end-effector (Trajectory Length).

Hypothesis. We had the following hypothesis:
H3. Teleoperating with learned latent actions will
improve task success while reducing the completion
time, joystick inputs, and trajectory length.

Participants and Procedure. Our participant pool consisted
of ten Stanford University affiliates who provided informed
consent (3 female, average participant age 23.9±2.8 years).
Following the same protocol as the HARMONIC dataset,
each participant was given up to five minutes to familiarize
themselves with the task and joystick, and then completed
five recorded trials using our cVAE approach.

Results. We display example robot trajectories in Fig. 5 and
report our dependent measures in Figs. 4 and 6. Inspecting
these example trajectories, we observe that the cVAE model
learned latent actions that move the robot’s end-effector into
a region above the plate. Users controlling the robot with
cVAE reached their desired morsel in 44 of the 50 total trials,
yielding a higher Success Rate than the assistance baselines.
To better compare cVAE to the High Assist condition, we

*

*

*

Fig. 6. Objective results from the eating user study. We found that cVAE led
to faster task completion with less user input and end-effector motion. The
Full Assist condition performed worse than High Assist across the board
(omitted for clarity). Error bars show the 10 and 90 percentiles, and ∗
denotes statistical significance (p < .05).

performed independent t-tests. We found that participants
that used the cVAE model took statistically significant lower
Completion Time (t(158) = 2.95, p < .05), Joystick Input
(t(158) = 2.49, p < .05), and Trajectory Length (t(158) =
9.39, p < .001), supporting our hypothesis H3.

B. Continuous Goal Space: Latent Actions vs. End-Effector

Real-world tasks often move beyond discrete goals: in-
stead of reaching for an object that must either be in position
A or position B, objects may lie in continuous regions (i.e.,
anywhere on a shelf). In our second user study, we focus on a
cooking scenario with continuous goals spaces (see Fig. 7).
The user wants their assistive robot to help them make a
recipe: this requires picking up ingredients from the shelf,
pouring them into a bowl, recycling empty containers—or
returning half-filled containers to the shelf—and then stirring
the mixture. Shared autonomy approaches like [7], [8], [25]
are not suitable within this setting because: (a) the goals
lie in continuous regions and (b) the user needs to control
both the goal that the robot reaches for and the style of the
reaching trajectory (e.g., pouring, or keeping upright). Hence,
we compare our latent action method against a switching
teleoperation strategy currently used by assistive robots [3],
[13], where the joystick inputs alternatively control the
position and orientation of the robot’s end-effector.
Independent Variables. We tested two teleoperation strate-
gies: End-Effector and cVAE. Under End-Effector the user
inputs applied a 6-DoF twist to the robot’s end-effector, con-
trolling its linear and angular velocity. Participants interacted
with two 2-DoF joysticks, and were given a button to toggle
between linear and angular motion [3], [7], [25]. By contrast,
in cVAE the participants could only interact with one 2-DoF
joystick, i.e., the latent action was z = [z1, z2] ∈ R2.
Dependent Measures – Objective. We measured the total
amount of time it took for participants to complete the entire
cooking task (Completion Time), as well as the magnitude
of their inputs (Joystick Input).
Dependent Measures – Subjective. We administered a 7-
point Likert scale survey after each condition. Questions
were separated into six scales, such as ease of performing the
task (Ease) and consistency of the controller (Consistent).
Once users had completed the task with both strategies,
we asked comparative questions about which they preferred
(Prefer), which was Easier, and which was more Natural.

382

Authorized licensed use limited to: The University of Utah. Downloaded on September 07,2023 at 02:38:21 UTC from IEEE Xplore. Restrictions apply.

Fig. 7. Setup for our second user study. (Top row) the participant is teleoperating an assistive robot to make their recipe. This recipe is broken down into
three sub-tasks. On left the robot picks up eggs, pours them into the bowl, then drops the container into the recycling. In middle the robot picks up flour,
pours it into the bowl, then returns the container to the shelf. On right the robot grasps an apple, places it in the bowl, then stirs the mixture. (Middle row)
example robot trajectories when the person directly controls the robot’s End-Effector. (Bottom row) example trajectories when using cVAE to learn latent
actions. Comparing the example trajectories, we observe that cVAE resulted in robot motions that more smoothly and directly accomplished the task.

Hypotheses. We had the following hypotheses:

H4. Users controlling the robot arm with low-DoF
latent actions will complete the cooking task more
quickly and with less overall effort.

H5. Participants will perceive the robot as easier
to work with in the cVAE condition, and will prefer
the cVAE over End-Effector teleoperation.

Experimental Setup. We designed a cooking task where
the person is making a simplified “apple pie.” As shown in
Fig. 7, the assistive robot must sequentially pour eggs, flour,
and an apple into the bowl, dispose of their containers, and
stir the mixture. The user sat next to the robot and controlled
its behavior with a handheld joystick.

Participants and Procedure. We used a within-subjects
design and counterbalanced the order of our two conditions.
Eleven members of the Stanford University community (4
female, age range 27.4 ± 11.8 years) provided informed
consent to participate in this study. Four subjects had prior
experience interacting with the robot used in our experiment.

Results – Objective. Our objective results are summarized
in Fig. 7. When using cVAE to complete the entire recipe,
participants finished the task in less time (t(10) = −6.9, p <
.001), and used the joystick less frequently (t(10) = −5.1,
p < .001) as compared to direct End-Effector teleoportation.

Results – Subjective. We display the results of our 7-point
Likert scale surveys in Fig. 7. Before reporting these results,
we first confirmed the reliability of our scales. We then
leveraged paired t-tests to compare user ratings for End-
Effector and cVAE conditions. Participants perceived cVAE
as requiring less user effort (t(10) = 2.7, p < .05) than
End-Effector. Participants also indicated that it was easier to
complete the task with cVAE (t(10) = 2.5, p < .05), and that
cVAE caused the robot to move more naturally (t(10) = 3.8,
p < .01). The other scales were not significantly different.

VII. DISCUSSION AND CONCLUSION

Summary. We focused on assistive robotics settings where
the user interacts with low-Dof control interfaces. In these
settings, we showed that intelligent robots can embed their
high-DoF, dextrous behavior into low-DoF latent actions
for the human to control. We determined that autoencoders
conditioned on the system state accurately reconstructed the
human’s intended action, and also produced controllable,
consistent, and scalable latent spaces.

One key advantage to latent actions is that—unlike com-
parable shared autonomy approaches—they can assist the
human during tasks with either discrete or continuous goal
spaces. We validated this in our two user studies. In the
first (discrete), latent actions resulted in higher success
than shared autonomy baselines. In the second (continuous),
participants controlled both the robot’s goals and movement
style: compared against a teleoperation strategy currently
employed by assistive arms, latent actions led to improved
objective and subjective performance.
How practical is this approach? In our cooking user study,
the robot was trained with less than 7 minutes of kinesthetic
demonstrations. We attribute this data efficiency in part to the
simplicity of our model structure: we used standard cVAEs
that we trained within the robot’s on-board computer. We
believe this makes our approach very efficient, accurate, and
easy to use in practice as compared to alternatives.
Limitations and Future Work. Although latent actions
provide an intuitive control interface for assistive robots,
this alone is not sufficient for precise manipulation tasks.
Future work will focus on interweaving learned latent actions
with shared autonomy, so that robots can perform both
coarse reaching motions towards the goal, and then maintain
that goal while the user performs fine-grained manipulation.
Follow-up experiments that demonstrate how latent actions
enable humans to perform dexterous manipulation are in-
cluded in https://arxiv.org/abs/1909.09674.

383

Authorized licensed use limited to: The University of Utah. Downloaded on September 07,2023 at 02:38:21 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] D. M. Taylor, Americans With Disabilities. US Census Bureau, 2018.
[2] D. Gopinath, S. Jain, and B. D. Argall, “Human-in-the-loop opti-

mization of shared autonomy in assistive robotics,” Robotics and
Automation Letters, vol. 2, no. 1, pp. 247–254, 2016.

[3] L. V. Herlant, R. M. Holladay, and S. S. Srinivasa, “Assistive teleop-
eration of robot arms via automatic time-optimal mode switching,” in
Int. Conf. on Human Robot Interaction (HRI), 2016, pp. 35–42.

[4] B. D. Argall, “Autonomy in rehabilitation robotics: An intersection,”
Annual Review of Control, Robotics, and Autonomous Systems, 2018.

[5] T. Carlson and J. d. R. Millan, “Brain-controlled wheelchairs: A
robotic architecture,” Robotics & Automation Magazine, 2013.

[6] K. Muelling, A. Venkatraman, J.-S. Valois, J. Downey, J. Weiss,
S. Javdani, M. Hebert, A. B. Schwartz, J. L. Collinger, and J. A.
Bagnell, “Autonomy infused teleoperation with application to bci
manipulation,” arXiv preprint arXiv:1503.05451, 2015.

[7] S. Javdani, H. Admoni, S. Pellegrinelli, S. S. Srinivasa, and J. A.
Bagnell, “Shared autonomy via hindsight optimization for teleopera-
tion and teaming,” The International Journal of Robotics Research,
vol. 37, no. 7, pp. 717–742, 2018.

[8] A. D. Dragan and S. S. Srinivasa, “A policy-blending formalism
for shared control,” The International Journal of Robotics Research,
vol. 32, no. 7, pp. 790–805, 2013.

[9] R. M. Aronson, T. Santini, T. C. Kübler, E. Kasneci, S. Srinivasa, and
H. Admoni, “Eye-hand behavior in human-robot shared manipulation,”
in Int. Conf. on Human-Robot Interaction (HRI), 2018, pp. 4–13.

[10] A. Broad, T. Murphey, and B. Argall, “Learning models for shared
control of human-machine systems with unknown dynamics,” in
Robotics: Science and Systems (RSS), 2018.

[11] F. Abi-Farraj, C. Pacchierotti, and P. R. Giordano, “User evaluation
of a haptic-enabled shared-control approach for robotic telemanipula-
tion,” in Int. Conf. on Intelligent Robots and Systems (IROS), 2018.

[12] D. P. Losey, C. G. McDonald, E. Battaglia, and M. K. O’Malley,
“A review of intent detection, arbitration, and communication aspects
of shared control for physical human–robot interaction,” Applied
Mechanics Reviews, vol. 70, no. 1, p. 010804, 2018.

[13] D. Rakita, B. Mutlu, and M. Gleicher, “A motion retargeting method
for effective mimicry-based teleoperation of robot arms,” in Int. Conf.
on Human-Robot Interaction (HRI), 2017, pp. 361–370.

[14] F. Abi-Farraj, T. Osa, N. P. J. Peters, G. Neumann, and P. R. Giordano,
“A learning-based shared control architecture for interactive task
execution,” in Int. Conf. on Robotics and Automation (ICRA), 2017.

[15] S. Reddy, A. D. Dragan, and S. Levine, “Shared autonomy via deep
reinforcement learning,” in RSS, 2018.

[16] J. Buchli, E. Theodorou, F. Stulp, and S. Schaal, “Variable impedance
control a reinforcement learning approach,” Robotics: Science and
Systems VI, pp. 153–160, 2011.

[17] M. Watter, J. Springenberg, J. Boedecker, and M. Riedmiller, “Embed
to control: A locally linear latent dynamics model for control from
raw images,” in NeurIPS, 2015, pp. 2746–2754.

[18] J. Co-Reyes, Y. Liu, A. Gupta, B. Eysenbach, P. Abbeel, and S. Levine,
“Self-consistent trajectory autoencoder: Hierarchical reinforcement
learning with trajectory embeddings,” in ICML, 2018.

[19] C. Lynch, M. Khansari, T. Xiao, V. Kumar, J. Tompson, S. Levine,
and P. Sermanet, “Learning latent plans from play,” arXiv preprint
arXiv:1903.01973, 2019.

[20] A. Edwards, H. Sahni, Y. Schroecker, and C. Isbell, “Imitating latent
policies from observation,” in ICML, 2019.

[21] K. Hausman, J. T. Springenberg, Z. Wang, N. Heess, and M. Ried-
miller, “Learning an embedding space for transferable robot skills,”
2018.

[22] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in
Int. Conf. on Learning Representations (ICLR), 2014.

[23] P. K. Artemiadis and K. J. Kyriakopoulos, “EMG-based control of
a robot arm using low-dimensional embeddings,” Transactions on
Robotics, vol. 26, no. 2, pp. 393–398, 2010.

[24] M. T. Ciocarlie and P. K. Allen, “Hand posture subspaces for dexterous
robotic grasping,” The International Journal of Robotics Research,
vol. 28, no. 7, pp. 851–867, 2009.

[25] B. A. Newman, R. M. Aronson, S. S. Srinivasa, K. Kitani, and H. Ad-
moni, “HARMONIC: A Multimodal Dataset of Assistive Human-
Robot Collaboration,” ArXiv e-prints, July 2018.

384

Authorized licensed use limited to: The University of Utah. Downloaded on September 07,2023 at 02:38:21 UTC from IEEE Xplore. Restrictions apply.

