
f -IRL: Inverse Reinforcement Learning
via State Marginal Matching

Tianwei Ni∗, Harshit Sikchi∗, Yufei Wang∗, Tejus Gupta∗, Lisa Lee†, Benjamin Eysenbach†
Carnegie Mellon University

{tianwein, hsikchi, yufeiw2, tejusg, lslee, beysenba}@cs.cmu.edu

Abstract: Imitation learning is well-suited for robotic tasks where it is difficult to
directly program the behavior or specify a cost for optimal control. In this work,
we propose a method for learning the reward function (and the corresponding
policy) to match the expert state density. Our main result is the analytic gradient
of any f -divergence between the agent and expert state distribution w.r.t. reward
parameters. Based on the derived gradient, we present an algorithm, f -IRL, that
recovers a stationary reward function from the expert density by gradient descent.
We show that f -IRL can learn behaviors from a hand-designed target state density
or implicitly through expert observations. Our method outperforms adversarial
imitation learning methods in terms of sample efficiency and the required number
of expert trajectories on IRL benchmarks. Moreover, we show that the recovered
reward function can be used to quickly solve downstream tasks, and empirically
demonstrate its utility on hard-to-explore tasks and for behavior transfer across
changes in dynamics.1

Keywords: Inverse Reinforcement Learning, Imitation Learning

1 Introduction

Imitation learning (IL) is a powerful tool to design autonomous behaviors in robotic systems. Al-
though reinforcement learning methods promise to learn such behaviors automatically, they have
been most successful in tasks with a clear definition of the reward function. Reward design remains
difficult in many robotic tasks such as driving a car [1], tying a knot [2], and human-robot coopera-
tion [3]. Imitation learning is a popular approach to such tasks, since it is easier for an expert teacher
to demonstrate the desired behavior rather than specify the reward [4, 5, 6].
Methods in IL frameworks are generally split into behavior cloning (BC) [7] and inverse reinforce-
ment learning (IRL) [8, 9, 10]. BC is typically based on supervised learning to regress expert actions
from expert observations without the need for further interaction with the environment, but suffers
from the covariate shift problem [11]. On the other hand, IRL methods aim to learn the reward
function from expert demonstrations, and use it to train the agent policy. Within IRL, adversarial
imitation learning (AIL) methods (GAIL [12], AIRL [13], f -MAX [14], SMM [15]) train a discrim-
inator to guide the policy to match the expert’s state-action distribution.
AIL methods learn a non-stationary reward by iteratively training a discriminator and taking a single
policy update step using the reward derived from the discriminator. After convergence, the learned
AIL reward cannot be used for training a new policy from scratch, and is thus discarded. In contrast,
IRL methods such as ours learn a stationary reward such that, if the policy is trained from scratch
using the reward function until convergence, then the policy will match the expert behavior. We
argue that learning a stationary reward function can be useful for solving downstream tasks and
transferring behavior across different dynamics.
Traditionally, IL methods assume access to expert demonstrations and minimize some divergence
between policy and expert’s trajectory distribution. However, in many cases, it may be easier to
directly specify the state distribution of the desired behavior rather than to provide fully-specified
demonstrations of the desired behavior [15]. For example, in a safety-critical application, it may
be easier to specify that the expert never visits some unsafe states, instead of tweaking reward to
∗Equal contribution, orders determined by dice rolling. †Equal advising.
1Project videos and code link are available at https://sites.google.com/view/f-irl/home.

4th Conference on Robot Learning (CoRL 2020), Cambridge MA, USA.

ar
X

iv
:2

01
1.

04
70

9v
2

 [
cs

.L
G

]
 2

9
D

ec
 2

02
0

https://sites.google.com/view/f-irl/home

IL Method Space f -Divergence Recover Reward?

MaxEntIRL [17], GCL [18] τ Forward Kullback-Leibler X
GAN-GCL [19] τ Forward Kullback-Leibler* X

AIRL [13], EAIRL [20] τ Forward Kullback-Leibler* X
EBIL [21] τ Reverse Kullback-Leibler X
GAIL [12] s, a Jensen-Shannon ×
f -MAX [14] s, a f -divergence ×
SMM [15] s Reverse Kullback-Leibler ×

f -IRL (Our method) s f -divergence X

Table 1: IL methods vary in the domain of the expert distribution that they model (“space”), the
choice of f-divergence, and whether they recover a stationary reward function. *GAN-GCL and
AIRL use biased IS weights to approximate FKL (see Appendix B).

penalize safety violations [16]. Similarly, we can specify a uniform density over the whole state
space for exploration tasks, or a Gaussian centered at the goal for goal-reaching tasks. Reverse KL
instantiation for f -divergence in f -IRL allows for unnormalized density specification, which further
allows for easier preference encoding.
In this paper, we propose a new method, f -IRL, that learns a stationary reward function from the
expert density via gradient descent. To do so, we derive an analytic gradient of any arbitrary f -
divergence between the agent and the expert state distribution w.r.t. reward parameters. We demon-
strate that f -IRL is especially useful in the limited data regime, exhibiting better sample efficiency
than prior work in terms of the number of environment interactions and expert trajectories required
to learn the MuJoCo benchmark tasks. We also demonstrate that the reward functions recovered
by f -IRL can accelerate the learning of hard-to-explore tasks with sparse rewards, and these same
reward functions can be used to transfer behaviors across changes in dynamics.

2 Related Work

IRL methods [8, 9, 10] obtain a policy by learning a reward function from sampled trajectories
of an expert policy. MaxEntIRL [17] learns a stationary reward by maximizing the likelihood of
expert trajectories, i.e., it minimizes forward KL divergence in trajectory space under the maximum
entropy RL framework. Similar to MaxEntIRL, Deep MaxEntIRL [22] and GCL [18] optimize the
forward KL divergence in trajectory space. A recent work, EBIL [21], optimizes the reverse KL
divergence in the trajectory space by treating the expert state-action marginal as an energy-based
model. Another recent method, RED [23], uses support estimation on the expert data to extract a
fixed reward, instead of trying to minimize a f -divergence between the agent and expert distribution.
One branch of IRL methods train a GAN [24] with a special structure in the discriminator to learn
the reward. This is first justified by Finn et al. [19] to connect GCL [18] with GAN, and several
methods [19, 13, 20] follow this direction. Our analysis in Appendix B suggests that the importance-
sampling weights used in these prior methods may be biased. We show that AIRL does not minimize
the reverse RL in state-marginal space (as argued by [14]). Moreover, AIRL [13] uses expert state-
action-next state transitions, while our method can work in a setting where only expert states are
provided.
A set of IL methods [12, 14] use a discriminator to address the issue of running RL in the inner loop
as classical IRL methods. Instead, these methods directly optimize the policy in the outer loop using
adversarial training. These methods can be shown to optimize the Jensen-Shannon, and a general
f -divergence respectively, but do not learn a reward function. SMM [15] optimizes the reverse KL
divergence between the expert and policy state marginals but also does not recover a reward function
due to its fictitious play approach. SQIL [25] and DRIL [26] utilize regularized behavior cloning
for imitation without recovering a reward function. Unlike these prior methods, f -IRL can optimize
any f -divergence between the state-marginal of the expert and the agent, while also recovering a
stationary reward function. Table 1 summarizes the comparison among imitation learning methods.

3 Preliminaries

In this section, we review notation on maximum entropy (MaxEnt) RL [27] and state marginal
matching (SMM) [15] that we build upon in this work.

2

MaxEnt RL. Consider a Markov Decision Process (MDP) represented as a tuple (S,A,P, r, ρ0, T)
with state-space S, action-space A, dynamics P : S × A × S → [0, 1], reward function r(s, a),
initial state distribution ρ0, and horizon T . The optimal policy π under the maximum entropy
framework [28] maximizes the objective

∑T
t=1 Eρπ,t(st,at)[r(st, at) + αH(·|st)]. Here ρπ,t is the

state-action marginal distribution of policy π at timestamp t, and α > 0 is the entropy temperature.
Let rθ(s) be a parameterized differentiable reward function only dependent on state. Let trajectory
τ be a time series of visited states τ = (s0, s1, . . . , sT). The optimal MaxEnt trajectory distribution
ρθ(τ) under reward rθ can be computed as ρθ(τ) = 1

Z p(τ)erθ(τ)/α, where

p(τ) = ρ0(s0)

T−1∏
t=0

p(st+1|st, at) , rθ(τ) =

T∑
t=1

rθ(st), Z =

∫
p(τ)erθ(τ)/αdτ.

Slightly overloading the notation, the optimal MaxEnt state marginal distribution ρθ(s) under reward
rθ is obtained by marginalization:

ρθ(s) ∝
∫
p(τ)erθ(τ)/αητ (s)dτ (1)

where ητ (s) ,
∑T
t=1 1(st = s) is the visitation count of a state s in a particular trajectory τ .

State Marginal Matching. Given the expert state density pE(s), one can train a policy to match
the expert behavior by minimizing the following f -divergence objective:

Lf (θ) = Df (ρE(s) || ρθ(s)) (2)

where common choices for the f -divergence Df [29, 14] include forward KL divergence, reverse
KL divergence, and Jensen-Shannon divergence. Our proposed f -IRL algorithm will compute the
analytical gradient of Eq. 2 w.r.t. θ and use it to optimize the reward function via gradient descent.

4 Learning Stationary Rewards via State-Marginal Matching

In this section, we describe our algorithm f -IRL, which takes the expert state density as input, and
optimizes the f -divergence objective (Eq. 2) via gradient descent. Our algorithm trains a policy
whose state marginal is close to that of the expert, and a corresponding stationary reward function
that would produce the same policy if the policy were trained with MaxEnt RL from scratch.

4.1 Analytic Gradient for State Marginal Matching in f -divergence

One of our main contributions is the exact gradient of the f -divergence objective (Eq. 2) w.r.t. the
reward parameters θ. This gradient will be used by f -IRL to optimize Eq. 2 via gradient descent.
The proof is provided in Appendix A.
Theorem 4.1 (f -divergence analytic gradient). The analytic gradient of the f -divergence Lf (θ)
between state marginals of the expert (ρE) and the soft-optimal agent w.r.t. the reward parameters
θ is given by:

∇θLf (θ) =
1

αT
covτ∼ρθ(τ)

(
T∑
t=1

hf

(
ρE(st)

ρθ(st)

)
,

T∑
t=1

∇θrθ(st)

)
(3)

where hf (u) , f(u)− f ′(u)u, ρE(s) is the expert state marginal and ρθ(s) is the state marginal of
the soft-optimal agent under the reward function rθ, and the covariance is taken under the agent’s
trajectory distribution ρθ(τ).2

Choosing the f -divergence to be Forward Kullback-Leibler (FKL), Reverse Kullback-Leibler
(RKL), or Jensen-Shannon (JS) instantiates hf (see Table 2). Note that the gradient of the RKL
objective has a special property in that we can specify the expert as an unnormalized log-density
(i.e. energy), since in hRKL(ρE(s)

ρθ(s)) = 1 − log ρE(s) + log ρθ(s), the normalizing factor of
ρE(s) does not change the gradient (by linearity of covariance). This makes density specification

2Here we assume f is differentiable, which is often the case for common f -divergence (e.g. KL divergence).

3

Name f -divergence Df (P || Q) Generator f(u) hf (u)

FKL
∫
p(x) log p(x)

q(x)dx u log u −u
RKL

∫
q(x) log q(x)

p(x)dx − log u 1− log u

JS 1
2

∫
p(x) log 2p(x)

p(x)+q(x) + q(x) log 2q(x)
p(x)+q(x)dx u log u− (1 + u) log 1+u

2 − log(1 + u)

Table 2: Selected list of f -divergences Df (P || Q) with generator functions f and hf defined in
Theorem 4.1, where f is convex, lower-semicontinuous and f(1) = 0.
much easier in a number of scenarios. Intuitively, since hf is a monotonically decreasing func-
tion (h′f (u) = −f ′′(u)u < 0) over R+, the gradient descent tells the reward function to increase

the rewards of those state trajectories that have higher sum of density ratios
∑T
t=1

ρE(st)
ρθ(st)

so as to
minimize the objective.

4.2 Learning a Stationary Reward by Gradient Descent

We now build upon Theorem 4.1 to design a practical algorithm for learning the reward function
rθ (Algorithm. 1). Given expert information (state density or observation samples) and an arbi-
trary f -divergence, the algorithm alternates between using MaxEnt RL with the current reward, and
updating the reward parameter using gradient descent based on the analytic gradient.
If the provided expert data is in the form of expert state density ρE(s), we can fit a density model
ρ̂θ(s) to estimate agent state density ρθ(s) and thus estimate the density ratio required in gradient. If
we are given samples from expert observations sE , we can fit a discriminatorDω(s) in each iteration
to estimate the density ratio by optimizing the binary cross-entropy loss:

max
ω

Es∼sE [logDω(s)] + Es∼ρθ(s)[log(1−Dω(s)] (4)

where the optimal discriminator satisfies D∗ω(s) = ρE(s)
ρE(s)+ρθ(s) [24], thus the density ratio can be

estimated by ρE(s)
ρθ(s) ≈

Dω(s)
1−Dω(s) , which is the input to hf .

Algorithm 1: Inverse RL via State Marginal Matching (f -IRL)
Input : Expert state density ρE(s) or expert observations sE , f -divergence
Output: Learned reward rθ, Policy πθ
Initialize rθ, and density estimation model (provided ρE(s)) or disciminator Dω (provided sE)
for i← 1 to Iter do

πθ ←MaxEntRL(rθ) and collect agent trajectories τθ
if provided ρE(s) then

Fit the density model ρ̂θ(s) to the state samples from τθ
else

// provided sE
Fit the discriminator Dω by Eq. 4 using expert and agent state samples from sE and τθ

Compute sample gradient ∇̂θLf (θ) for Eq. 3 over τθ
θ ← θ − λ∇̂θLf (θ)

4.3 Robust Reward Recovery under State-only Ground-truth Reward

IRL methods are different from IL methods in that they recover a reward function in addition to
the policy. A hurdle in this process is often the reward ambiguity problem, explored in [30, 13].
This ambiguity arises due to the fact that the optimal policy remains unchanged under the following
reward transformation [30]:

r̂(s, a, s′) = rgt(s, a, s
′) + γΦ(s′)− Φ(s) (5)

for any function Φ. In the case where the ground-truth reward is a function over states only (i.e.,
rgt(s)), f -IRL is able to recover the disentangled reward function (rIRL) that matches the ground
truth reward rgt up to a constant. The obtained reward function is robust to different dynamics – for
any underlying dynamics, rIRL will produce the same optimal policy as rgt. We formalize this claim
in Appendix A.4 (based on Theorem 5.1 of AIRL [13]).
AIRL uses a special parameterization of the discriminator to learn state-only rewards. A disadvan-
tage of their approach is that AIRL needs to approximate a separate reward-shaping network apart
from the reward network. In contrast, our method naturally recovers a state-only reward function.

4

4.4 Practical Modification in the Exact Gradient

In practice with high-dimensional observations, when the agent’s current trajectory distribution is
far off from the expert trajectory distribution, we find that there is little supervision available through
our derived gradient, leading to slow learning. Therefore, when expert trajectories are provided, we
bias the gradient (Eq. 3) using a mixture of agent and expert trajectories inspired by GCL [18],
which allows for richer supervision and faster convergence. Note that at convergence, the gradient
becomes unbiased as the agent’s and expert’s trajectory distribution matches.

∇̃θLf (θ) :=
1

αT
covτ∼ 1

2 (ρθ(τ)+ρE(τ))

(
T∑
t=1

hf

(
ρE(st)

ρθ(st)

)
,

T∑
t=1

∇θrθ(st)

)
(6)

where the expert trajectory distribution ρE(τ) is uniform over samples τE .

5 Experiments

In our experiments, we seek answers to the following questions:

1. Can f -IRL learn a policy that matches the given expert state density?

2. Can f -IRL learn good policies on high-dimensional continuous control tasks in a sample-
efficient manner?

3. Can f -IRL learn a reward function that induces the expert policy?

4. How can learning a stationary reward function help solve downstream tasks?

Comparisons. To answer these questions, we compare f -IRL against two classes of existing im-
itation learning algorithms: (1) those that learn only the policy, including Behavior Cloning (BC),
GAIL [12], and f -MAX-RKL3 [14]; and (2) IRL methods that learn both a reward and a pol-
icy simultaneously, including MaxEnt IRL [17] and AIRL [13]. The rewards/discriminators of the
baselines are parameterized to be state-only. We use SAC [31] as the base MaxEnt RL algorithm.
Since the original AIRL uses TRPO [32], we re-implement a version of AIRL that uses SAC as the
underlying RL algorithm for fair comparison. For our method (f -IRL), MaxEnt IRL, and AIRL, we
use a MLP for reward parameterization.
Tasks. We evaluate the algorithms on several tasks:

• Matching Expert State Density: In Section 5.1, the task is to learn a policy that matches
the given expert state density.

• Inverse Reinforcement Learning Benchmarks: In Section 5.2, the task is to learn a re-
ward function and a policy from expert trajectory samples. We collected expert trajectories
by training SAC [31] to convergence on each environment. We trained all the methods us-
ing varying numbers of expert trajectories {1, 4, 16} to test the robustness of each method
to the amount of available expert data.

• Using the Learned Reward for Downstream Tasks: In Section 5.3, we first train each
algorithm to convergence, then use the learned reward function to train a new policy on a
related downstream task. We measure the performance on downstream tasks for evaluation.

We use five MuJoCo continuous control locomotion environments [33, 34] with joint torque actions,
illustrated in Figure 1. Further details about the environment, expert information (samples or density
specification), and hyperparameter choices can be found in Appendix C.

5.1 Matching the Specified Expert State Density

First, we check whether f -IRL can learn a policy that matches the given expert state density of the
fingertip of the robotic arm in the 2-DOF Reacher environment. We evaluate the algorithms using
two different expert state marginals: (1) a Gaussian distribution centered at the goal for single goal-
reaching, and (2) a mixture of two Gaussians, each centered at one goal. Since this problem setting

3A variant of AIRL [13] proposed in [14] only learns a policy and does not learn a reward.

5

Figure 1: Environments: (left to right) Ant-v2, Hopper-v2, HalfCheetah-v2, Reacher-v2, and
Walker2d-v2.

f-max-rkl fkl (f-IRL) GAIL js (f-IRL) MaxEnt IRL rkl (f-IRL)

0.0 0.5 1.0 1.5 2.0 2.5

Environment Timesteps 1e5

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Fo
rw

ar
d

K
L

0.0 0.5 1.0 1.5 2.0 2.5

Environment Timesteps 1e5

2.5

3.0

3.5

4.0

4.5

5.0

5.5

R
ev

er
se

 K
L

0.0 0.5 1.0 1.5 2.0 2.5

Environment Timesteps 1e5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Fo
rw

ar
d

K
L

0.0 0.5 1.0 1.5 2.0 2.5

Environment Timesteps 1e5

2.5

3.0

3.5

4.0

4.5

5.0

R
ev

er
se

 K
L

(a) Expert Density: Gaussian (b) Expert Density: Mixture of two Gaussians

Figure 2: Forward (left) and Reverse (right) KL curves in the Reacher environment for different
expert densities of all methods. Curves are smoothed in a window of 120 evaluations.

assumes access to the expert density only, we use importance sampling to generate expert samples
required by the baselines.
In Figure 2, we report the estimated forward and reverse KL divergences in state marginals between
the expert and the learned policy. For f -IRL and MaxEnt IRL, we use Kernel Density Estimation
(KDE) to estimate the agent’s state marginal. We observe that the baselines demonstrate unstable
convergence, which might be because those methods optimize the f -divergence approximately. Our
method {FKL, JS} f -IRL outperforms the baselines in the forward KL and the reverse KL metric,
respectively.

5.2 Inverse Reinforcement Learning Benchmarks

Next, we compare f -IRL and the baselines on IRL benchmarks, where the task is to learn a reward
function and a policy from expert trajectory samples. We use the modification proposed in Sec-
tion 4.4 to alleviate the difficulty in optimizing the f -IRL objective with high-dimensional states.
Policy Performance. We check whether f -IRL can learn good policies on high-dimensional con-
tinuous control tasks in a sample-efficient manner from expert trajectories. Figure 3 shows the
learning curves of each method in the four environments with one expert trajectory provided. f -IRL
and MaxEnt IRL demonstrate much faster convergence in most of the tasks than f -MAX-RKL. Ta-
ble 3 shows the final performance of each method in the four tasks, measured by the ratio of agent
returns (evaluated using the ground-truth reward) to expert returns.4 While MaxEnt IRL provides
a strong baseline, f -IRL outperforms all baselines on most tasks especially in Ant, where the FKL
(f -IRL) has much higher final performance and is less sensitive to the number of expert trajectories
compared to the baselines. In contrast, we found the original implementation of f -MAX-RKL to
be extremely sensitive to hyperparameter settings. We also found that AIRL performs poorly even
after tremendous tuning, similar to the findings in [35, 21].
Recovering the Stationary Reward Function. We also evaluate whether f -IRL can recover a
stationary reward function that induces the expert policy. To do so, we train a SAC agent from
scratch to convergence using the reward model obtained from each IRL method. We then evaluate
the trained agents using the ground-truth reward to test whether the learned reward functions are
good at inducing the expert policies.
Table 4 shows the ratio of the final returns of policy trained from scratch using the rewards learned
from different IRL methods with one expert trajectory provided, to expert returns. Our results show

4The unnormalized agent and expert returns are reported in Appendix D.

6

expert BC fkl (f-IRL) rkl (f-IRL) js (f-IRL) maxentirl f-max-rkl airl

0.0 0.5 1.0 1.5 2.0
1e6

0.0

0.2

0.4

0.6

0.8

1.0

R
et

ur
n

R
at

io

Hopper

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1e6

0.0

0.2

0.4

0.6

0.8

1.0
HalfCheetah

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1e6

0.0

0.2

0.4

0.6

0.8

1.0
Walker2d

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1e6

0.0

0.2

0.4

0.6

0.8

1.0
Ant

Environment Steps

Figure 3: Training curves for f -IRL and 4 other baselines - BC, MaxEnt IRL, f -MAX-RKL and
AIRL with one expert demonstration. Solid curves depict the mean of 3 trials and the shaded area
shows the standard deviation. The dashed blue line represents the expert performance and the dashed
red line shows the performance of a BC agent at convergence.

Method Hopper Walker2d HalfCheetah Ant

Expert return 3592.63 ± 19.21 5344.21 ± 84.45 12427.49 ± 486.38 5926.18 ± 124.56
Expert traj 1 4 16 1 4 16 1 4 16 1 4 16

BC 0.00 0.13 0.16 0.00 0.05 0.08 0.00 0.01 0.02 0.00 0.22 0.47
MaxEnt IRL 0.93 0.92 0.94 0.88 0.88 0.91 0.95 0.98 0.91 0.54 0.71 0.81
f -MAX-RKL 0.94 0.93 0.91 0.49 0.49 0.47 0.71 0.41 0.65 0.60 0.65 0.62

AIRL 0.01 0.01 0.01 0.00 0.00 0.00 0.19 0.19 0.19 0.00 0.00 0.00

FKL (f -IRL) 0.93 0.90 0.93 0.90 0.90 0.90 0.94 0.97 0.94 0.82 0.83 0.84
RKL (f -IRL) 0.93 0.92 0.93 0.89 0.90 0.85 0.95 0.97 0.96 0.63 0.82 0.81

JS (f -IRL) 0.92 0.93 0.94 0.89 0.92 0.88 0.93 0.98 0.94 0.77 0.81 0.73

Table 3: We report the ratio between the average return of the trained (stochastic) policy vs. that of
the expert policy for different IRL algorithms using 1, 4 and 16 expert trajectories. All results are
averaged across 3 seeds. Negative ratios are clipped to zero.

that MaxEnt IRL and f -IRL are able to learn stationary rewards that can induce a policy close to
the optimal expert policy.

Method Hopper Walker2d HalfCheetah Ant

AIRL - - -0.03 -
MaxEntIRL 0.93 0.92 0.96 0.79
f -IRL 0.93 0.88 1.02 0.82

Table 4: The ratios of final return of the obtained policy against expert return across IRL methods.
We average f -IRL over FKL, RKL, and JS. ‘-’ indicates that we do not test learned rewards since
AIRL does poorly at these tasks in Table 3.

Policy Transfer AIRL MaxEntIRL f -IRL Ground-truth
using GAIL Reward

-29.9 130.3 145.5 141.1 315.5

Table 5: Returns obtained after transferring the policy/reward on modified Ant environment using
different IL methods.

5.3 Using the Learned Stationary Reward for Downstream Tasks

Finally, we investigate how the learned stationary reward can be used to learn related, downstream
tasks.
Reward prior for downstream hard-exploration tasks. We first demonstrate the utility of the
learned stationary reward by using it as a prior reward for the downstream task. Specifically, we
construct a didactic point mass environment that operates under linear dynamics in a 2D 6×6 room,
and actions are restricted to [−1, 1]. The prior reward is obtained from a uniform expert density over

7

Figure 4: Left: Extracted final reward of all compared methods for the uniform expert density in
the point environment. Right: The task return (in terms of rtask) with different α and prior reward
weight λ. The performance of vanilla SAC is shown in the leftmost column with λ = 0 in each
subplot.

the whole state space, and is used to ease the learning in the hard-exploration task, where we design
a difficult goal to reach with distraction rewards (full details in appendix C).
We use the learned prior reward rprior to augment the task reward rtask as follows:

r(s, a, s′) = rtask(s, a, s′) + λ(γrprior(s
′)− rprior(s)) (7)

where λ ≥ 0 is the weight of prior reward and γ is the discount factor. The main theoretical result
of [30] dictates that adding a potential-based reward in this form will not change the optimal policy.
GAIL and f -MAX-RKL do not extract a reward function but rather a discriminator, so we derive a
prior reward from the discriminator in the same way as [14, 12].
Figure 4 illustrates that the reward recovered by {FKL, RKL, JS} f -IRL and the baseline MaxEnt
IRL are similar: the reward increases as the distance to the agent’s start position, the bottom left
corner, increases. This is intuitive for achieving the target uniform density: states farther away
should have higher rewards. f -MAX-RKL and GAIL’s discriminator demonstrate a different pattern
which does not induce a uniform state distribution. The leftmost column in the Figure 4 (Right)
shows the poor performance of SAC training without reward augmentation (λ = 0). This verifies
the difficulty in exploration for solving the task. We vary λ in the x-axis, and α in SAC in the y-axis,
and plot the final task return (in terms of rtask) as a heatmap in the figure. The presence of larger
red region in the heatmap shows that our method can extract a prior reward that is more robust and
effective in helping the downstream task attain better final performance with its original reward.
Reward transfer across changing dynamics. Lastly, we evaluate the algorithms on transfer learn-
ing across different environment dynamics, following the setup from [13]. In this setup, IL al-
gorithms are provided expert trajectories from a quadrupedal ant agent which runs forward. The
algorithms are tested on an ant with two of its legs being disabled and shrunk. This requires the ant
to significantly change its gait to adapt to the disabled legs for running forward.
We found that a forward-running policy obtained by GAIL fails to transfer to the disabled ant. In
contrast, IRL algorithms such as f -IRL are successfully able to learn the expert’s reward function
using expert demonstrations from the quadrupedal ant, and use the reward to train a policy on the
disabled ant. The results in Table 5 show that the reward learned by f -IRL is robust and enables the
agent to learn to move forward with just the remaining two legs.

6 Conclusion

In summary, we have proposed f -IRL, a practical IRL algorithm that distills an expert’s state distri-
bution into a stationary reward function. Our f -IRL algorithm can learn from either expert samples
(as in traditional IRL), or a specified expert density (as in SMM [15]), which opens the door to
supervising IRL with different types of data. These types of supervision can assist agents in solving
tasks faster, encode preferences for how tasks are performed, and indicate which states are unsafe
and should be avoided. Our experiments demonstrate that f -IRL is more sample efficient in the
number of expert trajectories and environment timesteps as demonstrated on MuJoCo benchmarks.

8

Acknowledgments

This paper is an extension on the course project of CMU 10-708 Probabilistic Graphical Models in Spring
2020, and we thank the course staff to provide the platform. We thank the anonymous reviewers for their
useful comments. LL is supported by the National Science Foundation (DGE-1745016). BE is supported by
the Fannie and John Hertz Foundation and the National Science Foundation (DGE-1745016).

References
[1] D. A. Pomerleau. Alvinn: An autonomous land vehicle in a neural network. In Advances in neural

information processing systems, pages 305–313, 1989.

[2] T. Osa, N. Sugita, and M. Mitsuishi. Online trajectory planning and force control for automation of
surgical tasks. IEEE Transactions on Automation Science and Engineering, 15(2):675–691, 2017.

[3] D. Hadfield-Menell, S. J. Russell, P. Abbeel, and A. Dragan. Cooperative inverse reinforcement learning.
In Advances in neural information processing systems, pages 3909–3917, 2016.

[4] C. G. Atkeson and S. Schaal. Robot learning from demonstration. In ICML, volume 97, pages 12–20.
Citeseer, 1997.

[5] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger. Deep reinforcement learning
that matters. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[6] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis, V. Koltun, and M. Hutter. Learning agile
and dynamic motor skills for legged robots. Science Robotics, 4(26):eaau5872, 2019.

[7] M. Bain and C. Sammut. A framework for behavioural cloning. In Machine Intelligence 15, pages
103–129, 1995.

[8] S. Russell. Learning agents for uncertain environments. In Proceedings of the eleventh annual conference
on Computational learning theory, pages 101–103, 1998.

[9] A. Y. Ng, S. J. Russell, et al. Algorithms for inverse reinforcement learning. In Icml, volume 1, pages
663–670, 2000.

[10] P. Abbeel and A. Y. Ng. Apprenticeship learning via inverse reinforcement learning. In Proceedings of
the twenty-first international conference on Machine learning, page 1, 2004.

[11] S. Ross and D. Bagnell. Efficient reductions for imitation learning. In Proceedings of the thirteenth
international conference on artificial intelligence and statistics, pages 661–668, 2010.

[12] J. Ho and S. Ermon. Generative adversarial imitation learning. In Advances in neural information pro-
cessing systems, pages 4565–4573, 2016.

[13] J. Fu, K. Luo, and S. Levine. Learning robust rewards with adversarial inverse reinforcement learning.
arXiv preprint arXiv:1710.11248, 2017.

[14] S. K. S. Ghasemipour, R. Zemel, and S. Gu. A divergence minimization perspective on imitation learning
methods. arXiv preprint arXiv:1911.02256, 2019.

[15] L. Lee, B. Eysenbach, E. Parisotto, E. Xing, S. Levine, and R. Salakhutdinov. Efficient exploration via
state marginal matching. arXiv preprint arXiv:1906.05274, 2019.

[16] G. Dalal, K. Dvijotham, M. Vecerik, T. Hester, C. Paduraru, and Y. Tassa. Safe exploration in continuous
action spaces. arXiv preprint arXiv:1801.08757, 2018.

[17] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey. Maximum entropy inverse reinforcement
learning. In Aaai, volume 8, pages 1433–1438. Chicago, IL, USA, 2008.

[18] C. Finn, S. Levine, and P. Abbeel. Guided cost learning: Deep inverse optimal control via policy opti-
mization. In International conference on machine learning, pages 49–58, 2016.

[19] C. Finn, P. Christiano, P. Abbeel, and S. Levine. A connection between generative adversarial networks,
inverse reinforcement learning, and energy-based models. arXiv preprint arXiv:1611.03852, 2016.

[20] A. H. Qureshi, B. Boots, and M. C. Yip. Adversarial imitation via variational inverse reinforcement
learning. arXiv preprint arXiv:1809.06404, 2018.

9

[21] M. Liu, T. He, M. Xu, and W. Zhang. Energy-based imitation learning. arXiv preprint arXiv:2004.09395,
2020.

[22] M. Wulfmeier, P. Ondruska, and I. Posner. Maximum entropy deep inverse reinforcement learning. arXiv
preprint arXiv:1507.04888, 2015.

[23] R. Wang, C. Ciliberto, P. Amadori, and Y. Demiris. Random expert distillation: Imitation learning via
expert policy support estimation. arXiv preprint arXiv:1905.06750, 2019.

[24] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Ben-
gio. Generative adversarial nets. In Advances in neural information processing systems, pages 2672–2680,
2014.

[25] S. Reddy, A. D. Dragan, and S. Levine. Sqil: Imitation learning via reinforcement learning with sparse
rewards. arXiv preprint arXiv:1905.11108, 2019.

[26] K. Brantley, W. Sun, and M. Henaff. Disagreement-regularized imitation learning. In International
Conference on Learning Representations, 2019.

[27] S. Levine. Reinforcement learning and control as probabilistic inference: Tutorial and review. arXiv
preprint arXiv:1805.00909, 2018.

[28] B. D. Ziebart. Modeling purposeful adaptive behavior with the principle of maximum causal entropy.
2010.

[29] S. M. Ali and S. D. Silvey. A general class of coefficients of divergence of one distribution from another.
Journal of the Royal Statistical Society: Series B (Methodological), 28(1):131–142, 1966.

[30] A. Y. Ng, D. Harada, and S. Russell. Policy invariance under reward transformations: Theory and appli-
cation to reward shaping. In ICML, volume 99, pages 278–287, 1999.

[31] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy deep
reinforcement learning with a stochastic actor. arXiv preprint arXiv:1801.01290, 2018.

[32] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust region policy optimization. In
International conference on machine learning, pages 1889–1897, 2015.

[33] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 5026–5033. IEEE, 2012.

[34] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba. Openai
gym. arXiv preprint arXiv:1606.01540, 2016.

[35] F. Liu, Z. Ling, T. Mu, and H. Su. State alignment-based imitation learning. arXiv preprint
arXiv:1911.10947, 2019.

[36] A. Müller. Integral probability metrics and their generating classes of functions. Advances in Applied
Probability, pages 429–443, 1997.

[37] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein gan. arXiv preprint arXiv:1701.07875, 2017.

[38] C.-L. Li, W.-C. Chang, Y. Cheng, Y. Yang, and B. Póczos. Mmd gan: Towards deeper understanding of
moment matching network. In Advances in Neural Information Processing Systems, pages 2203–2213,
2017.

[39] C. Villani. Optimal transport: old and new, volume 338. Springer Science & Business Media, 2008.

[40] L. Ke, M. Barnes, W. Sun, G. Lee, S. Choudhury, and S. Srinivasa. Imitation learning as f -divergence
minimization. arXiv preprint arXiv:1905.12888, 2019.

[41] S. Nowozin, B. Cseke, and R. Tomioka. f-gan: Training generative neural samplers using variational
divergence minimization. In Advances in neural information processing systems, pages 271–279, 2016.

[42] L. Kozachenko and N. N. Leonenko. Sample estimate of the entropy of a random vector. Problemy
Peredachi Informatsii, 23(2):9–16, 1987.

[43] A. Kraskov, H. Stögbauer, and P. Grassberger. Estimating mutual information. Physical review E, 69(6):
066138, 2004.

[44] S. Singh and B. Póczos. Analysis of k-nearest neighbor distances with application to entropy estimation.
arXiv preprint arXiv:1603.08578, 2016.

[45] G. Ver Steeg. Non-parametric entropy estimation toolbox (npeet). 2000.

10

A Derivation and Proof

This section provides the derivation and proof for the main paper. Section A.1 and A.2 provide the
derivation of Theorem 4.1, and section A.4 provides the details about section 4.3.

A.1 Analytical Gradient of State Marginal Distribution

In this subsection, we start by deriving a general result - gradient of state marginal distribution w.r.t.
parameters of the reward function. We will use this gradient in the next subsection A.2 where we
derive the gradient of f -divergence objective.
Based on the notation introduced in section 3, we start by writing the probability of trajectory τ =
(s0, s1, . . . , sT) of fixed horizon T under the optimal MaxEnt trajectory distribution for rθ(s) [28].

ρθ(τ) ∝ ρ0(s0)

T−1∏
t=0

p(st+1|st, at)e
∑T
t=1 rθ(st)/α (8)

Let p(τ) = ρ0(s0)
∏T−1
t=0 p(st+1|st, at), which is the probability of the trajectory under the dynam-

ics of the environment.
Explicitly computing the normalizing factor, we can write the distribution over trajectories as fol-
lows:

ρθ(τ) =
p(τ)e

∑T
t=1 rθ(st)/α∫

p(τ)e
∑T
t=1 rθ(st)/αdτ

(9)

Let ητ (s) denote the number of times a state occurs in a trajectory τ . We now compute the marginal
distribution of all states in the trajectory:

ρθ(s) ∝
∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s)dτ (10)

where

ητ (s) =

T∑
t=1

1(st = s) (11)

is the empirical frequency of state s in trajectory τ (omitting the starting state s0 as the policy cannot
control the initial state distribution).
The marginal distribution over states can now be written as:

ρθ(s) ∝
∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s)dτ (12)

In the following derivation, we will use st to denote states in trajectory τ and s′t to denote states from
trajectory τ ′. Explicitly computing the normalizing factor, the marginal distribution can be written
as follows:

ρθ(s) =

∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s)dτ∫ ∫

p(τ ′)e
∑T
t=1 rθ(s′t)/αητ ′(s′)dτ ′ds′

=

∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s)dτ∫

p(τ ′)e
∑T
t=1 rθ(s′t)/α

∫
ητ ′(s′)ds′dτ ′

=

∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s)dτ

T
∫
p(τ ′)e

∑T
t=1 rθ(s′t)/αdτ ′

(13)

In the second step we swap the order of integration in the denominator. The last line follows because
only the T states in τ satisfy s ∈ τ . Finally, we define f(s) and Z to denote the numerator (de-
pendent on s) and denominator (normalizing constant), to simplify notation in further calculations.

11

f(s) =

∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s)dτ

Z = T

∫
p(τ)e

∑T
t=1 rθ(st)/αdτ

ρθ(s) =
f(s)

Z

(14)

As an initial step, we compute the derivatives of f(s) and Z w.r.t reward function at some state
rθ(s

∗).

df(s)

drθ(s∗)
=

1

α

∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s)ητ (s∗)dτ (15)

dZ

drθ(s∗)
=
T

α

∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s∗)dτ =

T

α
f(s∗) (16)

We can then apply the quotient rule to compute the derivative of policy marginal distribution w.r.t.
the reward function.

dρθ(s)

drθ(s∗)
=
Z df(s)
drθ(s∗) − f(s) dZ

drθ(s∗)

Z2

=

∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s)ητ (s∗)dτ

αZ
− f(s)

Z

Tf(s∗)

αZ

=

∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s)ητ (s∗)dτ

αZ
− T

α
ρθ(s)ρθ(s

∗)

(17)

Now we have all the tools needed to get the derivative of ρθ w.r.t. θ by the chain rule.

dρθ(s)

dθ
=

∫
dρθ(s)

drθ(s∗)

drθ(s
∗)

dθ
ds∗

=
1

α

∫ (∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s)ητ (s∗)dτ

Z
− Tρθ(s)ρθ(s∗)

)
drθ(s

∗)

dθ
ds∗

=
1

αZ

∫ ∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s)ητ (s∗)

drθ(s
∗)

dθ
ds∗dτ − T

α
ρθ(s)

∫
ρθ(s

∗)
drθ(s

∗)

dθ
ds∗

=
1

αZ

∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s)

T∑
t=1

drθ(st)

dθ
dτ − T

α
ρθ(s)

∫
ρθ(s

∗)
drθ(s

∗)

dθ
ds∗

(18)

A.2 Analytical Gradient of f -divergence objective

f -divergence [29] is a family of divergence, which generalizes forward/reverse KL divergence. For-
mally, let P and Q be two probability distributions over a space Ω, then for a convex and lower-
semicontinuous function f such that f(1) = 0, the f -divergence of P from Q is defined as:

Df (P || Q) :=

∫
Ω

f

(
dP

dQ

)
dQ (19)

Applied to state marginal matching between expert density ρE(s) and agent density ρθ(s) over state
space S, the f -divergence objective is:

min
θ
Lf (θ) := Df (ρE || ρθ) =

∫
S
f

(
ρE(s)

ρθ(s)

)
ρθ(s)ds (20)

Now we show the proof of Theorem 4.1 on the gradient of f -divergence objective:

12

Proof. The gradient of the f -divergence objective can be derived by chain rule:

∇θLf (θ) =

∫
∇θ
(
f

(
ρE(s)

ρθ(s)

)
ρθ(s)

)
ds

=

∫ (
f

(
ρE(s)

ρθ(s)

)
− f ′

(
ρE(s)

ρθ(s)

)
ρE(s)

ρθ(s)

)
dρθ(s)

dθ
ds

,
∫
hf

(
ρE(s)

ρθ(s)

)
dρθ(s)

dθ
ds

(21)

where we denote hf (u) , f(u)− f ′(u)u. for convenience.5

Substituting the gradient of state marginal distribution w.r.t θ in Eq. 18, we have:

∇θLf (θ)

=

∫
hf

(
ρE(s)

ρθ(s)

)(
1

αZ

∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s)

T∑
t=1

drθ(st)

dθ
dτ − T

α
ρθ(s)

∫
ρθ(s

∗)
drθ(s

∗)

dθ
ds∗
)
ds

=
1

αZ

∫
p(τ)e

∑T
t=1 rθ(st)/α

T∑
t=1

hf

(
ρE(st)

ρθ(st)

) T∑
t=1

drθ(st)

dθ
dτ

− T

α

∫
hf

(
ρE(s)

ρθ(s)

)
ρθ(s)

(∫
ρθ(s

∗)
drθ(s

∗)

dθ
ds∗
)
ds

=
1

αT

∫
ρθ(τ)

T∑
t=1

hf

(
ρE(st)

ρθ(st)

) T∑
t=1

drθ(st)

dθ
dτ

− T

α

(∫
hf

(
ρE(s)

ρθ(s)

)
ρθ(s)ds

)(∫
ρθ(s

∗)
drθ(s

∗)

dθ
ds∗
)

=
1

αT
Eτ∼ρθ(τ)

[
T∑
t=1

hf

(
ρE(st)

ρθ(st)

) T∑
t=1

drθ(st)

dθ

]
− T

α
Es∼ρθ(s)

[
hf

(
ρE(s)

ρθ(s)

)]
Es∼ρθ(s)

[
drθ(s)

dθ

]
(22)

To gain more intuition about this equation, we can convert all the expectations to be over the trajec-
tories:

∇θLf (θ)

=
1

αT

(
Eρθ(τ)

[
T∑
t=1

hf

(
ρE(st)

ρθ(st)

) T∑
t=1

∇θrθ(st)

]
− Eρθ(τ)

[
T∑
t=1

hf

(
ρE(st)

ρθ(st)

)]
Eρθ(τ)

[
T∑
t=1

∇θrθ(st)

])

=
1

αT
covτ∼ρθ(τ)

(
T∑
t=1

hf

(
ρE(st)

ρθ(st)

)
,

T∑
t=1

∇θrθ(st)

)
(23)

Thus we have derived the analytic gradient of f -divergence for state-marginal matching as shown in
Theorem 4.1.

A.3 Extension to Integral Probability Metrics in f -IRL

Integral Probability Metrics (IPM) [36] is another class of divergence based on dual norm, examples
of which include Wasserstein distance [37] and MMD [38]. We can use Kantorovich-Rubinstein
duality [39] to rewrite the IPM-based state marginal matching as:

LB(θ) = ‖ρE(s)− ρθ(s)‖B := max
Dω∈B

EρE(s)[Dω(s)]− Eρθ(s)[Dω(s)] (24)

where B is a symmetric convex set of functions and Dω is the critic function in [37].

5Note that if f(u) is non-differentiable at some points, such as f(u) = |u − 1|/2 at u = 1 for Total
Variation distance, we take one of its subderivatives.

13

Then the analytical gradient of the objective LB(θ) can be derived to be:

∇θLB(θ) = − 1

αT
covτ∼ρθ(τ)

(
T∑
t=1

Dω (st) ,

T∑
t=1

∇θrθ(st)

)
(25)

where the derivation directly follows the proof of Theorem 4.1.

A.4 f -IRL Learns Disentangled Rewards w.r.t. Dynamics

We follow the derivation and definitions as given in Fu et al. [13] to show that f -IRL learns disen-
tangled rewards. We show the definitions and theorem here for completeness. For more information,
please refer to Fu et al. [13].
We first redefine the notion of “disentangled rewards”.
Definition 1 (Disentangled rewards). A reward function r′(s, a, s′) is (perfectly) disentangled with
respect to ground truth reward rgt(s, a, s

′) and a set of dynamics T such that under all dynamics in
T ∈ T , the optimal policy is the same: π∗r′,T (a|s) = π∗rgt,T

(a|s)

Disentangled rewards can be loosely understood as learning a reward function which will produce
the same optimal policy as the ground truth reward for the environment, on any underlying dynamics.
To show how f -IRL recovers a disentangled reward function, we need go through the definition of
”Decomposability condition”
Definition 2 (Decomposability condition). Two states s1,s2 are defined as ”1-step linked” under a
dyanamics or transition distribution T (s′|a, s), if there exists a state that can reach s1 and s2 with
positive probability in one timestep. Also, this relationship can transfer through transitivity: if s1

and s2 are linked, and s2 and s3 are linked then we can consider s1 and s3 to be linked.
A transition distribution T satisfies the decomposibility condition if all states in the MDP are linked
with all other states.

This condition is mild and can be satisfied by any of the environments used in our experiments.
Theorem A.1 and A.2 formalize the claim that f -IRL recovers disentangled reward functions with
respect to the dynamics. The notation Q∗r,T denotes the optimal Q function under reward function r
and dynamics T , and similarly π∗r,T is the optimal policy under reward function r and dynamics T .

Theorem A.1. Let rgt(s) be the expert reward, and T be a dynamics satisfying the decomposability
condition as defined in [13]. Suppose f -IRL learns a reward rIRL such that it produces an optimal
policy in T : Q∗rIRL,T

(s, a) = Q∗rgt,T (s, a) − f(s) ,where f(s) is an arbitrary function of the state.
Then we have:

rIRL(s) = rgt(s) + C for some constant C, and thus rIRL(s) is robust to all dynamics.

Proof. Refer to Theorem 5.1 of AIRL [13].

Theorem A.2. If a reward function r′(s, a, s′) is disentangled with respect to all dynamics functions,
then it must be state-only.

Proof. Refer to Theorem 5.2 of AIRL [13].

B What Objective is Optimized by Previous IL Algorithms?

In this section, we discuss previous IL methods and analyze which objectives they may truly op-
timize. Our analysis shows that AIRL and GAN-GCL methods possibly optimize for a different
objective than they claim, due to their usage of biased importance sampling weights.

B.1 MaxEntIRL [17], Deep MaxEntIRL [22], GCL [18]

Classical IRL methods [8, 9] obtain a policy by learning a reward function from sampled trajecto-
ries of an expert policy. MaxEntIRL [17] learns a stationary reward by maximizing likelihood on
expert trajectories, i.e., it minimizes forward KL divergence in trajectory space under the maximum
entropy RL framework. A trajectory is a temporal collection of state-action pairs, and this makes

14

the trajectory distribution different from state-action marginal or state marginal distribution. Each
objective - minimizing divergence in trajectory space τ , in state-action marginal space (s, a) and
state marginal s are different IL methods in their own sense.
MaxEntIRL derives a surrogate objective w.r.t. reward parameter as the difference in cumulative
rewards of the trajectories between the expert and the soft-optimal policy under current reward
function. To train the soft-optimal policy, it requires running MaxEnt RL in an inner loop after
every reward update. This algorithm has been successfully applied for predicting behaviors of taxi
drivers with a linear parameterization of reward. Wulfmeier et al. [22] shows that MaxEntIRL reward
function can be parameterized as deep neural networks as well.
Guided cost learning (GCL) [18] is one of the first methods to train rewards using neural network
directly through experiences from real robots. They achieve this result by leveraging guided policy
search for policy optimization, employing importance sampling to correct for distribution shift when
the policy has not converged, and using novel regularizations in reward network. GCL optimizes for
the same objective as MaxEntIRL and Deep MaxEntIRL. To summarize these three works, we have
the following observation:

Observation B.0.1. MaxEntIRL, Deep MaxEntIRL, GCL all optimize for the forward KL divergence
in trajectory space, i.e. DKL(ρE(τ) || ρθ(τ)).

B.2 GAN-GCL [19], AIRL [13], EAIRL [20]

Finn et al. [19] shows that GCL is equivalent to training GANs with a special structure in the dis-
criminator (GAN-GCL). Note that this result uses an approximation in importance sampling, and
hence the gradient estimator is biased. Fu et al. [13] shows that GAN-GCL does not perform well in
practice since its discriminator models density ratio over trajectories which leads to high variance.
They propose an algorithm AIRL in which the discriminator estimates the density ratio of state-
action marginal, and shows that AIRL empirically performs better than GAN-GCL. AIRL also uses
approximate importance sampling in its derivation, and therefore its gradient is also biased. GAN-
GCL and AIRL claim to be able to recover a reward function due to the special structure in the
discriminator. EAIRL [20] uses empowerment regularization on policy objective based on AIRL.
All the above algorithm intend to optimize for same objective as MaxEntIRL. However, there is
an approximation involved in the procedure and let us analyze what that is, by going through the
derivation for equivalence of AIRL to MaxEntIRL as shown in Fu et al. [13] (Appendix A of that
paper).
The authors start from writing down the objective for MaxEntIRL: maxθ LMaxEntIRL(θ) =
Eτ∼D[log pθ(τ)], where D is the collection of expert demonstrations, and reward function is pa-
rameterized by θ.
When the trajectory distribution is induced by the soft-optimal policy under reward rθ, it can be pa-
rameterized as pθ(τ) ∝ p(s0)

∏T−1
t=0 p(st+1|st, at)erθ(st,at), then its gradient is derived as follows:

d

dθ
LMaxEntIRL(θ) = ED

[
d

dθ
rθ(st, at)

]
− d

dθ
log(Zθ)

= ED

[
T∑
t=1

d

dθ
rθ(st, at)

]
− Epθ

[
T∑
t=1

d

dθ
rθ(st, at)

]

=

T∑
t=1

ED
[
d

dθ
rθ(st, at)

]
− Epθ,t

[
d

dθ
rθ(st, at)

] (26)

where Zθ is the normalizing factor of pθ(τ), and pθ,t(st, at) =
∫
st′!=t,at′!=t

pθ(τ) denote the state
action marginal at time t.
As it is difficult to draw samples from pθ, the authors instead train a separate importance sampling
distribution µ(τ). For the choice of distribution they follow [18] and use a mixture policy µ(a|s) =
0.5π(a|s)+0.5q̂(a|s) where q̂(a|s) is the rough density estimate trained on the demonstrations. This
is justified as reducing the variance of the importance sampling distribution. Thus the new gradient

15

becomes:

d

dθ
LMaxEntIRL(θ) =

T∑
t=1

ED
[
d

dθ
rθ(st, at)

]
− Eµt

[
pθ,t(st, at)

µt(st, at)

d

dθ
rθ(st, at)

]
(27)

We emphasize here q̂(a|s) is the density estimate trained on the demonstrations.
They additionally aim to adapt the importance sampling distribution to reduce variance by mini-
mizing DKL(π(τ) || pθ(τ)), and this KL objective can be simplified to the following MaxEnt RL
objective:

maxπEπ

[
T∑
t=1

rθ(st, at)− log π(at|st)

]
(28)

This ends the derivation of gradient of MaxEntIRL. Now, AIRL tries to show that the gradient
of AIRL matches the gradient for MaxEntIRL objective shown above, i.e. d

dθLMaxEntIRL(θ) =
d
dθLAIRL(θ), then AIRL is equivalent to MaxEntIRL to a constant, i.e. LMaxEntIRL(θ) =
LAIRL(θ) + C.
In AIRL, the cost learning objective is replaced by training a discriminator of the following form:

Dθ(s, a) =
efθ(s,a)

efθ(s,a) + π(a|s)
(29)

The objective of the discriminator is to maximize the cross-entropy between the expert demonstra-
tions and the generated samples:

max
θ
LAIRL(θ) =

T∑
t=1

ED[logDθ(st, at)] + Eπt [log(1−Dθ(st, at))]

=

T∑
t=1

ED
[
log

efθ(st,at)

efθ(st,at) + π(at|st)

]
+ Eπt

[
log

π(at|st)
π(at|st) + efθ(st,at)

]

=

T∑
t=1

ED[fθ(st, at)] + Eπt [log π(at|st)]− 2Eµt
[
log(π(at|st)) + efθ(st,at)

]
(30)

where µt is the mixture of state-action marginal from expert demonstrations and from state-action
marginal induced by current policy π at time t.
In AIRL, the policy π is optimized with the following reward:

r̂(s, a) = log(Dθ(s, a))− log(1−Dθ(s, a))

= fθ(s, a)− log π(a|s) (31)

Taking the derivative with respect to θ,

d

dθ
LAIRL(θ) =

T∑
t=1

ED
[
d

dθ
fθ(st, at)

]
− Eµt

[
efθ(st,at)

(efθ(st,at) + π(at|st))/2
d

dθ
fθ(st, at)

]
(32)

The authors multiply state marginal π(st) =
∫
a
πt(st, at) to the fraction term in the second expecta-

tion, and denote that p̂θ,t(st, at) , efθ(st,at)π(st) and µ̂t(st, at) , (efθ(st,at) + π(at|st))π(st)/2.
Thus the gradient of the discriminator becomes:

d

dθ
LAIRL(θ) =

T∑
t=1

ED
[
d

dθ
fθ(st, at)

]
− Eµt

[
p̂θ,t(st, at)

µ̂t(st, at)

d

dθ
fθ(st, at)

]
(33)

16

B.2.1 AIRL is Not Equivalent to MaxEntIRL

The issues occurs when AIRL tried to match Eq. 33 with Eq. 43, i.e. d
dθLMaxEntIRL(θ)

?
=

d
dθLAIRL(θ) with same reward parameterization fθ = rθ.
If they are equivalent, then we have the importance weights equality:

p̂θ,t(st, at) = pθ,t(st, at), µ̂t(st, at) = µt(st, at) (34)

Then given the definitions, we have:

p̂θ,t(st, at) , efθ(st,at)π(st) = π∗θ(st)π
∗
θ(at|st) , pθ,t(s, a)

µ̂t(st, at) , (efθ(st,at) + π(at|st))π(st)/2 = (π(at|st) + q̂(at|st))π(st)/2 , µt(st, at)
(35)

where π∗θ is soft-optimal policy under reward rθ = fθ (assumption), thus log π∗θ(at|st) = fθ(st, at).
Then equivalently,

efθ(st,at) = q̂(at|st) = π∗θ(at|st) = π(at|st) (36)

Unfortunately these equivalences hold only at the global optimum of the algorithm, when the policy
π reaches the expert policy πE ≈ q̂ and the discriminator is also optimal. This issue also applies to
GAN-GCL and EAIRL. Therefore, we have the following conclusion:
Observation B.0.2. GAN-GCL, AIRL, EAIRL are not equivalent to MaxEntIRL, i.e. not minimizing
forward KL in trajectory space and possibly optimizing a biased objective.

B.2.2 AIRL is Not Optimizing Reverse KL in State-Action Marginal

f -MAX [14] (refer to their Appendix C) states that AIRL is equivalent to f -MAX with f = − log u.
This would imply that AIRL minimizes reverse KL in state-action marginal space.
However, there are some differences in AIRL algorithm and the f -MAX algorithm with reverse
KL divergence. f -MAX[14] considers a vanilla discriminator. This is different than the original
AIRL [13], which uses a specially parameterized discriminator. To highlight this difference we refer
to f -MAX with f = −logu (called AIRL in their paper) as f -MAX-RKL in this paper, since it aims
to minimize reverse-KL between state-action marginal. We see below that using f-MAX method
with special discriminator(instead of vanilla) might not correspond to reverse KL minimization in
state-action marginal which shows that AIRL does not truly minimize reverse KL divergence.
To show the equivalence of AIRL to reverse KL matching objective, Ghasemipour et al. [14] con-
siders that the AIRL discriminator can be trained till convergence. With the special discriminator of
AIRL, at convergence the following equality holds:

efθ(s,a)

efθ(s,a) + π(a|s)
≡ ρE(s, a)

ρE(s, a) + ρθ(s, a)
(at convergence) (37)

but if this is true then fθ(s, a) can no longer be interpreted as the stationary reward function as it is
a function of current policy:

fθ(s, a) =
ρE(s, a)

ρθ(s, a)
π(a|s) (38)

Observation B.0.3. AIRL is not optimizing reverse KL in state-action marginal space.

B.3 GAIL [12], FAIRL, f -MAX-RKL [14]

Generative Adversarial Imitation Learning (GAIL) [12] addresses the issue of running RL in an inner
step by adversarial training [24]. A discriminator learns to differentiate over state-action marginal
and a policy learns to maximize the rewards acquired from the discriminator in an alternating fash-
ion. It can be further shown that the GAIL is minimizing the Jensen-Shannon divergence over
state-action marginal given optimal discriminator.
Recently the idea of minimizing the divergence between expert and policy’s marginal distribution is
further comprehensively studied and summarized in Ke et al. [40] and Ghasemipour et al. [14],

17

where the authors show that any f -divergence can be minimized for imitation through f -GAN
framework [41]. f -MAX proposes several instantiations of f -divergence: forward KL for f -MAX-
FKL (FAIRL), reverse KL for f -MAX-RKL, and Jensen-Shannon for original GAIL. Their objec-
tives are summarized as below, where θ is policy parameter, f∗ is the convex conjugate of f and Tω
is the discriminator.

min
θ
Df (ρE(s, a) || ρθ(s, a)) = min

θ
max
ω

E(s,a)∼ρE(s,a)[Tω(s, a)]− E(s,a)∼ρθ(s,a)[f
∗(Tω(s, a))]

(39)

These adversarial IRL methods cannot recover a reward function because they do minimax optimiza-
tion with discriminator in the inner-loop (when optimal, the discriminator predicts 1

2 everywhere),
and have poorer convergence guarantees opposed to using an analytical gradient.
Observation B.0.4. GAIL, FAIRL, f -MAX-RKL are optimizing JS, forward KL, and reverse KL in
state-action marginal space, respectively without recovering a reward function.

B.4 SMM [15]

Lee et al. [15] presents state marginal matching (SMM) for efficient exploration by minimizing
reverse KL between expert and policy’s state marginals (Eq 40). However, their method cannot re-
cover the stationary reward function because it uses fictitious play between policy πθ and variational
density q, and requires storing a historical average of policies and densities over previous iterations.

max
θ
−DKL(ρθ(s) || ρE(s)) = max

θ
Eρθ(s)

[
log

ρE(s)

ρθ(s)

]
= max

θ
min
q

Eρθ(s)

[
log

ρE(s)

q(s)

]
(40)

B.5 Summary of IL/IRL Methods: Two Classes of Bilevel Optimization

Now we generalize the related works including our method into reward-dependent and policy-
dependent classes from the viewpoint of optimization objective.
For the reward-dependent (IRL) methods such as MaxEntIRL, AIRL, and our method, the objec-
tive of reward/discriminator rθ and policy πφ can be viewed as a bilevel optimization:

min
θ,φ

L(rθ, πφ)

s.t. φ ∈ arg max
φ

g(rθ, πφ)
(41)

where L(·, ·) is the joint loss function of reward and policy, and g(r, ·) is the objective of policy
given reward r. Thus the optimal policy is dependent on current reward, and training on the final
reward does produce optimal policy, i.e. recovering the reward.
For the policy-dependent (IL) method such as f -MAX, GAIL, and SMM, the objective of re-
ward/discriminator rθ and policy πφ can be viewed as:

max
φ

min
θ
L(rθ, πφ) (42)

This is a special case of bilevel optimization, minimax game. The optimal reward is dependent on
current policy as the inner objective is on reward, thus it is non-stationary and cannot guarantee to
recover the reward.

C Implementation Details

C.1 Matching the Specified Expert State Density on Reacher (Sec 5.1)

Environment: The OpenAI gym Reacher-v2 environment [34] has a robotic arm with 2 DOF on
a 2D arena. The state space is 8-dimensional: sine and cosine of both joint angles, and the position
and velocity of the arm fingertip in x and y direction. The action controls the torques for both joints.
The lengths of two bodies are r1 = 0.1, r2 = 0.11, thus the trace space of the fingertip is an annulus
with R = r1 + r2 = 0.21 and r = r2 − r1 = 0.01. Since r is very small, it can be approximated as

18

a disc with radius R = 0.21. The time horizon is T = 30. We remove the object in original reacher
environment as we only focus on the fingertip trajectories.
Expert State Density: The domain is x-y coordinate of fingertip position. We experiment with the
following expert densities:

• Single Gaussian: µ = (−R, 0) = (−0.21, 0), σ = 0.05.

• Mixture of two equally-weighted Gaussians: µ1 = (−R/
√

2,−R/
√

2), µ2 =

(−R/
√

2, R/
√

2), σ1 = σ2 = 0.05

Training Details: We use SAC as the underlying RL algorithm for all compared methods. The
policy network is a tanh squashed Gaussian, where the mean and std is parameterized by a (64,
64) ReLU MLP with two output heads. The Q-network is a (64, 64) ReLU MLP. We use Adam to
optmize both the policy and the Q-network with a learning rate of 0.003. The temperature parameter
α is fixed to be 1. The replay buffer has a size of 12000, and we use a batch size of 256.
For f -IRL and MaxEntIRL, the reward function is a (64, 64) ReLU MLP. We clamp the output of
the network to be within the range [-10, 10]. We also use Adam to optimize the reward network with
a learning rate of 0.001.
For other baselines including AIRL, f -MAX-RKL, GAIL, we refer to the f -MAX [14] authors’
official implementation6. We use the default discriminator architecture as in [14]. In detail, first the
input is linearly embedded into a 128-dim vector. This hidden state then passes through 6 Resnet
blocks of 128-dimensions; the residual path uses batch normalization and tanh activation. The last
hidden state is then linearly embedded into a single-dimensional output, which is the logits of the
discriminator. The logit is clipped to be within the range [−10, 10]. The discriminator is optimized
using Adam with a learning rate of 0.0003 and a batch size of 128.
At each epoch, for all methods, we train SAC for 10 episodes using the current reward/discriminator.
We warm-start SAC policy and critic networks from networks trained at previous iteration. We
do not empty the replay buffer, and leverage data collected in earlier iterations for training SAC.
We found this to be effective empirically, while saving lots of computation time for the bilevel
optimization.
For f -IRL and MaxEntIRL, we update the reward for 2 gradient steps in each iteration. For AIRL,
f -MAX-RKL and GAIL, the discriminator takes 60 gradient steps per epoch. We train all methods
for 800 epochs.
f -IRL and MaxEntIRL require an estimation of the agent state density. We use kernel density esti-
mation to fit the agent’s density, using epanechnikov kernel with a bandwidth of 0.2 for pointmass,
and a bandwidth of 0.02 for Reacher. At each epoch, we sample 1000 trajectories (30000 states)
from the trained SAC to fit the kernel density model.
Baselines: Since we assume only access to expert density instead of expert trajectories in traditional
IL framework, we use importance sampling for the expert term in the objectives of baselines.

• For MaxEntIRL: Given the reward is only dependent on state, its reward gradient can be
transformed into covariance in state marginal space using importance sampling from agent
states:

∇θLMaxEntIRL(θ) =
1

α

T∑
t=1

(
Est∼ρE,t [∇rθ(st)]− Est∼ρθ,t [∇rθ(st)]

)
=
T

α
(Es∼ρE [∇rθ(s)]− Es∼ρθ [∇rθ(s)])

=
T

α

(
Es∼ρθ

[
ρE(s)

ρ̂θ(s)
∇rθ(s)

]
− Es∼ρθ [∇rθ(s)]

) (43)

where ρt(s) is state marginal at timestamp t, and ρ(s) =
∑T
t=1 ρt(s)/T is state marginal

averaged over all timestamps, and we fit a density model to the agent distribution as ρ̂θ.
• For GAIL, AIRL, f -MAX-RKL: Original discriminator needs to be trained using expert

samples, thus we use the same density model as described above, and then use importance

6https://github.com/KamyarGh/rl_swiss

19

https://github.com/KamyarGh/rl_swiss

sampling to compute the discriminator objective:

max
D

L(D) = Es∼ρθ
[
ρE(s)

ρ̂θ(s)
logD(s)

]
+ Es∼ρθ [log(1−D(s))] (44)

Evaluation: For the approximation of both forward and reverse KL divergence, we use non-
parametric Kozachenko-Leonenko estimator [42, 43] with lower error [44] compared to plug-in
estimators using density models. Suggested by [45]7, we choose k = 3 in k-nearest neighbor for
Kozachenko-Leonenko estimator. Thus for each evaluation, we need to collect agent state samples
and expert samples for computing the estimators.
In our experiments, before training we sample M = 10000 expert samples and keep the valid ones
within observation space. For agent, we collect 1000 trajectories of N = 1000 ∗ T = 30000 state
samples. Then we use these two batches of samples to estimate KL divergence for every epoch
during training.

C.2 Inverse Reinforcement Learning Benchmarks (Sec 5.2)

Environment: We use the Hopper-v2, Ant-v2, HalfCheetah-v2, Walker2d-v2 environments
from OpenAI Gym.
Expert Samples: We use SAC to train expert policies for each environment. SAC uses the same
policy and critic networks, and the learning rate as section C.1. We train using a batch size of
100, a replay buffer of size 1 million, and set the temperature parameter α to be 0.2. The policy is
trained for 1 million timesteps on Hopper, and for 3 million timesteps on the other environments.
All algorithms are tested on 1, 4, and 16 trajectories collected from the expert stochastic policy.
Training Details: We train f -IRL, Behavior Cloning (BC), MaxEntIRL, AIRL, and f -MAX-RKL
to imitate the expert using the provided expert trajectories.
We train f -IRL using Algorithm 1. Since we have access to expert samples, we use the practical
modification described in section 4.4 for training f -IRL, where we feed a mixture of 10 agent and 10
expert trajectories (resampled with replacement from provided expert trajectories) into the reward
objective.
SAC uses the same hyperparameters used for training expert policies. Similar to the previous sec-
tion, we warm-start the SAC policy and critic using trained networks from previous iterations, and
train them for 10 episodes. At each iteration, we update the reward parameters once using Adam
optimizer. For the reward network of f -IRL and MaxEntIRL, we use the same reward structure as
section C.1 with the learning rate of 0.0001, and `2 weight decay of 0.001. We take one gradient
step for the reward update.
MaxEntIRL is trained in the standard manner, where the expert samples are used for estimating
reward gradient.
For Behavior cloning, we use the expert state-action pairs to learn a stochastic policy that maximizes
the likelihood on expert data. The policy network is same as the one used in SAC for training expert
policies.
For f -MAX-RKL and AIRL, we tuned the hyperparameters based on the code provided by f -MAX
that is used for state-action marginal matching in Mujoco benchmarks. For f -MAX-RKL, we fix
SAC temperature α = 0.2, and tuned reward scale c and gradient penalty coefficient λ suggested
by the authors, and found that c = 0.2, λ = 4.0 worked for {Ant, Hopper, Walker2d} with the
normalization in each dimension of states and with a replay buffer of size 200000. However, for
HalfCheetah, we found it only worked with c = 2.0, λ = 2.0 without normalization in states and
with a replay buffer of size 20000. For the other hyperparameters and training schedule, we keep
them same as f -MAX original code: e.g. the discriminator is parameterized as a two-layer MLP of
hidden size 128 with tanh activation and the output clipped within [-10,10]; the discriminator and
policy are alternatively trained once for 100 iterations per 1000 environment timesteps.
For AIRL, we re-implement a version that uses SAC as the underlying RL algorithm for a fair com-
parison, whereas the original paper uses TRPO. Both the reward and the value model are parame-
terized as a two-layer MLP of hidden size 256 and use ReLU as the activation function. For SAC

7https://github.com/gregversteeg/NPEET

20

https://github.com/gregversteeg/NPEET

training, we tune the learning rates and replay buffer sizes for different environments, but find it can-
not work on all environments other than HalfCheetah even after tremendous tuning. For reward and
value model training, we tune the learning rate for different environments. These hyper-parameters
are summarized in table 6. We set α = 1 in SAC for all environments. For every 1000 environment
steps, we alternatively train the policy and the reward/value model once, using a batch size of 100
and 256.

Hyper-parameter Ant Hopper Walker HalfCheetah
SAC learning rate 3e− 4 1e− 5 1e− 5 3e− 4

SAC replay buffer size 1000000 1000000 1000000 10000
Reward/Value model learning rate 1e− 4 1e− 5 1e− 5 1e− 4

Table 6: AIRL IRL benchmarks task-specific hyper-parameters.

Evaluation: We compare the trained policies by f -IRL, BC, MaxEntIRL, AIRL, and f -MAX-RKL
by computing their returns according to the ground truth return on each environment. We report the
mean of their performance across 3 seeds.
For the IRL methods, f -IRL, MaxEntIRL, and AIRL, we also evaluate the learned reward functions.
We train SAC on the learned rewards, and evaluate the performance of learned policies according to
ground-truth rewards.

C.3 Reward Prior for Downstream Hard-exploration Tasks (Sec 5.3.1)

Environment: The pointmass environment has 2D square state space with range [0, 6]2, and 2D
actions that control the delta movement of the agent in each dimension. The agent starts from the
bottom left corner at coordinate (0, 0).
Task Details: We designed a hard-to-explore task for the pointmass. The grid size is 6 × 6, the
agent is always born at [0, 0], and the goal is to reach the region [5.95, 6] × [5.95, 6]. The time
horizon is T = 30. The agent only receives a reward of 1 if it reaches the goal region. To make
the task more difficult, we add two distraction goals: one is at [5.95, 6] × [0, 0.05], and the other at
[0, 0.05] × [5.95, 6]. The agent receives a reward of 0.1 if it reaches one of these distraction goals.
Vanilla SAC always converges to reaching one of the distraction goals instead of the real goal.
Training Details: We use SAC as the RL algorithm. We train SAC for 270 episodes, with a batch
size of 256, a learning rate of 0.003, and a replay buffer size of 12000. To encourage the exploration
of SAC, we use a random policy for the first 100 episodes.

C.4 Reward Transfer across Changing Dynamics (Sec 5.3.2)

Figure 5: Top row: A healthy Ant executing a forward walk. Bottom row: A successful transfer of
walking behavior to disabled Ant with 2 legs active. The disabled Ant learns to use the two disabled
legs as support and crawl forward, executing a very different gait than previously seen in healthy
Ant.

21

Environment: In this experiment, we use Mujoco to simulate a healthy Ant, and a disabled Ant
with two broken legs (Figure 5). We use the code provided by Fu et al. [13]. Note that this Ant
environment is a slightly modified version of the Ant-v2 available in OpenAI gym.
Expert Samples: We use SAC to obtain a forward-running policy for the Ant. We use the same net-
work structure and training parameters as section C.2 for training this policy. We use 16 trajectories
from this policy as expert demonstrations for the task.
Training Details: We train f -IRL and MaxEntIRL using the same network structure and training
parameters as section C.2. We also run AIRL, but couldn’t match the performance reported in Fu
et al. [13].
Evaluation: We evaluate f -IRL and MaxEntIRL by training a policy on their learned rewards using
SAC. We report the return of this policy on the disabled Ant environment according to the ground-
truth reward for forward-running task. Note that we directly report results for policy transfer using
GAIL, and AIRL from Fu et al. [13].

D Additional Experiment Results

D.1 Inverse RL Benchmark Unnormalized Performance

In this section, we report the unnormalized return of the agent stochastic policy for ease of com-
parison to expert in Table 7. We analyze situations when we are provided with 1,4 and 16 expert
trajectories respectively. For IL/IRL methods, all the results are averaged across three random seeds
to show the mean and standard deviation in the last 10% training iterations.
Note that for the row of “Expert return”, we compute the mean and std among the expert trajectories
(by stochastic policy) we collected, so for one expert trajectory, it does not have std. Moreover, since
we pick the best expert trajectories for training IL/IRL algorithms, the std of “Expert return” is often
lower than that of IL/IRL.

f-MAX-RKL
AIRL

FKL(Our Method)
GAIL

JS(Our Method)
MaxEnt IRL

RKL(Our Method)

FKL RKL

0.0 0.5 1.0 1.5 2.0 2.5

Environment Timesteps 1e5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fo
rw

ar
d

K
L

0.0 0.5 1.0 1.5 2.0 2.5

Environment Timesteps 1e5

0

1

2

3

4

5

R
ev

er
se

 K
L

Figure 6: Left: Forward and Reverse KL curves in pointmass environment for Gaussian target
density for all the methods during training. Smoothed in a window of 120 evaluations. Right:
Learned rewards by f -IRL by optimizing for Forward KL (left) and Reverse KL (right) objective in
pointmass goal-reaching task.

D.2 Additional Result of Reward Transfer across Changing Dynamics

Policy Transfer AIRL MaxEntIRL f -IRL Ground-truth
using GAIL Reward

-29.9 130.3 145.5 232.5 315.5

Table 8: Returns obtained after transferring the policy/reward on
modified Ant environment using different IL methods. In this
case, we report the performance of best seed with a maximum of
50 expert trajectories.

In section 5.3 (“Reward trans-
fer across changing dynamics”)
we show the result of the set-
ting with 32 expert trajectories
provided. We follow AIRL pa-
per [13] setting for this experi-
ment, but the number of exper-
iment trajectories used in their
experiment is unknown. We use
a maximum of 50 expert trajectories and show the best seed performance in Table 8. Note that this
table has same values as Table 5 except for our method. We see that with more expert trajectories
f -IRL is able to outperform baselines with a large margin. The disabled Ant agent is able to learn a
behavior to walk while taking support from both of its disabled legs.

22

D.3 Matching the Specified Expert State Density on PointMass

We also conducted the experiment described in section C.1 on the pointmass environment similar to
that in section C.3. This environment has size [4, 4], and the target density is a unimodal Gaussian
with µ = (2, 2), σ = 0.5 for goal-reaching task.
This experiment is didactic in purpose. In the left of Figure 6, we observe that all methods converge
(MaxEntIRL is slightly unstable) and are able to reduce the FKL and RKL to near zero.
In the right of Figure 6, we observe that rewards learned by f -IRL using Forward KL and Reverse
KL divergence objective demonstrate the expected mode-covering and mode-seeking behavior, re-
spectively.

23

Method Hopper

Expert traj 1 4 16
Expert return 3570.87 3585.59 ± 12.39 3496.62 ± 10.13

BC 17.39 ± 5.99 468.49 ± 83.94 553.56 ± 46.70
MaxEntIRL 3309.72 ± 171.28 3300.81 ± 229.84 3298.50 ± 255.35
f -MAX-RKL 3349.62 ± 68.89 3326.83 ± 85.42 3165.51 ± 102.83

AIRL 49.12 ± 2.58 49.33 ± 3.93 48.63 ± 5.88

FKL (f -IRL) 3329.94 ± 152.33 3243.83 ± 312.44 3260.35 ± 175.58
RKL (f -IRL) 3276.55 ± 221.27 3303.44 ± 286.26 3250.74 ± 161.89

JS (f -IRL) 3282.37 ± 202.30 3351.99 ± 172.70 3269.49 ± 160.99

Method Walker2d

Expert traj 1 4 16
Expert return 5468.36 5337.85 ± 92.46 5368.01 ± 78.99

BC -2.03 ± 1.05 303.24 ± 6.95 431.60 ± 63.68
MaxEntIRL 4823.82 ± 512.58 4697.11 ± 852.19 4884.30 ± 467.16
f -MAX-RKL 2683.11 ± 128.14 2628.10 ± 548.93 2498.78 ± 824.26

AIRL 9.8 ± 1.82 9.24 ± 2.28 8.45 ± 1.56

FKL (f -IRL) 4927.02 ± 615.34 4809.80 ± 750.05 4851.81 ± 547.12
RKL (f -IRL) 4847.12 ± 806.61 4806.72 ± 433.02 4578.39 ± 564.17

JS (f -IRL) 4888.09 ± 664.86 4935.42 ± 384.15 4725.78 ± 613.45

Method HalfCheetah

Expert traj 1 4 16
Expert return 12258.71 11944.45 ± 985.08 12406.29 ± 614.02

BC -367.56 ± 23.57 209.59 ± 178.71 287.05 ± 109.32
MaxEntIRL 11637.41 ± 438.16 11685.92 ± 478.95 11228.32 ± 1752.32
f -MAX-RKL 8688.37 ± 633.58 4920.66 ± 2996.15 8108.81 ± 1186.77

AIRL 2366.84 ± 175.51 2343.17 ± 103.51 2267.68 ± 83.59

FKL (f -IRL) 11556.23 ± 539.83 11556.51 ± 673.13 11642.72 ± 629.29
RKL (f -IRL) 11612.46 ± 703.25 11644.19 ± 488.79 11899.50 ± 605.43

JS (f -IRL) 11413.47 ± 1227.89 11686.09 ± 748.30 11711.77 ± 1091.74

Method Ant

Expert traj 1 4 16
Expert return 5926.18 5859.09 ± 88.72 5928.87 ± 136.44

BC -113.60 ± 12.86 1321.69 ± 172.93 2799.34 ± 298.93
MaxEntIRL 3179.23 ± 2720.63 4171.28 ± 1911.67 4784.78 ± 482.01
f -MAX-RKL 3585.03 ± 255.91 3810.56 ± 252.57 3653.53 ± 403.73

AIRL -54.7 ± 28.5 -14.15 ± 31.65 -49.68 ± 41.32

FKL (f -IRL) 4859.86 ± 302.94 4861.91 ± 452.38 4971.11 ± 286.81
RKL (f -IRL) 3707.32 ± 2277.74 4814.58 ± 376.13 4813.80 ± 361.93

JS (f -IRL) 4590.11 ± 1091.22 4745.11 ± 348.97 4342.39 ± 1296.93

Table 7: Benchmark of Mujoco Environment, from top to bottom, Hopper-v2, Walker2d-v2,
HalfCheetah-v2, Ant-v2.

24

Generalization to Real Robots

f -IRL achieves better simulation results than prior work which has been demonstrated to
work on real robots.

Finn et al. [18] showed that GCL, which is a variant of MaxEnt IRL with importance sampling cor-
rection, can work well on real robots. As shown in Figure 3 and Table 3, f -IRL achieves similar
or higher final policy performances, and has slightly better sample-efficiency (in terms of environ-
ment interaction steps) compared with MaxEntIRL, in all four Mujoco simulated locomotion tasks.
Therefore, we believe that f -IRL should be no harder to run on physical robots.

f -IRL is more sample-efficient than prior IL/IRL methods.

It is critical for IL/IRL methods to have a good sample-efficiency, in terms of both number of expert
samples and number of environment interaction steps, when applied to real robots. In practise, it is
difficult to collect large number of expert trajectories for certain tasks. Moreover, larger environment
interactions steps slow down the real-robot experiment (as robots move much slower in real world
than in simulator) and increase the chances of tear/damage to the robot. As shown in Figure 3 and
Table 3, f -IRL has better sample efficiency in both expert samples and environment steps when
compared with prior work. Therefore, we believe it would be much easier to apply f -IRL to real
robots compared with these prior works.

f -IRL requires less hyperparameter-tuning for each task.

Tuning hyperparameters in the real world is quite arduous, so a method that works for a wide range
of hyperparameter settings would be ideal. As shown in appendix C on implementation details, f -
IRL uses the same set of hyperparameters for all four Mujoco benchmarks (one exception is that we
increase the reward network size for Ant due to its large state space), and we did not spend much
time in tuning the hyperparameters.
On the contrary, in our re-implementation, we find prior methods such as AIRL [13] and the AIL
methods [12, 14] extremely sensitive to hyperparameters. For example, we find that f -MAX
works only with observation normalization in Ant, Hopper and Walker and only without obser-
vation normalization in HalfCheetah. f -MAX also requires tedious hyperparameter grid search
on reward scale and gradient penalty, as mentioned in their appendix [14] and verified in our re-
implementation. We believe that the ease of tuning of f -IRL will make it much easier to be applied
to real robots compared with these prior works.

25

	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Learning Stationary Rewards via State-Marginal Matching
	4.1 Analytic Gradient for State Marginal Matching in f-divergence
	4.2 Learning a Stationary Reward by Gradient Descent
	4.3 Robust Reward Recovery under State-only Ground-truth Reward
	4.4 Practical Modification in the Exact Gradient

	5 Experiments
	5.1 Matching the Specified Expert State Density
	5.2 Inverse Reinforcement Learning Benchmarks
	5.3 Using the Learned Stationary Reward for Downstream Tasks

	6 Conclusion
	A Derivation and Proof
	A.1 Analytical Gradient of State Marginal Distribution
	A.2 Analytical Gradient of f-divergence objective
	A.3 Extension to Integral Probability Metrics in f-IRL
	A.4 f-IRL Learns Disentangled Rewards w.r.t. Dynamics

	B What Objective is Optimized by Previous IL Algorithms?
	B.1 MaxEntIRL ziebart2008maximum, Deep MaxEntIRL wulfmeier2015maximum, GCL finn2016guided
	B.2 GAN-GCL finn2016connection, AIRL fu2017learning, EAIRL qureshi2018adversarial
	B.2.1 AIRL is Not Equivalent to MaxEntIRL
	B.2.2 AIRL is Not Optimizing Reverse KL in State-Action Marginal

	B.3 GAIL ho2016generative, FAIRL, f-MAX-RKL ghasemipour2019divergence
	B.4 SMM lee2019efficient
	B.5 Summary of IL/IRL Methods: Two Classes of Bilevel Optimization

	C Implementation Details
	C.1 Matching the Specified Expert State Density on Reacher (Sec 5.1)
	C.2 Inverse Reinforcement Learning Benchmarks (Sec 5.2)
	C.3 Reward Prior for Downstream Hard-exploration Tasks (Sec 5.3.1)
	C.4 Reward Transfer across Changing Dynamics (Sec 5.3.2)

	D Additional Experiment Results
	D.1 Inverse RL Benchmark Unnormalized Performance
	D.2 Additional Result of Reward Transfer across Changing Dynamics
	D.3 Matching the Specified Expert State Density on PointMass

