1902.04257v1 [cs.LG] 12 Feb 2019

arxXiv

Deep Reinforcement Learning from Policy-Dependent Human Feedback

Dilip Arumugam ' Jun Ki Lee? Sophie Saskin?> Michael L. Littman >

Abstract

To widen their accessibility and increase their
utility, intelligent agents must be able to learn
complex behaviors as specified by (non-expert)
human users. Moreover, they will need to learn
these behaviors within a reasonable amount of
time while efficiently leveraging the sparse feed-
back a human trainer is capable of providing. Re-
cent work has shown that human feedback can be
characterized as a critique of an agent’s current be-
havior rather than as an alternative reward signal
to be maximized, culminating in the COnvergent
Actor-Critic by Humans (COACH) algorithm for
making direct policy updates based on human
feedback. Our work builds on COACH, moving
to a setting where the agent’s policy is represented
by a deep neural network. We employ a series of
modifications on top of the original COACH al-
gorithm that are critical for successfully learning
behaviors from high-dimensional observations,
while also satisfying the constraint of obtaining
reduced sample complexity. We demonstrate the
effectiveness of our Deep COACH algorithm in
the rich 3D world of Minecraft with an agent that
learns to complete tasks by mapping from raw
pixels to actions using only real-time human feed-
back in 10-15 minutes of interaction.

1. Introduction

Recent years have seen breakthrough successes in the area of
reinforcement learning, leveraging deep neural networks to
learn complex behaviors from high-dimensional data (Mnih
et al., 2015; Lillicrap et al., 2015; Silver et al., 2016; Schul-
man et al., 2017; Hessel et al., 2018). These approaches
leverage a hard-coded reward function that encapsulates the
underlying task to be solved. While this setting is suitable
for a wide range of applications, certain behaviors are not

so easily expressed or derived as reward functions (Littman

"Department of Computer Science, Stanford University
*Department of Computer Science, Brown University. Correspon-
dence to: Dilip Arumugam <dilip@cs.stanford.edu>.

St+1 fi St

Human Trainer
St—d
Qat—d

Environment

Figure 1. Depiction of the human-in-the-loop reinforcement-
learning setting. Instead of a reward signal from the environment,
the agent receives a feedback signal, f;, from a human trainer
based on observing the agent’s behavior in the environment. There
is a natural latency in the human response time such that the human
is always evaluating the behavior from d timesteps ago.

et al., 2017). Furthermore, as these intelligent decision-
making agents become more ubiquitous and find themselves
placed in novel environments alongside non-expert users,
the need will arise for a simplified end-user interaction that
does not require low-level programming knowledge or care-
ful incentive engineering.

To address these concerns, we turn to the area of human-
in-the-loop reinforcement learning (HRL) (Amershi et al.,
2014), which mimics the traditional reinforcement-learning
setting in all regards except for the specification of learner
feedback; in lieu of a hard-coded reward function, HRL
algorithms respond to positive and negative feedback signals
as provided by a human trainer who is “in the loop” during
the learning process. Beyond allowing for the provision of
more informative feedback than a traditional, hard-coded
reward function, this setting also bypasses the need for end-
users to understand the inner workings of the agent or how
to write computer programs.

While there have been varied approaches to tackling HRL
problems (Thomaz & Breazeal, 2006; Knox & Stone, 2008;
Griffith et al., 2013; Loftin et al., 2015; Knox & Stone,
2010; Vien & Ertel, 2012), we extend an approach that is
exceptionally considerate of how human trainers provide
feedback to learning agents. Built upon the realization that
human feedback can be treated as an unbiased estimate of
the advantage function, COnvergent Actor Critic by Humans
(COACH) (MacGlashan et al., 2017) is a simple actor-critic

Deep Reinforcement Learning from Policy-Dependent Human Feedback

reinforcement-learning algorithm that supports learning di-
rectly from human feedback. In this work, we study the
efficacy of COACH when scaling to more complex domains
where higher dimensional data demands the use of nonlin-
ear function-approximation techniques for success. This
transition requires a series of additions on top of the base
COACH algorithm so as to maintain low sample complex-
ity (in terms of human feedback signals) while supporting
robust learning. We conduct an evaluation of our extension,
Deep COACH, against the original COACH and the related
Deep TAMER (Warnell et al., 2017) algorithms with exper-
iments run in the 3D game world of Minecraft where all
behaviors are to be learned directly from raw pixel observa-
tions and human feedback.

2. Related Work

Our approach is directly inspired by the COACH algo-
rithm (MacGlashan et al., 2017), which recognizes that
a human trainer observing an agent’s execution provides
feedback contingent on the demonstrated behavior. Further-
more, through a set of user studies, the authors illustrate that
human feedback exhibits properties that are inconsistent
with a traditional reward signal. For instance, a reward func-
tion will always provide an agent with positive feedback for
demonstrating correct behavior whereas real human feed-
back exhibits a diminishing returns property; as the agent
settles into correct behavior, the human trainer becomes
increasingly less likely to provide redundant positive feed-
back for repetitive good behavior. This, along with other
properties, suggests that human feedback is more accurately
depicted as an evaluation of an agent’s action choice in the
context of its current behavior. With this realization, the
interaction between learning agent and human trainer can
be represented within an actor-critic reinforcement-learning
algorithm where the human trainer is the critic evaluating
the actor’s current policy. While the authors presented a
generic, real-time COACH algorithm, empirical evaluations
only used hand-coded image feature detectors for obser-
vations to only learn policies via linear function approxi-
mation. Our approach successfully scales up to problem
settings where observations are high-dimensional and more
powerful function-approximation techniques are required to
express the desired behavior.

The TAMER framework (Knox & Stone, 2008) provides an
alternate approach to reinforcement learning from human
feedback by training a regression model to represent a re-
ward function consistent with the feedback signals provided
by a human trainer. Under this paradigm, the learner is not
as limited by the capacity of the human trainer to provide
feedback so long as a sufficient number of samples is col-
lected for learning an accurate regression model. Despite
these advantages, the TAMER framework still fails to ac-

count for the nature of human trainers or the structure of hu-
man feedback, which can result in the forgetting of learned
behavior (MacGlashan et al., 2017). Recently, Warnell
et al. (2017) proposed Deep TAMER for neural-network-
based HRL that builds on top of the TAMER framework.
While there are some similarities between Deep TAMER
and Deep COACH, the base approaches of TAMER and
COACH take fundamentally different stances on the HRL
problem. Furthermore, it is initially unclear how sample ef-
ficient the proposed Deep TAMER approach is; while being
able to achieve satisfactory performance on a chosen arcade
game task, there are no results reporting the total number
of samples needed by human trainers to elicit the desired
behavior. In contrast, we include figures for all experiments
illustrating the breakdown of trainer feedback for both Deep
COACH and Deep TAMER in terms of both positive and
negative signals over a set of independent trials.

Christiano et al. (2017) also proposed a TAMER-inspired
approach for learning from human preferences; specifically,
they asynchronously learn a reward model through data
collected from a human observing and noting preferences
between short agent trajectories. After these human pref-
erences are translated into scalar reward signals and used
as training data for a regression model, what remains is a
traditional reinforcement-learning problem. Most notably,
our work differs in that we apply deep reinforcement learn-
ing based on direct human feedback instead of attempting
to learn human preferences. Furthermore, even with only
hundreds or thousands of samples collected from real hu-
mans (or from a synthetic oracle), the approach presented by
Christiano et al. still requires millions of agent steps until
traditional reinforcement-learning algorithms converge on a
satisfactory policy for certain tasks. While we opt to not per-
form experiments in Atari domains, we suspect that the lack
of a dependence on traditional deep reinforcement-learning
algorithms offers room for greater sample efficiency.

Other related work of interest includes that of Griffith et al.
(2013) which, much like Loftin et al. (2015), takes a third
perspective on HRL that views human feedback as a la-
bel of action optimality. Moreover, the approaches of pol-
icy shaping (Griffith et al., 2013) and SABL (Loftin et al.,
2015) integrate information about the human trainer based
on observed feedback to improve learning. Other variants
of TAMER have since expanded to integrate simultaneous
learning from both human reward signals in addition to
a base reward function for the underlying MDP (Knox &
Stone, 2010; 2012) along with modifications to handle con-
tinuous state-action spaces (Vien & Ertel, 2012). In contrast
to these approaches, (Deep) COACH views feedback as a
relative judgement of recent behavior in comparison to the
trainer’s desired policy.

Lastly, we make a distinction between the HRL setting uti-

Deep Reinforcement Learning from Policy-Dependent Human Feedback

lized in this work and the complementary area of learning
from demonstration (Argall et al., 2009). Under the learning-
from-demonstration paradigm, an agent is provided with a
dataset of demonstrations (usually, as trajectories), which
capture a desired behavior. Given such a dataset, a learner
is meant to solve for the underlying policy (or associated
reward function) that best aligns with the observed data.
Great successes in this area include imitation learning (Ross
et al., 2011), inverse reinforcement learning (Abbeel & Ng,
2004), and inverse optimal control (Finn et al., 2016). In
scenarios where it is possible to obtain such valuable demon-
stration data, these kinds of learning-from-demonstration
approaches could be substituted for the unsupervised pre-
training phase of our Deep COACH algorithm, leading to
a robust initial policy that a human trainer could gradually
augment with live feedback as needed.

Previous work that has demonstrated the utility of Minecraft
as a testbed for machine-learning research (Aluru et al.,
2015; Tessler et al., 2016; Oh et al., 2016). Unlike more
traditional domains built around arcade video games with
single objectives, Minecraft presents a richer environment
with more complicated dynamics and a consistent, voxelized
representation that more closely emulates the complexity of
the real world. To leverage these features, all of our exper-
iment domains were developed within the Project Malmo
platform' (Johnson et al., 2016), which allows for the cre-
ation and deployment of Al experiments within Minecraft.

3. Approach

We begin with a summary of background information before
dissecting the components of our Deep COACH algorithm.

3.1. Background

Within the HRL setting, we turn to the Markov Decision Pro-
cess (MDP) (Puterman, 1994) formalism for representing
the underlying sequential decision-making problem. Specif-
ically, an MDP is denoted by the (S, A, T, R,~) five-tuple,
where S denotes a set of states, A denotes the set of actions
available to the agent, T specifies the transition probabil-
ity distribution over all states given the current state and
selected action, R denotes the reward function, and +y is the
discount factor. The goal of a learning agent is to select
actions at each timestep ¢ according to a policy, 7, so as to
maximize total expected discounted reward. Here, we take
7 to be a stochastic policy parameterized by 6, denoted
mp,, which defines a probability distribution over all actions
given the current state. Note that, within the HRL paradigm,
the agent has no access to the true environment reward sig-
nals as specified by R (even if it exists and can be written
down) and is instead only given access to the feedback sig-

"https://github.com/Microsoft/malmo

nal of a human trainer at each timestep, f; € {—1,0, 1},
where f; = 0 represents no provided feedback.

MDPs naturally give rise to two important functions. The
state—value function, V™ (s), intuitively captures the utility
of a particular state as measured by the expected discounted
sum of future rewards to be earned from that state by follow-
ing the current policy, 7. Similarly, the action—value func-
tion, @™ (s, a), captures the quality of a particular deviation
from the current policy in a given state as measured by the
expected discounted sum of future rewards to be earned from
taking the specified action and then following the policy 7
thereafter. Formally, both V™ (s) and Q™ (s, a) are defined
by the Bellman equations where V7 (s) = E,[Q7 (s, a)]
and Q" (s,0) = R(s,a) + 1Ey _r(js o[V (5]

One widely used class of algorithms for policy-based re-
inforcement learning are actor-critic (Sutton et al., 1999)
algorithms, where learning occurs from the interplay be-
tween two distinct models, an actor and a critic. The actor
is a parameterized policy, mp,, used by an agent for ac-
tion selection, whereas the critic is a parameterized value
function, Q™ (s, a), induced by the actor’s policy. As the
critic evaluates the policy being executed by the agent, it
informs the actor of the direction in which to move the pol-
icy parameters so as to improve performance and maximize
returns. The policy achieves a discounted sum of rewards,
o0
Ry = > 4'~1r, that is needs to optimize using the objec-
t=1
tive J(0;) = Er, [R:]. Sutton et al. (1999) prove that this
objective induces the following policy gradient:

v‘gt J(et) =]Ea’“‘ffet("s) [vet 10g 7r9t (a|S)Qﬂgt (S’ Cl)] (1)

While the information offered by the critic is adequately
captured by the action—value function, Sutton et al. note that
the subtraction of an action-independent baseline function
leads to an equivalent formulation. Consequently, we can
use the state—value function V™ (s) as a baseline function
and reformulate the objective in Equation 1 as:

Vo, J(01) = Eqnry, (15)[Vo, log mo, (als) A™ (s, a)],
2
AT (s,a) = Q™ (s,a) — V™ (s). 3)

Here, the advantage function, A™ (s, a), captures the extent
to which a particular action choice from a given state offers
greater value than that of the current policy. Recently, actor-
critic approaches have found great success in leveraging this
advantage actor-critic formulation (Mnih et al., 2016).

3.2. COACH

COACH is an actor-critic algorithm for HRL based on the
insight that human feedback resembles the advantage func-
tion. Accordingly, the core update equation for COACH can

Deep Reinforcement Learning from Policy-Dependent Human Feedback

be obtained by simply replacing the advantage function in
Equation 3 with the observed human feedback:

Vo, J(01) = Eanry, (15[Ve, logme, (als) fi]. (4)

Recall that, since the human feedback f; € {—1,0,1}, it
merely serves as a guide for the direction in which to fol-
low the policy gradient. In addition, the COACH algorithm
includes a human delay factor hyperparameter, d, which
is the number of timesteps we believe captures the natu-
ral latency of a trainer observing behavior at a particular
timestep and needing some small amount of reaction time
before actually delivering his or her critique of the behavior.
A proper setting of this trainer and domain-specific param-
eter is necessary to maintain a good alignment between
observed feedback and state features. While the authors
of COACH found 6 timesteps (0.2s) to be appropriate, we
found 1 timestep (just over 1s) to be successful for our
domain and trainers.

3.3. Eligibility Traces

While Equation 4 specifies a clear process by which to make
successive updates to the parameters of an actor, it also
yields a strong dependence on the observed human feed-
back. Clearly, it is impossible to receive feedback from a
human trainer on every timestep and, in all likelihood, the
feedback that is observed will be quite sparse, as the human
trainer spends a certain amount of time observing the policy
being executed by the agent before scoring the behavior.
Crucially, COACH updates are not made based solely on
the current policy gradient at each timestep, but rather based
on an eligibility trace ey (Barto et al., 1983). The eligibil-
ity trace is an exponentially decaying accumulator of past
policy gradients that allows for smoothing observed human
feedback over a series of past transitions:

ex = ey + Vo, log mg, (at|st). 5)

This mechanism helps deal with the challenge of sparse
human feedback and allows an agent to reason about the
quality of transitions where no explicit feedback was ob-
served; in turn, a human trainer gains the ability to critique
whole sequences of actions.

To make COACH more amenable to the use of neural net-
works, we give up the idea of a single, continuous eligibility
trace for all observed experiences in favor of an eligibility
replay buffer. In Deep Q-Networks (Mnih et al., 2015), an
experience replay buffer is a FIFO queue used for storing
individual agent transitions so they may be resampled for
multiple training updates. Consequently, the agent is able
to glean more information from each individual experience
while also enabling the efficiency that comes from batch
learning. Deep COACH extends this idea using a replay
buffer where the atomic elements stored are whole windows

of experience, rather than individual transitions. A single
window of experience is characterized by having a length
(defined by the total number of constituent environment tran-
sitions) less than or equal to a window size hyperparameter,
L, and by ending with a transition where the associated hu-
man feedback signal is non-zero; all other transitions within
the window have no associated feedback. Accordingly, each
time a human trainer elects to provide feedback, he or she
completes an entire window of experience that is then stored
in the buffer for subsequent training updates. For each uni-
formly sampled window from the buffer, Equation 5 is used
to compute an eligibility trace over each window; the eligi-
bility traces are then averaged over the entire minibatch and
the mean eligibility trace is applied as a single update to the
policy network parameters.

Finally, we draw attention to the fact that the use of a replay
buffer creates a discrepancy between the policy being op-
timized at the current timestep and the policy (or policies)
under which data sampled from the buffer was generated.
To account for the inherent off-policy learning within the
training updates, we leverage importance sampling ratios as
outlined by Degris et al. (2012). Specifically, each transition
stored within the windows of the eligibility replay buffer
includes the probability with which the selected action was
taken from the given state, under the policy at the time the
experience occurred. Thus, when appending an experience
that occurred at timestep t <ttoan eligibility trace for a
sampled window, the update occurs as follows:

Y, (at’ |5t’)

ex = Aey +
7o, (ay|s,y)

vgt log Ty, (at’ ‘St/)7 (6)

where oy is the behavior policy (Degris et al., 2012).

3.4. Unsupervised Pre-training

Given the competing desires for learning policies from little
feedback and over high-dimensional observation spaces, we
perform unsupervised pre-training of our policy network to
reduce training time and initialize the policy network with
good image features. More concretely, the policy is imple-
mented as a convolutional neural network (CNN), where the
first five layers initially serve as the encoder model within a
convolutional autoencoder (CAE) (Hinton & Salakhutdinov,
2006; Masci et al., 2011). A CAE is defined by a pair of
functions (fy,, go,) where fp, is a neural network mapping
a raw observation, x, to some lower dimensional encoding
and gy, is a neural network that decodes the output encoding
of fp, to reconstruct the original observation, x. Given a
minibatch of n samples, the model can be trained end-to-end
by minimizing the reconstruction loss:

1 n
Z 904 (fo. () — x:). @)

:

Deep Reinforcement Learning from Policy-Dependent Human Feedback

Reconstruction

__>|

Reconstruction

Original Image

Human
| Feedback |

Figure 2. Policy-network architecture and outline of training pro-
cedure. Dashed arrows indicate flow of training signals. Note
that the training signal specified by human feedback only goes
through the fully-connected layers of the policy network and does
not affect the convolutional encoder parameters.

In practice, the learned encoder model reduces the dimen-
sionality of raw data while preserving relevant features of
the original input that are critical to producing high-fidelity
reconstructions. Accordingly, we treat the pre-trained en-
coder model as the front end of our policy network where
the parameters of the encoder are treated as inputs to the
algorithm and held fixed for the duration of learning (see
Figure 2). We note that the choice of leaving these pa-
rameters unperturbed by subsequent gradient updates based
upon actual human feedback is more conducive to a life-
long learning setting and mitigates the risk of unrecoverable
catastrophic forgetting (French, 1999); the generalized rep-
resentation learned by the CAE can be used for training
various tasks within a particular domain, only requiring a
shift in the trainer’s feedback signals and without having to
reinitialize the algorithm.

3.5. Entropy Regularization

To prevent the agent from spuriously executing mixed se-
quences of actions (thereby making it difficult for the ob-
serving human trainer to accurately provide feedback), we
greedily select the action with highest probability under the
current policy at each timestep, instead of randomly sam-
pling from the distribution. This action-selection policy is
consistent with that of COACH (MacGlashan et al., 2017)
and affords an opportunity to improve the responsiveness
of Deep COACH to trainer feedback. While the theory of
the off-policy learning update (Degris et al., 2012) demands
that actions be sampled randomly, the resulting inability to
interpret agent behavior and provide feedback represents a
significant usability cost. Moreover, usage of the update out-
lined in Equation 6 still captures the spirit of how we would
like the current policy to change in light of past experience.

A trainer who cannot observe the impact of his or her feed-
back in changing the agent’s behavior will simply become
frustrated; similarly, a trainer who must provide a large

Algorithm 1 Deep COACH

Input: Pre-trained convolutional encoder parameters 6., human
delay d, learning rate «, eligibility decay A, window size L,
minibatch size m
Initialize eligibility replay buffer £ < ()
Initialize window w «+ {}
Initialize first layers of mg, with 6. and freeze them
Randomly initialize all remaining network parameters
for ¢t = 0 to co do

Observe current state s;

Execute action according to a; = arg max 7, (a|st)

a

Record p; < mo, (at|st)
Asynchronously collect human feedback f;
Append (S¢—a, Gt—d, Pt—d, ft) to the end of w
if f: # O then
Truncate w to the L most recent entries and store in £
w —{}
end if
Randomly sample a minibatch W of m windows from &£
éx<+0
for w € W do
Initialize eligibility trace ey < 0
Retrieve final feedback signal F' from w
for s,a,p, f € wdo
ex < dex + WV& log 7o, (als)
end for
€x < €x + Fley
end for
& mex + BV, H(mo, (]st))
041 < 0 + aex
end for

number of repetitive feedback cues to generate a sufficiently
large number of gradient updates and induce a noticeable
change in behavior will, most likely, give up on training
before the task is learned. By virtue of optimizing with the
policy gradient, consecutive updates shift probability mass
towards actions that yield more positive feedback. However,
inconsistencies and natural errors are inevitable when faced
with human trainers (Griffith et al., 2013). Additionally,
depending on the window size parameter L, it is possible
that a window of experience may contain behavior that the
trainer did not mean to critique when supplying feedback.

In expectation, we assume that the majority of feedback
signals provided by the trainer are consistent. However, we
would like to ensure that the policy is not prematurely biased
towards misleading behavior while also making it relatively
quick and simple for the trainer to alter the agent’s current
behavior. To accomplish this, we employ entropy regulariza-
tion (Williams & Peng, 1991) of the form SV g, H (g, (+|s¢))
using a high regularization coefficient 8 to maintain a high
entropy policy. Accordingly, a policy that lies near uniform
requires fewer successive updates to change the action with
highest probability, thereby allowing for more immediate
shifts in the agent’s action-selection strategy and visible
responsiveness to trainer feedback.

Deep Reinforcement Learning from Policy-Dependent Human Feedback

Figure 3. Top-down view of the Minecraft domain used in both
evaluation tasks with a fixed gold block in the center.

3.6. Deep COACH

The full Deep COACH algorithm is shown in Algorithm 1
with an outline of the online training procedure in Figure 2.
To maintain robustness and responsiveness, we restrict Deep
COACH to relatively small policy network architectures
with respect to both the number of layers and the number
of hidden units per layer. Given that the policy network
architecture begins with fixed, pre-trained layers of a convo-
lutional encoder, this constraint on the number of parameters
per layer solely applies to the remaining fully-connected lay-
ers in the network that map the encoded state representation
to a probability distribution over the agent’s action space.
In all of our experiments, the portion of the policy network
not trained after the unsupervised pre-training phase was
represented by two fully-connected layers with no more
than 30 hidden units. The convolutional encoder used in all
experiments is identical to the architecture used in (Mnih
et al., 2015) except with only 256 units in the penultimate
fully-connected layer and an output layer of 100 units.

4. Experiments

To demonstrate the effectiveness of our Deep COACH as
an improvement over the existing COACH algorithm, we
present results on two illustrative tasks where human trainers
(two authors of this paper) manage to elicit desired behavior
from the learning agent after providing fewer than one hun-
dred feedback cues. Both trainers performed similarly, and
so we report results over their combined data. We leave the
task of examining evaluative feedback training with uniniti-
ated users to future work; the goal of this study, just as in
other deep HRL papers (Warnell et al., 2017), is to highlight
the possible benefits of this HRL paradigm and not to argue
that most users would be successful. In both tasks, the Deep
COACH agent converges on satisfactory behavior within
hundreds of timesteps corresponding to between 10 and 15
minutes of training time 2 Moreover, we implement and

*We used a feature in Project Malmé to slow the internal speed
of Minecraft thereby supplying ample trainer reaction time. Nor-
mally, each tick of the Minecraft clock is 50ms realtime; we inter-

evaluate a Deep TAMER agent as outlined in Warnell et al.
(2017) and report its performance as well. > With the goal of
presenting Deep COACH as a viable alternative for leverag-
ing human feedback when learning from high-dimensional
observations, we leave the investigation of robustness and
success in the face of non-expert human trainers with no
knowledge of the underlying training algorithm to future
work.

All agents in our experiments were only ever provided with
real-time feedback signals as specified by the human trainer.
To obtain reportable performance metrics on the tasks, how-
ever, the environment (pictured in Figure 3) was given an
underlying, task-specific reward structure that was recorded
at each timestep but never made visible to the agent.

In all experiments, a single CAE was used to initialize the
policy network after being trained to convergence using
Adam (Kingma & Ba, 2014) (learning rate of 0.001, mini-
batches of size 32) with standard reconstruction loss (Equa-
tion 7) from a dataset of 10,000 images collected by execut-
ing a random policy in the environment. All observations
were represented by 84 x 84 RGB images while all networks
were implemented in Tensorflow (Abadi et al., 2016). To
optimize the remaining policy-network parameters, we em-
ployed the RMSProp optimizer (Tieleman & Hinton, 2012)
along with a human delay factor d = 1, learning rate of
a = 0.00025, eligibility decay A = 0.35, window size
L = 10, minibatch size m = 16, and entropy regulariza-
tion coefficient § = 1.5. As outlined in MacGlashan et al.
(2017), our baseline COACH agent was represented by a
linear function approximator on top of the pre-trained CAE
features, using the same learning rate and eligibility decay
as Deep COACH while optimized with stochastic gradient
descent (Rumelhart et al., 1988). The Deep TAMER re-
ward network was identical to the policy network of Deep
COACH (with the exception of a final softmax activation).
Using the same learning rate as Deep COACH, the net-
work was optimized using the Adam (Kingma & Ba, 2014)
optimizer with a buffer update interval of 10 and a uni-
form credit assignment interval of [0.2,2.0]. All replay
buffers were given no limits and all parameters were se-
lected as a result of a prolonged but informal tuning. All
agents were given the same discrete action space consisting
of forward, rotate left, and rotate right ac-
tions. Upon selecting a single action, the agent would move
continuously in the direction specified by the action until a
new action selection was made on the next timestep.

nally slowed this to 250ms (4 actions per second).

3To mitigate potential biases, a several hour gap was maintained
between each trial which took the form of a single warmup run
prior to the reported run.

Deep Reinforcement Learning from Policy-Dependent Human Feedback

—— Deep COACH

Mean Reward

-100

—eo— Deep COACH

~150 { —#— Deep TAMER

COACH

-200 0
0

Mean Distance from Center

—— Deep COACH —— Deep TAMER

—— Deep TAMER 200 COACH
COACH

i

A

Mean Center Angle

-200

-300

0 100 200 300 400 500

2 8 10 0 100 200

3 6
Episode #

(a) Mean episodic reward for the Goal-
Navigation Task.

(b) Mean Euclidean distance from center
point in the Perimeter-Patrol Task.

300 400 500

Step #

Step #

(c) Mean angle (deg.) formed by agent’s
current position, start position, and grid
center for the Perimeter-Patrol Task.

Figure 4. Environment reward and task metrics collected during agent training.

4.1. Goal Navigation

In this task, the agent is randomly placed in a 10 x 10 grid
facing a single gold block objective in the center of the room
(as shown in Figure 3). The agent must navigate from its
start location to the gold block. The underlying environment
reward structure for the task silently provides a reward of
4200 to the agent for reaching the gold block while each step
taken by the agent has a cost of —1. Each episode runs until
the agent finds the goal or until the agent reaches a quota of
200 steps. Thus, an agent either completes an episode by
reaching the goal and earning non-negative reward or fails
to do so earning an exact reward of —200.

4.2. Perimeter Patrol

For this task, the agent is in the same Minecraft world as for
the Goal-Navigation Task. The trainer’s desired behavior is
for the agent to continuously walk the perimeter of the room
in a clockwise fashion. Due to the non-Markovian nature
of the task (Bacchus et al., 1996; Littman et al., 2017), it is
uninformative to report summaries of Markovian rewards;
accordingly, we report two complementary statistics that,
together, illustrate the success (or failure) of an agent in
achieving the desired motion. Specifically, at each timestep,
we record the Euclidan distance from the agent’s current
position to the center of the room as well as the angle (mea-
sured in degrees) formed by the agent’s fixed start position
and current position to the center of the room. Consequently,
an agent successfully circling the perimeter of the room will
maintain little variation in its distance from the center of the
room while its angle to the center will follow a consistent,
oscillatory pattern. Note that a traditional reinforcement-
learning agent incentivized with, for example, positive re-
wards at each corner and negative rewards for crossing the
middle of the room, would only learn to loiter at a single
corner and continuously collect positive reward.

5. Results & Discussion

The mean episodic environment reward obtained by all al-
gorithms over the course of five independent trials of the
Goal-Navigation Task is shown in Figure 4a. Similarly, the
mean step distances and angles (as specified in the previous
section) obtained by each algorithm on three independent
runs of the Perimeter-Patrol Task are shown in Figures 4b
and 4c, respectively. Additionally, in Figures 5 and 6,
we provide a full breakdown of human-trainer feedback for
training Deep COACH and Deep TAMER respectively, sep-
arated into the positive and negative signals. All shading
and error bars denote 95% confidence intervals. For the
Perimeter-Patrol Task, the 500 total steps taken by the agent
in the domain are broken into chunks of 50 steps.

In the early episodes of the Goal-Navigation task, all
agents experience a fairly high degree of variance in perfor-
mance while accruing the experience and human feedback
needed to isolate the desired task. After completing just a
few episodes, however, both the Deep COACH and Deep
TAMER agents manage to arrive at a policy that consis-
tently reaches the target. Alternatively, the COACH agent,
while capable of completing whole episodes of the task,
suffers from a complete failure to generalize, resulting in
episodes where the agent fails to reach the goal at all. Even
with a small learning rate, we noticed that COACH could
occasionally become “locked” into a policy with such low
entropy that no amount of feedback was capable of shift-
ing a sufficient amount of probability mass away from the
single, repeating action; we suspect that this behavior is an
artifact of mapping directly from a high-dimensional input
to a low-dimensional output space. Throughout the course
of learning, we see that Deep COACH trainer feedback
(shown in Figure 5) is policy-dependent in that it gradually
decreases as the agent hones in on the desired behavior. Fur-
thermore, the vast majority of trainer feedback consists of
negative signals discouraging incorrect behavior at the start
of learning whereas a relatively smaller number of positive

Deep Reinforcement Learning from Policy-Dependent Human Feedback

3

Positive
I Negative

of Trainer Signals

°

[|
[2 4 6 8 10
Episode #

(a) Deep COACH

3

Positive
I Negative

***-L .

4 6
Episode #

of Trainer Signals

°

(b) Deep TAMER

Figure 5. Breakdown of trainer feedback signals for the Goal-Navigation Task

Positive
BN Negative

60

8

of Trainer Signals

10 -
, i-ﬁ'i"f'i-;-%-f- .

0

4 6
Episode #

(a) Deep COACH

3

Positive
EEE Negative

of Trainer Signals

o

2

s

8 10

‘Episodee #
(b) Deep TAMER

Figure 6. Breakdown of trainer feedback signals for the Perimeter-Patrol Task.

signals are actually needed to guide the agent towards good
behavior. While Deep TAMER feedback also decreases
with time, we found that, in the early stages of learning,
Deep TAMER required a substantial number of feedback
cues before demonstrating any kind of shift in behavior.

At the start of learning for the Perimeter-Patrol Task, all
agents experience difficulty with the presented task; the fluc-
tuating, relatively constant distance from the center in the
first few hundred steps suggests time spent by the agents
either crossing the room or loitering at a corner. Moreover,
the inconsistencies in the corresponding angles suggest no
deliberate attempt at cyclic motion throughout the room. As
more time passes, all agents come to maintain a fairly consis-
tent distance from the center point. However, Deep COACH
displays the corresponding oscillatory pattern in the angles
of its trajectory, indicative of a patrolling motion through the
room. (The rightward sloping sawtooth pattern is consistent
with clockwise patrolling.) Note that the angles taken by
Deep TAMER oscillate at a considerably lower frequency
indicating a traversal of the perimeter with frequent stops.
The trajectories produced by the COACH agent maintain lit-
tle regularity and further highlight the challenge of learning
the required policy through linear function-approximation
techniques.

Towards the end of learning, there are drops in the center
distance maintained by the Deep COACH agent, indicat-

ing an erroneous crossing into or through the middle of the
room. These were the result of minor catastrophic forget-
ting (French, 1999), where a small set of updates from replay
memory resulted in a temporary lapse in behavior. Fortu-
nately, in almost all of these situations, the Deep COACH
agent was able to correct itself after a few subsequent mini-
batch updates. In contrast, Deep TAMER encountered trials
where forgetting would set in and become irreversible.

As with the Goal-Navigation Task, Figure 6 captures a con-
sistent decline in the total amount of feedback needed by
the Deep COACH agent over the course of learning. In-
terestingly, in the Deep TAMER agent, we found that the
presence of opposing rotation actions clashed with the over-
lapping credit assignment intervals of successive feedback
signals, resulting in degenerate looping behavior between
the two actions. Towards the end of learning, and prefaced
by an uptick in feedback to correct occasional forgetting,
we observe a near complete lack of human feedback as the
Deep COACH agent displays the correct behavior and the
trainer ceases to provide further positive reinforcement.

6. Conclusion

We present a novel algorithm for deep reinforcement learn-
ing of behavior from policy-dependent human feedback. We
extended the existing COACH algorithm with a series of al-

Deep Reinforcement Learning from Policy-Dependent Human Feedback

terations that allow for scaling up to learning behavior from
high-dimensional observations without incurring the large
time and sample complexities typically associated with deep
learning approaches: a modified replay memory buffer, the
use of an autoencoder, and high entropy regularization. To
demonstrate the efficacy of our approach, we presented re-
sults on two tasks grounded in the game world of Minecraft
and show behaviors learned purely from trainer feedback
signals within 15 minutes of interaction. Moreover, the de-
sired behaviors were achieved with fewer than one hundred
feedback signals from the live human trainers and surpass
the performance of baseline approaches. We further ex-
plored the breakdown of human feedback over the course
of learning with our algorithm to both verify that feedback
gradually decreases over time as learning progresses and
confirm that the agent does eventually converge to a policy
that satisfies the human trainer.

One immediate direction of future work is to perform a
thorough user study comparing the Deep COACH and Deep
TAMER approaches on several tasks with non-expert train-
ers. Crucially, the comparison should extend beyond only
task performance metrics and include breakdowns of trainer
feedback that help quantify the ease of training and degree
of trainer satisfaction under each algorithm.

References

Abadi, Martin, Barham, Paul, Chen, Jianmin, Chen, Zhifeng,
Davis, Andy, Dean, Jeffrey, Devin, Matthieu, Ghemawat,
Sanjay, Irving, Geoffrey, Isard, Michael, Kudlur, Man-
junath, Levenberg, Josh, Monga, Rajat, Moore, Sherry,
Murray, Derek Gordon, Steiner, Benoit, Tucker, Paul A.,
Vasudevan, Vijay, Warden, Pete, Wicke, Martin, Yu, Yuan,
and Zhang, Xiaoqiang. Tensorflow: A system for large-
scale machine learning. In OSDI, 2016.

Abbeel, Pieter and Ng, Andrew Y. Apprenticeship learning
via inverse reinforcement learning. In ICML, 2004.

Aluru, Krishna, Tellex, Stefanie, Oberlin, John, and Mac-
glashan, James. Minecraft as an experimental world for
Al in robotics. In AAAI Fall Symposium, 2015.

Amershi, Saleema, Cakmak, Maya, Knox, W. Bradley, and
Kulesza, Todd. Power to the people: The role of humans
in interactive machine learning. Al Magazine, 35:105—
120, 2014.

Argall, Brenna, Chernova, Sonia, Veloso, Manuela M., and
Browning, Brett. A survey of robot learning from demon-
stration. Robotics and Autonomous Systems, 57:469—483,
2009.

Bacchus, Fahiem, Boutilier, Craig, and Grove, Adam. Re-
warding behaviors. In Proceedings of the Thirteenth

National Conference on Artificial Intelligence, pp. 1160—
1167. AAAI Press/The MIT Press, 1996.

Barto, Andrew G., Sutton, Richard S., and Anderson,
Charles W. Neuronlike adaptive elements that can solve
difficult learning control problems. IEEE Trans. Systems,
Man, and Cybernetics, 13:834—-846, 1983.

Christiano, Paul F., Leike, Jan, Brown, Tom B., Martic,
Miljan, Legg, Shane, and Amodei, Dario. Deep re-
inforcement learning from human preferences. CoRR,
abs/1706.03741, 2017.

Degris, Thomas, White, Martha, and Sutton, Richard S.
Off-policy actor-critic. CoRR, abs/1205.4839, 2012.

Finn, Chelsea, Levine, Sergey, and Abbeel, Pieter. Guided
cost learning: Deep inverse optimal control via policy
optimization. In ICML, 2016.

French, Robert M. Catastrophic forgetting in connectionist
networks. Trends in Cognitive Sciences, 3(4):128-135,
1999.

Griffith, Shane, Subramanian, Kaushik, Scholz, Jonathan,
Isbell, Charles Lee, and Thomaz, Andrea Lockerd. Policy
shaping: Integrating human feedback with reinforcement
learning. In NIPS, 2013.

Hessel, Matteo, Modayil, Joseph, van Hasselt, Hado, Schaul,
Tom, Ostrovski, Georg, Dabney, Will, Horgan, Daniel,
Piot, Bilal, Azar, Mohammad Gheshlaghi, and Silver,
David. Rainbow: Combining improvements in deep rein-
forcement learning. CoRR, abs/1710.02298, 2018.

Hinton, G E and Salakhutdinov, R R. Reducing the dimen-
sionality of data with neural networks. Science, 313 5786:
504-7, 2006.

Johnson, Matthew, Hofmann, Katja, Hutton, Tim, and
Bignell, David. The Malmo platform for artificial in-
telligence experimentation. In IJCAI, 2016.

Kingma, Diederik P. and Ba, Jimmy. Adam: A method for
stochastic optimization. CoRR, abs/1412.6980, 2014.

Knox, W. Bradley and Stone, Peter. TAMER: Training an
agent manually via evaluative reinforcement. In 7th IEEE
International Conference on Development and Learning,

pp. 292297, 2008.

Knox, W. Bradley and Stone, Peter. Combining manual
feedback with subsequent MDP reward signals for rein-
forcement learning. In AAMAS, 2010.

Knox, W. Bradley and Stone, Peter. Reinforcement learning
from simultaneous human and MDP reward. In AAMAS,
2012.

Deep Reinforcement Learning from Policy-Dependent Human Feedback

Lillicrap, Timothy P., Hunt, Jonathan J., Pritzel, Alexander,
Heess, Nicolas, Erez, Tom, Tassa, Yuval, Silver, David,
and Wierstra, Daan. Continuous control with deep rein-
forcement learning. CoRR, abs/1509.02971, 2015.

Littman, Michael L., Topcu, Ufuk, Fu, Jie, Isbell,
Charles Lee, Wen, Min, and MacGlashan, James.
Environment-independent task specifications via gltl.
CoRR, abs/1704.04341, 2017.

Loftin, Robert Tyler, Peng, Bei, MacGlashan, James,
Littman, Michael L., Taylor, Matthew E., Huang, Jeff,
and Roberts, David L. Learning behaviors via human-
delivered discrete feedback: modeling implicit feedback
strategies to speed up learning. Autonomous Agents and
Multi-Agent Systems, 30:30-59, 2015.

MacGlashan, James, Ho, Mark K., Loftin, Robert Tyler,
Peng, Bei, Roberts, David L., Taylor, Matthew E., and
Littman, Michael L. Interactive learning from policy-
dependent human feedback. In ICML, 2017.

Masci, Jonathan, Meier, Ueli, Ciresan, Dan C., and
Schmidhiiber, Jurgen. Stacked convolutional auto-
encoders for hierarchical feature extraction. In ICANN,
2011.

Mnih, Volodymyr, Kavukcuoglu, Koray, Silver, David,
Rusu, Andrei A., Veness, Joel, Bellemare, Marc G.,
Graves, Alex, Riedmiller, Martin A., Fidjeland, Andreas,
Ostrovski, Georg, Petersen, Stig, Beattie, Charles, Sadik,
Amir, Antonoglou, loannis, King, Helen, Kumaran, Dhar-
shan, Wierstra, Daan, Legg, Shane, and Hassabis, Demis.
Human-level control through deep reinforcement learn-
ing. Nature, 518 7540:529-33, 2015.

Mnih, Volodymyr, Badia, Adria Puigdomenech, Mirza,
Mehdi, Graves, Alex, Lillicrap, Timothy P., Harley, Tim,
Silver, David, and Kavukcuoglu, Koray. Asynchronous
methods for deep reinforcement learning. In /ICML, 2016.

Oh, Junhyuk, Chockalingam, Valliappa, Singh, Satinder P.,
and Lee, Honglak. Control of memory, active perception,
and action in minecraft. CoRR, abs/1605.09128, 2016.

Puterman, Martin L. Markov Decision Processes—Discrete
Stochastic Dynamic Programming. John Wiley & Sons,
Inc., New York, NY, 1994.

Ross, Stéphane, Gordon, Geoffrey J., and Bagnell, J. An-
drew. A reduction of imitation learning and structured
prediction to no-regret online learning. In AISTATS, 2011.

Rumelhart, David E., Hinton, Geoffrey E., and Williams,
Ronald J. Neurocomputing: Foundations of research.
chapter Learning Representations by Back-propagating
Errors, pp. 696-699. MIT Press, Cambridge, MA, USA,
1988. ISBN 0-262-01097-6. URL http://dl.acm.
org/citation.cfm?i1d=65669.104451.

Schulman, John, Wolski, Filip, Dhariwal, Prafulla, Radford,
Alec, and Klimov, Oleg. Proximal policy optimization
algorithms. CoRR, abs/1707.06347, 2017.

Silver, David, Huang, Aja, Maddison, Chris J., Guez,
Arthur, Sifre, Laurent, van den Driessche, George, Schrit-
twieser, Julian, Antonoglou, Ioannis, Panneershelvam,
Vedavyas, Lanctot, Marc, Dieleman, Sander, Grewe, Do-
minik, Nham, John, Kalchbrenner, Nal, Sutskever, Ilya,
Lillicrap, Timothy P., Leach, Madeleine, Kavukcuoglu,
Koray, Graepel, Thore, and Hassabis, Demis. Mastering
the game of go with deep neural networks and tree search.
Nature, 529 7587:484-9, 2016.

Sutton, Richard S., McAllester, David A., Singh, Satinder P.,
and Mansour, Yishay. Policy gradient methods for rein-
forcement learning with function approximation. In NIPS,
1999.

Tessler, Chen, Givony, Shahar, Zahavy, Tom, Mankowitz,
Daniel J., and Mannor, Shie. A deep hierarchical
approach to lifelong learning in minecraft. CoRR,
abs/1604.07255, 2016.

Thomaz, Andrea Lockerd and Breazeal, Cynthia. Reinforce-
ment learning with human teachers: Evidence of feedback

and guidance with implications for learning performance.
In AAAI 2006.

Tieleman, Tijmen and Hinton, Geoffrey. Lecture 6.5-
rmsprop: Divide the gradient by a running average of
its recent magnitude. COURSERA: Neural Networks for
Machine Learning, 2012.

Vien, Ngo Anh and Ertel, Wolfgang. Reinforcement learn-
ing combined with human feedback in continuous state
and action spaces. IEEE International Conference on De-
velopment and Learning and Epigenetic Robotics (ICDL),
pp. 1-6, 2012.

Warnell, Garrett, Waytowich, Nicholas, Lawhern, Vernon,
and Stone, Peter. Deep tamer: Interactive agent shaping
in high-dimensional state spaces. CoRR, abs/1709.10163,
2017.

Williams, Ronald J. and Peng, Jing. Function optimization
using connectionist reinforcement learning algorithms.
Connection Science, 3(3):241-268, 1991.

http://dl.acm.org/citation.cfm?id=65669.104451
http://dl.acm.org/citation.cfm?id=65669.104451

