
Carnegie Mellon University
Research Showcase @ CMU

Robotics Institute School of Computer Science

7-2012

Formalizing Assistive Teleoperation
Anca Dragan
Carnegie Mellon University

Siddhartha Srinivasa
Carnegie Mellon University

Follow this and additional works at: http://repository.cmu.edu/robotics

Part of the Robotics Commons

This Conference Proceeding is brought to you for free and open access by the School of Computer Science at Research Showcase @ CMU. It has been
accepted for inclusion in Robotics Institute by an authorized administrator of Research Showcase @ CMU. For more information, please contact
research-showcase@andrew.cmu.edu.

Published In
Proceedings of Robotics: Science and Systems.

http://repository.cmu.edu?utm_source=repository.cmu.edu%2Frobotics%2F1012&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/robotics?utm_source=repository.cmu.edu%2Frobotics%2F1012&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/scs?utm_source=repository.cmu.edu%2Frobotics%2F1012&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/robotics?utm_source=repository.cmu.edu%2Frobotics%2F1012&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/264?utm_source=repository.cmu.edu%2Frobotics%2F1012&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:research-showcase@andrew.cmu.edu


Formalizing Assistive Teleoperation
Anca D. Dragan and Siddhartha S. Srinivasa

The Robotics Institute, Carnegie Mellon University
{adragan,siddh}@cs.cmu.edu

Abstract—In assistive teleoperation, the robot helps the user
accomplish the desired task, making teleoperation easier and
more seamless. Rather than simply executing the user’s input,
which is hindered by the inadequacies of the interface, the
robot attempts to predict the user’s intent, and assists in ac-
complishing it. In this work, we are interested in the scientific
underpinnings of assistance: we formalize assistance under the
general framework of policy blending, show how previous work
methods instantiate this formalism, and provide a principled
analysis of its main components: prediction of user intent and
its arbitration with the user input. We define the prediction
problem, with foundations in Inverse Reinforcement Learning,
discuss simplifying assumptions that make it tractable, and test
these on data from users teleoperating a robotic manipulator
under various circumstances. We propose that arbitration should
be moderated by the confidence in the prediction. Our user study
analyzes the effect of the arbitration type, together with the
prediction correctness and the task difficulty, on the performance
of assistance and the preferences of users.

I. INTRODUCTION

We address the problem of teleoperating dexterous robotic
manipulators to perform everyday manipulation tasks (Fig.1).
In direct teleoperation, the user realizes their intent, for exam-
ple grasping the bottle in Fig.1, by controlling the robot via an
interface. Direct teleoperation is limited by the inadequacies
and noise of the interface, making tasks, especially complex
manipulation tasks, often tedious and sometimes impossible to
achieve. In assistive teleoperation, the robot attempts to predict
the user’s intent, and augments their input, thus simplifying the
task. Here, the robot faces two challenges when assisting: 1)
predicting what the user wants, and 2) deciding how to use
this prediction to assist.

We contribute a principled analysis of these two challenges.
We introduce policy blending, which formalizes assistance
as an arbitration of two policies: the user’s input and the
robot’s prediction of the user’s intent. At any instant, given
the input, U , and the prediction, P , the robot combines
them using a state-dependent arbitration function α ∈ [0, 1]
(Fig.1(middle)). Policy blending with accurate prediction has
a strong corrective effect on the user input (Fig.1,bottom). Of
course, the burden is on the robot to predict accurately and
arbitrate appropriately.
Prediction. Prior work in assistive teleoperation usually as-
sumes that the robot knows the user’s intent [1]–[9]. Other
work assumes that the user is following one of a set of
predefined paths or behaviors, and trains a classifier for
prediction [10]–[14]. In many real-world scenarios, however,
environments and goals change significantly, restricting the
utility of fixed paths. For example, in the situation from Fig.1,
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Fig. 1. (Top) The user provides an input U . The robot predicts their intent,
and assists them in achieving the task. (Middle) Policy blending arbitrates user
input and robot prediction of user intent. (Bottom) Policy blending increases
the range of feasible user inputs (here, α = 0.5).

the user must adapt to various locations of the goal object and
its surrounding clutter.

In our work, we stray away from predefined paths, and
instead formulate the prediction problem based on Inverse
Reinforcement Learning [15]–[17]. We introduce several re-
ductions that make it tractable, discuss how these reductions
perform on real teleoperation data, and point out directions for
improving prediction performance.

In this particular situation the user might be able to specify
the intended goal (including the exact grasp) using other
interfaces, like a GUI [18]. However, prediction via motion
is often natural, faster, and seamless, enabling a user to, for
example, easily change their mind and switch to another grasp
or object, and can complement other interfaces.
Arbitration. Despite the diversity of methods proposed for
assistance, from the robot completing the grasp when close
to the goal [9], to virtual fixtures for following paths [14], to
potential fields towards the goal [8], all methods can be seen as
arbitrating user input and robot prediction. This common lens
for assistance enables us to analyze the factors that affect its
performance, and recommend design decisions for arbitration.

Prior work (detailed in Sec. II) compared more manual vs.
more autonomous assistance modes [4]–[6] with surprisingly
conflicting results in terms of what users prefer. Rather than



using autonomy as a factor, we introduce aggressiveness:
arbitration should be moderated by the robot’s confidence
in the prediction, leading to a spectrum from very timid to
very aggressive assistance, from small augmentation of user
input even when confident to large augmentation even when
unsure. Rather than analyzing the effect of aggressiveness (or
autonomy) alone on the performance of assistance, we conduct
a user study that analyzes how aggressiveness interacts with
new factors, like prediction correctness and task difficulty,
in order to help explain the seemingly contradictory findings
from above.

Our formalism and analysis build on machine learning,
control theory, and human-robot interaction to provide a new
understanding of assistive teleoperation. The challenges we
identify, particularly in predicting and expressing intent, do
not only form the basis of assistive teleoperation, but lie at
the foundation of human-robot collaboration in general.

II. PRIOR WORK

In 1963, Goertz [19] proposed manipulators for handling
radioactive material that are able to turn cranks based on
imprecise operator inputs, introducing one of the first instances
of assistive teleoperation. Since then, research on this topic has
proposed a great variety of methods for assistance, ranging
from the robot having full control over all or some aspect of
the motion [1]–[6], [10], [11], to taking control (or releasing it)
at some trigger [9], [13], [20], to never fully taking control [4],
[6]–[8], [14]. For example, Debus et al. [3] propose that the
robot should be in full control of the orientation of a cylinder
while the user is inserting it into a socket. In [9], the robot
takes over to complete the grasp when close enough to the
target. Crandal et al. [7] propose to mix the user input with a
potential field in order to avoid obstacles.

Attempts to compare different modes of assistance are
sometimes contradictory. For example, You and Hauser [4]
found that for a complex motion planning problem in a
simulated environment, users preferred a fully autonomous
mode, where they only clicked on the desired goal, to more
reactive modes of assistance. On the other hand, Kim et al.
[5] found that users preferred a manual mode and not the
autonomous one for manipulation tasks like object grasping.

Policy blending provides a unifying view of assistance,
leading to an analysis which helps conciliate these differences.
Table I shows how various methods proposed arbitrate user in-
put and robot prediction (or simply robot policy, in cases where
intent is assumed to be known). For example, potential field
methods (e.g. [7], [8], [12]) that help the user avoid obstacles
become blends of the user input with a policy obtained from
the repulsive force field, under a constant arbitration function
that establishes a trade-off. Virtual fixture-based methods (e.g.
[6], [12]–[14]) that are commonly used to guide the user along
a predefined path become blends of the user input with a policy
that projects this input onto the path. The arbitration function
dictates the intensity of the fixture at every step, corresponding
to a normalized “stiffness/compliance” gain. However, the
same framework also allows for the less studied case in which

TABLE I: PRIOR WORK.

Method Prediction Arbitration

[1]–[6], [18] no

[10], [11] predefined paths/behaviors

[4], [6]–[8] no

[12] predefined paths/behaviors

[9], [20]–[22] no

[13] predefined paths/behaviors

[12], [14] predefined paths/behaviors

[23] fixed environment, goals (2D) no

[24] fully flexible (goal+policy) (2D) no

the robot is able to generate a full policy for completing
the task on its own, rather than an attractive/repulsive force
or a constraint (e.g. [9], [20]). In this case, the arbitration
is usually a binary switch from fully autonomous to fully
manual behavior, although arbitrations with stages that trade
off between the two (not fully taking control but still heavily
correcting the user’s input) are also possible. Instances of
arbitration also appear outside the teleoperation domain, when
mediating between two human input channels [25].

Analyzing assistance based on how arbitration is done,
together new factors like prediction correctness and task
difficulty, helps explain previously contradictory findings: our
results show that aggressive assistance is preferable on hard
tasks, like the ones from [4], where autonomy is significantly
more efficient; opinions are split on easier tasks, like the
ones from [5], where the autonomous and manual mode were
comparable in terms of time to completion.

The same table shows how prior methods handle prediction
of the user’s intent. Aside from work that classifies which one
of a predefined set of paths or behaviors the user is currently
engaging [10], [11], most work assumes the robot has access
to the user’s intent, e.g. that it knows what object to grasp
and how (except in [22], which deals with time delays in
ball catching by projecting the input forward in time using
a minimum-jerk model). Predicting or recognizing intent has
received a lot of attention outside of the teleoperation domain,
dating back to high-level plan recognition [26]. Predicting in-
tended motion, however, is usually again limited to classifying
behaviors, or is done in low-dimensional spaces [23], [24]. In
the following section, which presents the building blocks of
assistance, we present the general prediction problem, along
with simplifying assumptions that make it tractable.



III. THE COMPONENTS OF ASSISTANCE

In what follows, Q denotes the robot’s current configuration,
U denotes the desired next configuration inputed by the user
(e.g. through a GUI or a whole-body teleoperation interface,
as in Fig.1, or by sending a velocity command to the robot1),
and P denotes the configuration the robot predicts it should
be at next. We denote the user’s starting input as S, and the
trajectory of user inputs until U as ξS→U .

Each new scene has a (possibly continuous) set of accessible
goals G, known only at runtime to both robot and user. The
robot does not know which goal the user is trying to reach.

A. Prediction

The robot must predict where the user would like it to
move next, given ξS→U , and any other cues, e.g. each goal’s
reachability, or a high-level description of the overall task.

We break this problem down into two successive steps:
1) Goal Prediction where we predict the most likely goal

G∗ given available data.
2) Trajectory Prediction where we predict how the user

would want to move towards a predicted goal.
Goal Prediction. We formulate goal prediction as:

G∗ = arg max
G∈G

P (G|ξS→U , θ) (1)

i.e. given ξS→U and any other available cues θ, the robot
predicts the goal G∗ that maximizes posterior probability.

Several simplifying assumptions help us to solve this prob-
lem. The strongest is amnesic prediction, which ignores all in-
formation except the current input U : G∗ = arg max

G∈G
P (G|U).

There are many ways to estimate P (G|U). For example, given
a distance metric on goals d, we can assume that closer goals
have higher probability:

G∗ = arg min
G∈G

d(U,G) (2)

Under the Euclidean metric, d(U,G) = ||U −G||, the method
predicts the goal closest in the robot’s configuration space.
Under d(U,G) = ||φ(U) − φ(G)|| (with φ denoting the
forward kinematics function), the method predicts the goal
closest in the robot’s workspace.

Although intuitive, amnesic prediction does suffer from its
amnesia. Where the user came from is often a critical cue for
where they want to go. Prediction can also be memory-based,
taking into account the trajectory ξS→U of user inputs (Fig.2):2

G∗ = arg max
G∈G

P (G|ξS→U ) = arg max
G∈G

P (ξS→U |G)P (G)

(3)
In order to compute P (ξS→U |G), we need a model of how
users teleoperate the robot to get to a goal. A possible
assumption is that the user’s input noisily optimizes a goal-
dependent cost function CG (one that depends, as an example,

1In the case of velocity inputs, the robot applies its motion model to obtain
the configuration U .

2Although considering current velocity in amnesic prediction can help with
this, this information is still local. As in Fig.3, incorporating global knowledge
from the trajectory can be beneficial.
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Fig. 2. Even though G1 is the closest goal to U in both cases, ξS→U

indicates that G2 is more likely in the situation on the right.

on the dot product between the user’s velocity and the direction
to the goal). Using the principle of maximum entropy, we can
use CG to induce a probability distribution over trajectories
ξ ∈ Ξ given a goal as P (ξ|G) ∝ exp

(
−CG(ξ)

)
, i.e. the

probability of a trajectory decreases exponentially as its cost
increases [16]. Given this distribution and if the cost is additive
along the trajectory,

P (ξS→U |G) =
exp
(
−CG(ξS→U )

) ∫
ξU→G

exp
(
−CG(ξU→G)

)∫
ξS→G

exp
(
−CG(ξS→G)

)
(4)

In low-dimensional spaces, (4) can be evaluated ex-
actly through soft-maximum value iteration [24]. In high-
dimensional spaces, where this is expensive, an alternative is
to approximate the integral over trajectories using Laplace’s
method. First, we approximate C(ξX→Y ) by its second order
Taylor series expansion around ξ∗X→Y = arg min

ξX→Y

C(ξX→Y ):

C(ξX→Y ) ≈ C(ξ∗X→Y )+∇C(ξ∗X→Y )T (ξX→Y −ξ∗X→Y )+

1

2
(ξX→Y − ξ∗X→Y )T∇2C(ξ∗X→Y )(ξX→Y − ξ∗X→Y ) (5)

Since ∇C(ξ∗X→Y ) = 0 at the optimum, we get∫
ξX→Y

exp
(
−C(ξX→Y )

)
≈ exp

(
−C(ξ∗X→Y )

)
∫
ξX→Y

exp
(
−1

2
(ξX→Y − ξ∗X→Y )THX→Y (ξX→Y − ξ∗X→Y )

)
(6)

with HX→Y the Hessian of the cost function around ξ∗X→Y .
Evaluating the Gaussian integral leads to∫

ξX→Y

exp
(
−C(ξX→Y )

)
≈ exp

(
−C(ξ∗X→Y )

) √
2πk√
|HX→Y |

(7)

and the optimal prediction G∗ becomes

arg max
G

exp
(
−CG(ξS→U )− CG(ξ∗U→G)

)√
|HU→G|

exp
(
−CG(ξ∗S→G)

)√
|HS→G|

P (G)

(8)
If the cost function is quadratic, the Hessian is constant and
(8) simplifies to

G∗ = arg max
G∈G

exp
(
−CG(ξS→U )− CG(ξ∗U→G)

)
exp
(
−CG(ξ∗S→G)

) P (G) (9)
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Fig. 3. An example user trajectory leading to two possible goals. A simple
prediction implementing (9) with a cost function based on length compares
the two situations on the right and determines that the user’s trajectory is a
smaller deviation from the optimal trajectory to G2 than to G1.

This prediction method implements an intuitive principle:
if the user appears to be taking (even in the optimistic case)
a trajectory that is a lot costlier than the optimal one to that
goal, the goal is likely not the intended one.

In low-dimensional spaces, it is possible to learn CG from
user teleoperation data via Maximum Entropy Inverse Rein-
forcement Learning [16] (or via algorithms that assume no user
noise, e.g. [15], [17]). In larger domains such as manipulation,
simple guesses for CG can still be useful for prediction. This
is illustrated in Fig.3, which shows a toy problem with two
possible goals and a user trajectory ξS→U . Even with CG
as the sum of squared velocity magnitudes, this method still
holds an advantage over the amnesic version. When CG is the
same for all goals, the cost of ξS→U is common across goals
and does not affect the probability, leaving only the starting
point S and the current input U as the crucial components
of the trajectory so far. The comparison between G1 and G2

leads to the correct result, because the path to G2 through
U is much shorter relative to the optimal, ξ∗S→G2

, than the
path to G1 through U is relative to ξ∗S→G1

. Whether this
very simplified memory-based prediction is still helpful in an
analogous problem in the real world is one of the questions
we answer in our user study.

A more sophisticated prediction method learns to choose
G∗ by also considering θ, and using the goal probabilities as
features. From labeled data of the form (F [ξS→U , θ, G] →
0/1) — features computed relative to G, paired with whether
G was the desired goal — a range of methods will learn to
predict a goal “score” given feature values for a new situation.
See [27] for goal prediction based on such feature constructs.
Trajectory Prediction. Once the robot predicts a goal G∗, it
must also compute how the user wants it to move towards G
from the current state Q. It can do so by computing a policy
or a trajectory based on a cost function. Note that the cost
function the robot must optimize in this stage is not necessarily
the same as the cost function the human is optimizing during
teleoperation: the idea behind assistive teleoperation is that
the robot executes what the user actually wants rather than
what the user commands. Approximations for this function

also range from very simple (e.g. the length of the trajectory, or
a trade-off between the length and the distance from obstacles)
to very complex (e.g. functions learned via Inverse Optimal
Control from users physically moving the robot on a trajectory
they would want the robot to take).

B. Arbitration

Given U and P , the robot must decide on what to do next.
The arbitration function α, which makes this decision, can
depend on a number of inputs, such as the distance to the
goal or to the closest object, or even a binary switch operated
by the user. We propose a simple principle: that arbitration
must be moderated by how good the prediction is.
Timid vs. Aggressive. In trading off between not over-
assisting (providing unwanted assistance) and not under-
assisting (failing to provide needed assistance), the arbitration
lies on a spectrum: On the one hand, the assistance could be
very timid, with α taking small values even when the robot
is confident in its prediction. On the other hand, it could be
very aggressive: α could take large values even when the robot
does not trust the predicted policy.
Inescapable Local Minima Do not Occur. In general, when
arbitrating between two policies, we need to guarantee that
inescapable local minima do not occur. In our case, these are
states at which the arbitration results in the same state as at
the previous time step, regardless of the user input.

Theorem 1: Let Q be the current robot configuration. De-
note the prediction velocity as p = P −Q, and the user input
velocity as u = U −Q. Arbitration never leads to inescapable
local minima, unless ∀u 6= 0, p = −ku for some k ≥ 0, and
α = 1

k+1 (i.e. the policy is always chosen to directly oppose
the user’s input, and the arbitration is computed adversarially,
or p = 0 and α = 1 for all user inputs).

Proof: Assume that at time t, a local minima occurs in
the arbitration, i.e. (1− α)(Q+ u) + α(Q+ p) = Q. Further
assume that this minima is inescapable, i.e. (1−α′)(Q+u′)+
α′(Q+ p′) = Q, ∀u′, where p′ and α′ are the corresponding
prediction and arbitration if u′ is the next user input. ⇔ (1−
α′)u′ + α′p′ = 0, ∀u′.
Case 1: ∀u′ 6= 0, the corresponding α′ 6= 0 ⇒ p′ = − 1−α

α u′,
∀u′ 6= 0 ⇒ p′ = −ku′ and α = 1

k+1 , with k ≥ 0 (since
α ∈ [0, 1]) ∀u′ 6= 0. Contradiction with the problem statement.
Case 2: ∃u′ 6= 0 s.t. the corresponding α′ = 0 ⇒ (1− 0)u′ +
0p′ = 0 ⇒ u′ = 0. Contradiction with u′ 6= 0.
⇒ ∃u′ s.t. (1− α′)(Q+ u′) + α′(Q+ p′) 6= Q,
Therefore, with an adversarial exception, the user can always
take a next action that escapes a local minimum.
Evaluating Confidence. Earlier, we had proposed that the
arbitration should take into account how good the prediction
is, i.e. a measure of the confidence in the prediction, c, that
correlates to prediction correctness. One way to evaluate c is to
assume that the closer the predicted goal gets, the more likely
it becomes that it is the correct goal: c = max(0, 1− d

D ), with
d the distance to the goal and D some threshold past which
the confidence is 0. Alternately, confidence can be defined as
the probability assigned to the prediction. If a cost function



is assumed, the match between the user’s input and this cost
should also factor in. If a classifier is used for prediction, then
such a probability is obtained through calibration [28].

IV. A STUDY ON ASSISTANCE

Mathematically, arbitration can be any non-adversarial func-
tion of the robot’s confidence in its prediction, from very timid
to very aggressive. But assistive teleoperation is fundamentally
a human-robot interaction task, and this interaction imposes
additional requirements on arbitration: the robot must arbitrate
in an efficient and user-preferred way. Therefore, we embarked
upon a user study that analyzes the effect of the aggressiveness
of arbitration on the performance of assistance – an analysis
that we believe must incorporate other factors, like prediction
correctness (users might not appreciate assistance if the robot
is wrong) and task difficulty (users might appreciate assistance
if the task is very hard for them). Although this analysis is
our primary goal, we will also to test the performance of the
simplifying assumptions from Sec. III-A on real data of users
teleoperating the robot through or whole-body interface.

We tasked 8 users with teleoperating the robot to grasp
an object from a table, as in Fig.1. There were always two
graspable objects, and we gave the user, for every trial, the
farther of the two as goal (an analogous situation to the one
from Fig.3). We implemented a whole-body interface that
tracks their skeleton (OpenNI, www.openni.org), yielding an
arm configuration which serves as the user input U . The robot
makes a prediction of the goal and the policy to it (that
minimizes length in configuration-space), leading to P , and
combines the two via the arbitration function α.

A. Goal 1: Factors that affect assistance

Hypotheses. We test the following two hypotheses:
1) Main effects: Prediction correctness, task difficulty, and

aggressiveness of assistance each has a significant effect
on task performance.

2) Interaction effects: Aggressive assistance performs bet-
ter on hard tasks if the robot is right, while the timid
assistance performs better on easy task if the robot is
wrong.

Manipulated Variables. We manipulated prediction correct-
ness by using a simple, easy to manipulate goal prediction
method: the amnesic prediction based on workspace distance,
which always selects the closest object. We setup wrong
conditions at the limit of the robot being wrong yet rectifiable.
We place the intended object further, guaranteeing wrong pre-
diction until the user makes his preference clear by providing
an input U closer to the correct goal. We setup right conditions
by explicitly informing the robot of the user’s intended goal.

We manipulated task difficulty by changing the location
of the two objects and placing the target object in an easily
reachable location (e.g. grasping the bottle in Fig.4(b) makes
an easy task) vs. a location at the limit of the interface’s
reachability (e.g. grasping the box in Fig.4(b) is a hard task).
This leads to four types of tasks: Easy&Right, Easy&Wrong,
Hard&Right and Hard&Wrong.

Finally, we manipulated the aggressiveness of the assistance
by changing the arbitration function, and used the distance-
based measure of confidence from Sec. III-B. As the user
makes progress towards the predicted object, the confidence
increases. We had two assistance modes, shown in Fig.4(c):
the timid mode increases the assistance with the confidence,
but plateaus at a maximum value, never fully taking charge.
On the other hand, the aggressive mode eagerly takes charge
as soon as the confidence exceeds a threshold.
Subject Allocation. We chose a within-subjects design, en-
abling us to ask users to compare the timid and aggressive
mode on each task. Each of our 8 participants (all students, 4
males and 4 females) executed both modes on each of the four
types of tasks. To avoid ordering effects, we used a balanced
Latin square for the task order, and balanced the order of the
modes within each task.
Dependent Measures. We measure the performance of as-
sistance in two ways: the amount of time each user took
to complete the task under each condition, and each user’s
preference for the timid vs. the aggressive mode on each
task type (on a 7 point Likert scale where the two ends are
the two choices). We expect the two measures to be correlated:
if an assistance mode is faster on a task, then the users will
also prefer it for that task. We also asked the users additional
questions for each condition, about how helpful the robot was,
how much its motion matched the intended motion, and how
highly they would rate the robot as a teammate.
Covariates. We identified the following confounds: the users’
initial teleoperation skill, their rating of the robot without
assistance, and the learning effect. To control for these, users
went though a training phase, teleoperating the robot without
assistance. This partially eliminated the learning effect and
gave us a baseline for their timing and ratings. We used these
as covariates, together with number of tasks completed at any
point — a measure of prior practice.

B. Goal 2: Prediction based on real teleoperation data

Hypothesis. We test the following hypothesis:
3) On tasks in which the target object is not the closest one

to the original human input configuration, replicating the
situation from Fig.3, the memory-based prediction will
identify the correct goal faster, yielding a higher success
rate despite the simplifying assumptions it makes.

Manipulated Variables. We used the amnesic prediction
during the study for its transparency, which enabled us to
manipulate prediction correctness. We compared amnesic vs.
memory-based prediction on the same data of the users
teleoperating the robot under the different conditions, in a
post-experimental stage. For memory-based prediction, we use
workspace sum squared velocity as the cost C, leading to the
simplification from (9).
Dependent Measures. We took each user trajectory and
applied each of the two prediction methods at every point
along. We measured the percent of time (success rate) across
the trajectory the prediction identified the correct target object.



(a) Hard&Right (b) Hard&Wrong (c) Timid vs. Aggressive (d) Time and Preference Comparison

Fig. 4. From left to right: hard tasks, with the goal at the limit of the reachable area, for both right and wrong prediction, the arbitration functions, and the
results of the study.

V. ANALYSIS AND DISCUSSION

Our first goal with this study was to identify the effect of
different factors on the performance of assistance, and we
do so in the following sections. Our secondary goal was to
analyze two simplistic prediction methods (an amnesic and
a memory-based one) on teleoperation data under different
assistance modes. We discuss our findings in Sec. V-B.

A. Arbitration

Teleoperation Timing. The average time per task was ap-
proximately 28s. We performed a factorial repeated-measures
ANOVA with Bonferroni corrections for multiple comparisons
and a significance threshold of p = 0.05, which resulted in a
good fit of the data (R2 = 0.66). In line with our first hypothe-
sis, we found main effects for all three factors: hard tasks took
22.9s longer than easy ones (F (1, 53) = 18.45, p < .001),
tasks where the policy was wrong took 30.1s longer than when
right (F (1, 53) = 31.88, p < .001), and the aggressive mode
took overall 19.4s longer than the timid (F (1, 53) = 13.2,
p = .001). We found a significant interaction effect between
aggressiveness and correctness, showing that when wrong,
being timid is significantly better than being aggressive. This
is confirmed in Fig.4(d), which compares the means and
standard errors on each task: the timid mode is better on both
Easy&Wrong and Hard&Wrong. The timid mode performed
about the same on Easy&Right, and, as expected, worse on
Hard&Right (the time taken for aggressive is smaller than for
timid for every user). Surprisingly, the interaction effect among
all factors was only marginally significant (F (1, 53) = 2.63,
p = .11). We believe that increasing our user pool would
strengthen this effect.

To conclude based on this regression that the timid mode is
overall better would be misleading, because it would assume
that the robot is wrong in 50% of the tasks (in general,
either by predicting he wrong goal, or by computing a motion
that, for example, collides with an unseen obstacle). Our data
indicates that the aggressive mode is overall more efficient if
the robot is wrong in less than 16% of the cases. However,
efficiency is only part of the story: as the next section points
out, some users are more negatively affected than others by a
wrong robot policy.

User Preferences. Fig.4(d) also shows the users’ preferences
on each task, which indeed correlated to the timing results
(Pearson’s r(30) = .66, p < .001). The outliers were users
with stronger preferences than the time difference would
indicate. For example, some users strongly preferred the timid
mode on Hard&Wrong tasks, despite the time difference not
being as high as with other users. The opposite happened on
Hard&Right tasks, on which some users strongly preferred
the aggressive mode despite a small time difference, com-
menting that they appreciated the precision of the autonomy.
On Easy&Right tasks, the opinions were split and some
users preferred the timid mode despite a slightly longer time,
motivating that they felt more in control of the robot. Despite
the other measures (helpfulness, ranking as a teammate, etc.)
strongly correlating to the preference rating (r(30) > .85,
p < .001), they provided similar interesting nuances. For
example, the users that preferred the aggressive mode on
Easy&Right tasks because they liked having control of the
robot were willing to admit that the aggressive mode was more
helpful. On the other hand, we also encountered users that
preferred the aggressive mode, and even users that followed
the robot’s motion while aggressive, not realizing that they
were not in control and finding the motion of the robot to
match their own very well (i.e. the predicted policy P matched
what they intended, resulting in seamless teleoperation).

Overall, although difference in timing is a good indicator
of the preference, it does not capture a user’s experience
in its entirety. First, some users exaggerate the difference in
preferences. Second, some users prefer the timid mode despite
it being slightly less efficient. Third, assistance shouldn’t just
be quick – it should also be intent-transparent. Our users
commented that “Assistance is good if you can tell that [the
robot] is doing the right thing”.
Detecting “Aggressive and Wrong”. Being aggressive and
wrong results in large penalties in time and user preference.
Fortunately, it is also a state that can easily be identified and
remedied by the user. Because prediction affects the user’s
behavior, when the robot eagerly starts heading towards the
wrong target, the user rapidly attempts to get back control
by moving against the robot’s policy. This, in turn, decreases
the predictor’s confidence, causing the robot to following the
user. This state can be detected early (Fig.6) by comparing the
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Fig. 6. A comparison of the user input trajectories for right vs. wrong. The
graphs show the dot product between the robot’s policy and the robot’s actual
velocity.

user’s trajectory in the right and wrong case, along with the
dot product between the robot’s policy and its actual velocity.

B. Prediction

Results from the Study. A factorial ANOVA on the four ma-
nipulated factors obtained clean fit of the data, with R2 = 0.9.
Confirming our hypothesis, the factor corresponding to the
prediction was significant (F (1, 112) = 1020.95, p < 0.001):
memory-based prediction was significantly better at identify-
ing the correct goal for a longer amount of time along the
trajectory. The assistance being timid also made it significantly
easier for the prediction method to output the correct answer
(F (1, 112) = 7.62, p < 0.01): users are not as precise about
the motion in the aggressive mode, making prediction more
difficult. Fig.5(a) shows the means and standard errors for
the memory-based prediction vs. the amnesic one, for each
assistance type. Fig.5(b) and 5(c) compare the two methods
on one of the trajectories, colored in each case according to
whether the prediction was correct (green spheres) or incorrect
(red spheres). While the amnesic variant only switches to the
correct prediction at the very end, when the user input gets
closer to the correct goal, the memory-based prediction is able
to identify the goal much earlier.

In our study, the target object was always the farther one
(to manipulate prediction correctness, i.e. create situations in
which the robot is wrong until the user’s input gets closer
to the correct goal). However, this is disadvantageous to the
amnesic method: if the target object were the closer one, this
method would usually be 100% accurate. In fact, the amnesic
success should be on average almost 0.5 higher. Neverthe-
less, even with this boost, memory-based remains the out-
performer. Furthermore, prediction becomes more challenging
as the number of goals increases, changing the results above.
A Thought Experiment. Despite the good performance of the
memory-based prediction in the environment configurations
from our experiment, we were also interested in exploring its
limitations. We conducted a thought experiment by taking real
environments and their trajectories from the users, and varying
the location of the non-target object. This exposed a few failure
modes of the workspace length-based prediction.

First, if the goals are collinear with the start, and the user
trajectory deviates from this line, the method is biased towards
the farther goal. We call the “null space effect” of using the

Fig. 7. The user trajectory colored according to the prediction for this
artificially generated environment, the trajectory optimizing configuration
space length in gray, and the one optimizing work space length in dark blue.

same C for each goal: given two goals G1 and G2 s.t. the
optimal trajectory to G2 passes through G1, the two goals get
equal probabilities until G1 along the optimal path:
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When a small deviation arises, it decreases P (G1| . . . )
more, and the method predicts G2. Even humans are often
confused in such situations for example, when interacting in a
crowded room. We move towards someone at the back of the
room in order to speak with them but are often intercepted
along the way by others who predict that social motion
incorrectly.

Second, given the trajectories in our data set, the method is
in some cases incorrectly biased towards the rightmost object.
An example is shown in Fig.7: the trajectory, collected in the
environment from Fig.5, heads towards the artificially added
obstacle and confuses the predictor. This example should be
taken with a grain of salt, because the user would adapt the
trajectory to the new environment. However, the more funda-
mental problem is the incorrect model of human behavior, as
shown by Fig.7.

While the first issue could be addressed with priors that
prefer closer goals in cases where the goals are “aligned”,
the second issue calls for learning a better model of how
users teleoperate. From our experience, their cost function
does not solely depend on lengths or increasing distance
from obstacles: different users develop different strategies for
achieving tasks. We saw some users developing a “move-
one-joint-at-a-time” strategy, a way of dividing the problem.
We saw differences in trajectories stemming from obstacle
avoidance. These are challenges we need to address in order
to improve both goal prediction, as well as prediction of the
intended motion. Furthermore, we did not ask the users to
move in a way that makes their intent clear to the robot. An
interesting future experiment would consist of analyzing how
prediction improves when users are trained to provide more
intent-expressive inputs.
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Fig. 5. A comparison of amnesic vs. memory-based prediction on data from our study.

VI. CONCLUSION

In this work, we presented a principled analysis of assistive
teleoperation. We formalized assistance as policy blending,
unifying prior work and providing common ground for fu-
ture methods and comparisons of assistive teleoperation. We
introduced aggressiveness, prediction correctness and task
difficulty as factors that affect assistance performance and user
preferences, and analyzed their interaction in a user study:
arbitration must take into account the robot’s confidence in
itself (i.e. in the correctness of the predicted policy) and in the
user (i.e. in how easy the task is for the user). The challenges
we identified lie at the base of human-robot collaboration
in general. The robot’s motion must make its intent clear
to the user, reassuring him of the correct prediction. The
user’s input must also make its intent clear to the robot,
simplifying the prediction task. Furthermore, unlike for typical
intent prediction tasks, the robot’s prediction directly affects
the user’s behavior. This gives the learner the opportunity to
improve its predictions by explicitly incorporating the user’s
reaction, and even by taking purposeful information-gathering
actions to disambiguate among its hypotheses.
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