
Copyright

by

Daniel Sundquist Brown

2020

The Dissertation Committee for Daniel Sundquist Brown

certifies that this is the approved version of the following dissertation:

Safe and Efficient Inverse Reinforcement Learning

Committee:

Scott Niekum, Supervisor

Peter Stone

Ufuk Topcu

Anca Dragan

Safe and Efficient Inverse Reinforcement Learning

by

Daniel Sundquist Brown

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

August 2020

For Baby Boopums

Thank you for not coming until after my defense.

Acknowledgments

Completing this dissertation would not have been possible without the help and support

from many people. I would especially like to thank my advisor Scott Niekum for giving

me the flexibility and freedom to pursue my interests and providing much needed support,

useful advice, and quality mentoring along the way. Thank you Scott for helping me see

the big picture and helping me maintain a positive outlook on my research throughout my

PhD. A special thanks also goes to my dissertation committee members, Peter Stone, Ufuk

Topcu, and Anca Dragan, for their great feedback and advice.

During graduate school I had the pleasure of getting to know and working with

many other students at UT. I would especially like to thank the members of the Personal

Autonomous Robotics Lab and the other graduate students at UT for their friendship, sup-

port, collaboration, and many great discussions. A special thanks goes to Caleb Chuck,

Russell Coleman, Yuchen Cui, Ishan Durugkar, Taylor Kessler Faulkner, Wonjoon Goo,

Prasoon Goyal, Alex Gutierrez, Josiah Hanna, Ajinkya Jain, Rudi Lioutikov, Akanksha

Saran, Jordan Schneider, and Faraz Torabi. I have also had great collaborations outside of

UT and I would like to especially thank Prabhat Nagarajan and Marek Petrik.

Before beginning my PhD I was fortunate to work as a research scientist at the Air

Force Research Lab’s Information Directorate. I learned much during my time at AFRL and

I greatly appreciate the valuable research experiences I had that prepared me for completing

my PhD. Thank you Matt Berger, Nate Gemelli, Oliver Hennigh, Jeff Hudack, Ainoghena

Igetei, Steve Loscalzo, Lee Seversky, Ryan Turner, and Bob Wright for your camaraderie

v

and mentorship. Before working at AFRL I had the pleasure of attending Brigham Young

University and completing a master’s degree with Mike Goodrich and an undergraduate

thesis with Sean Warnick. Thank you Sean for introducing me to research and the interest-

ing world of financial risk analysis. Thank you Mike for introducing me to human-robot

interaction and for your invaluable mentorship that helped me gain confidence as a young

researcher. While I couldn’t have guessed it at the time, my research experiences as an un-

dergraduate and graduate student were both beneficial to completing my PhD: much of my

dissertation applies financial risk metrics to the study of imitation learning, a core problem

in human-robot interaction.

Finally, the real reason I was able to finish this dissertation is because of my won-

derful family. Thank you Mom and Dad for always providing support and encouraging me

throughout my education. Thank you Ryan, Jared, Nicole, Michelle, Carson, Spencer, Lau-

ren, Kylie, and Brycen for being the best siblings ever. Thank you Sarah for your loving

support and encouragement and the many sacrifices you made to help me during my PhD.

Thank you William and Emma for the fun play dates we had in Austin that gave me much

needed breaks from research as well as time to step away from my computer and think

about my research more broadly and creatively.

DANIEL SUNDQUIST BROWN

The University of Texas at Austin

August 2020

vi

Safe and Efficient Inverse Reinforcement Learning

by

Daniel Sundquist Brown, Ph.D.

The University of Texas at Austin, 2020

Supervisor: Scott Niekum

As robots and other autonomous agents enter our homes, hospitals, schools, and work-

places, it is important that they can safely and efficiently infer and adapt to human pref-

erences. One common way to teach human preferences to robots and other autonomous

agents is through imitation learning, where an agent learns by observing demonstrations of

how to perform a task. Imitation learning has the potential to allow everyday users the abil-

ity to program and adapt the behavior of an autonomous agent simply by showing it how

to perform a task. However, for imitation learning algorithms to be deployed in complex,

possibly high-risk situations, it is important that these algorithms can provide practical,

high-confidence bounds on performance.

If a robot is to reason effectively about its performance when learning from demon-

strations, it needs to infer the goals and intent of the demonstrator. One common way to

vii

infer goals and intentions from demonstrations is through inverse reinforcement learning,

where the goal is to infer the reward function of the demonstrator. However, most inverse

reinforcement learning algorithms have limited real-world applicability because they do not

provide practical assessments of safety, often require large numbers of demonstrations, and

have high computational costs. This dissertation addresses these shortcomings by devel-

oping efficient inverse reinforcement learning algorithms that allow autonomous agents to

provide high-confidence bounds on performance when learning from demonstrations.

We first formalize the problem of safe imitation learning via high-confidence per-

formance bounds. We then present a general Bayesian framework for computing tight high-

confidence performance bounds on any evaluation policy when the true reward function is

unknown and must be inferred from demonstrations. The method we propose is sample-

efficient, but is computationally inefficient for learning in complex, high-dimensional tasks.

To address this computational inefficiency, we first introduce a computationally efficient al-

gorithm for reward learning via ranked demonstrations. We show that preference rankings

over demonstrations enable reward inference algorithms to scale to high-dimensional imita-

tion learning tasks such as learning to play Atari games with no access to the score, but with

access to a few suboptimal, ranked demonstrations. We also show that preference rankings

allow for better-than-demonstrator performance and that rankings over demonstrations can

sometimes be obtained automatically, without requiring access to explicit preference labels.

Furthermore, we leverage the computational efficiency of reward learning via preferences

to scale high-confidence policy evaluation to complex imitation learning settings with high-

dimensional, visual demonstrations.

While our work on high-confidence policy evaluation gives efficient bounds on the

performance of an imitation learning agent, it does not answer the question of what an

agent should do to learn a policy that is safe with high probability. The final contributions

of this dissertation are two different approaches for robust policy optimization for imitation

learning. We first derive an algorithm that directly optimizes a policy to balance risk and

viii

expected return under a reward function posterior given a fixed set of demonstrations. Sec-

ond, we address the problem of robust policy optimization via active learning. We present a

sample-efficient, active inverse reinforcement learning algorithm that generates risk-aware

queries that enable robust policy improvement via repeated interactions with a demonstra-

tor.

ix

Contents

Acknowledgments v

Abstract vii

List of Tables xvii

List of Figures xxiii

Chapter 1 Introduction 1

1.1 Contributions . 6

Chapter 2 Background and Related Work 8

2.1 Reinforcement Learning . 8

2.2 Imitation Learning . 9

2.2.1 Behavioral Cloning . 9

2.2.2 Inverse Reinforcement Learning 10

2.2.3 Learning from Observation . 11

2.2.4 Better-than-Demonstrator Imitation Learning 11

2.3 Safety . 13

2.3.1 Reinforcement Learning . 14

2.3.2 Safe Imitation Learning . 15

2.3.3 High-Confidence Performance Bounds for Imitation Learning . . . 16

x

2.4 Learning from Human Feedback . 17

2.4.1 Interactive Reinforcement Learning 17

2.4.2 Active Inverse Reinforcement Learning 18

2.4.3 Preference-Based Learning . 19

Chapter 3 Notation and Preliminaries 21

3.1 Markov Decision Processes . 21

3.2 Linear Reward Functions . 22

3.3 Bayesian Inverse Reinforcement Learning 22

Chapter 4 High-Confidence Performance Bounds for Safe Imitation Learning 25

4.1 High-Confidence Policy Evaluation for Imitation Learning 27

4.2 High-Confidence Bounds on Policy Loss 28

4.3 Worst-Case Bound . 29

4.4 EVD Value-at-Risk Bound . 31

4.5 Empirical Results . 35

4.5.1 Infinite Horizon Grid Navigation 36

4.5.2 Noisy Demonstrations . 37

4.5.3 Sensitivity to Evaluation Policy 39

4.5.4 High-Confidence Policy Selection for a Simulated Driving Task . . 42

4.5.5 High-confidence policy improvement 44

4.6 Summary . 45

Chapter 5 Computationally Efficient Reward Learning from Suboptimal Demon-

strations 48

5.1 Better-than-Demonstrator Performance: Theory 50

5.1.1 Extrapolating Beyond a Demonstrator 51

5.1.2 Extrapolation via ranked demonstrations 52

5.2 Trajectory-Ranked Reward Extrapolation 55

xi

5.2.1 Problem Definition . 57

5.2.2 Algorithm . 58

5.2.3 MuJoCo Experiments and Results 59

5.2.4 Atari Experiments and Results . 63

5.2.5 Robustness to Noisy Rankings . 70

5.2.6 Discussion . 72

5.3 Ranking-Based Reward Extrapolation Without Rankings 73

5.3.1 Learning from a Learner . 73

5.3.2 Disturbance-Based Reward Extrapolation 77

5.3.3 Algorithm . 80

5.3.4 Experimental Results . 81

5.4 Summary . 88

Chapter 6 Safe Imitation Learning via Fast Bayesian Reward Inference from

Preferences 91

6.1 Bayesian Reward Extrapolation . 93

6.2 Optimizations . 96

6.3 Pre-Training Reward Function Features 98

6.4 HCPE-IL via Bayesian REX . 100

6.4.1 High-Confidence Policy Evaluation for Imitation Learning 100

6.4.2 Computation Details . 101

6.5 Experimental Comparison of Bayesian IRL vs. Bayesian REX 102

6.5.1 Ranked Suboptimal vs. Optimal Demonstrations 103

6.5.2 Only Ranked Suboptimal Demonstrations 104

6.5.3 Only Optimal Demonstrations . 105

6.6 Visual Imitation Learning Results . 106

6.7 High-Confidence Policy Evaluation Results 107

6.8 High-Confidence Performance Bounds on Human Trajectories 111

xii

6.8.1 Beam Rider . 111

6.8.2 Space Invaders . 112

6.8.3 Enduro . 113

6.9 Summary . 114

Chapter 7 Bayesian Robust Optimization for Imitation Learning 116

7.1 Preliminaries . 119

7.1.1 Markov Decision Processes . 119

7.1.2 Linear Reward Functions . 120

7.1.3 Distributions over Reward Functions 120

7.1.4 Risk Metrics . 120

7.2 Balancing Risk and Return for Safe Imitation Learning 122

7.2.1 Balancing Robustness and Expected Return 123

7.2.2 Measures of Robustness . 124

7.3 Experiments . 125

7.3.1 Zero-shot Robust Policy Optimization 125

7.3.2 Ambiguous Demonstrations . 127

7.4 Summary . 132

Chapter 8 Risk-Aware Active Inverse Reinforcement Learning 133

8.1 Methodology . 134

8.1.1 Bounding the Performance of a Policy Given Demonstrations . . . 135

8.1.2 Risk-Aware Active Queries . 136

8.1.3 Example . 138

8.2 Experiments . 140

8.2.1 Gridworld Active Action Queries 140

8.2.2 Gridworld Active Critique Queries 141

8.2.3 Active Imitation Learning for a 2D Highway Driving Task 142

xiii

8.2.4 Robot Table Setting Task . 142

8.3 Choosing an Intuitive Stopping Condition 145

8.4 Summary . 147

Chapter 9 Future Work 148

9.1 High-Confidence Policy Evaluation for Imitation Learning 148

9.2 Computationally Efficient Reward Learning from Suboptimal Demonstrations150

9.3 Safe Imitation Learning via Fast Bayesian Reward Inference from Preferences152

9.4 Bayesian Robust Optimization for Imitation Learning 152

9.5 Risk-Aware Active Inverse Reinforcement Learning 153

9.6 Additional Frontiers . 153

Chapter 10 Conclusion 155

10.1 Contributions . 157

Appendix A Supplementary Materials for High-Confidence Performance Bounds

for Imitation Learning 159

A.1 Code . 159

A.2 L1-norm MCMC Walk . 159

A.2.1 Uniform sampling from L1-unit ball 159

A.2.2 MCMC implementation details 162

Appendix B Theory and Proofs for Computational Efficient Inverse Reinforce-

ment Learning from Suboptimal Demonstrations 164

B.1 Extrapolating Beyond a Demonstrator . 164

B.2 Extrapolation via ranked demonstrations 167

B.3 Ranking Theory . 169

B.4 Uncertainty Reduction for Random Halfspaces 171

B.5 Noise Injection Theory . 176

xiv

B.5.1 Optimal policy . 176

B.5.2 Suboptimal cloned policy . 177

B.5.3 Compounding errors . 179

Appendix C Supplementary Materials for Trajectory-Ranked Reward Extrapo-

lation 180

C.1 Code and Videos . 180

C.2 T-REX Results on the MuJoCo Domain 180

C.2.1 Policy visualization . 180

C.3 Behavioral Cloning from Observation . 181

C.4 Atari reward learning details . 182

C.5 Comparison to active reward learning . 183

C.6 Human Demonstrations and Rankings . 184

C.6.1 Human demonstrations . 184

C.7 Atari Reward Visualizations . 184

Appendix D Supplementary Materials for Disturbance-Based Reward Extrapo-

lation 195

D.1 D-REX Details . 195

D.1.1 Demonstrations . 195

D.1.2 Behavioral cloning . 196

D.1.3 Synthetic rankings . 196

D.1.4 Noise Degradation . 197

D.1.5 Reward function training . 199

D.1.6 Policy optimization . 200

D.2 GAIL . 201

D.3 D-REX Reward Extrapolation and Attention Heatmaps 201

xv

Appendix E Bayesian REX Supplementary Materials 210

E.1 MCMC Details . 210

E.2 Pre-training Latent Reward Features . 211

E.2.1 Training specifics . 215

E.2.2 Visualizations of Learned Features 215

E.3 Imitation Learning Ablations for Reward Function Feature Pre-Training . . 216

E.4 Suboptimal Demonstration Details . 217

E.5 Reinforcement Learning Details . 218

E.6 High-Confidence Policy Performance Bounds 218

E.6.1 Policy Evaluation Details . 218

E.6.2 Evaluation Policies . 219

Appendix F Supplementary Materials for Bayesian Robust Optimization for Im-

itation Learning 223

F.1 Linear Programming Details . 223

F.2 Bayesian IRL Details . 224

F.3 Maximum Entropy IRL Detais . 224

F.4 LPAL Details . 225

Appendix G Supplementary Materials for Risk-Aware Active IRL 228

G.1 Comparing ActiveVaR and Random . 228

Bibliography 230

List of Tables

4.1 Comparison of 95% confidence α-VaR bounds with a 95% confidence Ho-

effding bound (Syed and Schapire, 2007). Both bounds use the Projection

algorithm (Abbeel and Ng, 2004) to obtain the evaluation policy. Results

are averaged over 200 random navigation tasks. 42

4.2 Policy rankings based on upper bounds on policy loss for three different

evaluation policies in the driving domain when given a single demonstration

of safe driving. Results are averaged over 20 replicates. 44

5.1 Comparison of T-REX with a state-of-the-art behavioral cloning algorithm

(BCO) (Torabi et al., 2018a) and state-of-the-art IRL algorithm (GAIL) (Ho

and Ermon, 2016). Performance is evaluated on the ground-truth reward.

T-REX achieves better-than-demonstrator performance on 7 out of 8 games

and surpasses the BCO and GAIL baselines on 7 out of 8 games. Results

are the best average performance over three random seeds with 30 trials per

seed. 65

5.2 T-REX performance with real novice human demonstrations collected from

the Atari Grand Challenge Dataset Kurin et al. (2017). Results are the best

average performance over three random seeds with 30 trials per seed. 70

xvii

5.3 Evaluation of T-REX on human rankings collected using Amazon Mechani-

cal Turk. Results are the best average performance over three random seeds

with 30 trials per seed. 72

5.4 The results on three robotic locomotion tasks when given suboptimal demon-

strations. Performance is measured as the total distance traveled, as mea-

sured by the final x-position of the robot’s body. For each stage and task,

the best performance given suboptimal demonstrations is shown on the top

row, and the best achievable performance (i.e. performance achieved by a

PPO agent) under the ground-truth reward is shown on the bottom row. The

mean and standard deviation are based on 25 trials (obtained by running

PPO five times and for each run of PPO performing five policy rollouts).

The first row of T-REX results show the performance when demonstrations

are ranked using the ground-truth returns. The second row of T-REX shows

results for learning from observing a learning agent (time-ordered). The

demonstrations are ranked based on the timestamp when they were pro-

duced by the PPO algorithm learning to perform the task. 77

5.5 Comparison of the performance of D-REX with behavioral cloning (BC),

GAIL (Ho and Ermon, 2016), and the demonstrator’s performance. Results

are the best average ground-truth returns over three random seeds with 20

trials per seed. Bold denotes performance that is better than the best demon-

stration. 86

5.6 Comparison of the average and worst-case performance of D-REX with

respect to the demonstrator. Results are the worst-case performance cor-

responding to the results shown in Table 1 in the main text. Bold denotes

worst-case performance that is better than the worst-case demonstration. . . 87

xviii

5.7 Comparison of D-REX with other imitation learning approaches. BC is

behavioral cloning. Live-long assigns every observation a +1 reward and is

run using an experimental setup identical to D-REX. 88

6.1 Self-supervised learning objectives used to pre-train φ(s). 100

6.2 Ranked Suboptimal vs. Optimal Demos: Average policy loss over 100 ran-

dom 6x6 grid worlds with four binary features. 104

6.3 Ranked Suboptimal Demos: Average policy loss for Bayesian IRL versus

Bayesian REX over 100 random 6x6 grid worlds with 4 binary features. . . 104

6.4 Ranked Suboptimal Demos: Average policy loss for Bayesian REX and

Bayesian IRL using the method proposed by (Cui and Niekum, 2018)*

which makes use of good and bad demonstrations. We used the top x%

of the ranked demos as good and bottom x% as bad. Results are averaged

over 100 random 6x6 grid worlds with four binary features. 105

6.5 Ranked Suboptimal Demos: Average policy loss for Bayesian IRL versus

Bayesian REX over 100 random 6x6 grid worlds with four binary features. 105

6.6 Ground-truth average scores when optimizing the mean and MAP rewards

found using Bayesian REX. We also compare against the performance of

T-REX (Brown et al., 2019b) and GAIL (Ho and Ermon, 2016). Bayesian

REX and T-REX are each given 12 demonstrations with ground-truth pair-

wise preferences. GAIL cannot learn from preferences so it is given 10

demonstrations comparable to the best demonstration given to the other al-

gorithms. The average performance for each IRL algorithm is the average

over 30 rollouts. 107

xix

6.7 Beam Rider policy evaluation bounds compared with ground-truth game

scores. Policies A-D correspond to evaluation policies of varying quality

obtained by checkpointing an RL agent during training. The No-Op policy

seeks to hack the learned reward by always playing the no-op action, re-

sulting in very long trajectories with high mean predicted performance but

a very negative 95%-confidence (0.05-VaR) lower bound on expected return. 108

6.8 Breakout policy evaluation bounds compared with ground-truth game scores.

Top Half: No-Op never releases the ball, resulting in high mean predicted

performance but a low 95%-confidence bound (0.05-VaR). The MAP pol-

icy has even higher risk but also high expected return. Bottom Half: After

rerunning MCMC with a ranked trajectory from both the MAP and No-Op

policies, the posterior distribution matches the true preferences. 109

6.9 Beamrider policy evaluation for an RL policy trained on ground truth re-

ward, an imitation learning policy, and a reward hacking policy that exploits

a game hack to live for a long time by moving quickly back and forth. . . . 111

6.10 Beam Rider evaluation of a variety of human demonstrations. 112

6.11 Space Invaders evaluation of a variety of human demonstrations. 113

6.12 Space Invaders evaluation of a variety of human demonstrations when con-

sidering only the first 6000 steps. 113

6.13 Enduro evaluation of a variety of human demonstrations. 114

xx

C.1 Best demonstrations and average performance of learned policies for T-

REX (ours) and DQfD with active preference learning (DQfD+A) (see

Ibarz et al. (2018) Appendix A.2 and G). Results for T-REX are the best

performance over 3 random seeds averaged over 30 trials. Results that ex-

ceed the best demonstration are marked with an asterisk (*). Note that

T-REX requires at most only 66 pair-wise preference labels (n(n − 1)/2

for n = 12 demonstrations), whereas DQfD+A uses between 4–7 demon-

strations along with 3.4K labels queried during policy learning. DQfD+A

requires action labels on the demonstrations, whereas T-REX learns from

observation. 186

E.1 Self-supervised learning objectives used to pre-train φ(s). 212

E.2 Comparison of different reward feature pre-training schemes. Ground-truth

average returns for several Atari games when optimizing the mean and

MAP rewards found using Bayesian REX. Each algorithm is given the same

12 demonstrations with ground-truth pairwise preferences. The average

performance for each IRL algorithm is the average over 30 rollouts. 217

E.3 Policy evaluation statistics for Enduro over the return distribution from the

learned posterior P (R|D,P) compared with the ground truth returns us-

ing game scores. Policies A-D correspond to checkpoints of an RL policy

partially trained on the ground-truth reward function and correspond to 25,

325, 800, and 1450 training updates to PPO. No-Op that always plays the

no-op action, resulting in high mean predicted performance but low 95%-

confidence return (0.05-VaR). 220

xxi

E.4 Policy evaluation statistics for Seaquest over the return distribution from

the learned posterior P (R|D,P) compared with the ground truth returns

using game scores. Policies A-D correspond to checkpoints of an RL policy

partially trained on the ground-truth reward function and correspond to 25,

325, 800, and 1450 training updates to PPO. No-Op always plays the no-op

action, resulting in high mean predicted performance but low 0.05-quantile

return (0.05-VaR). Results predict that No-Op is much better than it really

is. However, simply adding a single ranked rollout from the No-Op policy

and rerunning MCMC results in correct relative rankings with respect to the

No-Op policy . 221

E.5 Policy evaluation statistics for Space Invaders over the return distribution

from the learned posterior P (R|D,P) compared with the ground truth re-

turns using game scores. Policies A-D correspond to checkpoints of an RL

policy partially trained on the ground-truth reward function and correspond

to 25, 325, 800, and 1450 training updates to PPO. The mean and MAP

policies are the results of PPO using the mean and MAP rewards, respec-

tively. No-Op that always plays the no-op action, resulting in high mean

predicted performance but low 0.05-quantile return (0.05-VaR). 222

xxii

List of Figures

4.1 (a) Example of random grid world navigation task with colors representing

random features and initial states denoted by stars. (b) Snapshot of driving

simulation. Agent must learn to safely drive the blue car through traffic. . . 36

4.2 Results for infinite horizon grid navigation task. Accuracy and average error

for bounds based on feature counts (WFCB) compared with 99, 95, and 90

percentiles for the VaR bound. Accuracy and averages are computed over

200 replicates . 38

4.3 Sensitivity to the confidence β for noisy demonstrations in the grid naviga-

tion task. The demonstrator has a 20% chance of taking a random action in

each state. Accuracy and average error for bounds based on feature counts

(WFCB) compared with 0.95-VaR bound. Accuracy and averages are com-

puted over 200 replicates. 39

4.4 Sensitivity for bounding the performance of a range of evaluation policies

given 1 optimal demonstration. Results are averaged over 200 grid naviga-

tion task with no terminal states. Accuracy and average error for WFCB

bounds versus bounds on the 0.99-, 0.95-, and 0.90-VaR. 40

xxiii

4.5 Sensitivity for bounding the performance of a range of evaluation policies

given 9 optimal demonstrations. Results are averaged over 200 grid navi-

gation task with no terminal states. Accuracy and average error for WFCB

bounds versus bounds on the 0.99-, 0.95-, and 0.90-VaR. 41

4.6 Given one demonstration, optimizing the VaR bound results in a risk-aware

policy that hedges against the red cells being much worse than the white.

The maximum likelihood reward assumes that red is only marginally worse

than white. 45

5.1 T-REX takes a sequence of ranked demonstrations and learns a reward func-

tion from these rankings that allows policy improvement over the demon-

strator via reinforcement learning. 56

5.2 Imitation learning performance for three robotic locomotion tasks when

given suboptimal demonstrations. Performance is measured as the total

distance traveled, as measured by the final x-position of the robot’s body.

For each stage and task, the best performance given suboptimal demonstra-

tions is shown for T-REX (ours), BCO (Torabi et al., 2018a), and GAIL

(Ho and Ermon, 2016). The dashed line shows the performance of the best

demonstration. 62

5.3 Extrapolation plots for T-REX on MuJoCo Stage 1 demonstrations. Red

points correspond to demonstrations and blue points correspond to trajecto-

ries not given as demonstrations. The solid line represents the performance

range of the demonstrator, and the dashed line represents extrapolation be-

yond the demonstrator’s performance. The x-axis is the ground-truth return

and the y-axis is the predicted return from our learned reward function.

Predicted returns are normalized to have the same scale as the ground-truth

returns. 63

xxiv

5.4 Extrapolation plots for Atari games. We compare ground truth returns over

demonstrations to the predicted returns using T-REX (normalized to be in

the same range as the ground truth returns). The black solid line represents

the performance range of the demonstrator. The green dashed line repre-

sents extrapolation beyond the range of the demonstrator’s performance. . . 67

5.5 Maximum and minimum predicted observations and corresponding atten-

tion maps for Beam Rider. The observation with the maximum predicted

reward shows successfully destroying an enemy ship, with the network pay-

ing attention to the oncoming enemy ships and the shot that was fired to

destroy the enemy ship. The observation with minimum predicted reward

shows an enemy shot that destroys the player’s ship and causes the player

to lose a life. The network attends most strongly to the enemy ships but

also to the incoming shot. 68

5.6 Maximum and minimum predicted observations and corresponding atten-

tion maps for Space Invaders. The observation with maximum predicted

reward shows an observation where all the aliens have been successfully

destroyed and the protective barriers are still intact. Note that the agent

never observed a demonstration that successfully destroyed all the aliens.

The attention map shows that the learned reward function is focused on the

barriers, but does not attend to the location of the controlled ship. The ob-

servation with minimum predicted reward shows the very start of a game

with all aliens still alive. The network attends to the aliens and barriers,

with higher weight on the aliens and barrier closest to the space ship. 69

xxv

5.7 The performance of T-REX for different amounts of pairwise ranking noise

in the Hopper domain. T-REX shows graceful degradation as ranking noise

increases. The reward function is trained on stage-1 Hopper demonstra-

tions. The graph shows the mean across nine trials and 95% confidence

interval. 71

5.8 T-REX results with time-based rankings in the Hopper domain. 76

5.9 D-REX high-level approach: given a suboptimal demonstration (a), we

run behavioral cloning to approximate the demonstrator’s policy. By pro-

gressively adding more noise to this cloned policy ((b) and (c)), we are able

to automatically synthesize a preference ranking: (a) � (b) � (c). Using

this ranking, we learn a reward function (d) which is then optimized using

reinforcement learning to obtain a policy (e) that performs better than the

demonstrator. 79

5.10 Examples of the degradation in performance of an imitation policy learned

via behavioral cloning as more noise is injected into the policy. Behavioral

cloning is done on a 1,000-length trajectory (MuJoCo tasks) or 10 demon-

strations (Atari games). Plots show mean and standard deviations over 5

rollouts (MuJoCo tasks) or 20 rollouts (Atari games). 83

5.11 Extrapolation plots for a selection of MuJoCo and Atari tasks (see the ap-

pendix for more plots). Blue dots represent synthetic demonstrations gener-

ated via behavioral cloning with different amounts of noise injection. Red

dots represent actual demonstrations, and green dots represent additional

trajectories not seen during training. We compare ground truth returns over

demonstrations to the predicted returns from D-REX (normalized to be in

the same range as the ground truth returns). 84

xxvi

5.12 D-REX minimum predicted observation and corresponding attention heatmap

for Seaquest across a held-out set of 15 demonstrations. The observation

with minimum predicted reward shows the submarine one frame before it

is hit and destroyed by an enemy shark. This is an example of how the

network has learned a shaped reward that helps it play the game better than

the demonstrator. The network has learned to give most attention to nearby

enemies and to the controlled submarine. 85

6.1 Bayesian Reward Extrapolation uses ranked demonstrations to pre-train a

low-dimensional state feature embedding φ(s) via self-supervised losses.

After pre-training, the latent embedding function φ(s) is frozen and the

reward function is represented as a linear combination of the learned fea-

tures: R(s) = wTφ(s). MCMC proposal evaluations are computed using an

efficient pairwise ranking likelihood that gives the likelihood of the prefer-

ences P over demonstrations D, given a proposal w. By pre-computing the

embeddings of the ranked demonstrations, Φτi , MCMC sampling is highly

efficient—it does not require access to an MDP solver or data collection

during inference. 95

6.2 Diagram of the network architecture used when training feature encoding

φ(s) with self-supervised and T-REX losses. Yellow denotes actions, blue

denotes feature encodings sampled from elsewhere in a demonstration tra-

jectory, and green denotes random samples for the variational autoencoder. . 101

7.1 VaRα measures the (1− α)-quantile worst-case outcome in a distribution.

CVaRα measures the expectation given that we only consider values less

than the VaRα. 121

7.2 Machine Replacement MDP . 126

xxvii

7.3 Risk-sensitive (λ ∈ [0, 1)) and risk-neutral (λ = 1) policies for the machine

replacement problem. Varying λ results in a family of solutions that trade-

off conditional value at risk and return. The risk-neutral policy has heavy

tails, while BROIL produces risk-sensitive policies that trade-off a small

decrease in expected return for a large increase in robustness (CVaR). . . . 127

7.4 When demonstrations BROIL results in a family of solutions that balance

return and risk based on the value of λ. (a) Ambiguous demonstration that

does not convey enough information to determine how undesireable the red

states are. (b-c) MaxEnt IRL (Ziebart et al., 2008) and LPAL (Syed et al.,

2008) results in stochastic policies where size of arrow reprents probability.

(d) The robust policy with λ = 0 balances the goodness and badness of red

and prefers taking a shortcut. (e-g) The regret policy avoids red for small

λ. (h) The optimal policy for the mean reward (λ = 1) takes a short cut

through red cells. 130

7.5 Sorted return distributions over the posterior for the BROIL Robust and

Baseline Regret policies compared to the return distributions of the demon-

stration, MaxEnt IRL (Ziebart et al., 2008), LPAL (Syed et al., 2008). The

robust policy attempts to maximize worst-case performance over the pos-

terior. The baseline regret also seeks to maximize worst-case performance

but relative to the demonstration. 131

xxviii

8.1 Comparison of active action queries based on performance loss risk or ac-

tion entropy. The example gridworld has four different unknown features

denoted by the yellow, green, white, and blue colors of the cells. White

states are legal initial states. AS is the active learning algorithm proposed

by Lopes et al. (Lopes et al., 2009) and activeVaR is our proposed active

action query algorithm. The first two active queries proposed by each algo-

rithm are annotated on the heatmaps of VaR and entropy values after each

iteration. For heatmaps, all values are normalized from 0 to 1. 139

8.2 A comparison of different active action query strategies. ActiveVar (ours)

outperforms action queries chosen at random as well as action queries cho-

sen based on action entropy (AS) as proposed by Lopes et al. (2009). Re-

sults show averaged policy losses in 8×8 gridworlds with 48 features. . . . 140

8.3 Active critique queries in 8×8 gridworlds with 48 features. 142

8.4 Active action queries in a 2D highway driving task after different numbers of initial

human demonstrations. Initial states are randomly sampled and evaluated; high

risk states are selected as active action queries. 143

8.5 Setting the table task. (a) Robot actively requests demonstration learning

preferences for (a) placing a spoon in the bowl and (b) placing the flower

vase in the center of the table. 144

8.6 Results for learning to place a flower vase and learning to place a spoon

on a cluttered table. Active queries in (a) and (c) result in lower error than

random queries. The 0.95-VaR placement error bound shown in (b) and

(d) provides an upper bound on the actual maximum placement error. All

results are averaged from 100 trials with 0.5 standard deviation error bars.

Placement error is calculated using 200 random test configurations. 146

xxix

C.1 HalfCheetah policy visualization. For each subplot, (top) is the best given

demonstration policy in a stage, and (bottom) is the trained policy with a

T-REX reward function. 181

C.2 Maximum and minimum predicted observations and corresponding atten-

tion maps for Beam Rider. The observation with the maximum predicted

reward shows successfully destroying an enemy ship, with the network pay-

ing attention to the oncoming enemy ships and the shot that was fired to

destroy the enemy ship. The observation with minimum predicted reward

shows an enemy shot that destroys the player’s ship and causes the player

to lose a life. The network attends most strongly to the enemy ships but

also to the incoming shot. 187

C.3 Maximum and minimum predicted observations and corresponding atten-

tion maps for Breakout. The observation with maximum predicted reward

shows many of the bricks destroyed with the ball on its way to hit another

brick. The network has learned to put most of the reward weight on the re-

maining bricks with some attention on the ball and paddle. The observation

with minimum predicted reward is an observation where none of the bricks

have been destroyed. The network attention is focused on the bottom layers

of bricks. 188

C.4 Maximum and minimum predicted observations and corresponding atten-

tion maps for Enduro. The observation with maximum predicted reward

shows the car passing to the right of another car. The network has learned

to put attention on the controlled car as well as the sides of the road with

some attention on the car being passed and on the odometer. The obser-

vation with minimum predicted reward shows the controlled car falling be-

hind other racers, with attention on the other cars, the odometer, and the

controlled car. 189

xxx

C.5 Maximum and minimum predicted observations and corresponding atten-

tion maps for Hero. The observation with maximum predicted reward is

difficult to interpret, but shows the network attending to the controllable

character and the shape of the surrounding maze. The observation with

minimum predicted reward shows the agent setting off a bomb that kills the

main character rather than the wall. The learned reward function attends to

the controllable character, the explosion and the wall that was not destroyed. 190

C.6 Maximum and minimum predicted observations and corresponding atten-

tion maps for Pong. The network mainly attends to the ball, with some

attention on the paddles. 191

C.7 Maximum and minimum predicted observations and corresponding atten-

tion maps for Q*bert. The observation for the maximum predicted reward

shows an observation from the second level of the game where stairs change

color from yellow to blue. The observation for the minimum predicted re-

ward is less interpretable. The network attention is focused on the different

stairs, but it is difficult to attribute any semantics to the attention maps. . . . 192

C.8 Maximum and minimum predicted observations and corresponding atten-

tion maps for Seaquest. The observation with maximum predicted reward

shows the submarine in a relatively safe area with no immediate threats.

The observation with minimum predicted reward shows an enemy that is

about to hit the submarine—the submarine fires a shot, but misses. The at-

tention maps show that the network focuses on the nearby enemies and also

on the controlled submarine. 193

xxxi

C.9 Maximum and minimum predicted observations and corresponding atten-

tion maps for Space Invaders. The observation with maximum predicted

reward shows an observation where all the aliens have been successfully

destroyed and the protective barriers are still intact. Note that the agent

never observed a demonstration that successfully destroyed all the aliens.

The attention map shows that the learned reward function is focused on the

barriers, but does not attend to the location of the controlled ship. The ob-

servation with minimum predicted reward shows the very start of a game

with all aliens still alive. The network attends to the aliens and barriers,

with higher weight on the aliens and barrier closest to the space ship. 194

D.1 The performance degradation of an imitation policy learned via behavioral

cloning as the probability of taking a random action increases. Behavioral

cloning is done on 10 demonstrations. Plots show mean and standard devi-

ations over 20 rollouts per noise level. 198

D.2 Extrapolation plots for Atari games. Blue dots represent synthetic demon-

strations generated via behavioral cloning with different amounts of noise

injection. Red dots represent actual demonstrations, and green dots repre-

sent additional trajectories not seen during training. We compare ground

truth returns over demonstrations to the predicted returns using D-REX

(normalized to be in the same range as the ground truth returns). 202

D.3 D-REX maximum and minimum predicted observations and corresponding

attention maps for Beam Rider across a held-out set of 15 demonstrations.

The attention maps show that the reward is a function of the status of the

controlled ship as well as the enemy ships and missiles. 203

xxxii

D.4 D-REX maximum and minimum predicted observations and corresponding

attention maps for Breakout across a held-out set of 15 demonstrations.

The observation with maximum predicted reward shows many of the bricks

destroyed. The network has learned to put most of the reward weight on

the remaining bricks. The observation with minimum predicted reward is

an observation where none of the bricks have been destroyed. 204

D.5 D-REX maximum and minimum predicted observations and corresponding

attention maps for Enduro across a held-out set of 15 demonstrations. The

observation with maximum predicted reward shows the car passing from

one section of the race track to another as shown by the change in light-

ing. The observation with minimum predicted reward shows the controlled

car falling behind another racer with attention focusing on the car being

controlled as well as the speedometer. 205

D.6 D-REX maximum and minimum predicted observations and corresponding

attention maps for Pong across a held-out set of 15 demonstrations. The

network attends to the ball and paddles along with some artifacts outside

the playing field. The observation with minimum predicted reward shows

the ball being sent back into play after the opponent has scored. 206

D.7 D-REX maximum and minimum predicted observations and correspond-

ing attention maps for Q*bert across a held-out set of 15 demonstrations.

The network attention is focused on the different stairs, but is difficult to

attribute any semantics to the attention maps. 207

xxxiii

D.8 D-REX maximum and minimum predicted observations and corresponding

attention maps for Seaquest across a held-out set of 15 demonstrations. The

observation with maximum predicted reward shows the submarine in a safe

location with no immediate threats. The observation with minimum pre-

dicted reward shows the submarine one frame before it is hit and destroyed

by an enemy shark. This is an example of how the network has learned a

shaped reward that helps it play the game better than the demonstrator. The

network has learned to give most attention to nearby enemies and to the

controlled submarine. 208

D.9 D-REX maximum and minimum predicted observations and corresponding

attention maps for Space Invaders across a held-out set of 15 demonstra-

tions. The observation with maximum predicted reward shows an obser-

vation where most of the aliens have been successfully destroyed and the

protective barriers are still intact. The attention map shows that the learned

reward function is focused on the barriers and aliens, with less attention

to the location of the controlled ship. The observation with minimum pre-

dicted reward shows the very start of a game with all aliens still alive. The

network attends to the aliens and barriers, with higher weight on the aliens

and the barrier closest to the space ship. 209

G.1 Gridworld navigation experiment with a sparse reward function consisting

of a weighted combination of binary reward features. 229

xxxiv

Chapter 1

Introduction

As robots and other autonomous agents enter our homes, hospitals, schools, and work-

places, it is important that they can safely and efficiently infer and adapt to human pref-

erences. In particular, it is critical that robots can be customized by anyone, especially

people who are not robotics engineers. One common way to teach preferences to robots

and other autonomous agents is through imitation learning, where an agent learns by ob-

serving demonstrations of how to perform a task. Imitation learning is important because

it provides both experts and non-experts an intuitive way to program and adapt intelligent

systems by simply demonstrating how they would like a task to be accomplished, without

requiring them to hard code behaviors or write down an explicit reward function for the

system to optimize via reinforcement learning. Furthermore, even if a reward function is

available, it can be difficult to learn a good control policy without the guidance of a few

demonstrations (Zhu et al., 2018; Thananjeyan et al., 2019).

Much work on imitation learning seeks to directly find a policy from demonstrations

via behavioral cloning, where the goal is to learn to mimic the demonstrator (Pomerleau,

1991; Torabi et al., 2018a; Ijspeert et al., 2013; Paraschos et al., 2013); however, while these

methods teach a robot how to act like the demonstrator, they do not allow explicit reason-

ing about why the demonstrator acted in certain ways. Without an understanding of why the

1

demonstrator performed certain actions or visited certain states, an imitation learning policy

may fail to generalize to new situations, which can lead to dangerous behavior in high-risk

domains. Thus, an open and important challenge in imitation learning is to determine the

safety and robustness of a learned policy with respect to the demonstrator’s true, but un-

known intent. One common way to perform intent inference is through inverse reinforce-

ment learning, where the goal is to infer a reward function that models the demonstrator’s

intent (Ng and Russell, 2000; Abbeel and Ng, 2004). Recovering the intent of the demon-

strator by learning a reward function allows a learning agent to explain the behavior of the

demonstrator and also to optimize its own behavior using reinforcement learning (Sutton

and Barto, 1998), in order to successfully imitate the demonstrator. Recovering a reward

function also provides a way to potentially generalize to novel tasks or embodiments (Fu

et al., 2017), allows a learner to potentially improve upon the performance of the demon-

strator (Brown et al., 2019b,a), and provides a way to explicity measure costs and reason

about safety (Garcıa and Fernández, 2015; Brown and Niekum, 2018; Brown et al., 2018,

2020). However, despite the advantages of imitation learning via inverse reinforcement

learning, current inverse reinforcement learning algorithms have limited real-world appli-

cability because they (1) do not provide practical assessments of safety, (2) often require

large numbers of demonstrations, and (3) have high computational costs. This dissertation

will address each of these limitations.

The main focus of this dissertation is achieving safe imitation learning via inverse

reinforcement learning (IRL). In this dissertation we define a safe algorithm as one that pro-

vides a measure of confidence in the correctness of the output of the algorithm. Rather than

giving many demonstrations to an imitation learning agent and then hoping that it learns

a good policy, we want imitation learning algorithms that provide high-confidence bounds

on performance. However, despite the importance and increased interest in safety in ma-

chine learning and robotics (Wyrobek et al., 2008; Amodei et al., 2016; Thomas et al., 2019;

Fisac et al., 2018), safe imitation learning is currently a hard, open problem that is not easily

2

achieved. Indeed, even if a robot could perfectly intuit a demonstrator’s reward function, it

would still face the difficult problem of safe policy optimization via reinforcement learning

(Garcıa and Fernández, 2015).

This dissertation addresses the problem of safe imitation learning by answering the

following question:

How can an autonomous agent efficiently infer the intent of a demonstrator and

provide safety guarantees in the form of high-confidence performance bounds

with respect to the demonstrator’s intent?

This dissertation addresses this question in four stages:

1. We first provide a theoretical framework and sample efficient Bayesian algorithm

for safe imitation learning via high-confidence performance bounds. However, while

our proposed approach is efficient in terms of demonstrations, it is computationally

inefficient when applied to high-dimensional, complex control problems.

2. To address this computational inefficiency, we next provide reward learning methods

that are computationally efficient, scale to high-dimensional control tasks, and can

learn policies that perform better than a suboptimal demonstrator. However, these

algorithms only learn a point-estimate of the reward function, precluding the kind of

robust safety analysis that we desire.

3. To address the problem of safe and efficient imitation learning, we next combine the

results from stage 1 and 2 to develop a Bayesian reward learning algorithm that scales

to complex visual imitation learning tasks.

4. Finally, we move beyond simply bounding the performance of a policy and consider

the problem of robust policy optimization in the imitation learning setting. We present

algorithms for robust policy optimization and active policy improvement via risk-

aware inverse reinforcement learning.

3

In the remainder of the introduction we will discuss these stages in more detail and highlight

the specific contributions of this dissertation.

We first focus on the problem of safe imitation learning (Brown and Niekum, 2017).

In particular, we address the problem of determining high-confidence performance bounds

in the inverse reinforcement learning setting, where the true reward function is unknown and

must be inferred from samples of expert behavior. We propose a novel Bayesian framework

for computing high-confidence probabilistic upper bounds on policy loss when learning

from demonstrations (Brown and Niekum, 2018). These bounds are orders of magnitude

more sample efficient than prior state-of-the-art bounds, allowing autonomous agents the

ability to provide practical high-confidence bounds on generalization performance given

small numbers of demonstrations. However, applying our approach to high-dimensional,

complex control problems is difficult, due to large computational costs involved when per-

forming standard Bayesian reward function inference (Ramachandran and Amir, 2007).

Thus, we next focus on improving the computational efficiency of IRL.

One of the main computational bottlenecks of existing inverse reinforcement learn-

ing algorithms is that they require repeatedly fully or partially solving an MDP. This compu-

tational burden makes it difficult to scale IRL algorithms to high-dimensional problems. To

address this problem, we first propose Trajectory-ranked Reward Extrapolation (T-REX),

an inverse reinforcement learning from observation algorithm that can perform sample- and

computationally-efficient reward learning via ranked demonstrations (Brown et al., 2019b).

T-REX is the first imitation learning algorithm to successfully learn control policies for

playing Atari games without access to the ground-truth rewards and learns a reward purely

from visual observations without any inference-time access to an MDP.

Furthermore, we demonstrate both theoretically and empirically that rankings (or al-

ternatively, pairwise preferences) over demonstrations not only improve the computational

efficiency of IRL, but also allow for better-than-demonstrator performance. To better lever-

age the advantages of IRL from preferences, we propose two methods for automatically

4

obtaining pairwise preferences over demonstrations. The first method uses time-stamps as

weak supervision for automatically ranking trajectories that are produced by a reinforce-

ment learner. This allows an IRL agent to infer a reward function simply by watching

a learner get better at a task. The second method, Disturbance-based Reward Extrapola-

tion (D-REX), first learns a policy from unlabeled demonstrations via supervised learn-

ing, and then uses noise injection to automatically generate sets of ranked demonstrations

(Brown et al., 2019a). D-REX generalizes T-REX to the standard imitation learning setting

where only unlabeled demonstrations are available, while still allowing for better-than-

demonstrator performance.

While T-REX and D-REX allow computational- and sample- efficient inverse rein-

forcement learning, both methods only learn a maximum likelihood estimate of the demon-

strator’s reward function. However, to effectively reason about safety and uncertainty it

is important to have a belief distribution over the demonstrator’s true intent. Thus, one

of the contributions of this thesis is to combine our work on high-confidence performance

bounds for safe imitation learning with our work on efficient IRL from ranked demonstra-

tions to compute high-confidence policy evaluations when learning from high-dimensional

visual demonstrations. We first present a general method for computationally-efficient deep

Bayesian reward inference that leverages preferences over demonstrations to allow efficient

Bayesian inference without requiring an MDP solver in the inner loop (Brown and Niekum,

2019a). Next we utilize self-supervised pre-training of a latent reward function represen-

tation to efficiently generate probabilistic worst-case lower bounds on the performance of

any policy in the imitation learning setting, where we have no access to ground-truth reward

samples (Brown et al., 2020).

Finally, we examine the problem of robust policy optimization and improvement.

We first derive a Bayesian robust optimization approach to imitation learning that directly

optimizes a policy to balance risk and expected return under a reward function posterior

given a fixed set of demonstrations. Next we consider the case where an agent can actively

5

query for more demonstrations. We use our previous results on high-confidence perfor-

mance bounds to develop a state-of-the-art active inverse reinforcement learning algorithm

that reasons about risk when generating queries, allowing for robust policy improvement.

We demonstrate empirically that risk-aware active queries outperform existing active query

techniques while also bounding the generalization error of the learner’s policy at test time.

1.1 Contributions

In summary, this dissertation makes the following contributions:

1. Formalization of safe imitation learning via high-confidence policy evaluation (Chap-

ter 4).

2. A sample efficient algorithm for obtaining high-confidence performance bounds for

imitation learning (Chapter 4).

3. Theoretical results for better-than-demonstrator imitation learning and preference-

based inverse reinforcement learning (Chapter 5).

4. A computationally efficient algorithm for reward learning from suboptimal, ranked

observations that scales to high-dimensional tasks and can outperform the demon-

strator (Chapter 5).

5. Computationally efficient algorithms for learning to extrapolate intention from unla-

beled suboptimal demonstrations (Chapter 5).

6. A deep Bayesian inverse reinforcement learning algorithm that scales to complex,

high-dimensional tasks (Chapter 6).

7. An algorithm for Bayesian robust imitation learning that optimizes a policy to balance

risk and return over a posterior distribution (Chapter 7).

6

8. An algorithm for risk-aware policy improvement via active inverse reinforcement

learning (Chapter 8).

7

Chapter 2

Background and Related Work

2.1 Reinforcement Learning

Reinforcement learning is the problem of learning how to act in an environment, what

actions to take in different situations, in order to maximize a reward signal (Sutton and

Barto, 1998). In Section 3.1, we discuss notation in detail. In this section we simply

describe some of the basic intuitions behind the reinforcement learning problem before

discussing the related problems of imitation learning and inverse reinforcement learning

(see Sutton and Barto (1998) for a thorough introduction to reinforcement learning).

In a reinforcement learning problem, the environment is typically modeled as a

Markov decision process or MDP (Puterman, 2014; Sutton and Barto, 1998) consisting

of states representing the different situations in which the agent may find itself, actions

that denote the options available to the agent in each state, the transition dynamics which

describe how actions affect state, and a reward function that determines the desirability of

taking different actions in different states. For example, for an agent learning to play chess,

the states may represent the different possible positions of the pieces on a chess board and

the available actions in a state would correspond to the legal moves. Alternatively, for a

mobile robot the state could consist of the robot’s GPS coordinates and distances to nearby

8

obstacles as provided by a laser range finder and the actions could be the torques applied to

each wheel.

In reinforcement learning, the learning agent’s goal is to figure out how to best act,

without being told which actions it should take, in order to maximize its long-term, ac-

cumulated reward. The reward function provides a scalar feedback about good and bad

behavior in the environment. The reward function can be a dense signal, for example, in the

mobile robot example above, the robot may be learning to navigate to a goal position and

the reward function could be the negative of the distance to the goal. The reward function

can also be sparse signal, for example, in the chess example above the agent may receive

a reward of +1 for a win, a reward of -1 for a loss, and a reward of 0 otherwise. A rein-

forcement learning agent seeks to maximize its expected cumulative reward by optimizing

a policy. An agent’s policy is a mapping from states of the world to actions and determines

how the agent will behave in different situations and how well the agent will perform under

the reward function.

2.2 Imitation Learning

Imitation learning is the problem of learning a policy from demonstrations of desired be-

havior. These demonstrations typically consist of sequences of states or sequences of state-

action pairs and usually do not include any information about the reward function. Imitation

learning can roughly be divided into techniques that use behavioral cloning and techniques

that use inverse reinforcement learning.

2.2.1 Behavioral Cloning

Behavioral cloning methods (Pomerleau, 1991; Torabi et al., 2018a) seek to solve the imi-

tation learning problem via supervised learning where the goal is to learn a mapping from

states to actions that mimics the demonstrator. While computationally efficient, these meth-

ods can suffer from compounding errors. Methods like DAgger (Ross et al., 2011) seek to

9

avoid this problem by collecting additional state-action pairs from a demonstrator in an

online fashion. While methods like DAgger can result in good performance for many prob-

lems, they only focus on the “how” of imitation learning and cannot explain “why” the

demonstrator entered certain states or took certain actions. We argue in this dissertation

that if autonomous agents are to reason about safety, then they must be able to understand

and explain the demonstrations by inferring the intent and goals of the demonstrator. Infer-

ing intent is typically done via inverse reinforcement learning which is the topic of the next

section.

2.2.2 Inverse Reinforcement Learning

Inverse reinforcement learning (IRL) (Ng and Russell, 2000) seeks to solve the imitation

learning problem by first estimating a reward function that makes the demonstrations appear

optimal, and then running reinforcement learning (Sutton and Barto, 1998) on the inferred

reward function to learn a policy. Classical approaches to IRL repeatedly alternate between

reward estimation and full policy optimization (Abbeel and Ng, 2004; Ramachandran and

Amir, 2007; Ziebart et al., 2008). Bayesian IRL (Ramachandran and Amir, 2007) generates

samples from the posterior distribution of likely reward functions given the demonstra-

tions, whereas other methods seek a single estimate of the reward function that matches

the demonstrator’s state occupancy (Abbeel and Ng, 2004), often while also seeking to

maximize the entropy of the resulting policy (Ziebart et al., 2008).

Modern, deep learning approaches to inverse reinforcement learning are typically

based on a maximum entropy framework (Finn et al., 2016) or an occupancy matching

framework (Ho and Ermon, 2016) and are related to Generative Adversarial Networks

(Goodfellow et al., 2014). These methods scale to complex control problems by iterating

between a few steps of reward learning and a few steps of policy learning. In Section 5.2 we

propose an IRL algorithm which uses preferences labels over an initial set of demonstra-

tions to efficiently learn a reward function from visual observations via supervised learning

10

without requiring fully or partially solving an MDP (Brown et al., 2019b). While exist-

ing deep IRL methods have shown recent success, existing methods typically only return a

point estimate of the reward function, precluding the rich uncertainty and robustness anal-

ysis possible with a full Bayesian approach. In Chapter 6, we use self-supervised deep

learning to scale Bayesian IRL to complex control problems with visual observations, al-

lowing an agent to sample from the full posterior distribution over reward functions given

the demonstrations.

2.2.3 Learning from Observation

Recently there has been a shift towards imitation learning from observations, where the

actions taken by the demonstrator are unobserved. Torabi et al. (2018a) propose a state-of-

the-art model-based approach to perform behavioral cloning from observation. Sermanet

et al. (2018) and Liu et al. (2018) propose methods to learn directly from a large corpus

of videos containing multiple view points of the same task. Yu et al. (2018) and Goo and

Niekum (2019) propose meta-learning-from-observation approaches that can learn from a

single demonstration, but require training on a wide variety of similar tasks. Henderson

et al. (2018) and Torabi et al. (2018b) extend Generative Adversarial Imitation Learning

(Ho and Ermon, 2016) to remove the need for action labels. However, inverse reinforcement

learning methods based on Generative Adversarial Networks (Goodfellow et al., 2014) are

difficult to train and are difficult to scale to high-dimensional imitation learning tasks such

as Atari (Tucker et al., 2018). In Section 5.2 we present one of the first imitation learning

from observation methods that scales to high-dimensional visual tasks such as Atari and

can outperform the demonstrator.

2.2.4 Better-than-Demonstrator Imitation Learning

While imitation learning has grown increasingly popular in recent years (Argall et al.,

2009; Gao et al., 2012; Osa et al., 2018; Arora and Doshi, 2018), little work has addressed

11

the problem of achieving better-than-demonstrator performance. One notable exception is

when using demonstrations to assist reinforcement learning. When ground-truth rewards

are known, it is common to initialize a policy using demonstrations and then improve this

policy using reinforcement learning (Kober and Peters, 2009; Taylor et al., 2011; Hester

et al., 2018; Gao et al., 2018; Sarafian et al., 2018). However, designing good reward func-

tions for reinforcement learning can be difficult and can easily lead to unintended behaviors

(Ng et al., 1999; Amodei et al., 2016).

Rather than relying on a hand-crafted reward function, this dissertation focuses on

using imitation learning to estimate a demonstrator’s reward function. While there has been

some work on imitation learning from suboptimal demonstrations, prior approaches often

either require poor demonstrations to be manually clustered into those that overshoot and

undershoot a goal (Grollman and Billard, 2011) or require clusters of optimal and subop-

timal demonstrations (Shiarlis et al., 2016). Other methods are robust to unlabeled, poor

demonstrations, but require the majority of the demonstrations to come from an expert in

order to correctly identify which demonstrations are anomalous (Zheng et al., 2014; Choi

et al., 2019). Syed and Schapire (2007) prove that knowledge about which features con-

tribute positively or negatively to the true reward allows an apprenticeship policy to out-

perform the demonstrator. However, their approach requires hand-crafted, linear features,

knowledge of the true signs of the rewards features, and repeatedly solving an MDP in the

inner loop.

In Section 5.2 of Chapter 5, we propose an algorithm for efficiently learning a better-

than-demonstrator policy via pre-ranked observations. In Section 5.3 we extend this work

by proposing two methods for learning to exceed the performance of a demonstrator. We

first examine the case where we learn from a learner (Jacq et al., 2019). In this case, we

assume the demonstrator is improving at a task so the temporal ordering of trajectories

provides weak preference labels. Next we propose a reward learning algorithm that works

with any set of unlabeled demonstrations and uses noise injection to automatically generate

12

ranked demonstrations. Prior work on imitation learning has investigated the use of ran-

dom or noisy trajectories. Boularias et al. (Boularias et al., 2011) and Kalakrishnan et al.

(Kalakrishnan et al., 2013) use uniformly random and locally perturbed trajectories, respec-

tively, to estimate the partition function for Maximum Entropy IRL (Ziebart et al., 2008).

Both methods seek a linear combination of predefined features such that the returns of the

demonstrations are maximized with respect to the random trajectories. These methods can

be seen as a special case of our proposed method, where only one level of noise is used and

where the reward function is represented as a linear combination of known features.

Disturbances for Augmenting Robot Trajectories (DART) (Laskey et al., 2017) is

a recently proposed behavioral cloning approach that adds noise during demonstrations to

collect a richer set of state-action pairs for behavioral cloning. DART avoids the problem

of compounding error that is common to most behavioral cloning approaches by repeatedly

requesting and perturbing new demonstrations. Instead of repeatedly collecting perturbed

trajectories from the demonstrator, our approach in Section 5.3.2 collects a small number

of initial demonstrations, run behavioral cloning once, and then inject varying amounts of

noise into the cloned policy. This automatically creates a large set of ranked demonstrations

for reward learning without requiring a human to provide ranking labels. Amin et al. (Amin

and Singh, 2016) proved that a logarithmic number of demonstrations from a family of

MDPs with different transition dynamics is sufficient to resolve reward ambiguity in IRL.

Automatically-generating ranked trajectories via noise injection, can be seen as an efficient

heuristic for generating demonstrations under different transition dynamics.

2.3 Safety

There is a growing interest in making AI and machine learning systems safe and well-

behaved (Garcıa and Fernández, 2015; Amodei et al., 2016; Thomas et al., 2019). In the

next sections we briefly cover research on safety that is most relevant to this dissertation

proposal.

13

2.3.1 Reinforcement Learning

Because reinforcement learning agents often learn via trial and error, safety is an important

problem, as there is often the possibility of taking actions that may be risky and could po-

tentially lead to catastrophic consequences. Safety has been extensively studied within the

reinforcement learning community (see (Garcıa and Fernández, 2015) and (Amodei et al.,

2016) for good surveys). Most safe reinforcement learning approaches typically either fo-

cus on safe exploration or on optimizing an objective other than expected return. Recently,

objectives based on financial measures of risk such as value at risk (Jorion, 1997) and con-

ditional value at risk (Rockafellar and Uryasev, 2000) have been shown to provide tractable

and useful risk-sensitive measures of performance (Tamar et al., 2015; Chow et al., 2015).

Other related work on safe reinforcement learning has focused finding robust policies us-

ing Bayesian ambiguity sets (Petrik and Russell, 2019) and on obtaining high-confidence

bounds on the performance of an evaluation policy by using data generated by a different

behavior policy (Thomas et al., 2015b; Hanna et al., 2017). The research presented in chap-

ters 4 and 6 of this dissertation complements existing work on high-confidence off policy

evaluation by proposing solutions to high-confidence off-policy evaluation in the imitation

learning setting, where samples of rewards are not observed and the demonstrator’s policy

(the behavioral policy) is unknown. In Chapter 7 we present a robust imitation learning

algorithm based on Conditional Value at Risk that complements similar work in the rein-

forcement learning setting (Tamar et al., 2015; Chow et al., 2015; Tang et al., 2020). Finally,

in Chapter 8 we consider the problem of using high-confidence policy evaluation for high-

confidence policy improvement in the imitation learning setting. This work complements

existing work on high-confidence policy improvement in the reinforcement learning setting

(Thomas et al., 2015a).

14

2.3.2 Safe Imitation Learning

Recently, there has been growing interest in safe imitation learning. Zhang and Cho (2017)

propose SafeDAgger a variant of DAgger that predicts in which states the novice policy will

have a large action difference from the expert policy. Control is given the the expert policy

only if the predicted action difference of the novice is above some hand-tuned parameter, τ .

Other work has focused on risk-sensitive generative adversarial imitation learning. Lacotte

et al. (2019) propose an imitation learning algorithm that seeks to find a specific policy

that matches the tail risk of the expert and is indistinguishable from the demonstrations.

Hadfield-Menell et al. (2017) propose to learn a distribution over reward functions given

a single sample of a reward function. They then optimize a policy that is robust to this

distribution but do not provide performance bounds. In chapters 4 and 6 we discuss how to

provide explicit high-confidence safety bounds that work for any imitation learning policy.

An important challenge in inverse reinforcement learning (IRL) is dealing with am-

biguity over the reward function (Ng and Russell, 2000; Ziebart et al., 2008), since there

are usually an infinite number of reward functions that are consistent with a set of demon-

strations (Ng and Russell, 2000). Problems with such ambiguous parameters can be solved

using robust optimization techniques, which compute the best policy for the worst rewards

consistent with the demonstrations (Ben-Tal et al., 2009). Indeed, many IRL methods opti-

mize policies for the worst-case rewards (Huang et al., 2018; Hadfield-Menell et al., 2017;

Ho and Ermon, 2016; Syed et al., 2008). This optimization for the worst-case parameter

values is well known to lead to overly conservative solutions across many domains (Delage

and Mannor, 2010; Russell and Petrik, 2019; Iancu and Trichakis, 2014). In Chapter 7,

we rely on coherent measures of risk to represent the trade-off between the average and

worst-case performance (Artzner et al., 1999; Shapiro et al., 2014; Follmer and Schied,

2011). Similar approaches to parameter uncertainty, also known as epistemic uncertainty,

have been referred to as soft-robustness in earlier work (Derman et al., 2018; Ben-Tal et al.,

2010) but have not been studied in the context of IRL.

15

RS-GAIL and related algorithms (Majumdar et al., 2017; Lacotte et al., 2019; San-

tara et al., 2017) mitigate risk in IRL but assume risk-averse experts and focus on optimiz-

ing policies that match the risk-aversion of the demonstrator; however, unlike our results in

chapters 4 and 6, these methods do not provide high-confidence bounds on performance.

Furthermore, these methods focus on the uncertainty induced by transition probabilities,

also known as aleatoric risk. The challenges in this area are very different and there is no

obvious way to adapt risk-averse IRL to our Bayesian robust setting described in Chapter 7

where we seek to be robust to epistemic risk rather than seeking to match the risk of the

demonstrator. RBIRL (Zheng et al., 2014) seeks to infer a posterior distribution that is ro-

bust to small numbers of bad demonstrations, but does not address robust policy optimiza-

tion with respect to ambiguity in the learned posterior. While the safe imitation learning

methods we describe in chapters 4, 7, and 8 are not explicitly robust to bad demonstrations,

the methods we propose in this dissertation can make use of any posterior distribution over

reward functions. Thus, they can be easily be extended to use posteriors generated from

methods like RBIRL (Zheng et al., 2014) in order to be robust to small numbers of poor

demonstrations. The methods described in chapters 5 and 6 of this dissertation are ro-

bust to bad demonstrations by means of learning a reward function via accurate preference

rankings. Finally, FPL-IRL (Huang et al., 2018), LPAL (Syed et al., 2008), GAIL (Ho and

Ermon, 2016) only optimize the policy for a (regularized) worst-case realization of the re-

wards. These approaches explicitly try to match the state or state-action occupancies of the

demonstrator, precluding significantly better-than-demonstrator performance.

2.3.3 High-Confidence Performance Bounds for Imitation Learning

Early work on inverse reinforcement learning also provides high-confidence performance

bounds. Abbeel and Ng (2004) and Syed and Schapire (2007) give probabilistic Hoeffding-

style bounds on how many demonstrations their algorithms require to guarantee a policy

with expected return within epsilon of the expected return of the demonstrator’s policy.

16

However, as shown in Chapter 4, these theoretical bounds are too loose to be useful in prac-

tice. Methods such as DAgger (Ross et al., 2011) provide regret bounds on a policy obtained

via behavioral cloning, but require constant human supervision during policy learning and

are not able to recover a reward function, precluding performance bounds for arbitrary

evaluation policies. In Chapter 4, we propose the first sample-efficient, high-confidence

bound on the policy loss of any evaluation policy with respect to the optimal policy under

the demonstrator’s true reward function. In Chapter 6 we extend high-confidence policy

evaluation to high-dimensional visual imitation learning tasks.

2.4 Learning from Human Feedback

Much work has been done on interactive machine learning, where a learning system has

access to feedback from a human. In this section we briefly describe some of the most

relevant work to this dissertation.

2.4.1 Interactive Reinforcement Learning

Leveraging interactive human feedback is an efficient and popular way to assist and guide

a learning agent. The TAMER framework proposed by (Knox and Stone, 2009) and the

COACH framework proposed by (MacGlashan et al., 2017) both cast interactive learning

as a reinforcement learning (RL) problem. TAMER interprets human feedback as uniform

reward signals while COACH argues that human feedback is policy dependent and should

be treated as advantage signals. However, in both of these algorithms the learning agent

passively receives critiques without actively acting or querying for help in a way that facil-

itates better understanding of the human’s intent. In Chapter 8 we propose a safe inverse

reinforcement learning method that pinpoints situations where the learner may perform

poorly and then actively asks for feedback from the demonstrator about what to do in these

high-risk situations. We discuss different forms of active learning in the next section.

17

2.4.2 Active Inverse Reinforcement Learning

In contrast to human-guided RL, there has also been significant work on active IRL ap-

proaches where an agent explicitly queries the demonstrator for help. Most active IRL

algorithms use a Bayesian approach to systematically addresses the ambiguity in reward

learning (Cohn et al., 2011; Cui and Niekum, 2018; Lopes et al., 2009; Sadigh et al., 2017).

Cohn et al. (2011) propose a risk-neutral approach that generates active action in order to

increase the agent’s expected discounted reward. Similar to Cohn et al. (2011), Cui and

Niekum (2018) directly compute expected information gain over the distribution of reward

functions per state-action pair to maximally reduce uncertainty over the reward distribu-

tion. However, both of these methods requires significantly more computation than the

approach we present in Chapter 8 and do not provide an upper bound on policy loss. To

generate a single active query, Cohn et al. (2011) and Cui and Niekum (2018) repeatedly

estimate the expected value of information for every state-action pair in the MDP. This ren-

ders their approach computationally intractable for continuous spaces of reward functions,

since generating a single active query using their approach requires running Bayesian IRL

(an already computationally demanding algorithm) for each state-action pair in the entire

MDP. In contrast, our risk-aware active IRL approach in Chapter 8 only requires running

Bayesian IRL once per active query. The work of (Lopes et al., 2009) reasons about state-

wise policy entropy over the posterior distribution of policies given demonstrations and asks

for demonstrations at states with the highest action entropy. The state-wise policy entropy

is ignorant of the actual policy that will be used for evaluation and does not take the values

of states into account.

Active IRL approaches typically do not explicitly use the performance of the robot’s

learned policy to generate queries. One of the primary reasons for this is that, prior to this

dissertation, practical methods for estimating the performance of a policy learned from

demonstrations when the ground-truth reward function is unknown, have not existed. In

Chapter 4, we present a practical method for computing accurate, tight bounds on the per-

18

formance loss of any imitation policy. In Chapter 8, build on the results of Chapter 4 to

develop a novel approach to active learning that focuses directly on minimizing the gen-

eralization error of the robot’s learned policy. We demonstrate that this approach achieves

state-of-the-art performance when compared with other active IRL approaches while also

enabling a learning agent to know when it has received enough demonstrations to guarantee

good performance with high-confidence.

2.4.3 Preference-Based Learning

Chapters 5 and 6 make use of preference rankings over demonstrations and can be seen as

forms of preference-based policy learning (Akrour et al., 2011) and preference-based IRL

(PBIRL) (Wirth et al., 2016; Sugiyama et al., 2012), which both seek to optimize a policy

based on preference rankings over demonstrations. However, most existing approaches to

preference-based policy learning only consider reward functions that are linear in hand-

crafted features and have not studied extrapolation capabilities. In contrast, the methods

we propose in chapters 5 and 6 use deep learning to automatically learn from raw visual

features and exhibit the ability to significantly extrapolate beyond the performance of the

demonstrator. For a more complete overview survey of preference-based reinforcement

learning, see the survey by (Wirth et al., 2017). Other preference-based learning methods

(Burchfiel et al., 2016; El Asri et al., 2016) have proposed the use of quantitatively scored

trajectories as opposed to qualitative pairwise preferences over demonstrations. Our meth-

ods can also be applied to the case of quantitative scores by simply extracting appropriate

pairwise preferences labels.

In active preference learning (Eric et al., 2008), the learning agent synthesizes pref-

erence queries for the demonstrator to label. Sadigh et al. (2017) and Christiano et al.

(2017) propose reward learning approaches that use active learning to collect pairwise pref-

erences labels. Ibarz et al. (2018) and Palan et al. (2019) combine demonstrations with

active preference learning during policy optimization. Rather than collecting pairwise pref-

19

erences via active queries, in Chapter 5 we propose Trajectory-ranked Reward Extrapola-

tion (T-REX), an algorithm that uses a set of pre-ranked demonstrations to learn a reward

function. Furthermore, in Chapter 5, we demonstrate that ranking-based imitation learning

approach are applicable even in cases where human rankings are unavailable. Finally, in

Chapter 6, we provide the first preference-based Bayesian reward inference method that

scales to high-dimensional complex imitation learning tasks such as learning to play Atari

games (Bellemare et al., 2013) from observation without access to the game score.

20

Chapter 3

Notation and Preliminaries

In this chapter we introduce the notation that we will use throughout most of this disser-

tation. For a more in depth treatment of Markov decision processes and reinforcement

learning, we recommend Puterman (2014) and Sutton and Barto (1998).

3.1 Markov Decision Processes

A Markov decision process (MDP) is defined as a tuple 〈S,A, T,R, γ, S0〉 where S is the

set of states, A is the set of actions, T : S × A × S → [0, 1] is the transition function,

R : S → R is the reward function, γ ∈ [0, 1) is the discount factor, and S0 is the initial

state distribution.

A policy π is a mapping from states to a probability distribution over actions. The

value of a policy π under reward function R is the expected return of that policy and is

denoted as V π
R = Es0∼S0 [

∑∞
t=0 γ

tR(st) | π]. The value of executing policy π starting at

state s ∈ S is defined as V π
R (s) = E[

∑∞
t=0 γ

tR(st) | π, s0 = s]. Given a reward function

R, the Q-value of π of a state-action pair (s, a) is defined as the expected return achieved

21

by starting in state s, taking action a, and then following π thereafter:

QπR(s, a) = E[

∞∑
t=0

γtR(st) | π, s0 = s, a0 = a]. (3.1)

We denote V ∗R = maxπ V
π
R and Q∗R(s, a) = maxπ Q

π
R(s, a).

3.2 Linear Reward Functions

As is common in the literature (Abbeel and Ng, 2004; Ziebart et al., 2008; Sadigh et al.,

2017; Pirotta and Restelli, 2016), we will often assume that the reward function can be

expressed as a linear combination of features, so that R(s) = wTφ(s) where w ∈ Rk is the

k-dimensional vector of feature weights. Thus, we can write the value of a policy as

V π
R = Es0∼S0 [

∞∑
t=0

γtwTφ(st) | π] = wTΦ(π), (3.2)

where Φ(π) = Es0∼S0 [
∑∞

t=0 γ
tφ(st) | π] are the expected feature counts. Note that this

does not affect the expressiveness of the reward function since φ can be a non-linear func-

tion. Given φ, the reward function is fully specified by the feature weights w. Thus, in

the case of linear reward functions, we will refer to the feature weights w and the reward

function R interchangeably.

3.3 Bayesian Inverse Reinforcement Learning

In inverse reinforcement learning (IRL) Ng and Russell (2000), we are given an MDP with-

out a reward function, denoted as MDP\R. Given a set of demonstrations,

D = {(s1, a1), . . . , (sm, am)}, (3.3)

22

, consisting of state-action pairs, Bayesian IRL (Ramachandran and Amir, 2007) seeks to es-

timate the posterior over reward functions given demonstrations, P (R|D) ∝ P (D|R)P (R).

Bayesian IRL assumes a Boltzman-rational demonstrator that executes the following policy

πβR(a|s) =
eβQ

∗
R(s,a)∑

b∈A e
βQ∗R(s,b)

, (3.4)

in which R is the true reward function of the demonstrator, and β ∈ [0,∞) represents the

confidence that the demonstrator is acting optimally. Under the assumption of Boltzman

rationality, the likelihood of a set of demonstrated state-action pairs, D = {(s, a) : (s, a) ∼
πD}, given a specific reward function hypothesis R, can be written as

P (D|R) =
∏

(s,a)∈D

πβR(a|s) =
∏

(s,a)∈D

eβQ
∗
R(s,a)∑

b∈A e
βQ∗R(s,b)

. (3.5)

where Q∗R(s, a) is the optimal Q-value function for reward R, and β is a parameter repre-

senting the confidence in the demonstrator’s optimality. Equation 3.5 gives greater likeli-

hood to reward functions for which the actions taken by the expert result in higher expected

rewards than the alternative actions.

The softmax distribution over actions is commonly used as a likelihood function

in IRL (Babes et al., 2011; Levine et al., 2011; Michini and How, 2012a; Rothkopf and

Ballard, 2013) and has been empirically shown to be an effective model of human behav-

ior, enabling accurate learning from human demonstrations (Lopes et al., 2007; Kim and

Pineau, 2016) and prediction of human actions (Baker et al., 2009; Karasev et al., 2016).

Shah et al. (2019) proposed a method for learning a model of demonstrator biases; how-

ever, learning these models requires large amounts of meta-learning on tasks with known

rewards, and can still fail to outperform the assumption of Boltzman rationality, even if

the actual demonstrations follow a vastly different planning model. In Chapters 4, 7, and

8 we model the demonstrator via Boltzman rationality, although we note that if a high-

quality model of demonstrator behavior is available, then it can easily be inserted into our

23

proposed approach. In Chapters 5 and 6 we explicitly examine the case where the demon-

strator’s behavior may be highly and systematically suboptimal, but where the demonstrator

can provide preferences over trajectories.

The choice of the prior distribution P (R) allows domain knowledge to be inserted

into the IRL algorithm. Ramachandran and Amir (2007) give several possibilities such

as a uniform, Gaussian, or Beta prior. Choi and Kim (2011) showed that many standard

IRL algorithms can be transformed into an equivalent Bayesian IRL algorithm by selecting

the appropriate likelihood and prior. Thus, our proposed performance bound can be easily

extended to use alternative likelihoods and priors that match different assumptions and pref-

erences found in the IRL literature. Unless otherwise specified we will typically assume a

uniform prior throughout this dissertation.

Bayesian IRL uses Markov chain Monte Carlo (MCMC) sampling to sample from

the posterior P (R|D) (Ramachandran and Amir, 2007; Brown and Niekum, 2018). Feature

weights are sampled according to a proposal distribution, and for each sample the MDP is

solved to obtain the sample’s likelihood and determine the transition probabilities within

the Markov chain. An estimate of the expert’s reward function can be found by averaging

the feature weights in the chain to obtain the mean reward function (Ramachandran and

Amir, 2007) or by using the maximum a posteriori (MAP) estimate (Choi and Kim, 2011).

Some of the advantages of Bayesian IRL, compared to many other IRL algorithms, are (1)

it finds a distribution over likely reward functions, (2) the set of demonstrations can contain

partial demonstrations or even non-contiguous state action pairs, and (3) it allows domain

knowledge in the form of a prior.

24

Chapter 4

High-Confidence Performance

Bounds for Safe Imitation Learning

Imitation learning has potential applications in many settings such as manufacturing, home

and hospital care, and autonomous driving. In these types of real-world settings it is im-

portant, and perhaps critical, to provide performance bounds on an agent’s learned policy.

For example, consider a hospital assistant robot that has learned from demonstrations how

to lift a patient out of bed. Before deploying this learned policy, we would want to pro-

vide a high-confidence bound on the difference in performance between the robot’s learned

policy and the optimal policy under the expert’s reward. If this bound on policy loss is too

high, then the robot could request additional demonstrations until, with high confidence, its

policy loss with respect to the optimal policy is within some allowable error margin.

In this chapter, we focus on the problem of high-confidence policy evaluation. This

chapter comprises contributions 1 and 2 of this dissertation. Contribution 1 is a formal-

ization of safe imitation learning via high-confidence policy evaluations without access to

the ground-truth reward function. Contribution 2 is a sample efficient method for calcu-

lating high-confidence performance bounds on the α-quantile worst-case policy loss in the

imitation learning setting—where the true reward function is unknown and only samples

25

of expert behavior are given. To the best of our knowledge, this chapter presents the first

method to provide sample-efficient, risk-aware confidence bounds on the performance of a

policy under an unknown reward function, as is the case when learning from demonstra-

tions.1

While the methods described in this chapter are highly sample-efficient, in terms of

the number of demonstrations, they require an MDP solver in the inner-loop which makes

it difficult to scale these approaches to complex, high-dimensional problems. In Chapter 5

we will address this inefficiency by proposing reward inference algorithms that do not re-

quire an MDP solver in the inner-loop, allowing them to scale to complex control tasks.

Finally, in Chapter 6 we will combine the work presented in this chapter and the efficient

reward inference algorithms proposed in Chapter 5, to develop a tractable solution to the

high-confidence policy evaluation problem for high-dimensional, complex imitation learn-

ing tasks.

In this chapter, we propose a sampling method based on Bayesian inverse rein-

forcement learning that uses demonstrations to determine practical high-confidence upper

bounds on the α-worst-case difference in expected return between any evaluation policy and

the optimal policy under the expert’s unknown reward function. We evaluate our proposed

bound on both a standard grid navigation task and a simulated driving task and achieve

tighter and more accurate bounds than a feature count-based baseline. We also give ex-

amples of how our proposed bound can be utilized to perform risk-aware policy selection

and risk-aware policy improvement. Because our proposed bound requires several orders of

magnitude fewer demonstrations than existing high-confidence bounds, it is the first prac-

tical method that allows agents that learn from small numbers of demonstration to express

confidence in the quality of their learned policy.
1This chapter contains work that was done in collaboration with Scott Niekum and was previously published

at the AAAI Fall Symposium 2017 (Brown and Niekum, 2017) and at AAAI 2018 (Brown and Niekum, 2018).

26

4.1 High-Confidence Policy Evaluation for Imitation Learning

Before detailing our approach, we first formalize the problem of high-confidence policy

evaluation for imitation learning. We assume access to a Markov decision process without

a reward function (MDP\R), an evaluation policy πeval, a set of demonstrations, D =

{τ1, . . . , τm}, in which τi can either be a complete or partial trajectory comprised of states

or state-action pairs, a confidence level δ, and risk metric g : Π × R → R, in which R
denotes the space of reward functions and Π is the space of all policies.

The High-Confidence Policy Evaluation problem for Imitation Learning (HCPE-

IL) is to find a high-confidence upper bound ĝ : Π×D → R such that

Pr(g(πeval, R
∗) ≥ ĝ(πeval, D)) ≤ 1− δ, (4.1)

in which R∗ denotes the demonstrator’s true reward function and D denotes the space of

all possible demonstration sets. HCPE-IL takes as input an evaluation policy πeval, a set of

demonstrations D, and a risk metric, g, which evaluates a policy under a reward function.

The goal of HCPE-IL is to return a high-confidence upper bound ĝ on the performance

statistic g(πeval, R
∗).

Note that this problem setting is significantly different from high-confidence off-

policy evaluation problem in reinforcement learning (Thomas et al., 2015b), which we de-

note as HCOPE-RL. In HCOPE-RL the behavior policy is usually known and the demon-

strations from the behavior policy contain ground-truth reward samples. In HCPE-IL, the

demonstrator’s policy πR∗ is unknown and the demonstration data from πR∗ consists only of

either states or state-action pairs—no samples from a ground-truth reward signal are avail-

able. Given this general formalism for safe imitation learning, we now describe a specific

instantiation of the HCPE-IL problem and our proposed solution.

27

4.2 High-Confidence Bounds on Policy Loss

Given the definition in the previous section, we now present a sample efficient algorithm

for solving this problem. In particular, we will focus on using policy loss as the risk metric

g. We define policy loss using the Expected Value Difference (EVD) of πeval under the true

reward R∗, defined as

EVD(πeval, R
∗) = V ∗R∗ − V πeval

R∗ . (4.2)

We use EVD because it is a natural way to measure the performance difference between

two policies and it is a common metric for evaluating IRL algorithms (Ramachandran and

Amir, 2007; Levine et al., 2011; Choi and Kim, 2011; Wulfmeier et al., 2015). Note that

the evaluation policy can be any policy, including a hand-tuned policy or a policy learned

through reinforcement learning on a different task with a known reward function; however,

it is often the case that the most natural form of the evaluation policy is a policy learned

from the demonstrations, D.

As is common in the literature (Abbeel and Ng, 2004; Ziebart et al., 2008; Sadigh

et al., 2017), we assume that the reward function can be expressed as a linear combination

of features, so that R(s) = wTφ(s) where w ∈ Rk is the k-dimensional vector of feature

weights. Thus, we can write the value of a policy as

V π
R = Es0∼S0 [

∞∑
t=0

γtwTφ(st) | π] = wTΦπ, (4.3)

where Φπ = Es0∼S0 [
∑∞

t=0 γ
tφ(st) | π] are the expected feature counts. Note that this

does not affect the expressiveness of the reward function since φ(s) can be a highly non-

linear function of the state s. In this chapter we will assume that φ is given. While φ

may be a hand-crafted set of features, φ can also be learned from raw observations. In

Chapter 6 we present a deep learning method for automatically discovering the features of

a linear reward function via a self-supervised pre-training step that can be performed before

imitation learning. Given φ, the reward function is fully specified by the feature weights w.

28

Thus, we refer to the feature weights w and the reward function R interchangeably. Given

a linear reward function, we can express the EVD as the following dot product:

EVD(πeval, R
∗) = V ∗R∗ − V πeval

R∗ = wT (Φπ∗ − Φπeval) (4.4)

The main goal of this chapter is to bound the difference in expected return between

any evaluation policy πeval and π∗, the policy that is optimal with respect to the demon-

strator’s reward R∗. However, because an optimal policy is invariant to any non-negative

scaling of the reward function, bounding EVD is ill-posed, as we can multiply the feature

weights w by any β > 0 to scale EVD to be anywhere in the range [0,∞). To avoid this

scaling issue we make the common assumption that ‖w‖1 = 1 (Syed and Schapire, 2007;

Pirotta and Restelli, 2016). Note, that this assumption only eliminates the trivial all-zero

reward function as a potential solution—all other reward functions can be appropriately nor-

malized. While setting ‖w‖1 = 1 eliminates the invariance to scaling factors and bounds

the magnitude of the EVD, there can still be infinitely many rewards that induce any opti-

mal policy, resulting in infinitely many possible values of EVD(πeval, R
∗). Thus, to obtain

an upper bound on EVD(πeval, R
∗) we need to address this uncertainty. As we show in the

next section, one way to address this uncertainty over the demonstrator’s true reward is to

compute an absolute worst-case policy loss bound using feature counts.

4.3 Worst-Case Bound

In this section, we derive a simple worst-case bound based on feature counts that we use as

a baseline. As a reminder, we use the notation Φπ = Es0∼S0 [
∑∞

t=0 γ
tφ(st) | π] to represent

the expected feature counts of policy π.

If we can assume that R = wTφ(s), φ(s) : S → [0, 1]k, ‖w‖1 ≤ 1, and that we

know the demonstrator’s expected feature counts Φπdemo
, then given any evaluation policy

29

πeval, the following is true:

V πdemo
R − V πeval

R =

∣∣∣∣E[∞∑
t=0

γtR(st) | πdemo

]
− E

[∞∑
t=0

γtR(st) | πeval

]∣∣∣∣ (4.5)

=

∣∣∣∣E[∞∑
t=0

γtwTφ(st) | πdemo

]
− E

[∞∑
t=0

γtwTφ(st) | πeval

]∣∣∣∣ (4.6)

=

∣∣∣∣wT
(
E
[∞∑
t=0

γtφ(st) | πdemo

]
− E

[∞∑
t=0

γtφ(st) | πeval

]) ∣∣∣∣ (4.7)

= wT (Φπdemo
− Φπeval) (4.8)

≤ ‖w‖1‖Φπdemo
− Φπeval‖∞ (4.9)

≤ ‖Φπdemo
− Φπeval‖∞. (4.10)

which uses the fact that R(s) = wTφ(s), Hölder’s inequality, and the assumption that

‖w‖1 ≤ 1. This proof follows that of Abbeel and Ng (2004), except that our bound is

strictly tighter as a result of using the infinity norm rather than the 2-norm.

If πdemo is an optimal policy with respect to the demonstrator’s reward function,

R∗, then we have that

EVD(πeval, R
∗) = V π∗

R∗ − V πeval
R∗ (4.11)

= V πdemo
R∗ − V πeval

R∗ (4.12)

= |wT (Φπdemo
− Φπeval)| (4.13)

≤ ‖Φπdemo
− Φπeval‖∞ (4.14)

and thus ‖Φπdemo
−Φπeval‖∞ gives an upper bound on EVD(πeval, R

∗). In practice, we typ-

ically do not know µ∗, but we can use demonstrated trajectories to estimate of the demon-

strator’s expected feature counts as

µ̂∗ =
1

|D|

|D|∑
i=1

∞∑
t=0

γtφ(s
(i)
t), (4.15)

30

where i indexes over the trajectories and t over the state sequence contained in each demon-

strated trajectory. We define the empirical worst-case feature count bound as

WFCB(πeval, D) = ‖Φ̂πdemo
− Φπeval‖∞. (4.16)

Note that this bound is only guaranteed to be an upper bound on EVD(πeval, R
∗) if

πdemo is optimal and if we have sufficient demonstrations such that Φ̂πdemo
= Φπdemo

. In

practice, we may only have a small number of demonstrations, in which case we can com-

pute the probability that WFCB is an upper bound on EVD(πeval, R
∗); however, as we will

discuss later, obtaining a high-confidence upper bound via the empirical estimate of the ex-

pert’s feature counts, Φ̂πdemo
, usually requires an extremely large number of demonstrations

(Abbeel and Ng, 2004; Syed and Schapire, 2007). Note also that the WFCB bound does

not work with partial demonstrations and that it is based on an adversarial reward function

that may be extremely unlikely given the demonstrations.

4.4 EVD Value-at-Risk Bound

The worst-case feature count bound described in the previous section only requires sampled

trajectories from the expert, but ignores much of the structure of the problem and the specific

actions taken by the demonstrator—giving a worst-case bound that will likely be overly

pessimistic and result in loose bounds. Thus, rather than focusing on absolute worst-case,

we instead propose to focus on computing a probabilistic upper bound on the α-worst-case

value of EVD(πeval, R), where R ∼ P (R|D). Our goal in this section is to obtain a high-

confidence probabilistic worst-case bound that focuses on likely reward functions given the

demonstrations.

The α-worst-case value of a random variable is often referred to in finance as the

α-Value at Risk (Jorion, 1997). We use the notation of Tamar et al. (2015) and formally

31

define the α-Value-at-Risk (α-VaR) of a random variable Z as

να(Z) = F−1
Z (α) = inf{z : FZ(z) ≥ α} (4.17)

where α ∈ (0, 1) is the quantile level and FZ(z) = Pr(Z ≤ z) is the cumulative distribu-

tion function of Z. The parameter α defines the sensitivity to risk, while (1− δ) represents

our confidence in our estimate of the α-VaR. Thus, while (1 − δ) is typically always high

(e.g., 0.95), α can take on a range of values depending on the possibility of catastrophic

failure in the domain and the risk-aversion of the end-user. In practice, α ≥ 0.9 is com-

monly used for VaR applications (Jorion, 1997). We can now state the specific instantiation

of the HCPE-IL problem that we address in this chapter:

Given an MDP\R, any evaluation policy πeval, and a set of demonstrations, D, find a

(1− δ) confidence upper bound on να(EVD(πeval, R)), where R ∼ P (R|D).

We seek to directly compute a high-confidence bound on the α-Value at Risk of

the EVD(πeval, R
∗) for any given evaluation policy πeval. Instead of bounding EVD us-

ing an empirical estimate of the demonstrator’s feature counts, we seek to compute a

high-confidence bound using samples from the posterior distribution EVD(πeval, R), where

R P (R|D). Eliminating the need to accurately estimate the demonstrator’s feature counts

Φ̂πdemo
is desirable for two main reasons. The first reason is that removing the need for

expected feature counts enables us to formulate a high-confidence bound that works well

with partial, noisy demonstrations. This is because EVD compares the evaluation policy

against the optimal policy for reward R, not the actual states visited by the demonstrator.

Second, the EVD explicitly takes into account the initial state distribution. Thus, the EVD

measures the generalization error of an evaluation policy by evaluating the expected return

over all states with support under S0, even if demonstrations have only been sampled from

a small number of possible initial states.

The downside of using EVD is that it is more computationally intensive than the fea-

ture count bound. Computing EVD requires that we calculate V ∗R and V πeval
R for each sample

32

R. Note however, that computing the optimal policy π∗ is already required for Bayesian

IRL (see Section 3.3). Thus, we can simply save V ∗R during MCMC. Furthermore, given

the assumption of a linear reward function, R(s) = wTφ(s), we have V πeval
R = wTΦπeval .

Thus, we only need to solve for Φπeval once via standard policy evaluation (Sutton and

Barto, 1998) and then V πeval
R can be solved via a simple dot product for every sample

R ∼ P (R|D). Thus, our approach leverages the computation already performed during

Bayesian IRL to allow us to compute high-confidence policy evaluation bounds with mini-

mal extra overhead.

To bound the α-quantile worst-case EVD(πeval, R
∗) we use samples from the pos-

terior P (R|D). Thus, we seek to calculate να(Z) where Z = EVD(πeval, R) for R ∼
P (R|D). As motivated earlier, we assume ‖w‖1 = 1. Thus, to find P (R|D) we use a

modified version of the Bayesian IRL Policy Walk Algorithm (Ramachandran and Amir,

2007) that ensures that our proposal samples of w during MCMC stay on the L1-norm unit

ball. Details are given in Appendix A.2. Using MCMC, we generate a sequence of sampled

rewards R = {R : R ∼ P (R|D)} from the posterior distribution over reward functions

given the demonstrations. For each sample Ri ∈ R we then calculate

Zi = EVD(πeval, Ri) = V ∗Ri − V
πeval
Ri

(4.18)

giving us samples from the posterior distribution over expected value differences.

Given n samples of X , we can obtain a point estimate of α-VaR by sorting the

samples of X in ascending order to obtain the order statistics Z, and then take the α-

quantile. This gives us Zk, where k = dαne, as an estimate of the α-VaR. However, this

does not take into account the number of samples or our confidence in this point estimate.

Because we are interested in high-confidence bounds, instead of using a point esti-

mate, we compute a single-sided (1− δ) confidence upper bound on the α-VaR. By defini-

tion, we have that P (Xi < να(X)) = α for any sample Xi. Thus, for any order statistic

Zj , we can calculate the probability that the α-VaR is less than Zj using the binomial cu-

33

Algorithm 1 (1− δ)-Confidence Bound on the α-Value-at-Risk

1: input: MDP\R, πeval, D, β, α, δ, n
2: R ← Bayesian IRL(MDP\R, D, β, n) . sample n times from P (R|D)
3: for Ri ∈ R do
4: Xi = V ∗Ri − V

πeval
Ri

. compute policy loss

5: Z = sort(X) . sort into ascending order statistics
6: k = F−1

bin(1− δ, n, α) . index of (1− δ)-confidence upper bound on α-VaR(X)
7: return Zk

mulative distribution function (CDF), Fbin:

P (να(X) < Zj) = Fbin(j − 1;n, α) (4.19)

=

j−1∑
i=0

(
n

i

)
αi(1− α)N−i (4.20)

This is because for Zj to be larger than the 100α percentile value of X , we must have that

this percentile value, namely να(X), is greater than no more than j−1 of the samples. This

probability is given by the CDF of the binomial distribution, Fbin(j − 1;n, α), which gives

the probability of getting j−1 or fewer successes in n trials. In this case, a success is when a

sample ofXi is less than να(X), and thus the probability of success isP (Xi < να(X)) = α

by definition of να(Z). Thus, using the inverse CDF of the binomial distribution, the order

statistic Zk, where k = F−1
bin(1− δ, n, α), forms a (1− δ) confidence bound on να(X).2

Our full general approach, applicable to any MDP\R, is summarized in Algo-

rithm 1. The optimized version that assumes a linear reward function is summarized in

Algorithm 2. The algorithm has four hyperparameters: β represents the temperature pa-

rameter in the Boltzman rationality model of the demonstrator, α defines the risk-sensitivity,

(1 − δ) represents the desired confidence level on the estimate of the α-VaR, and n is the

number of reward functions to sample from the posterior using MCMC.
2Most standard scientific computing packages have efficient implementations of the inverse bino-

mial distribution. For example, in Python this can efficiently computed using the SciPy package, e.g.,
scipy.stats.binom.ppf(1− δ, n, α).

34

Algorithm 2 (1−δ)-Confidence Bound on the α-Value-at-Risk for Linear Reward Function

1: input: MDP\R, πeval, D, β, α, δ, n
2: Φπdemo

← PolicyEvaluation(πdemo, MDP\R) . Compute expected feature counts
3: W ← BayesianIRL(MDP\R, D, β, n) . sample n pairs (w, V ∗w) from P (w|D)
4: for (wi, V

∗
wi) ∈ W do

5: Xi = V ∗wi − wTi Φπdemo
. compute policy loss

6: Z = sort(X) . sort into ascending order statistics
7: k = F−1

bin(1− δ, n, α) . index of (1− δ)-confidence upper bound on α-VaR(X)
8: return Zk

The main advantages of our approach are as follows: (1) our proposed bound takes

full advantage of all of the information contained in the transition dynamics and demon-

strations to focus on reward functions that are likely given the demonstrations, (2) it does

not require optimal demonstrations, (3) it inherits from Bayesian IRL the ability to work

with partial demonstrations, even disjoint state-action pairs, and (4) it allows for domain

knowledge in the form of a prior.

4.5 Empirical Results

For our proposed confidence bound to be useful, it needs to meet several criteria: (1) the

upper bound should be accurate with high-confidence (rarely underestimating the true ex-

pected value difference), (2) the bound should be tighter than the worst-case bound derived

above, and (3) the previous two criteria should be true even when given a small number of

demonstrations. We use both a standard grid world navigation task (Abbeel and Ng, 2004;

Ramachandran and Amir, 2007; Choi and Kim, 2011) and a simulated driving task (Abbeel

and Ng, 2004; Syed and Schapire, 2007; Cohn et al., 2011) to validate that our proposed

bound satisfies these criteria. Examples of these tasks are shown in Figure 4.1. We com-

pare our high-confidence α-VaR bound with the worst-case feature count bound (WFCB)

defined in Equation 4.16. All results for α-VaR bounds are reported as 95% confidence

35

(a) Gridworld navigation (b) Driving simulation

Figure 4.1: (a) Example of random grid world navigation task with colors representing
random features and initial states denoted by stars. (b) Snapshot of driving simulation.
Agent must learn to safely drive the blue car through traffic.

bounds (δ = 0.05). 3

We first empirically evaluate our approach on a suite of 9x9 grid world navigation

tasks where the cost of traveling on different terrains is unknown and must be inferred from

demonstrations. The available actions are up, down, left and right. Transitions are noisy

with an 70% chance of moving in the desired direction and 30% chance of going in one

of the directions perpendicular to the chosen direction. There are 8 binary features with

one feature active per grid cell. To show that our results are not an artifact of a specific

reward function, we evaluate our method over many random grid worlds, each with a ran-

domly chosen ground truth reward. We use γ = 0.9 and an initial state distribution S0 that

is uniform over 9 different states spread across the grid as shown in Figure 4.1a. When

generating M demonstrations we select the initial states in a round-robin fashion from the

support of S0. However, when measuring accuracy and bound errors, we compare with the

true expected value difference over the full initial state distribution.

4.5.1 Infinite Horizon Grid Navigation

Our first task is an infinite horizon grid world navigation task with no terminal states. To

evaluate different bounding methods we generated 200 random 9x9 worlds with random
3Code and instructions to reproduce the results in this chapter are available at https://github.com/

dsbrown1331/aaai-2018-code

36

https://github.com/dsbrown1331/aaai-2018-code
https://github.com/dsbrown1331/aaai-2018-code

features each grid cell. For each world we generated a random feature weight vectorw from

the L1-unit norm ball. To generate demonstrations we solve the MDP using the random

ground truth reward to find the optimal policy and use this policy to generate trajectories

of length 100. We set the evaluation policy to be the optimal policy under the MAP reward

function found using Bayesian IRL. Because the demonstrations in this experiment are

perfect, we set the Bayesian IRL confidence parameter to a large value (β = 100).

Figure 4.2a shows the accuracy of each bound where WFCB is the worst-case fea-

ture count bound, and VaR X is the X/100 quantile Value at Risk bound. The accuracy is the

proportion of trials where the upper bound is greater than the ground truth expected value

difference over the 200 random grid worlds. As expected, the WFCB always gives an upper

bound on the true performance difference between the optimal policy and the evaluation

policy. The bounds on α-VaR are also highly accurate. Because always predicting a high

upper bound will result in high accuracy, we also measured the tightness of the the upper

bounds. Figure 4.2b shows the average bound error over the 200 random navigation tasks.

We define the bound error for an upper bound b as

error(b) = b− EVD(πeval, R
∗) (4.21)

where R∗ is the generated ground truth reward. We see that the bounds on the α-VaR are

much tighter than the worst-case feature count bound, converging after only a small number

of demonstrations.

4.5.2 Noisy Demonstrations

As mentioned previously, Bayesian IRL uses a confidence parameter, β, that represents

the optimality of the demonstrations. When β = 0, the demonstrations are assumed to

come from a completely random policy, and β = ∞ means that the demonstrations come

from a perfectly optimal policy. Prior work used values of β between 25 and 500 when

demonstrations are generated from an expert policy (Lopes et al., 2009; Cohn et al., 2011;

37

(a) Accuracy (b) Average Bound Error

Figure 4.2: Results for infinite horizon grid navigation task. Accuracy and average error for
bounds based on feature counts (WFCB) compared with 99, 95, and 90 percentiles for the
VaR bound. Accuracy and averages are computed over 200 replicates

Michini and How, 2012b). To investigate the effect of β on our bound we generated noisy

demonstrations where at step there is an 80% chance of taking an optimal action and a

20% chance of taking a random action. The resulting accuracy and bound error for several

choices of β are shown in Figure 4.3.

Adjusting β for noisy demonstrations has a clear effect on the accuracy and bound

error. The bound error (Equation 4.21) decreases as β increases, meaning the bounds be-

come tighter; however, when β = 50 the VaR bounds often underestimate the true ex-

pected value difference between the expert’s policy and the evaluation policy, resulting in

error(b) < 0 and lower accuracy. We see that values of β in the range (1, 10] result in

highly accuracy bounds that are tighter than the worst-case feature count bound. However,

for β = 50, we see that Bayesian IRL overfits to the noise in the demonstrations by assum-

ing that the demonstrations are optimal. Tuning the confidence parameter, β, for a particular

demonstrator and task is left for future work.

38

(a) Accuracy (b) Average Bound Error

Figure 4.3: Sensitivity to the confidence β for noisy demonstrations in the grid navigation
task. The demonstrator has a 20% chance of taking a random action in each state. Accuracy
and average error for bounds based on feature counts (WFCB) compared with 0.95-VaR
bound. Accuracy and averages are computed over 200 replicates.

4.5.3 Sensitivity to Evaluation Policy

In the previous examples we have used the MAP reward obtained from Bayesian IRL to

create the evaluation policy; however, unlike previous theoretical confidence bounds, our

method is applicable to any evaluation policy. We investigated the sensitivity of our bound

over a range of different evaluation policies and found that the VaR bounds consistently

outperforms the baseline WFCB, providing bounds that are often four times tighter while

maintaining high accuracy.

In this section we investigate how the bound on VaR is affected by the choice of

evaluation policy. We ran an experiment where we varied the optimality of the evaluation

policy. As in our previous experiments, used a 9x9 grid world and we generated 200 MDPs

with random features and feature weights for evaluation. The evaluation policy was chosen

by taking the optimal policy obtained from the ground truth reward and selecting X states

at random without replacement and changing the policy at those X states so that it takes

a non-optimal action. All demonstrations were optimal so we computed the VaR bounds

using β = 100.

39

(a) Accuracy after one demonstration (b) Average bound error after one demonstration

Figure 4.4: Sensitivity for bounding the performance of a range of evaluation policies given
1 optimal demonstration. Results are averaged over 200 grid navigation task with no ter-
minal states. Accuracy and average error for WFCB bounds versus bounds on the 0.99-,
0.95-, and 0.90-VaR.

The results for X = 0, 2, 4, 8, 16, 32, 64 after one demonstration are shown in Fig-

ure 4.4 and the results after nine demonstrations are shown in Figure 4.5. When the evalu-

ation matches the optimal policy under the true reward (X = 0) all bound methods always

gave true upper bounds on the EVD. When only one demonstration is given, there is a large

bound error for all methods, with WFCB giving an error bound 4 times higher than the

worst VaR bound error. As X is increased, the evaluation policy becomes more dissimilar

to the optimal policy. This results in a drop in accuracy for all bounds except for the ex-

tremely conservative 0.99-VaR bound. When 9 demonstrations are given, the VaR bounds

are much tighter with almost zero error for evaluation bounds close to optimal. The accu-

racy tends to drop as the number of errors increases, but still remains above 95% even for a

policy that differs from the optimal policy in over 75% of the states.

To demonstrate the ability of our method to work with evaluation policies derived

from other IRL algorithms, and to compare against existing high-confidence bounds for

IRL, we used the Projection algorithm proposed by Abbeel and Ng (2004) as an evaluation

policy. Abbeel and Ng provide high-confidence bounds on the number of demonstrations

40

(a) Accuracy after nine demonstrations (b) Bound error after nine demonstrations

Figure 4.5: Sensitivity for bounding the performance of a range of evaluation policies given
9 optimal demonstrations. Results are averaged over 200 grid navigation task with no ter-
minal states. Accuracy and average error for WFCB bounds versus bounds on the 0.99-,
0.95-, and 0.90-VaR.

needed for their algorithm to guarantee performance within ε of the demonstrator. A tighter

sample bound for feature count-based methods was later derived by (Syed and Schapire,

2007) that also holds for the Projection algorithm. We summarize their result as the follow-

ing theorem.

Theorem 1. (Syed and Schapire, 2007) To obtain a policy π̂ such that with probability

(1− δ)
ε ≥ |V π̂(R∗)− V π∗(R∗)| (4.22)

it suffices to have

m ≥ 2

(ε3(1− γ))2
log

2k

δ
. (4.23)

In the following corollary we invert the bound of Syed and Schapire by solving for ε

to obtain a (1− δ) confidence bound on the expected value difference given a fixed number

of demonstrations.

Corollary 1. Given a confidence level δ, and m demonstrations, with probability (1 − δ)

41

Number of demonstrations Avg. Accuracy

1 5 9 · · · 23,146

0.95-VaR Bound 0.9372 0.2532 0.1328 - 0.98
0.99-VaR Bound 1.1428 0.2937 0.1535 - 1.0

(Syed and Schapire, 2007) 142.59 63.77 47.53 0.9372 1.0

Table 4.1: Comparison of 95% confidence α-VaR bounds with a 95% confidence Hoeffding
bound (Syed and Schapire, 2007). Both bounds use the Projection algorithm (Abbeel and
Ng, 2004) to obtain the evaluation policy. Results are averaged over 200 random navigation
tasks.

we have that |V π∗(R∗)− V π̂(R∗)| ≤ ε, where

ε ≤ 3

1− γ

√
2

m
log

2k

δ
(4.24)

where k is the number of features and γ is the discount factor of the underlying MDP.

We then repeated the infinite horizon grid navigation experiment described above,

using the policy found by the Projection algorithm as our evaluation policy. We compare

the average bound error for our proposed VaR bounds with the Syed and Schapire error

bound for the Projection algorithm in Table 4.1. Our empirical VaR bounds are two to three

orders of magnitude tighter than the Hoeffding style bound which theoretically requires

23,146 demonstrations to guarantee the true EVD is within the 0.95-VaR bound found by

our method using only a single demonstration.

4.5.4 High-Confidence Policy Selection for a Simulated Driving Task

We now provide an example that more closely matches a real-world learning from demon-

stration task. Rather than evaluate our method on an ad hoc “true” reward function, we

examine how the VaR bound can be used to rank and select an appropriate policy from a

set of existing policies. For this task we designed a driving simulator based on previous

benchmarks (Abbeel and Ng, 2004; Cohn et al., 2011). Figure 4.1b shows a snapshot of

42

the simulator. The agent (blue) is in charge of driving safely down a highway and has three

actions: switch lanes left, switch lanes right, or stay in current lane. The agent is traveling

faster than traffic and must change lanes to avoid other cars which randomly appear at the

top of the screen. There are three highway lanes where the car is supposed to drive, but it

can also drive off-road on the right or left of the highway.

The state space is made up of 12 binary features: 5 features for each of the possible

lanes, including the off-road lanes, 3 features telling the agent whether it is currently in

collision, tailgating, or trailing another car, and 2 features for each adjacent lane, indicat-

ing whether the car will be in collision or tailgating if the car changes lanes. The reward

is assumed to be a linear combination of features, R(s) = wTφ(s), where φ(s) is a 6-

dimensional binary feature vector that indicates the agent’s current lane and whether it is in

collision with another car. The discount factor, γ, was set to 0.9.

The goal of this experiment is to evaluate the ability of our probabilistic perfor-

mance bound to correctly rank different policies, given a single demonstration of safe driv-

ing. We constructed three different evaluation policies: (1) right-safe: a policy that avoids

hitting cars and driving off-road, but prefers driving on the right lane of the highway, (2)

on-road: a policy that avoids driving off-road, but pays no attention to other cars, and

changes lanes randomly (3) nasty: a policy that avoids going off-road, but actively tries

to hit cars. We then generated a single demonstration of collision-free driving, consisting

of 100 consecutive state-action pairs. The demonstration changed lanes randomly while

avoiding collisions and avoiding driving off-road. The evaluation policies and demonstra-

tion were created using Q-learning and hand-crafted reward functions that resulted in the

desired behaviors.4

Because the driving task is model-free we used Q-learning to calculate the Q-values

used in the likelihood calculations of Bayesian IRL. We then calculated a 95% confidence

bound on the 0.95-VaR for each evaluation policy. We also computed the worst-case feature
4Videos of these behaviors are shown in the code documentation available at https://github.com/

dsbrown1331/aaai-2018-code

43

https://github.com/dsbrown1331/aaai-2018-code
https://github.com/dsbrown1331/aaai-2018-code

Ranking (EVD upper bound)

πeval Collisions True WFCB 0.95-VaR

right-safe 0 1 3 (5.51) 1 (0.85)
on-road 13.65 2 1 (1.93) 2 (1.09)
nasty 42.75 3 2 (4.11) 3 (2.44)

Table 4.2: Policy rankings based on upper bounds on policy loss for three different eval-
uation policies in the driving domain when given a single demonstration of safe driving.
Results are averaged over 20 replicates.

count bounds for comparison. The results are shown in Table 4.2.

The VaR bound uses the demonstration to focus on reward functions that are likely

given the demonstrated state-action pairs. This results in correctly ranking the evaluation

policies. The worst-case feature count bound ignores likelihood and assumes a worst-case

reward function that penalizes the largest discrepancy between the empirical feature counts

of the demonstration and the expected feature counts of the evaluation policies. Because

the collision feature is less frequently active than the lane features, both on-road and nasty

appear safer than right-safe because their average state-occupancies more closely align

with the state-occupancies of the demonstration.

4.5.5 High-confidence policy improvement

The previous section showed how we can use risk-sensitive policy evaluation to choose

between multiple evaluation policies. We now take this a step further and give an example

that uses risk-sensitive policy evaluation to iteratively reduce the VaR of a policy learned

from demonstrations.

To highlight the potential of safe policy improvement, we consider the simple navi-

gation task shown in Figure 4.6. The task has a single terminal in the center and two reward

features (white and red). The agent is given a single demonstration from one starting state

and must generalize this demonstration to a second starting state (both marked with cir-

cles). Note that the demonstration shows that the red feature is less desirable than the white

44

MDP\R Demo Min VaR policy MLE policy

Figure 4.6: Given one demonstration, optimizing the VaR bound results in a risk-aware
policy that hedges against the red cells being much worse than the white. The maximum
likelihood reward assumes that red is only marginally worse than white.

feature, but the true magnitudes of the feature weights are left uncertain.

We implemented a simple risk-sensitive policy improvement hill climbing algo-

rithm. We initialized the hill climbing algorithm with the maximum likelihood policy found

using Bayesian IRL with a uniform prior. For each step of the hill-climbing algorithm, we

examined the impact on the 0.99-VaR of changing the action taken by the policy in a single

state, and chose the change that resulted in the largest decrease in 0.99-VaR over all sin-

gle state changes. We continued this process until no reductions in the 0.99-VaR could be

found. The resulting risk-aware policy seeks to minimize the 0.99-VaR by avoiding the red

feature, whereas the maximum likelihood reward leads to a less conservative policy, result-

ing in a higher potential risk. The learned policies are shown in Figure 4.6. In Chapter 7

we introduce a more elegant and efficient robust policy optimization algorithm that avoids

the hill-climbing approach presented here and instead directly optimizes a policy such that

it balances risk and return.

4.6 Summary

In this chapter we formalized and addressed the problem of safe imitation learning via high-

confidence policy evaluation under an unknown reward function. To our knowledge, this

work provides the first general framework for obtaining practical high-confidence bounds

on the performance difference between an evaluation policy and the optimal policy for a

45

demonstrator’s true unknown reward. We also gave examples of how our high-confidence

performance bound can be used to perform risk-aware policy selection and risk-aware pol-

icy improvement. Our proposed algorithms are evaluated on a standard grid navigation task

and driving simulation.

Our results demonstrate that our proposed bound is a significant improvement over a

baseline based on feature counts—providing accurate, tight bounds even for small numbers

of demonstrations. Additionally, our empirical results show orders of magnitude improve-

ment in sample efficiency over competing confidence bounds (Abbeel and Ng, 2004; Syed

and Schapire, 2007). As a result, this is the first approach that allows agents that learn from

demonstrations to express confidence in the performance of their learned policy, based on

limited demonstration data. We believe the techniques proposed in this chapter provide a

starting point for developing autonomous agents that can safely and efficiently learn from

human demonstrations in risk-sensitive, real-world environments.

The method proposed in this section provides a high-confidence upper bound on the

policy loss of any evaluation policy πeval. However, what if a learning agent’s policy has a

high value-at-risk? In this case, there is a chance that the robot’s policy may significantly

deviate from the intent of the demonstrator. In Chapter 8 we address this issue by presenting

an active learning algorithm that uses risk-aware active queries to perform robust policy

improvement. In Chapter 7 we extend our work on robust policy optimization described in

Section 4.5.5 and present a more principled and efficient algorithm that directly performs

robust policy optimization with respect to the Conditional Value at Risk of a policy under a

posterior distribution over reward functions.

One of the main drawbacks of our proposed framework is that it requires running

MCMC, which requires solving forQ∗R(s, a) and V ∗R in order to calculate the Bayesian IRL

likelihood and evaluate the likelihood ratio of each proposal R. Furthermore, our results in

Section 4.5.2 demonstrate that unless β is tuned correctly the performance of our method

degrades as demonstrations become more suboptimal. In the next chapter we present re-

46

ward learning approaches that utilize preference rankings over demonstrations to remove

the need for an MDP solver in the inner-loop and enable learning from highly suboptimal

demonstrations. Finally, in Chapter 6 we demonstrate how ranked demonstrations enable

efficient solutions to the high-confidence policy evaluation problem for imitation learning

in high-dimensional control tasks.

47

Chapter 5

Computationally Efficient Reward

Learning from Suboptimal

Demonstrations

The previous chapter formalized and presented a sample efficient solution to the problem of

high-confidence policy evaluation for imitation learning (HCPE-IL). However, while sam-

ple efficient in terms of the number of demonstrations, the method presented in Chapter 4

requires an MDP solver in the inner-loop, making it intractable for complex imitation learn-

ing problems where solving for an optimal policy is difficult. Furthermore, our previous

results assumed that the demonstrator was near-optimal, which is not always true. Thus,

if we want to compute high-confidence performance bounds for complex imitation learn-

ing tasks, we first need to address some of the limitations in standard imitation learning

approaches. This chapter focuses on improving the efficiency of reward function infer-

ence. Later, in Chapter 6 we will combine results from the current chapter with results

from Chapter 4 to propose a method for efficient high-confidence policy evaluation that

scales to visual imitation learning tasks. This chapter presents contributions 3, 4, and 5

of this dissertation: theoretical results for better-than-demonstrator imitation learning and

48

preference-based inverse reinforcement learning; a computationally efficient algorithm for

reward learning from suboptimal, ranked observations that scales to high-dimensional tasks

and can outperform the demonstrator; and computationally efficient algorithms for learning

to extrapolate intention from unlabeled suboptimal demonstrations.5

While imitation learning is a popular paradigm to teach robots and other autonomous

agents to perform complex tasks simply by showing examples of how to perform the task,

one of the drawbacks of standard imitation learning is that it typically optimizes policies

whose performance is upper-bounded by the performance of the demonstrator. While it is

possible to learn policies that perform better than a demonstrator, existing methods either

require access to a hand-crafted reward function (Hester et al., 2018) or a human supervi-

sor who acts as a reward or value function during policy learning (Christiano et al., 2017;

Brown et al., 2019b).

Imitation learning approaches based on on inverse reinforcement learning are fur-

ther limited because they usually have to solve a complex reinforcement learning step in

the inner-loop. IRL algorithms typically either require fully solving an MDP solver in the

inner-loop (Abbeel and Ng, 2004; Ziebart et al., 2008; Ramachandran and Amir, 2007) or

partially solving an MDP in the inner-loop which requires collecting large amounts of tra-

jectory data during reward function inference and usually requires expensive rollouts in the

real world or a high-fidelity model or simulator (Finn et al., 2016; Ho and Ermon, 2016; Fu

et al., 2017).

In this chapter we seek to remedy both of these problems via reward learning

from pre-ranked demonstrations. We first present theoretical results for when better-than-

demonstrator performance is possible in an inverse reinforcement learning (IRL) setting

(Abbeel and Ng, 2004), where the goal is to recover a reward function from demonstra-

tions. We then present theoretical results demonstrating that rankings (or alternatively, pair-
5This chapter contains work that was done in collaboration with Wonjoon Goo, Prabhat Nagarajan, and

Scott Niekum and was previously published at ICML 2019 (Brown et al., 2019b) and CoRL 2019 (Brown
et al., 2019a).

49

wise preferences) over demonstrations can enable better-than-demonstrator performance by

reducing error and ambiguity in the learned reward function. Next, we present a computa-

tionally efficient method for inverse reinforcement learning via pre-ranked demonstrations.

Our approach allows an imitation learning agent to infer the reward function of a demon-

strator via preferences which removes the need for an MDP solver or any inference time

data collection.

Finally, we present work that leverages the benefits of reward learning via ranked

demonstrations in a way that does not require human rankings. Requiring a demonstrator

to rank demonstrations can be tedious and error prone, and precludes learning from prere-

corded, unranked demonstrations, or learning from demonstrations of similar quality that

are difficult to rank. Thus, we investigate whether it is possible to generate a set of ranked

demonstrations, in order to surpass the performance of a demonstrator, without requiring

supervised preference labels or reward information. We evaluate two methods for automat-

ically ranking demonstrations: (1) watching someone improve at a task over time and (2)

injecting noise into a cloned policy.

5.1 Better-than-Demonstrator Performance: Theory

We model the environment as a Markov decision process or MDP (see Section 3.1). Given

a policy and an MDP, we will denote the expected discounted return of the policy as given

by J(π|R∗) = Eπ[
∑∞

t=0 γ
tR∗(st)]. Similarly, the return of a trajectory consisting of states

and actions, τ = (s0, a0, s1, a1, . . . , sT , aT), is denoted by J(τ |R∗) =
∑T

t=0 γ
tR∗(st).

We assume that we have no access to the true reward function of the MDP. In-

stead, we are given a set of m demonstrations D = {τ1, . . . τm}, where each demonstrated

trajectory is can be a sequence of states and actions, τi = (s0, a0, s1, a1, . . .) or, in the

case of imitation from observation, a sequence of states, τi = (s0, s1, s2, . . .). We as-

sume that the demonstrator is attempting (possibly unsuccessfully) to follow a policy that

optimizes the true reward function R∗. Given the demonstrations D, we wish to find a

50

policy π̂ that can extrapolate beyond the performance of the demonstrator. We say a pol-

icy π̂ can extrapolate beyond of the performance of the demonstrator if it achieves a larger

expected return than the demonstrations, when evaluated under the true reward function

R∗, i.e., J(π̂|R∗) > J(D|R∗), where J(D|R∗) = 1
|D|
∑

τ∈D J(τ |R∗). Similarly, we say

that a learned policy π̂ extrapolates beyond the performance of the best demonstration if

J(π̂|R∗) > maxτ∈D J(τ |R∗).

5.1.1 Extrapolating Beyond a Demonstrator

We first provide a sufficient condition under which it is possible to achieve better-than-

demonstrator performance in an inverse reinforcement learning (IRL) setting, where the

goal is to recover the demonstrator’s reward function which is then used to optimize a policy

(Arora and Doshi, 2018). We consider a learner that approximates the reward function of

the demonstrator with a linear combination of features: R(s) = wTφ(s).6 These can be

arbitrarily complex features, such as the activations of a deep neural network. Under the

assumption of a linear reward function, we have

J(π|R) = Eπ
[∞∑
t=0

γtR(st)

]
= wTEπ

[∞∑
t=0

γtφ(st)

]
= wTΦπ, (5.1)

where Φπ are the expected discounted feature counts that result from following policy π.

Theorem 2. If the estimated reward function is R̂(s) = wTφ(s), the true reward function is

R∗(s) = R̂(s)+ε(s) for some error function ε : S → R, and ‖w‖1 ≤ 1, then extrapolation

beyond the demonstrator, i.e., J(π̂|R∗) > J(D|R∗), is guaranteed if :

J(π∗R∗ |R∗)− J(D|R∗) > εΦ +
2‖ε‖∞
1− γ (5.2)

6Our results also hold for reward functions of the form R(s, a) = wTφ(s, a).

51

where π∗R∗ is the optimal policy under R∗, εΦ = ‖Φπ∗
R∗
− Φπ̂‖∞ and

‖ε‖∞ = sup { |ε(s)| : s ∈ S } . (5.3)

Proof. See Appendix B.1.

Intuitively, extrapolation depends on the demonstrator being sufficiently subopti-

mal, the error in the learned reward function being sufficiently small, and the state oc-

cupancy of the imitation policy, π̂, being sufficiently close to π∗R∗ . If we can perfectly

recover the reward function, then reinforcement learning can be used to ensure that εΦ

is small. Thus, we focus on improving the accuracy of the learned reward function via

automatically-ranked demonstrations. The learned reward function can then be optimized

with any reinforcement learning algorithm (Sutton and Barto, 1998).

5.1.2 Extrapolation via ranked demonstrations

The previous results demonstrate that in order to extrapolate beyond a suboptimal demon-

strator, it is sufficient to have small reward approximation error and a good policy optimiza-

tion algorithm. However, the following proposition, adapted from (Castro et al., 2019),

shows that the reward function learned by standard IRL may be quite superficial and miss

potentially important details, whereas enforcing a ranking over trajectories leads to a more

accurate estimate of the true reward function.

Proposition 1. There exist MDPs with true reward function R∗, expert policy πE , approx-

imate reward function R̂, and non-expert policies π1 and π2, such that

πE = arg max
π∈Π

J(π|R∗) and J(π1|R∗)� J(π2|R∗) (5.4)

πE = arg max
π∈Π

J(π|R̂) and J(π1|R̂) = J(π2|R̂). (5.5)

However, enforcing a preference ranking over trajectories, τ∗ � τ2 � τ1, where τ∗ ∼ π∗,

52

τ2 ∼ π2, and τ1 ∼ π1, results in a learned reward function R̂, such that

πE = arg max
π∈Π

J(π|R̂) and J(π1|R̂) < J(π2|R̂). (5.6)

Proof. See Appendix B.2.

Proposition 1 proves the existence of MDPs where an approximation of the true

reward leads to an optimal policy, yet the learned reward reveals little about the underlying

reward structure of the MDP. This is problematic for several reasons. The first problem

is that if the learned reward function is drastically different than the true reward, this can

lead to poor generalization. Another problem is that many learning from demonstration

methods are motivated by providing non-experts the ability to program by example. Some

non-experts will be good at personally performing a task, but may struggle when giving

kinesthetic demonstrations (Akgun et al., 2012) or teleoperating a robot (Chuck et al., 2017;

Kent et al., 2017). Other non-experts may not be able to personally perform a task at a high

level of performance due to lack of precision or timing, or due to physical limitations or

impairment. Thus, the standard IRL approach of finding a reward function that maximizes

the likelihood of the demonstrations may lead to an incorrect, superficial reward function

that overfits to suboptimal user behavior in the demonstrations.

Indeed, it has been proven that it is impossible to recover the correct reward func-

tion without additional information beyond observations, regardless of whether the policy

is optimal (Ng and Russell, 2000) or suboptimal (Armstrong and Mindermann, 2018). As

demonstrated in Proposition 1, preference rankings can help to alleviate reward function

ambiguity. If the true reward function is a linear combination of features, then the feasi-

ble region of all reward functions that make a policy optimal can be defined as an inter-

section of half-planes (Brown and Niekum, 2019b): Hπ =
⋂
π′∈Πw

T (Φπ − Φπ′) ≥ 0.

We define the reward ambiguity, G(Hπ), as the volume of this intersection of half-planes:

G(Hπ) = Volume(Hπ), where we assume without loss of generality that ‖w‖ ≤ 1, to

53

ensure this volume is bounded. We prove that a total ranking over policies results in less

reward ambiguity than performing IRL on the optimal policy.

Proposition 2. Given a policy class Π, an optimal policy π∗ ∈ Π and a total ranking over

Π, and true reward function R∗(s) = wTφ(s), the reward ambiguity resulting from π∗

is greater than or equal to the reward ambiguity of using a total ranking, i.e., G(H∗π) ≥
G(Hranked).

Proof. See Appendix B.3.

Learning a reward function that respects a set of strictly ranked demonstrations

avoids some of the ill-posedness of IRL (Ng and Russell, 2000) by eliminating a constant,

or all-zero reward function. Furthermore, ranked demonstrations provide explicit informa-

tion about both what to do as well as what not to do in an environment and each pairwise

preference over trajectories gives a half-space constraint on feasible reward functions. In

Appendix B.4 we prove that sampling random half-space constraints results in an exponen-

tial decrease in reward function ambiguity.

Theorem 3. To reduce the volume of J such that Jk = ε, then it suffices to have k random

half-space constraints, where

k = log2

J0

ε
(5.7)

Proof. See Appendix B.4.

Corollary 2. To reduce reward function ambiguity by x% it suffices to have k = log2(1/(1−
x/100)) random half-space constraints over reward function weights.

Proof. See Appendix B.4.

In practice, sampling random half-space constraints on the ground-truth reward

function is infeasible. One approach, often used in preference learning algorithms (Chris-

tiano et al., 2017; Sadigh et al., 2017) is to interactively ask for preference queries during

54

policy optimization. However, this can be burdensome for a human who may have to an-

swer hundreds of preference queries over the space of several hours. Rather than assuming

access to an oracle during policy optimization, we assume access to a set of pre-ranked

demonstrations. In the next section, we consider the case where the demonstrations are

explicitly ranked. In Section 5.3, we extend our results to cases where explicit preference

queries are not available. As we will show in the next section, automatically-generating

preferences over demonstrations also improves the efficiency of IRL by removing the need

for an MDP solver in the inner-loop and turning IRL into a supervised learning problem.

5.2 Trajectory-Ranked Reward Extrapolation

It can be difficult, even for experts, to design reward functions and objectives that lead

to desired behaviors when designing autonomous agents (Ng et al., 1999; Amodei et al.,

2016). When goals or rewards are difficult for a human to specify, inverse reinforcement

learning (IRL) (Abbeel and Ng, 2004) techniques can be applied to infer the intrinsic re-

ward function of a user from demonstrations. Unfortunately, high-quality demonstrations

are difficult to provide for many tasks—for instance, consider a non-expert user attempt-

ing to give kinesthetic demonstrations of a household chore to a robot. Even for relative

experts, tasks such as high-frequency stock trading or playing complex video games can

be difficult to perform optimally. If a demonstrator is suboptimal, but their intentions can

be ascertained, then a learning agent ought to be able to exceed the demonstrator’s perfor-

mance in principle. However, existing IRL algorithms fail to do this, typically searching for

a reward function that makes the demonstrations appear near-optimal (Ramachandran and

Amir, 2007; Ziebart et al., 2008; Finn et al., 2016; Henderson et al., 2018). Thus, when the

demonstrator is suboptimal, IRL results in suboptimal behavior as well. Imitation learning

approaches (Argall et al., 2009) that mimic behavior directly without reward inference, such

as behavioral cloning (Torabi et al., 2018a), also suffer from the same shortcoming.

In this section, we address this shortcoming in current imitation learning methods

55

Figure 5.1: T-REX takes a sequence of ranked demonstrations and learns a reward function
from these rankings that allows policy improvement over the demonstrator via reinforce-
ment learning.

via preference rankings over demonstrations. In particular, we propose a novel reward in-

ference algorithm, Trajectory-ranked Reward Extrapolation (T-REX) that utilizes a set of

pre-ranked demonstrations to extrapolate a user’s underlying intent beyond the best demon-

stration, even when all demonstrations are highly suboptimal. This, in turn, enables a re-

inforcement learning agent to exceed the performance of the demonstrator by learning to

optimize this extrapolated reward function. Specifically, we use ranked demonstrations to

learn a state-based reward function that assigns greater total return to higher-ranked tra-

jectories. Thus, while standard inverse reinforcement learning approaches seek a reward

function that justifies the demonstrations, we instead seek a reward function that explains

the ranking over demonstrations, allowing for potentially better-than-demonstrator perfor-

mance. T-REX is summarized in Figure 5.1.

Utilizing ranking in this way has several advantages. First, rather than imitating

suboptimal demonstrations, it allows us to identify features that are correlated with rank-

ings, in a manner that can be extrapolated beyond the demonstrations. Although the learned

reward function could potentially overfit to the provided rankings, we demonstrate empiri-

cally that it extrapolates well, successfully predicting returns of trajectories that are signifi-

56

cantly better than any observed demonstration, likely due to the powerful regularizing effect

of having many pairwise ranking constraints between trajectories. For example, the degen-

erate all-zero reward function (the agent always receives a reward of 0) makes any given

set of demonstrations appear optimal. However, such a reward function is eliminated from

consideration by any pair of (non-equally) ranked demonstrations. Second, when learning

features directly from high-dimensional data, this regularizing effect can also help to pre-

vent overfitting to the small fraction of state space visited by the demonstrator. By utilizing

a set of suboptimal, but ranked demonstrations, we provide the neural network with diverse

data from multiple areas of the state space, allowing an agent to better learn both what to

do and what not to do in a variety of situations.

We evaluate T-REX on a variety of standard Atari and MuJoCo benchmark tasks.

Our experiments show that T-REX can extrapolate well, achieving performance that is often

more than twice as high as the best-performing demonstration, as well as outperforming

state-of-the-art imitation learning algorithms. We also show that T-REX performs well

even in the presence of significant ranking noise

5.2.1 Problem Definition

We assume access to a sequence ofm ranked trajectories τt for t = 1, . . . ,m, where τi ≺ τj
if i < j, we wish to find a parameterized reward function r̂θ that approximates the true

reward function r that the demonstrator is attempting to optimize. Given r̂θ, we then seek

to optimize a policy π̂ that can outperform the demonstrations.

Note that while our experiments in this section will typically involve a total ranking

over demonstrations, our method works even with partial preference orderings. Our method

only requires qualitative preferences. These preference labels can be obtained using many

possible methods, such as a demonstrator giving pairwise preferences over trajectories, rat-

ing each demonstration on a likert scale, or simply providing a sequence of demonstrations

and annotating whether each demonstration is better or worse than the previous demon-

57

stration. Note that even if the demonstrator provides a small set of relative scores to rank

the demonstrations, this does not mean we have access to oracle scores during policy opti-

mization. It is still necessary to use the preferences over demonstrations to infer a reward

function which explains why some demonstration trajectories are scored better than others,

which is what our proposed method does.

5.2.2 Algorithm

We now describe Trajectory-ranked Reward Extrapolation (T-REX), an algorithm for us-

ing ranked suboptimal demonstrations to extrapolate a user’s underlying intent beyond the

best demonstration. Given a sequence of m demonstrations ranked from worst to best,

τ1, . . . , τm, T-REX has two steps: (1) reward inference and (2) policy optimization.

Given the ranked demonstrations, T-REX performs reward inference by approx-

imating the reward at state s using a neural network, r̂θ(s), such that
∑

s∈τi r̂θ(s) <∑
s∈τj r̂θ(s) when τi ≺ τj . The parameterized reward function r̂θ can be trained with

ranked demonstrations using the generalized loss function:

L(θ) = Eτi,τj∼Π

[
ξ
(

P
(
Ĵθ(τi) < Ĵθ(τj)

)
, τi ≺ τj

)]
, (5.8)

where Π is a distribution over demonstrations, ξ is a binary classification loss function, Ĵ

is the return defined by a parameterized reward function r̂θ, and ≺ is an indication of the

preference between the demonstrated trajectories.

We represent the probability P as a softmax-normalized distribution and we instan-

tiate ξ using a cross entropy loss:

P
(
Ĵθ(τi) < Ĵθ(τj)

)
≈

exp
∑
s∈τj

r̂θ(s)

exp
∑
s∈τi

r̂θ(s) + exp
∑
s∈τj

r̂θ(s)
, (5.9)

58

L(θ) = −
∑
τi≺τj

log

exp
∑
s∈τj

r̂θ(s)

exp
∑
s∈τi

r̂θ(s) + exp
∑
s∈τj

r̂θ(s)
. (5.10)

This loss function trains a classifier that can predict whether one trajectory is preferable to

another based on the predicted returns of each trajectory. This form of loss function fol-

lows from the classic Bradley-Terry and Luce-Shephard models of preferences (Bradley and

Terry, 1952; Luce, 2012) and has been shown to be effective for training neural networks

from preferences (Christiano et al., 2017; Ibarz et al., 2018).7

To increase the number of training examples, T-REX trains on partial trajectory

pairs rather than full trajectory pairs. This results in noisy preference labels that are only

weakly supervised; however, using data augmentation to obtain pairwise preferences over

many partial trajectories allows T-REX to learn expressive neural network reward functions

from only a small number of ranked demonstrations. During training we randomly select

pairs of trajectories, τi and τj . We then randomly select partial trajectories τ̃i and τ̃j of

length L. For each partial trajectory, we take each observation and perform a forward pass

through the network r̂θ and sum the predicted rewards to compute the cumulative return.

We then use the predicted cumulative returns as the logit values in the cross-entropy loss

with the label corresponding to the higher ranked demonstration. Given the learned reward

function r̂θ(s), T-REX then seeks to optimize a policy π̂ with better-than-demonstrator

performance through reinforcement learning using r̂θ.8

5.2.3 MuJoCo Experiments and Results

We first evaluated our proposed method on three robotic locomotion tasks using the Mu-

JoCo simulator (Todorov et al., 2012) within OpenAI Gym (Brockman et al., 2016), namely

HalfCheetah, Hopper, and Ant. In all three tasks, the goal of the robot agent is to move for-
7Note that this can be implemented efficiently and robustly in most automatic differentiation software pack-

ages by simply using a binary cross entropy loss function where the logits are the predicted cumulative returns.
8Videos and code are available at https://github.com/hiwonjoon/ICML2019-TREX

59

https://github.com/hiwonjoon/ICML2019-TREX

ward as fast as possible without falling to the ground.

Demonstrations

To generate demonstrations, we trained a Proximal Policy Optimization (PPO) (Schulman

et al., 2017) agent with the ground-truth reward for 500 training steps (64,000 simulation

steps) and checkpointed its policy after every 5 training steps. For each checkpoint, we

generated a trajectory of length 1,000. This provides us with different demonstrations of

varying quality which are then ranked based on the ground truth returns. To evaluate the

effect of different levels of suboptimality, we divided the trajectories into different overlap-

ping stages. We used 3 stages for HalfCheetah and Hopper. For HalfCheetah, we used the

worst 9, 12, and 24 trajectories, respectively. For Hopper, we used the worst 9, 12, and

18 trajectories. For Ant, we used two stages consisting of the worst 12 and 40 trajectories.

We used the PPO implementation from OpenAI Baselines (Dhariwal et al., 2017) with the

given default hyperparameters.

Experimental Setup

We trained the reward network using 5,000 random pairs of partial trajectories of length

50, with preference labels based on the trajectory rankings, not the ground-truth returns.

To prevent overfitting, we represented the reward function using an ensemble of five deep

neural networks, trained separately with different random pairs. Each network has 3 fully

connected layers of 256 units with ReLU nonlinearities. We train the reward network using

the Adam optimizer (Kingma and Ba, 2014) with a learning rate of 1e-4 and a minibatch

size of 64 for 10,000 timesteps.

To evaluate the quality of our learned reward, we then trained a policy to maximize

the inferred reward function via PPO. The outputs of each the five reward networks in our

ensemble, r̂(s), are normalized by their standard deviation to compensate for any scale

differences amongst the models. The reinforcement learning agent receives the average of

60

the ensemble as the reward, plus the control penalty used in OpenAI Gym (Brockman et al.,

2016). This control penalty represents a standard safety prior over reward functions for

robotics tasks, namely to minimize joint torques. We found that optimizing a policy based

solely on this control penalty does not lead to forward locomotion, thus learning a reward

function from demonstrations is still necessary.

Learned Policy Performance

We measured the performance of the policy learned by T-REX by measuring the forward

distance traveled. We also compared against Behavior Cloning from Observations (BCO)

(Torabi et al., 2018a), a state-of-the-art learning-from-observation method, and Generative

Adversarial Imitation Learning (GAIL) (Ho and Ermon, 2016), a state-of-the-art inverse

reinforcement learning algorithm. BCO trains a policy via supervised learning, and has

been shown to be competitive with state-of-the-art IRL (Ho and Ermon, 2016) on MuJoCo

tasks without requiring action labels, making it one of the strongest baselines when learning

from observations. We trained BCO using only the best demonstration among the available

suboptimal demonstrations. We trained GAIL with all of the demonstrations. GAIL uses

demonstrator actions, while T-REX and BCO do not.

We compared against three different levels of suboptimality (Stage 1, 2, and 3),

corresponding to increasingly better demonstrations. The results are shown in Figure 5.2

(see Table 5.4 for full details). The policies learned by T-REX perform significantly better

than the provided suboptimal trajectories in all the stages of HalfCheetah and Hopper. This

provides evidence that T-REX can discover reward functions that extrapolate beyond the

performance of the demonstrator. T-REX also outperforms BCO and GAIL on all tasks

and stages except for Stage 2 for Hopper and Ant. BCO and GAIL usually fail to perform

better than the average demonstration performance because they explicitly seek to imitate

the demonstrator rather than infer the demonstrator’s intention.

61

Stage 1 Stage 2 Stage 3
HalfCheetah

0

20

40

60

80

100

120

140

Pe
rfo

rm
an

ce

Stage 1 Stage 2 Stage 3
Hopper

0

2

4

6

8

10

12

14

16

Stage 1 Stage 2
Ant

0

10

20

30

40

50

Best Demo Perf. BCO GAIL T-REX

Figure 5.2: Imitation learning performance for three robotic locomotion tasks when given
suboptimal demonstrations. Performance is measured as the total distance traveled, as mea-
sured by the final x-position of the robot’s body. For each stage and task, the best perfor-
mance given suboptimal demonstrations is shown for T-REX (ours), BCO (Torabi et al.,
2018a), and GAIL (Ho and Ermon, 2016). The dashed line shows the performance of the
best demonstration.

Reward Extrapolation

We next investigated the ability of T-REX to accurately extrapolate beyond the demonstra-

tor. To do so, we compared ground-truth return and T-REX-inferred return across trajecto-

ries from a range of performance qualities, including trajectories much better than the best

demonstration given to T-REX. The extrapolation of the reward function learned by T-REX

is shown in Figure 5.3. The plots in Figure 5.3 give insight into the performance of T-

REX. When T-REX learns a reward function that has a strong positive correlation with the

ground-truth reward function, then it is able to surpass the performance of the suboptimal

demonstrations. However, in Ant the correlation is not as strong, resulting in worse-than-

demonstrator performance in Stage 2.

62

(a) HalfCheetah (b) Hopper (c) Ant

Figure 5.3: Extrapolation plots for T-REX on MuJoCo Stage 1 demonstrations. Red points
correspond to demonstrations and blue points correspond to trajectories not given as demon-
strations. The solid line represents the performance range of the demonstrator, and the
dashed line represents extrapolation beyond the demonstrator’s performance. The x-axis is
the ground-truth return and the y-axis is the predicted return from our learned reward func-
tion. Predicted returns are normalized to have the same scale as the ground-truth returns.

5.2.4 Atari Experiments and Results

Demonstrations

We next evaluated T-REX on eight Atari games shown in Table 5.1. To obtain a variety

of suboptimal demonstrations, we generated 12 full-episode trajectories using PPO policies

checkpointed every 50 training updates for all games except for Seaquest and Enduro. For

Seaquest, we used every 5th training update due to the ability of PPO to quickly find a good

policy. For Enduro, we used every 50th training update starting from step 3,100 since PPO

obtained 0 return until after 3,000 steps. We used the OpenAI Baselines implementation of

PPO with the default hyperparameters.

Experimental Setup

We used an architecture for reward learning similar to the one proposed in (Ibarz et al.,

2018), with four convolutional layers with sizes 7x7, 5x5, 3x3, and 3x3, with strides 3,

2, 1, and 1. Each convolutional layer used 16 filters and LeakyReLU non-linearities. We

then used a fully connected layer with 64 hidden units and a single scalar output. We fed

63

in stacks of 4 frames with pixel values normalized between 0 and 1 and masked the game

score and number of lives.

For all games except Enduro, we subsampled 6,000 trajectory pairs between 50 and

100 observations long. We optimized the reward functions using Adam with a learning

rate of 5e-5 for 30,000 steps. Given two full trajectories τi and τj such that τi ≺ τj ,

we first randomly sample a subtrajectory from τi. Let ti be the starting timestep for this

subtrajectory. We then sample an equal length subtrajectory from τj such that ti ≤ tj ,

where tj is the starting time step of the subtrajectory from τj . We found that this resulted in

better performance than comparing randomly chosen subtrajectories, likely due to the fact

that (1) it eliminates pairings that compare a later part of a worse trajectory with an earlier

part of a better trajectory and (2) it encourages reward functions that are monotonically

increasing as progress is made in the game. For Enduro, training on short partial trajectories

was not sufficient to score any points and instead we used 2,000 pairs of down-sampled full

trajectories (see appendix for details).

We optimized a policy by training a PPO agent on the learned reward function. To

reduce reward scaling issues, we normalized predicted rewards by feeding the output of

r̂θ(s) through a sigmoid function before passing it to PPO. We trained PPO on the learned

reward function for 50 million frames to obtain our final policy. We also compare against

Behavioral Cloning from Observation (BCO) (Torabi et al., 2018a) and the state-of-the-art

Generative Adversarial Imitation Learning (GAIL) (Ho and Ermon, 2016). Note that we

give action labels to GAIL, but not to BCO or T-REX. We tuned the hyperparameters for

GAIL to maximize performance when using expert demonstrations on Breakout and Pong.

We gave the same demonstrations to both BCO and T-REX; however, we found that GAIL

was very sensitive to poor demonstrations so we trained GAIL on 10 demonstrations using

the policy checkpoint that generated the best demonstration given to T-REX.

64

Table 5.1: Comparison of T-REX with a state-of-the-art behavioral cloning algorithm
(BCO) (Torabi et al., 2018a) and state-of-the-art IRL algorithm (GAIL) (Ho and Ermon,
2016). Performance is evaluated on the ground-truth reward. T-REX achieves better-than-
demonstrator performance on 7 out of 8 games and surpasses the BCO and GAIL baselines
on 7 out of 8 games. Results are the best average performance over three random seeds with
30 trials per seed.

Ranked Demonstrations LfD Algorithm Performance

Game Best Average T-REX BCO GAIL

Beam Rider 1,332 686.0 3,335.7 568 355.5
Breakout 32 14.5 221.3 13 0.28
Enduro 84 39.8 586.8 8 0.28
Hero 13,235 6,742.0 0 2,167 0
Pong -6 -15.6 -2.0 -21 -21

Q*bert 800 627 32,345.8 150 0
Seaquest 600 373.3 747.3 0 0

Space Invaders 600 332.9 1,032.5 88 370.2

Learned Policy Performance

The average performance of T-REX under the ground-truth reward function and the best and

average performance of the demonstrator are shown in Table 5.1. Table 5.1 shows that T-

REX outperformed both BCO and GAIL in 7 out of 8 games. T-REX also outperformed the

best demonstration in 7 out of 8 games. On four games (Beam Rider, Breakout, Enduro, and

Q*bert) T-REX achieved score that is more than double the score of the best demonstration.

In comparison, BCO performed worse than the average performance of the demonstrator

in all games, and GAIL only performed better than the average demonstration on Space

Invaders. Despite using better training data, GAIL was unable to learn good policies on

any of the Atari tasks. These results are consistent with those of Tucker et al. (2018) that

show that current GAN-based IRL methods do not perform well on Atari. In the appendix,

we compare our results against prior work (Ibarz et al., 2018) that uses demonstrations plus

active feedback during policy training to learn control policies for the Atari domain.

65

Reward Extrapolation

We also examined the extrapolation of the reward function learned using T-REX. Results

are shown in Figure 5.4. We observed accurate extrapolation for Beam Rider, Breakout,

Enduro, Seaquest, and Space Invaders—five games where T-REX significantly outperform

the demonstrator. The learned rewards for Pong, Q*bert, and Hero show less correlation.

On Pong, T-REX overfits to the suboptimal demonstrations and ends up preferring longer

games which do not result in a significant win or loss. T-REX is unable to score any points

on Hero, likely due to poor extrapolation and the higher complexity of the game. Surpris-

ingly, the learned reward function for Q*bert shows poor extrapolation, yet T-REX is able

to outperform the demonstrator. We analyzed the resulting policy for Q*bert and found that

PPO learns a repeatable way to score points by inducing Coily to jump off the edge. This

behavior was not seen in the demonstrations.

Reward Function Visualizations

To gain insights into the learned reward function, we plotted the maximum and minimum

predicted observations from the trajectories used to create Figure 5.4 along with attention

maps for the learned reward functions. For example, Figure C.2 shows the frame stack

for Beam Rider with maximum and minimum predicted rewards. Figure 5.5 (a) shows the

maximum predicted framestack where the agent destroys an enemy ship. Figure 5.5 (c)

shows the framestack that had the smallest predicted reward. This observation shows the

agent right as it is hit by an enemy bullet. Figure 5.6 shows the observations with maximum

and minimum predicted scores. Even though none of the demonstrations were able to fully

clear a level of aliens, the learned reward function is able to extrapolate and predict that

clearing all of the aliens from the screen has highest reward. The lowest predicted score is

not when the agent loses a life, but when it first starts the game and has not destroyed any of

the alien ships. In Appendix C.7 we provide more results and the corresponding attention

heatmaps for all of the games.

66

(a) Beam Rider (b) Breakout (c) Enduro (d) Hero

(e) Pong (f) Q*bert (g) Seaquest (h) Space Invaders

Figure 5.4: Extrapolation plots for Atari games. We compare ground truth returns over
demonstrations to the predicted returns using T-REX (normalized to be in the same range
as the ground truth returns). The black solid line represents the performance range of
the demonstrator. The green dashed line represents extrapolation beyond the range of the
demonstrator’s performance.

Human Demonstrations

The above results used synthetic demonstrations generated from an RL agent. We also

tested T-REX when given ground-truth rankings over human demonstrations. We used

novice human demonstrations from the Atari Grand Challenge Dataset (Kurin et al., 2017)

for five Atari tasks. We used the ground truth returns in the Atari Grand Challenge data

set to rank demonstrations. To generate demonstrations we removed duplicate demonstra-

tions (human demonstrations that achieved the same score). We then sorted the remaining

demonstrations based on ground truth return and selected 12 of these demonstrations to

form our training set. We ran T-REX using the same hyperparameters as described above.

The resulting performance of T-REX is shown in Table 5.2. T-REX is able to outper-

form the best human demonstration on Q*bert, Space Invaders, and Video Pinball; however,

67

(a) Beam Rider observation with maximum predicted reward

(b) Beam Rider reward model attention on maximum predicted reward

(c) Beam Rider observation with minimum predicted reward

(d) Beam Rider reward model attention on minimum predicted reward

Figure 5.5: Maximum and minimum predicted observations and corresponding attention
maps for Beam Rider. The observation with the maximum predicted reward shows success-
fully destroying an enemy ship, with the network paying attention to the oncoming enemy
ships and the shot that was fired to destroy the enemy ship. The observation with minimum
predicted reward shows an enemy shot that destroys the player’s ship and causes the player
to lose a life. The network attends most strongly to the enemy ships but also to the incoming
shot.

68

(a) Space Invaders observation with maximum predicted reward

(b) Space Invaders reward model attention on maximum predicted reward

(c) Space Invaders observation with minimum predicted reward

(d) Space Invaders reward model attention on minimum predicted reward

Figure 5.6: Maximum and minimum predicted observations and corresponding attention
maps for Space Invaders. The observation with maximum predicted reward shows an ob-
servation where all the aliens have been successfully destroyed and the protective barriers
are still intact. Note that the agent never observed a demonstration that successfully de-
stroyed all the aliens. The attention map shows that the learned reward function is focused
on the barriers, but does not attend to the location of the controlled ship. The observation
with minimum predicted reward shows the very start of a game with all aliens still alive.
The network attends to the aliens and barriers, with higher weight on the aliens and barrier
closest to the space ship.

69

Table 5.2: T-REX performance with real novice human demonstrations collected from the
Atari Grand Challenge Dataset Kurin et al. (2017). Results are the best average performance
over three random seeds with 30 trials per seed.

Novice Human
Game Best Average T-REX

Montezuma’s Revenge 2,600 1,275.0 0.0
Ms Pacman 1,360 818.3 550.7

Q*bert 875 439.6 6,869.2
Space Invaders 470 290.0 1,092.0
Video Pinball 4,210 2,864.3 20,000.2

it is not able to learn a good control policy for Montezuma’s Revenge or Ms Pacman. These

games require maze navigation and balancing different objectives, such as collecting ob-

jects and avoiding enemies. This matches our results in the main text that show that T-REX

is unable to learn a policy for playing Hero, a similar maze navigation task with multiple

objectives such as blowing up walls, rescuing people, and destroying enemies. Extending

T-REX to work in these types of settings is an interesting area of future work.

5.2.5 Robustness to Noisy Rankings

All experiments described thus far have had access to ground-truth rankings. To explore the

effects of noisy rankings we first examined the stage 1 Hopper task. We synthetically gen-

erated ranking noise by starting with a list of trajectories sorted by ground-truth returns and

randomly swapping adjacent trajectories. By varying the number of swaps, we were able

to generate different noise levels. Given n trajectories in a ranked list provides
(
n
2

)
pair-

wise preferences over trajectories. The noise level is measured as a total order correctness:

the fraction of trajectory pairs whose pairwise ranking after random swapping matches the

original ground-truth pairwise preferences. The results of this experiment, averaged over 9

runs per noise level, are shown in Figure 5.7. We found that T-REX is relatively robust to

noise of up to around 15% pairwise errors.

70

Figure 5.7: The performance of T-REX for different amounts of pairwise ranking noise in
the Hopper domain. T-REX shows graceful degradation as ranking noise increases. The
reward function is trained on stage-1 Hopper demonstrations. The graph shows the mean
across nine trials and 95% confidence interval.

To examine the effect of noisy human rankings, we used the synthetic PPO demon-

strations that were used in the previous Atari experiments and used Amazon Mechanical

Turk to collect human rankings. We presented videos of the demonstrations in pairs along

with a brief text description of the goal of the game and asked workers to select which

demonstration had better performance, with an option for selecting “Not Sure”. We col-

lected six labels per demonstration pair and used the most-common label as the label for

training the reward function. We removed from the training data any pairings where there

was a tie for the most-common label or where “Not Sure” was the most common label. We

found that despite this preprocessing step, human labels added a significant amount of noise

and resulted in pair-wise rankings with accuracy between 63% and 88% when compared to

ground-truth labels. However, despite significant ranking noise, T-REX outperformed the

demonstrator on 5 of the 8 Atari games as shown in Table 5.3.

The resulting accuracy and number of labels that had a majority preference are

shown in Table 5.3. We ran T-REX using the same hyperparameters described in the main

text. We ran PPO with 3 different seeds and report the performance of the best final policy

71

averaged over 30 trials. We found that surprisingly, T-REX is able to optimize good policies

for many of the games, despite noisy labels. However, we did find cases such as Enduro,

where the labels were too noisy to allow successful policy learning.

Table 5.3: Evaluation of T-REX on human rankings collected using Amazon Mechanical
Turk. Results are the best average performance over three random seeds with 30 trials per
seed.

Human-Ranked Demonstrations
Game Best Average Ranking Accuracy Num. Labels T-REX avg. perf.

Beam Rider 1,332 686.0 63.0% 54 3,457.2
Breakout 32 14.5 88.1% 59 253.2
Enduro 84 39.8 58.6% 58 0.03
Hero 13,235 6742 77.6% 58 2.5
Pong -6 -15.6 79.6% 54 -13.0

Q*bert 800 627 75.9% 58 66,082
Seaquest 600 373.3 80.4% 56 655.3

Space Invaders 600 332.9 84.7% 59 1,005.3

5.2.6 Discussion

This chapter focuses on efficient, better-than-demonstrator imitation learning. In the pre-

ceeding sections, we introduced T-REX, a reward learning technique for high-dimensional

tasks that can learn to extrapolate intent from suboptimal ranked demonstrations. T-REX

learns a reward function without requiring an MDP solver or any data collection during

reward inference. To the best of our knowledge, this is the first IRL algorithm that is able to

significantly outperform the demonstrator and that scales to high-dimensional Atari games.

When combined with deep reinforcement learning, we showed that this approach achieves

better-than-demonstrator performance as well as outperforming state-of-the-art behavioral

cloning and IRL methods. We also demonstrated that T-REX is robust to modest amounts

of ranking noise. In the next section we explore how to apply T-REX to the more general

imitation learning settings where explicit preference labels are unavailable.

72

5.3 Ranking-Based Reward Extrapolation Without Rankings

In this section we explore two different methods for efficient, better-than-demonstrator im-

itation learning without explicit rankings. We first explore the case where an agent is learn-

ing from a demonstrator that is also learning. Many user studies involving imitation learning

give demonstrators a practice phase where a user gets familiar with the task and is able to

learn how to give good demonstrations. In this section we give evidence that suboptimal

demonstrations obtained during “practice rounds” with human demonstrators should not be

simply thrown away as they contain useful information about failure modes. We show that

an imitation learning algorithm can learn to extrapolate the performance of a learning agent

simply by watching an agent’s behavior as it learns how to perform a task better over time.

Next, we introduce Disturbance-based Reward Extrapolation (D-REX), an exten-

sion of T-REX to the more general imitation learning setting where the learning agent is

given a bag of demonstrations with no preference labels or timestamps. In this case we

show that an imitation learning agent can first perform behavioral cloning on the demon-

strations and then inject noise injection into the cloned policy to self-generate a wide variety

of automatically-ranked demonstrations which can be used by T-REX to learn a better-than-

demonstrator policy in the absence of explicit preferences. We empirically validate our ap-

proach on simulated robot and Atari imitation learning benchmarks and show that D-REX

outperforms standard imitation learning approaches and can significantly surpass the per-

formance of the demonstrator. D-REX is the first imitation learning approach to achieve

significant extrapolation beyond the demonstrator’s performance without additional side-

information or supervision, such as rewards or human preferences. By generating rankings

automatically, we show that preference-based inverse reinforcement learning can be applied

in traditional imitation learning settings where only unlabeled demonstrations are available.

5.3.1 Learning from a Learner

In this section we focus on learning a reward function simply by watching a learning agent.

73

Motivation

Why should we be able to learn a reward function from simply watching a learner? Here

we give some intuitive examples as to why it is theoretically possible, under strong assump-

tions, to learn from watching a learner, should be possible in theory. Later we discuss a

practical approach for learning from a learner.

As a simple example of a simple case where learning from a learner is possible,

consider the learning update of the Q-learning algorithm Sutton and Barto (1998):

Q̂t+1(s, a) = Q̂t(s, a) + α[R(s) + γmax
a′

Q̂t(s
′, a′)− Q̂t(s, a)]. (5.11)

By rearranging terms we see that the reward can be recovered if we have access to the

Q-values of the learner.

R(s) =
Q̂t+1(s, a)− Q̂t(s, a)

α
+ Q̂t(s, a)− γmax

a′
Q̂t(s

′, a′) (5.12)

Similarly, consider a parameterized policy, πθ, being learned through policy gradi-

ent RL Sutton and Barto (1998). Given trajectories τ ∼ πθ, a basic update using the policy

gradient theorem (Sutton et al., 2000) can be written as:

θt+1 = θt + αEπθ

[
r(τ)

T∑
t=1

∇ log πθ(at|st)
]
. (5.13)

Rearranging terms and assuming a stochastic gradient descent update using a single policy

trajectory τ ∼ πθ we can recover the return along the trajectory

r(τ) =
θt+1 − θt

α
∑T

t=1∇ log πθ(at|st)
(5.14)

Thus, if we have access to the internals of the learning agent and its changes in pol-

icy, information about the reward can be learned long before the optimal policy is learned.

74

This fact is also clear from the success of model-based RL (Deisenroth and Rasmussen,

2011; Chua et al., 2018), where the goal is to build a model of the transition dynamics and

reward function in order to reduce the real-world sample complexity of solving an MDP;

reward functions are often much easier to learn than optimal policies. Further, by learning a

parameterized reward function from environmental features, we can learn a reward function

that generalizes to areas of state-space that are unvisited by demonstrations.

While having direct access to the demonstrator’s internal state is implausible—and

would likely mean we have access to the true reward signal as well—we do have access

to the trajectories taken by the learner which are informed by its internal state, i.e., reward

signals, Q-values, policy-gradient, etc. The goal of this section is to develop a learning

algorithm that can leverage the changes in trajectories taken by a learner in order to esti-

mate a hidden reward signal. In doing so, we can then learn a policy that can surpass the

performance of the demonstrator. The ideas in this section were originally presented in

(Brown et al., 2019b). Concurrent with our work, Jacq et al. (2019) also proposed to study

the problem of learning from a learner. While the work of Jacq et al. (2019) is motivated by

the same principle—a learning agent’s performance improves over time—they take a very

different approach by first learning a series of policies via imitation learning and then using

those policies to estiamte the reward function using entropy regularized policy iteration.

Learning from a Learner via T-REX

In the remainder of this section we investigate whether T-REX can learn good control poli-

cies simply by observing a novice demonstrator that noisily improves at a task over time.

We assume that the demonstrator is a learning agent that receives a hidden reward signal

and uses that signal to learn how to perform a task. Note that the agent labeled as the

demonstrator may be a human or artificial agent and does not need to know that they are

being observed or that their behavior will be used for imitation learning. In this case we do

not have explicit preference rankings. However, under the assumption that the trajectories

75

Figure 5.8: T-REX results with time-based rankings in the Hopper domain.

are generated by a learning agent, we make the assumption that, on average, the agent’s

performance at the task is improving. Thus, we can apply weak labels based on timestamps

to prefer later trajectories over earlier trajectories. Given these weakly labeled demonstra-

tions, we can learn a reward function and control policy via standard T-REX as described

in the previous section.

To test this approach, we took the same demonstrations used for the MuJoCo tasks,

and rather than sorting them based on ground-truth rankings, we used the order in which

they were generated by PPO to produce a ranked list of trajectories, ordered by timestamp

from earliest to latest. This provides ranked demonstrations without any need for demon-

strator labels, and enables us to test whether simply observing an agent learn over time

allows us to extrapolate intention by assuming that later trajectories are preferable to tra-

jectories produced earlier in learning. The results for Hopper are shown in Figure 5.8.

Table 5.4 shows the full results for the MuJoCo experiments comparing the time-ordered

learning from a learner results with the explicit preference ranking results from the previous

section. The T-REX (time-ordered) row shows the resulting performance of T-REX when

demonstrations come from observing a learning agent and are ranked based on timestamps

76

Table 5.4: The results on three robotic locomotion tasks when given suboptimal demon-
strations. Performance is measured as the total distance traveled, as measured by the final
x-position of the robot’s body. For each stage and task, the best performance given sub-
optimal demonstrations is shown on the top row, and the best achievable performance (i.e.
performance achieved by a PPO agent) under the ground-truth reward is shown on the bot-
tom row. The mean and standard deviation are based on 25 trials (obtained by running PPO
five times and for each run of PPO performing five policy rollouts). The first row of T-REX
results show the performance when demonstrations are ranked using the ground-truth re-
turns. The second row of T-REX shows results for learning from observing a learning agent
(time-ordered). The demonstrations are ranked based on the timestamp when they were
produced by the PPO algorithm learning to perform the task.

HalfCheetah Hopper Ant
Stage 1 Stage 2 Stage 3 Stage 1 Stage 2 Stage 3 Stage 1 Stage 2

Best Demo
Performance

12.52
(1.04)

44.98
(0.60)

89.87
(8.15)

3.70
(0.01)

5.40
(0.12)

7.95
(1.64)

1.56
(1.28)

54.64
(22.09)

T-REX
(ours)

46.90
(1.89)

61.56
(10.96)

143.40
(3.84)

15.13
(3.21)

10.10
(1.68)

15.80
(0.37)

4.93
(2.86)

7.34
(2.50)

T-REX
(time-ordered)

51.39
(4.52)

54.90
(2.29)

154.67
(57.43)

10.66
(3.76)

11.41
(0.56)

11.17
(0.60)

5.55
(5.86)

1.28
(0.28)

BCO
7.71

(8.35)
23.59
(8.33)

57.13
(19.14)

3.52
(0.14)

4.41
(1.45)

4.58
(1.07)

1.06
(1.79)

26.56
(12.96)

GAIL
7.39

(4.12)
8.42

(3.43)
26.28

(12.73)
8.09

(3.25)
10.99
(2.35)

12.63
(3.66)

0.95
(2.06)

5.84
(4.08)

Best w/
GT Reward

199.11
(9.08)

15.94
(1.47)

182.23
(8.98)

rather than using explicit preference rankings. We found that T-REX is able to infer a mean-

ingful reward function even when noisy, time-based rankings are provided. All the trained

policies produced comparable results on most stages to the ground-truth rankings, and those

policies outperform BCO and GAIL on all tasks and stages except for Ant Stage 2.

5.3.2 Disturbance-Based Reward Extrapolation

Previously in this chapter, we presented theoretical results for when better-than-demonstrator

performance is possible and demonstrated theoretically that rankings (or alternatively, pair-

wise preferences) over demonstrations can enable better-than-demonstrator performance by

reducing error and ambiguity in the learned reward function. We then proposed Trajectory-

77

ranked Reward Extrapolation (T-REX) as an efficient algorithm that can achieve better-

than-demonstrator performance via preference rankings over demonstrations. Our previous

results demonstrate that T-REX is applicable to the case where explicit preference rankings

are unavailable, but where the observed trajectories come from a learning agent and can be

weakly labeled based on timestamps.

In this section, we address the problem of leveraging the benefits of reward learning

via ranked demonstrations in a way that does not require human rankings. T-REX learns a

reward function that allows better-than-demonstrator performance without requiring human

supervision during policy learning. However, requiring a demonstrator to rank demonstra-

tions can be tedious and error prone, and precludes learning from prerecorded, unranked

demonstrations, or learning from demonstrations of similar quality that are difficult to rank.

In this section, we investigate whether it is possible to generate a set of ranked demonstra-

tions, in order to surpass the performance of a demonstrator, without requiring supervised

preference labels or reward information.

We propose Disturbance-based Reward Extrapolation (D-REX), a ranking-based re-

ward learning algorithm that does not require ranked demonstrations. Our approach injects

noise into a policy learned through behavioral cloning to automatically generate ranked

policies of varying performance. D-REX makes the weak assumption that the demonstra-

tions are better than a purely random policy, and that adding increasing levels of noise into a

cloned policy will result in increasingly worse performance, converging to a random policy

in the limit. Our approach is summarized in Figure 5.9. The intuition behind this approach

is that generating ranked trajectories via noise injection reveals relative weightings between

reward features: features that are more prevalent in noisier trajectories are likely inversely

related to the reward, whereas features that are more common in noise-free trajectories are

likely features which are positively correlated with the true reward. Furthermore, adding

noise provides a form of feature selection since, if a feature is equally common across all

levels of noise, then it likely has no impact on the true reward function and can be ignored.

78

(a) Demonstration (b) Small noise (c) Larger noise

(d) Learned reward function
from ranking: (a) � (b) � (c) (e) Optimized policy

Figure 5.9: D-REX high-level approach: given a suboptimal demonstration (a), we run
behavioral cloning to approximate the demonstrator’s policy. By progressively adding more
noise to this cloned policy ((b) and (c)), we are able to automatically synthesize a preference
ranking: (a) � (b) � (c). Using this ranking, we learn a reward function (d) which is then
optimized using reinforcement learning to obtain a policy (e) that performs better than the
demonstrator.

By automatically generating rankings, preference-based imitation learning methods

(Sadigh et al., 2017; Ibarz et al., 2018; Palan et al., 2019; Brown et al., 2019b) can be applied

in standard imitation learning domains where rankings are unavailable. We demonstrate

this by combining automatic rankings via noise-injections with T-REX (Section 5.2). We

empirically validate our approach on simulated robotics and Atari benchmarks and find that

D-REX results in policies that can both significantly outperform the demonstrator as well as

significantly outperform standard imitation learning. To the best of our knowledge, D-REX

is the first imitation learning approach to achieve significant performance improvements

over the demonstrations without requiring extra supervision or additional side-information,

such as ground-truth rewards or human preferences.

79

Algorithm 3 D-REX: Disturbance-based Reward Extrapolation

Require: Demonstrations D, noise schedule E , number of rollouts K
1: Run behavioral cloning on demonstrations D to obtain policy πBC

2: for εi ∈ E do
3: Generate a set of K trajectories from a noise injected policy πBC(·|εi)
4: Generate automatic preference labels τi ≺ τj if τi ∼ πBC(·|εi), τj ∼ πBC(·|εj), and
εi > εj

5: Run T-REX (Brown et al., 2019b) on automatically ranked trajectories to obtain R̂
6: Optimize policy π using reinforcement learning with reward function R̂
7: return π

5.3.3 Algorithm

We now describe Disturbance-based Reward Extrapolation (D-REX), our proposed ap-

proach for automatically generating ranked demonstrations. Our approach is summarized

in Algorithm 3. Videos of the learned policies as well as the code to reproduce our results

are available online.9

We first take a set of unranked demonstrations and use behavioral cloning to learn

a policy πBC. Behavioral cloning (Bain and Sommut, 1999) treats each state action pair

(s, a) ∈ D as a training example and seeks a policy πBC that maps from states to actions.

We model πBC using a neural network with parameters θBC and find these parameters using

maximum-likelihood estimation such that θBC = arg maxθ
∏

(s,a)∈D πBC(a|s). By virtue

of the optimization procedure, πBC will usually only perform as well as the average perfor-

mance of the demonstrator—at best it may perform slightly better than the demonstrator if

the demonstrator makes mistakes approximately uniformly at random.

Our main insight is that if πBC is significantly better than the performance of a

completely random policy, then we can inject noise into πBC and interpolate between the

performance of πBC and the performance of a uniformly random policy. In Appendix B.5,

we prove that given a noise schedule E = (ε1, ε2, . . . , εd) consisting of a sequence of

noise levels such that ε1 > ε2 > . . . > εd, then with high-probability, J(πBC(·|ε1)) <

9The project website and code can be found at https://dsbrown1331.github.io/
CoRL2019-DREX/

80

https://dsbrown1331.github.io/CoRL2019-DREX/
https://dsbrown1331.github.io/CoRL2019-DREX/

J(πBC(·|ε2)) < · · · < J(πBC(·|εd)). Given noise level ε ∈ E , we inject noise via an

ε-greedy policy such that with probability 1-ε, the action is chosen according to πBC, and

with probability ε, the action is chosen uniformly at random within the action range.

For every ε, we generate K policy rollouts and thus obtain K × d ranked demon-

strations, where each trajectory is ranked based on the noise level that generated it, with

trajectories considered of equal preference if generated from the same noise level. Thus, by

generating rollouts from πBC(·|ε) with varying levels of noise, we can obtain an arbitrarily

large number of ranked demonstrations:

Dranked = {τi ≺ τj : τi ∼ πBC(·|εi), τj ∼ πBC(·|εj), εi > εj}. (5.15)

Given these auto-generated ranked demonstrations, we then use T-REX to learn a

reward function R̂. Similar to T-REX, we use the following pairwise ranking loss function

(Cao et al., 2007) based on the Bradley-Terry-Luce-Shephard choice rule (Luce, 2012):

L(θ) ≈ − 1

|P|
∑

(i,j)∈P

log

exp
∑
s∈τj

R̂θ(s)

exp
∑
s∈τi

R̂θ(s) + exp
∑
s∈τj

R̂θ(s)
, (5.16)

where P = {(i, j) : τi ≺ τj}.10 After learning a reward function, we can optimize a

policy π̂ using any reinforcement learning algorithm. In the experiments below we optimize

policies using the PPO algorithm Schulman et al. (2017) (see Appendix D.1 for details).

5.3.4 Experimental Results

Automatically generating rankings via noise

To test whether injecting noise can create high-quality, automatic rankings, we used simu-

lated suboptimal demonstrations from a partially trained reinforcement learning agent. To
10Note that this can be implemented efficiently and robustly in most automatic differentiation software pack-

ages by simply using a binary cross entropy loss function where the logits are the predicted cumulative returns.

81

do so, we used the PPO implementation from OpenAI Baselines Dhariwal et al. (2017) to

partially train a policy on the ground-truth reward function. We then ran behavioral cloning

on these demonstrations and plotted the degradation in policy performance for increasing

values of ε.

We evaluated noise degradation on the Hopper and Half-Cheetah domains in Mu-

JoCo and on the seven Atari games listed in Table 5.5. To perform behavioral cloning, we

used one suboptimal demonstration trajectory of length 1,000 for the MuJoCo tasks and 10

suboptimal demonstrations for the Atari games. We then varied ε and generated rollouts

for different noise levels. We plotted the average return along with one standard deviation

error bars in Figure 5.10 (see Appendix D.1.4 for details). We found that behavioral cloning

with small noise tends to have performance similar to that of the average performance of

the demonstrator. As noise is added, the performance degrades until it reaches the level of a

uniformly random policy (ε = 1). These plots validate our assumption that, in expectation,

adding increasing amounts of noise will cause near-monotonic performance degradation.

Reward extrapolation

We next tested whether D-REX allows for accurate reward extrapolation. We used noise

injection, as described in the previous section, to generate 100 synthetically-ranked demon-

strations. For MuJoCo, we used the noise schedule consisting of 20 different noise levels,

evenly spaced over the interval [0, 1) and generated K = 5 rollouts per noise level. For

Atari, we used the noise schedule E = (1.0, 0.75, 0.5, 0.25, 0.02) with K = 20 rollouts per

noise level. By automatically generating ranked demonstrations, D-REX is able to leverage

a small number of unranked demonstrations to generate a large dataset of ranked demon-

strations for reward function approximation. We used the T-REX algorithm (Brown et al.,

2019b) to learn a reward function from these synthetically ranked demonstrations.

To investigate how well D-REX learns the true reward function, we evaluated the

learned reward function R̂θ on the original demonstrations and the synthetic demonstrations

82

0.00 0.25 0.50 0.75
Epsilon

0

500

1000
Re

tu
rn demos

bc
random

(a) Hopper

0.00 0.25 0.50 0.75
Epsilon

300

200

100

0

100

200

Re
tu

rn

demos
bc
random

(b) HalfCheetah

(c) Beam Rider (d) Seaquest

Figure 5.10: Examples of the degradation in performance of an imitation policy learned via
behavioral cloning as more noise is injected into the policy. Behavioral cloning is done on
a 1,000-length trajectory (MuJoCo tasks) or 10 demonstrations (Atari games). Plots show
mean and standard deviations over 5 rollouts (MuJoCo tasks) or 20 rollouts (Atari games).

obtained via noise injection. We then compared the ground-truth returns with the predicted

returns under R̂θ. We also tested reward extrapolation on a held-out set of trajectories ob-

tained from PPO policies that were trained longer on the ground-truth reward than the policy

used to generate the demonstrations for D-REX. These additional trajectories allow us to

measure how well the learned reward function can extrapolate beyond the performance of

the original demonstrations. The results for four of the tasks are shown in Figure 5.11. The

remaining plots are included in Appendix D.3. The plots show relatively strong correla-

tion between ground truth returns and predicted returns across most tasks, despite having

no a priori access to information about true returns, nor rankings. We also generated re-

83

0 1000 2000 3000
Ground Truth Returns

0

1000

2000

3000

Pr
ed

ict
ed

 R
et

ur
ns

 (n
or

m
al

ize
d)

(a) Hopper

1000 0 1000 2000 3000
Ground Truth Returns

1000

0

1000

2000

3000

Pr
ed

ict
ed

 R
et

ur
ns

 (n
or

m
al

ize
d)

(b) HalfCheetah

(c) Beam Rider (d) Seaquest

Figure 5.11: Extrapolation plots for a selection of MuJoCo and Atari tasks (see the appendix
for more plots). Blue dots represent synthetic demonstrations generated via behavioral
cloning with different amounts of noise injection. Red dots represent actual demonstra-
tions, and green dots represent additional trajectories not seen during training. We compare
ground truth returns over demonstrations to the predicted returns from D-REX (normalized
to be in the same range as the ground truth returns).

ward sensitivity heat maps (Greydanus et al., 2018) for the learned reward functions. These

visualizations provide evidence that D-REX learns semantically meaningful features that

are highly correlated with the ground truth reward. For example, Figure 5.12 shows that

for Seaquest, the reward function learns a shaped reward that gives a large penalty for an

imminent collision with an enemy (see Appendix D.3 for plots for all games).

Extrapolating beyond the demonstrator’s performance

Next, we tested whether the reward functions learned using D-REX can be used in conjunc-

tion with deep reinforcement learning to achieve better-than-demonstrator performance. We

ran PPO on the learned reward function R̂θ for 1 million timesteps (MuJoCo tasks) and 50

84

(a) Seaquest observation with minimum predicted reward using D-REX.

(b) Seaquest reward model attention on minimum predicted reward using D-REX.

Figure 5.12: D-REX minimum predicted observation and corresponding attention heatmap
for Seaquest across a held-out set of 15 demonstrations. The observation with minimum
predicted reward shows the submarine one frame before it is hit and destroyed by an enemy
shark. This is an example of how the network has learned a shaped reward that helps it play
the game better than the demonstrator. The network has learned to give most attention to
nearby enemies and to the controlled submarine.

million frames (Atari games). We ran three replicates of PPO with different seeds and re-

port the best performance on the ground-truth reward function, averaged over 20 trajectory

rollouts. Table 5.5 compares the performance of the demonstrator with the performance of

D-REX, behavioral cloning (BC), and Generative Adversarial Imitation Learning (GAIL)

(Ho and Ermon, 2016), a state-of-the-art imitation learning algorithm.

The results in Table 5.5 demonstrate that policies optimized using D-REX outper-

form the best demonstration in all tasks except for Pong. Furthermore, D-REX is also able

to outperform BC and GAIL across all tasks except for Hopper and Pong. On the simulated

MuJoCo robotics tasks, D-REX results in a 77% (Hopper) and 418% (HalfCheetah) perfor-

mance increase when compared with the best demonstration. On Q*Bert, D-REX exploits a

known loophole in the game which allows nearly infinite points. Excluding Q*Bert, D-REX

results in an average performance increase of 39% across the Atari tasks, when compared

85

Table 5.5: Comparison of the performance of D-REX with behavioral cloning (BC), GAIL
(Ho and Ermon, 2016), and the demonstrator’s performance. Results are the best average
ground-truth returns over three random seeds with 20 trials per seed. Bold denotes perfor-
mance that is better than the best demonstration.

Demonstrations D-REX BC GAIL

Task Avg. Best Average Stdev. Avg. Stdev. Avg. Stdev.

Hopper 1029 1167 2072 (1574) 943 (208) 2700 (692)
HalfCheetah 187 187 972 (96) -115 (179) 85 (86)

Beam Rider 1,524 2,216 7,220 (2221) 1,268 (776) 1778 (787)
Breakout 34 59 94 (16) 29 (10) 0 (0)
Enduro 85 134 247 (88) 83 (27) 62 (24)
Pong 3 14 -9 (9) 8 (9) -3.4 (3)

Q*bert 770 850 22543 (7434) 1,013 (721) 737 (311)
Seaquest 524 720 801 (4) 530 (109) 554 (108)

Space Invaders 538.5 930.0 1,122.5 (501.2) 426.5 (187.1) 364.8 (139.7)

with the best demonstration.

Worst-Case Performance Analysis

To test the robustness of the policy learned via D-REX, we also considered the worst-

case performance, something that is important for safe inverse reinforcement learning (see

Chapter 4). We investigated the worst-case performance of the demonstrator as it compares

to the worst-case performance of the policy learned using D-REX. The results are shown in

Table 5.6. Our results show that D-REX is able to learn safer policies than the demonstrator

on 6 out of 7 games via intent extrapolation. The results show that on all games, except for

Pong, D-REX is able to find a policy with both higher expected utility (see Table 1 in the

main text) as well as higher worst-case utility (Table 5.6) when compared to the worst case

performance of the demonstrator. D-REX also has a better worst-case performance than

BC and GAIL across all games except for Pong.

86

Table 5.6: Comparison of the average and worst-case performance of D-REX with respect
to the demonstrator. Results are the worst-case performance corresponding to the results
shown in Table 1 in the main text. Bold denotes worst-case performance that is better than
the worst-case demonstration.

Worst-Case Performance

Game Demonstrator D-REX BC GAIL

Beam Rider 900 2916 528 352
Breakout 17 62 13 0
Enduro 37 152 35 13
Pong -5 -21 -2 -14

Q*bert 575 7675 650 350
Seaquest 320 800 280 260

Space Invaders 190 575 120 235

Live-Long Baseline

We noticed that for many Atari games, the goal is to stay alive as long as possible. To ensure

that D-REX is learning more than a simple bonus for staying alive, we also compared D-

REX with a PPO agent trained with a +1 reward for every timestep. Because we normalize

the D-REX learned reward using a sigmoid, one concern is that the non-negativity of the

sigmoid is the only thing that is needed to perform well on the Atari domain since games

typically involve trying to stay alive as long as possible. We tested this by creating a live-

long baseline that always rewards the agent with a +1 reward for every timestep. Table 5.7

shows that while a +1 reward is sufficient to achieve a moderate score on some games, it

is insufficient to learn to play the games Enduro and Seaquest, both of which D-REX is

able to learn to play. The reason that a +1 reward does not work on Enduro and Seaquest

is that, in these games, it is possible to do nothing and cause an arbitrarily long episode.

Thus, simply rewarding long episodes is not sufficient to learn to actually play. While a

+1 reward was sufficient to achieve moderate to good scores on the other games, live-long

reward is only able to surpass the performance of D-REX on Pong, which gives evidence

that even if games where longer trajectories are highly correlated with the ground-truth

87

Table 5.7: Comparison of D-REX with other imitation learning approaches. BC is be-
havioral cloning. Live-long assigns every observation a +1 reward and is run using an
experimental setup identical to D-REX.

Demonstrator Imitation method
Game Avg. Best. D-REX Live-Long BC

Beam Rider 1524 2216 7220 5583.5 1268.6
Breakout 34.5 59 94.7 68.85 29.75
Enduro 85.5 134 247.9 0 83.4
Pong 3.7 14 -9.5 -5.3 8.6

Q*bert 770 850 22543.8 17073.75 1013.75
Seaquest 524 720 801 1 530

Space Invaders 538.5 930 1122.5 624 426.5

return, D-REX is not simply rewarding longer episodes, but also rewarding trajectories that

follow the demonstrators intention. This is also backed up by our reward attention heat

maps in Appendix 8.5b, which demonstrate that D-REX is paying attention to details in the

observations which are correlated with the ground-truth reward.

5.4 Summary

This chapter has focused on efficient reward inference algorithms that do not require an

MDP solver in the inner-loop and can learn from suboptimal demonstrations. Imitation

learning approaches are typically unable to outperform the demonstrator. This is because

most approaches either directly mimic the demonstrator or find a reward function that makes

the demonstrator appear near optimal. While algorithms that can exceed the performance

of a demonstrator exist, they either rely on a significant number of active queries from a

human (Christiano et al., 2017; Sadigh et al., 2017; Palan et al., 2019), a hand-crafted re-

ward function (Hester et al., 2018), or pre-ranked demonstrations (Brown et al., 2019b).

Furthermore, prior research has lacked theory about when better-than-demonstrator perfor-

mance is possible. In this chapter we first addressed this lack of theory by presenting a

88

sufficient condition for extrapolating beyond the performance of a demonstrator. We also

provided theoretical results demonstrating how preferences and rankings allow for better

reward function learning by reducing the learner’s uncertainty over the true reward func-

tion.

In this chapter, we introduced T-REX, a reward learning technique for complex,

high-dimensional tasks that can learn to extrapolate intent from suboptimal ranked demon-

strations. To the best of our knowledge, this is the first IRL algorithm that is able to signif-

icantly outperform the demonstrator without additional external knowledge (e.g. signs of

feature contributions to reward) and that scales to high-dimensional Atari games. T-REX

is able learn the relevant reward semantics and extrapolate beyond the performance of the

demonstrator. When combined with deep reinforcement learning, we showed that T-REX

achieves better-than-demonstrator performance across a wide range of high-dimensional

continuous control tasks and Atari video games as well as outperforming other imitation

learning approaches. We also demonstrated that T-REX is robust to modest amounts of

ranking noise. However, T-REX assumes access to explicit preference labels, which may

be unavailable and difficult to obtain.

We next focused on making reward learning from rankings more applicable to a

wider variety of imitation learning tasks where only unlabeled demonstrations are available.

We first considered the extension of T-REX to the case where demonstrations come from

a learner improving at a task over time. We showed that T-REX naturally extends to this

case and can infer the reward function of an improving demonstrator via weakly labeled

preferences obtained from timestamps, where later trajectories are assumed to be more

preferable to earlier trajectories.

Finally, we considered the most general setting, where demonstrations have no

timestamp or preference labels associated with them. We presented a novel imitation learn-

ing algorithm, Disturbance-based Reward Extrapolation (D-REX) that automatically gen-

erates ranked demonstrations via noise injection and uses these demonstrations to seek to

89

extrapolate beyond the performance of a suboptimal demonstrator. We empirically evalu-

ated D-REX on a set of simulated robot locomotion and Atari tasks and found that D-REX

outperforms state-of-the-art imitation learning techniques and also outperforms the best

demonstration in 8 out of 9 tasks. These results provide the first evidence that better-than-

demonstrator imitation learning is possible without requiring extra information such as re-

wards, active supervision, or preference labels. Our results open the door to the application

of a variety of ranking and preference-based learning techniques (Cao et al., 2007; Chen

et al., 2009) to standard imitation learning domains where only unlabeled demonstrations

are available.

The methods proposed in this chapter provide efficient reward inference; however,

the main goal of this dissertation is to achieve efficient and safe imitation learning. Chap-

ter 4 demonstrated that utilizing a posterior distribution over reward functions can enable

tight, high-confidence bounds on performance; however, the methods in Chapter 4 relied on

an MDP solver in the inner-loop. Conversely, the methods proposed in this chapter remove

the need for an MDP solver in the inner-loop, but only learn a maximum likelihood estimate

of the reward function. In the next chapter we combine the strengths of both approaches by

developing a Bayesian version of T-REX that enables high-confidence performance bounds

that scale to high-dimensional imitation learning tasks.

90

Chapter 6

Safe Imitation Learning via Fast

Bayesian Reward Inference from

Preferences

In Chapter 4 we presented a method for high-confidence policy evaluation for imitation

learning that uses Bayesian inverse reinforcement learning (IRL) (Ramachandran and Amir,

2007) to allow an agent to reason about reward uncertainty and policy generalization error

(Brown et al., 2018). However, Bayesian IRL is typically intractable for complex problems

due to the need to repeatedly solve an MDP in the inner loop, resulting in high computa-

tional cost as well as high sample cost if a model is not available. This precludes robust

safety and uncertainty analysis for imitation learning in high-dimensional problems or in

problems in which a useful model of the MDP is unavailable. Then in Chapter 5 we dis-

cussed computationally efficient methods for fast reward inference from preference rank-

ings over small numbers of demonstrations. However, the methods described in Chapter 5

only learn a point estimate of the reward function which does not enable uncertainty anal-

ysis or high-confidence performance bounds. In this chapter we present Contribution 6: a

deep Bayesian reward inference algorithm that scales to high-dimensional tasks via prefer-

91

ence rankings over demonstrations.11

We seek to address the computational inefficiencies of Chapter 4 via preferences

over demonstrations. Preferences over trajectories have been shown to be natural and intu-

itive for humans to provide (Akrour et al., 2011; Wilson et al., 2012; Sadigh et al., 2017;

Christiano et al., 2017; Palan et al., 2019). Furthermore, as we showed in Chapter 5, prefer-

ences over demonstrations can allow for better-than-demonstrator performance and efficient

reward inference. While preference learning is a common subfield of machine learning, to

the best of our knowledge, we are the first to show that preferences over demonstrations

enable fast Bayesian reward learning in high-dimensional control tasks as well as enabling

efficient high-confidence performance bounds for imitation learning.

In the following sections we propose a novel algorithm, Bayesian Reward Extrap-

olation (Bayesian REX), that uses a pairwise ranking likelihood to significantly reduce the

computational complexity of generating samples from the posterior distribution over reward

functions. Bayesian REX scales to high-dimensional imitation learning problems by first

pre-training a low-dimensional feature encoding via self-supervised tasks and then leverag-

ing preferences over demonstrations to perform fast Bayesian inference. We demonstrate

that Bayesian REX can leverage neural network function approximation to learn useful re-

ward features via self-supervised learning in order to efficiently perform deep Bayesian

reward inference from visual demonstrations. For Atari games our approach enables us to

generate 100,000 samples from the posterior over reward functions in only 5 minutes using

a personal laptop.

Finally, we demonstrate that samples obtained from Bayesian REX can be used to

solve the high-confidence policy evaluation problem for imitation learning. We evaluate

our method on imitation learning for Atari games and demonstrate that we can efficiently

compute high-confidence bounds on policy performance, without requiring samples of the
11This work was done in collaboration with Russell Coleman, Scott Niekum, and Ravi Srinivasan and was

previously published at ICML 2020 (Brown et al., 2020) and at the NeurIPS 2019 Workshop on Safety and
Robustness in Decision Making (Brown and Niekum, 2019a).

92

reward function. Furthermore, we demonstrate that these high-confidence bounds can be

used to accurately rank different evaluation policies according to their risk and performance

under the distribution over the unknown ground-truth reward function. Finally, we provide

evidence that bounds on uncertainty and risk and may provide a useful tool for detecting

reward hacking/gaming (Amodei et al., 2016), a common problem in reward inference from

demonstrations (Ibarz et al., 2018) as well as reinforcement learning (Ng et al., 1999; Leike

et al., 2017).

6.1 Bayesian Reward Extrapolation

In this and the following sections we describe the main contribution of this chapter: a

method for scaling Bayesian reward inference to high-dimensional visual control tasks as

a way to efficiently solve the HCPE-IL problem for complex imitation learning tasks. Our

first insight is that the main bottleneck for standard Bayesian IRL (see Section 3.3 and

Ramachandran and Amir (2007)) is computing the likelihood function

P (D|R) =
∏

(s,a)∈D

eβQ
∗
R(s,a)∑

b∈A e
βQ∗R(s,b)

, (6.1)

which requires optimal Q-values. Thus, to make Bayesian reward inference scale to high-

dimensional visual domains, it is necessary to either efficiently approximate optimal Q-

values or to formulate a new likelihood. Value-based reinforcement learning focuses on

efficiently learning optimal Q-values; however, for visual control tasks such as Atari, RL

algorithms can take several hours or even days to train (Mnih et al., 2015; Hessel et al.,

2018). This makes MCMC, which requires evaluating large numbers of likelihood ratios,

infeasible given the current state-of-the-art in value-based RL. Methods such as transfer

learning have great potential to reduce the time needed to calculate Q∗R for a new proposed

reward function R; however, transfer learning is not guaranteed to speed up reinforcement

learning (Taylor and Stone, 2009). Thus, we choose to focus on reformulating the likelihood

93

function as a way to speed up Bayesian reward inference.

An ideal likelihood function requires little computation and minimal interaction

with the environment. To accomplish this, we leverage recent work on learning control

policies from preferences (Christiano et al., 2017; Palan et al., 2019; Bıyık et al., 2019).

In Chapter 6 we presented Trajectory-ranked Reward Extrapolation (T-REX): an efficient

reward inference algorithm that uses preferences over demonstrations to transform reward

function learning into classification problem via a pairwise ranking loss. T-REX removes

the need to repeatedly sample from or partially solve an MDP in the inner loop, allowing

it to scale to visual imitation learning domains such as Atari and to extrapolate beyond the

performance of the best demonstration. However, T-REX only solves for a point estimate

of the reward function. We now discuss how a similar approach based on a pairwise pref-

erence likelihood allows for efficient sampling from the posterior distribution over reward

functions.

We assume access to a sequence of m trajectories, D = {τ1, . . . , τm}, along with

a set of pairwise preferences over trajectories P = {(i, j) : τi ≺ τj}. Note that we do

not require a total-ordering over trajectories. These preferences may come from a human

demonstrator or as proposed in Section 5.3, these preferences could be automatically gen-

erated by watching a learner improve at a task (Brown et al., 2019b; Jacq et al., 2019) or via

noise injection (Brown et al., 2019a). The benefit of pairwise preferences over trajectories

is that we can now leverage a pair-wise ranking loss to compute the likelihood of a set of

preferences over demonstrations P , given a parameterized reward function hypothesis Rθ.

We use the standard Bradley-Terry model (Bradley and Terry, 1952) to obtain the following

pairwise ranking likelihood function, commonly used in learning to rank applications such

collaborative filtering (Volkovs and Zemel, 2014):

P (P, D | Rθ) =
∏

(i,j)∈P

eβRθ(τj)

eβRθ(τi) + eβRθ(τj)
, (6.2)

in which Rθ(τ) =
∑

s∈τ Rθ(s) is the predicted return of trajectory τ under the reward

94

Input

CNN

RiRMAP

P
(R
|D
)

Repeat N times

Features
Feature pre-training

Ranked demos

Ranked demo
feature counts

MCMC
step

Sampled
weight vector

Self-supervised
task losses

Figure 6.1: Bayesian Reward Extrapolation uses ranked demonstrations to pre-train a low-
dimensional state feature embedding φ(s) via self-supervised losses. After pre-training,
the latent embedding function φ(s) is frozen and the reward function is represented as a
linear combination of the learned features: R(s) = wTφ(s). MCMC proposal evaluations
are computed using an efficient pairwise ranking likelihood that gives the likelihood of the
preferences P over demonstrations D, given a proposal w. By pre-computing the embed-
dings of the ranked demonstrations, Φτi , MCMC sampling is highly efficient—it does not
require access to an MDP solver or data collection during inference.

function Rθ, and β is the inverse temperature parameter that models the confidence in the

preference labels. We can then perform Bayesian inference via MCMC to obtain samples

from P (Rθ | D,P) ∝ P (P, D | Rθ)P (Rθ). We call this approach Bayesian Reward

Extrapolation or Bayesian REX.

Note that using the likelihood function defined in Equation (6.2) does not require

solving an MDP. In fact, it does not require any rollouts or access to the MDP. All that is

required is that we first calculate the return of each trajectory under Rθ and compare the

relative predicted returns to the preference labels to determine the likelihood of the demon-

strations under the reward hypothesis Rθ. Thus, given preferences over demonstrations,

Bayesian REX is significantly more efficient than standard Bayesian IRL. In the following

section, we discuss further optimizations that improve the efficiency of Bayesian REX and

make it more amenable to our end goal of high-confidence policy evaluation bounds.

95

6.2 Optimizations

In order to learn rich, complex reward functions, it is desirable to use a deep network to

represent the reward function Rθ. While MCMC remains the gold-standard for Bayesian

Neural Networks, it is often challenging to scale to deep networks. To make Bayesian

REX more efficient and practical, we propose to limit the proposal to only change the last

layer of weights inRθ when generating MCMC proposals—we will discuss pre-training the

bottom layers of Rθ in the next section. After pre-training, we freeze all but the last layer

of weights and use the activations of the penultimate layer as the latent reward features

φ(s) ∈ Rk. This allows the reward at a state to be represented as a linear combination of

k features: Rθ(s) = wTφ(s). Similar to work by Pradier et al. (2018), operating in the

lower-dimensional latent space makes full Bayesian inference tractable.

A second advantage of using a learned linear reward function is that it allows us

to efficiently compute likelihood ratios when performing MCMC. Consider the likelihood

function in Equation (6.2). If we do not represent Rθ as a linear combination of pre-

trained features, and instead let any parameter in Rθ change during each proposal, then

for m demonstrations of length T , computing P (P, D|Rθ) for a new proposal Rθ requires

O(mT) forward passes through the entire network to compute Rθ(τi). Thus, the complex-

ity of generating N samples from the posterior results is O(mTN |Rθ|), where |Rθ| is the

number of computations required for a full forward pass through the entire network Rθ.

Given that we would like to use a deep network to parameterize Rθ and generate thousands

of samples from the posterior distribution over Rθ, this many computations will signifi-

cantly slow down MCMC proposal evaluation.

If we represent Rθ as a linear combination of pre-trained features, we can reduce

this computational cost because

Rθ(τ) =
∑
s∈τ

wTφ(s) = wT
∑
s∈τ

φ(s) = wTΦτ . (6.3)

96

Thus, we can pre-compute and cache Φτi =
∑

s∈τi φ(s) for i = 1, . . . ,m and the likelihood

becomes

P (P, D | Rθ) =
∏

(i,j)∈P

eβw
TΦτj

eβw
TΦτj + eβw

TΦτi
. (6.4)

Note that demonstrations only need to be passed through the reward network once to com-

pute Φτi since the pre-trained embedding remains constant during MCMC proposal gen-

eration. This results in an initial O(mT) passes through all but the last layer of Rθ to

obtain Φτi , for i = 1, . . . ,m, and then only O(mk) multiplications per proposal evaluation

thereafter—each proposal requires that we compute wTΦτi for i = 1, . . . ,m and Φτi ∈ Rk.

Thus, when using feature pre-training, the total complexity is only O(mT |Rθ| + mkN)

to generate N samples via MCMC. This reduction in the complexity of MCMC from

O(mTN |Rθ|) to O(mT |Rθ| + mkN) results in significant and practical computational

savings because (1) we want to make N and Rθ large and (2) the number of demonstra-

tions, m, and the size of the latent embedding, k, are typically several orders of magnitude

smaller than N and |Rθ|.
A third, and critical advantage of using a learned linear reward function is that

it makes solving the HCPE-IL problem discussed in Chapter 4 tractable. Performing a

single policy evaluation is a non-trivial task (Sutton et al., 2000) and even in tabular settings

has complexity O(|S|3) in which |S| is the size of the state-space (Littman et al., 1995).

Because we are in an imitation learning setting, we would like to be able to efficiently

evaluate any given policy across the posterior distribution over reward functions found via

Bayesian REX. Given a posterior distribution overN reward function hypotheses we would

need to solve N policy evaluations. However, as noted in Chapter 4, the value function of a

policy under a reward function R(s) = wTφ(s) can be written as

V π
R = Eπ[

T∑
t=0

R(st)] = wTEπ[

T∑
t=0

φ(st)] = wTΦπ, (6.5)

in which we assume a finite horizon MDP with horizon T and in which Φπ are the expected

97

feature counts (Abbeel and Ng, 2004; Barreto et al., 2017) of π. Thus, given any evaluation

policy πeval, we only need to solve one policy evaluation problem to compute Φeval. We

can then compute the expected value of πeval over the entire posterior distribution of reward

functions via a single matrix vector multiplication WΦπeval , where W is an N -by-k ma-

trix with each row corresponding to a single reward function weight hypothesis wT . This

significantly reduces the complexity of policy evaluation over the reward function posterior

distribution from O(N |S|3) to O(|S|3 +Nk).

When we refer to Bayesian REX we will refer to the optimized version described

in this section. Our approach is summarized in Algorithm 4. Running Bayesian REX with

144 preference labels to generate 100,000 reward hypothesis for Atari imitation learning

tasks takes approximately 5 minutes on a Dell Inspiron 5577 personal laptop with an Intel

i7-7700 processor without using the GPU. In comparison, using standard Bayesian IRL to

generate one sample from the posterior takes 10+ hours of training for a parallelized PPO

reinforcement learning agent (Dhariwal et al., 2017) on an NVIDIA TITAN V GPU.

6.3 Pre-Training Reward Function Features

The previous section presupposed access to a pre-trained latent embedding function φ :

S → Rk. We now discuss our pre-training process. Because we are interested in imitation

learning problems, we need to be able to train φ(s) from the demonstrations without access

to the ground-truth reward function. One potential method is to train Rθ using the pairwise

ranking likelihood function in Equation (6.2) and then freeze all but the last layer of weights;

however, the learned embedding may overfit to the limited number of preferences over

demonstrations and fail to capture features relevant to the ground-truth reward function.

Thus, we supplement the pairwise ranking objective with auxiliary objectives that can be

optimized in a self-supervised fashion using data from the demonstrations.

We use the following self-supervised tasks to pre-train Rθ: (1) Learn an inverse dy-

namics model that uses embeddings φ(st) and φ(st+1) to predict the corresponding action

98

Algorithm 4 Bayesian REX: Bayesian Reward Extrapolation
1: Input: demonstrations D, pairwise preferences P , MCMC proposal width σ, number

of proposals to generate N , deep network architecture Rθ, and prior P (w).
2: pre-train Rθ using auxiliary tasks (see Section 5.2).
3: Freeze all but last layer, w, of Rθ.
4: φ(s) := activations of the penultimate layer of Rθ.
5: Pre-compute and cache Φτ =

∑
s∈τ φ(s) for all τ ∈ D.

6: Initialize w randomly.
7: Chain[0]← w
8: Compute P (P, D|w)P (w) using Equation (6.4)
9: for i← 1 to N do

10: w̃ ← normalize(N (w, σ))
11: Compute P (P, D|w̃)P (w̃) using Equation (6.4)
12: u← Uniform(0, 1)

13: if u <
P (P, D|w̃)P (w̃)

P (P, D|w)P (w)
then

14: Chain[i]← w̃

15: w ← w̃
16: else
17: Chain[i]← w

18: return Chain

at (Torabi et al., 2018a; Hanna and Stone, 2017), (2) Learn a forward dynamics model that

predicts st+1 from φ(st) and at (Oh et al., 2015; Thananjeyan et al., 2019), (3) Learn an

embedding φ(s) that predicts the temporal distance between two randomly chosen states

from the same demonstration (Aytar et al., 2018), and (4) Train a variational pixel-to-pixel

autoencoder in which φ(s) is the learned latent encoding (Makhzani and Frey, 2017; Doer-

sch, 2016). Table 6.1 summarizes the self-supervised tasks used to train φ(s) and Figure 6.2

summarizes our network architecture.

There are many possibilities for pre-training φ(s); however, we found that each ob-

jective described above encourages the embedding to encode different features. For exam-

ple, an accurate inverse dynamics model can be learned by only attending to the movement

of the agent. Learning forward dynamics supplements this by requiring φ(s) to encode in-

formation about short-term changes to the environment. Learning to predict the temporal

99

Table 6.1: Self-supervised learning objectives used to pre-train φ(s).

Inverse Dynamics fID(φ(st), φ(st+1))→ at
Forward Dynamics fFD(φ(st), at)→ st+1

Temporal Distance fTD(φ(st), φ(st+x)→ x
Variational Autoencoder fA(φ(st))→ st

distance between states in a trajectory forces φ(s) to encode long-term progress. Finally,

the autoencoder loss acts as a regularizer to the other losses as it seeks to embed all aspects

of the state (see Appendix E.1 for details). The full Bayesian REX pipeline for generating

samples from the posterior over reward functions is summarized in Figure 6.1.

6.4 HCPE-IL via Bayesian REX

We now discuss how to use Bayesian REX to find an efficient solution to the high-confidence

policy evaluation for imitation learning (HCPE-IL) problem. While this problem was pre-

sented earlier in Section 4.1, in this chapter we seek a lower bound rather than an upper

bound. Thus, we rephrase this problem for completeness.

6.4.1 High-Confidence Policy Evaluation for Imitation Learning

We assume access to an MDP\R, an evaluation policy πeval, a set of demonstrations, D =

{τ1, . . . , τm}, in which τi is either a complete or partial trajectory comprised of states or

state-action pairs, a confidence level δ, and performance metric g : Π ×R → R, in which

R denotes the space of reward functions and Π is the space of all policies.

The High-Confidence Policy Evaluation problem for Imitation Learning (HCPE-IL)

is to find a high-confidence lower bound ĝ : Π×D → R such that

Pr(g(πeval, R
∗) ≥ ĝ(πeval, D)) ≥ 1− δ, (6.6)

in which R∗ denotes the demonstrator’s true reward function and D denotes the space of

100

Figure 6.2: Diagram of the network architecture used when training feature encoding φ(s)
with self-supervised and T-REX losses. Yellow denotes actions, blue denotes feature en-
codings sampled from elsewhere in a demonstration trajectory, and green denotes random
samples for the variational autoencoder.

all possible demonstration sets. HCPE-IL takes as input an evaluation policy πeval, a set

of demonstrations D, and a performance metric, g, which evaluates a policy under a re-

ward function. The goal of HCPE-IL is to return a high-confidence lower bound ĝ on the

performance statistic g(πeval, R
∗).

6.4.2 Computation Details

Given samples from the distribution P (w|D,P), in whichR(s) = wTφ(s), we compute the

posterior distribution over any performance statistic g(πeval, R
∗) as follows. For each sam-

pled weight vector w produced by Bayesian REX, we compute g(πeval, w). This results in

a sample from the posterior distribution P (g(πeval, R)|P, D), i.e., the posterior distribution

over performance metric g, conditioned onD and P . We then compute a (1−δ) confidence

101

lower bound, ĝ(πeval, D), by finding the δ-quantile of g(πeval, w) for w ∼ P (w|P, D).

While there are many potential performance statistics g, in this chapter we focus

on bounding the expected value of the evaluation policy, i.e., g(πeval, R
∗) = V πeval

R∗ =

w∗TΦπeval . To compute a 1 − δ confidence bound on V πeval
R∗ , we take full advantage of the

learned linear reward representation to efficiently calculate the posterior distribution over

policy returns given preferences and demonstrations. The posterior distribution over returns

is calculated via a matrix vector product, WΦπeval , in which each row of W is a sample, w,

from the MCMC chain and πeval is the evaluation policy. We then sort the resulting vector

and select the δ-quantile lowest value. This results in a 1 − δ confidence lower bound on

V πeval
R∗ and corresponds to the δ-Value at Risk (VaR) over V πeval

R ∼ P (R|P, D) (Jorion,

1997).

6.5 Experimental Comparison of Bayesian IRL vs. Bayesian

REX

Bayesian IRL (Ramachandran and Amir, 2007) does not scale to high-dimensional tasks

due to the requirement of repeatedly solving for an MDP in the inner loop. In this section

we focus on low-dimensional problems where it is tractable to repeatedly solve an MDP. We

compare the performance of Bayesian IRL with Bayesian REX when performing reward

inference. Because both algorithms make very different assumptions, we compare their

performance across three different tasks. The first task attempts to give both algorithms the

demonstrations they were designed for. The second evaluation focuses on the case where

all demonstrations are optimal and is designed to put Bayesian IRL at a disadvantage. The

third evaluation focuses on the case where all demonstrations are optimal and is designed

to put Bayesian REX at a disadvantage. Note that we focus on sample efficiency rather than

computational efficiency as Bayesian IRL is significantly slower than Bayesian REX as it

requires repeatedly solving an MDP, whereas Bayesian REX requires no access to an MDP

102

during reward inference.

All experiments were performed using 6x6 gridworlds with 4 binary features placed

randomly in the environment. The ground-truth reward functions are sampled uniformly

from the L1-ball (Brown and Niekum, 2018). The agent has 4 actions in the cardinal di-

rections and self transitions if it attempts to move off the grid. Transitions are determin-

istic, γ = 0.9, and there are no terminal states. We perform evaluations over 100 random

gridworlds for varying numbers of demonstrations. Each demonstration is truncated to a

horizon of 20. We use β = 50 for both Bayesian IRL and Bayesian REX and we remove

duplicates from demonstrations. After performing MCMC we used a 10% burn-in period

for both algorithms and only used every 5th sample after the burn-in when computing the

mean reward under the posterior. We then optimized a policy under the mean reward from

the Bayesian IRL posterior and under the mean reward from the Bayesian REX posterior.

We then compare the average policy loss for each algorithm when compared with optimal

performance under the ground-truth reward function.

6.5.1 Ranked Suboptimal vs. Optimal Demonstrations

We first compare Bayesian IRL when it is given optimal demonstrations with Bayesian

REX when it receives suboptimal demonstrations. We give each algorithm the demonstra-

tions best suited for its assumptions while keeping the number of demonstrations equal and

using the same starting states for each algorithm. To generate suboptimal demonstrations

we simply use random rollouts and then rank them according to the ground-truth reward

function.

Table 6.2 shows that, when given a sufficient number of suboptimal ranked demon-

strations (> 5), Bayesian REX performs on par or slightly better than full Bayesian IRL

when given the same number of optimal demonstrations starting from the same states as

the suboptimal demonstrations. This result is encouraging as it shows that not only is

Bayesian REX much more computationally efficient, but it’s sample efficiency compara-

103

Table 6.2: Ranked Suboptimal vs. Optimal Demos: Average policy loss over 100 random
6x6 grid worlds with four binary features.

2 5 10 20 30

Bayesian IRL 0.044 0.033 0.020 0.009 0.006
Bayesian REX 1.779 0.421 0.019 0.006 0.006

Table 6.3: Ranked Suboptimal Demos: Average policy loss for Bayesian IRL versus
Bayesian REX over 100 random 6x6 grid worlds with 4 binary features.

2 5 10 20 30

Bayesian IRL 3.512 3.319 2.791 3.078 3.158
Bayesian REX 1.796 0.393 0.026 0.006 0.006

ble to Bayesian IRL as long as there are a sufficient number of ranked demonstrations.

Note that 2 ranked demonstrations induces only a single constraint on the reward function

so it is not surprising that it performs much worse than running full Bayesian IRL with all

the counterfactuals afforded by running an MDP solver in the inner-loop.

6.5.2 Only Ranked Suboptimal Demonstrations

For the next experiment we consider what happens when Bayesian IRL recieves subopti-

mal ranked demonstrations. Table 6.3 shows that B-REX always significantly outperforms

Bayesian IRL when both algorithms receive suboptimal ranked demonstrations. To achieve

a fairer comparison, we also compared Bayesian REX with a Bayesian IRL algorithm de-

signed to learn from both good and bad demonstrations (Cui and Niekum, 2018). We la-

beled the top x% ranked demonstrations as good and bottom x% ranked as bad. Table 6.4

shows that leveraging the ranking significantly improves the performance of Bayesian IRL,

but Bayesian REX still performed significantly better across all x.

104

Table 6.4: Ranked Suboptimal Demos: Average policy loss for Bayesian REX and Bayesian
IRL using the method proposed by (Cui and Niekum, 2018)* which makes use of good and
bad demonstrations. We used the top x% of the ranked demos as good and bottom x% as
bad. Results are averaged over 100 random 6x6 grid worlds with four binary features.

Top/bottom percent of 20 ranked demos
x=5% x=10% x=25% x=50%

Bayesian IRL(x)* 1.283 0.956 1.065 2.096
Bayesian REX 0.006

Table 6.5: Ranked Suboptimal Demos: Average policy loss for Bayesian IRL versus
Bayesian REX over 100 random 6x6 grid worlds with four binary features.

2 5 10 20 30

Bayesian IRL 0.045 0.034 0.018 0.009 0.006
Bayesian REX 0.051 0.045 0.040 0.034 0.034

6.5.3 Only Optimal Demonstrations

Finally, we compared Bayesian REX with Bayesian IRL when both algorithms are given

optimal demonstrations. As an attempt to use Bayesian REX with only optimal demon-

strations, we followed prior work (Brown et al., 2019a) and auto-generated pairwise prefer-

ences using uniform random rollouts that are labeled as less preferred than the demonstra-

tions. Table 6.5 shows that Bayesian IRL outperforms Bayesian REX. This demonstrates

the value of giving a variety of ranked trajectories to Bayesian REX. For small numbers of

optimal demonstrations (≤ 5) we found that Bayesian REX leveraged the self-supervised

rankings to only perform slightly worse than full Bayesian IRL. This result is encouraging

since it is possible that a more sophisticated method for auto-generating suboptimal demon-

strations and rankings could be used to further improve the performance of Bayesian REX

even when demonstrations are not ranked (Brown et al., 2019a).

The results above demonstrate that if a very small number of unlabeled near-optimal

demonstrations are available, then classical Bayesian IRL is the natural choice for perform-

105

ing reward inference. However, if any of these assumptions are not true, then Bayesian

REX is a competitive and often superior alternative for performing Bayesian reward in-

ference. Also implicit in the above results is the assumption that a highly tractable MDP

solver is available for performing Bayesian IRL. If this is not the case, then Bayesian IRL

is infeasible and Bayesian REX is the natural choice for Bayesian reward inference.

6.6 Visual Imitation Learning Results

We next tested the imitation learning performance of Bayesian REX for high-dimensional

problems where classical Bayesian reward inference is infeasible. We pre-trained a 64

dimensional latent state embedding φ(s) using the self-supervised losses shown in Table 6.1

and the T-REX pairwise preference loss. We found via ablation studies that combining the

T-REX loss with the self-supervised losses resulted in better performance than training

only with the T-REX loss or only with the self-supervised losses (see Appendix E.1 E.1

for details). We then used Bayesian REX to generate 200,000 samples from the posterior

P (R|D,P). We then took the MAP and mean reward function estimates from the posterior

and optimized a policy using Proximal Policy Optimization (PPO) (Schulman et al., 2017)

(see Appendix E.1 for details).

To test whether Bayesian REX scales to complex imitation learning tasks we se-

lected five Atari games from the Arcade Learning Environment (Bellemare et al., 2013).

We do not give the RL agent access to the ground-truth reward signal and mask the game

scores and number of lives in the demonstrations. Table 6.6 shows the imitation learning

performance of Bayesian REX. We also compare against the results reported by (Brown

et al., 2019b) for T-REX, and GAIL (Ho and Ermon, 2016) and use the same 12 suboptimal

demonstrations used by Brown et al. (2019b) to train Bayesian REX (see Appendix E.1 for

details).

Table 6.6 shows that Bayesian REX is able to utilize preferences over demonstra-

tions to infer an accurate reward function that enables better-than-demonstrator perfor-

106

Table 6.6: Ground-truth average scores when optimizing the mean and MAP rewards found
using Bayesian REX. We also compare against the performance of T-REX (Brown et al.,
2019b) and GAIL (Ho and Ermon, 2016). Bayesian REX and T-REX are each given 12
demonstrations with ground-truth pairwise preferences. GAIL cannot learn from prefer-
ences so it is given 10 demonstrations comparable to the best demonstration given to the
other algorithms. The average performance for each IRL algorithm is the average over 30
rollouts.

Ranked Demonstrations B-REX Mean B-REX MAP T-REX GAIL

Game Best Avg Avg Avg Avg Avg

Beam Rider 1332 686.0 5,504.7 5,870.3 3,335.7 355.5
Breakout 32 14.5 390.7 393.1 221.3 0.28
Enduro 84 39.8 487.7 135.0 586.8 0.28

Seaquest 600 373.3 734.7 606.0 747.3 0.0
Space Invaders 600 332.9 1,118.8 961.3 1,032.5 370.2

mance. The average ground-truth return for Bayesian REX surpasses the performance of

the best demonstration across all 5 games. In comparison, GAIL seeks to match the demon-

strator’s state-action distributions which makes imitation learning difficult when demonstra-

tions are suboptimal and noisy. In addition to providing uncertainty information, Bayesian

REX remains competitive with T-REX (which only finds a maximum likelihood estimate

of the reward function) and achieves better performance on 3 out of 5 games.

6.7 High-Confidence Policy Evaluation Results

Next, we ran an experiment to validate whether the posterior distribution generated by

Bayesian REX can be used to solve the HCPE-IL problem described in Section 6.4.1. We

first evaluated four different evaluation policies, A ≺ B ≺ C ≺ D, created by partially

training a PPO agent on the ground-truth reward function and checkpointing the policy

at various stages of learning. We ran Bayesian REX to generate 200,000 samples from

P (R|P, D). To address some of the ill-posedness of IRL, we normalize the weights w such

that ‖w‖2 = 1. With rewards and returns all on the same scale we can compare the relative

107

Table 6.7: Beam Rider policy evaluation bounds compared with ground-truth game scores.
Policies A-D correspond to evaluation policies of varying quality obtained by checkpointing
an RL agent during training. The No-Op policy seeks to hack the learned reward by always
playing the no-op action, resulting in very long trajectories with high mean predicted per-
formance but a very negative 95%-confidence (0.05-VaR) lower bound on expected return.

Predicted Ground Truth Avg.
Policy Mean 0.05-VaR Score Length

A 17.1 7.9 480.6 1372.6
B 22.7 11.9 703.4 1,412.8
C 45.5 24.9 1828.5 2,389.9
D 57.6 31.5 2586.7 2,965.0

No-Op 102.5 -1557.1 0.0 99,994.0

performance of several different evaluation policies when evaluated over the posterior.

The results for Beam Rider are shown in Table 6.7. We show results for partially

trained RL policies A-D. We found that the ground-truth returns for the checkpoints were

highly correlated with the mean and 0.05-VaR (5th percentile policy return) returns under

the posterior. However, we also noticed that the trajectory length was also highly correlated

with the ground-truth reward. If the reward function learned via IRL gives a small positive

reward at every timestep, then long polices that do the wrong thing may look good under the

posterior. To test this hypothesis we used a No-Op policy that seeks to exploit the learned

reward function by not taking any actions. This allows the agent to live until the Atari

emulator times out after 99,994 steps.

Table 6.7 shows that while the No-Op policy has a high expected return over the

chain, looking at the 0.05-VaR shows that the No-Op policy has high risk under the distri-

bution, much lower than evaluation policy A. Our results demonstrate that reasoning about

probabilistic worst-case performance may be one potential way to detect policies that ex-

hibit so-called reward hacking (Amodei et al., 2016) or that have overfit to certain features in

the demonstrations that are correlated with the intent of the demonstrations, but do not lead

to desired behavior, a common problem in imitation learning (Ibarz et al., 2018; de Haan

108

Table 6.8: Breakout policy evaluation bounds compared with ground-truth game scores.
Top Half: No-Op never releases the ball, resulting in high mean predicted performance but
a low 95%-confidence bound (0.05-VaR). The MAP policy has even higher risk but also
high expected return. Bottom Half: After rerunning MCMC with a ranked trajectory from
both the MAP and No-Op policies, the posterior distribution matches the true preferences.

Risk profiles given initial preferences

Predicted Ground Truth Avg.
Policy Mean 0.05-VaR Score Length

A 1.5 0.5 1.9 202.7
B 6.3 3.7 15.8 608.4
C 10.6 5.8 27.7 849.3
D 13.9 6.2 41.2 1020.8

MAP 98.2 -370.2 401.0 8780.0
No-Op 41.2 1.0 0.0 7000.0

Risk profiles after rankings w.r.t. MAP and No-Op

A 0.7 0.3 1.9 202.7
B 8.7 5.5 15.8 608.4
C 18.3 12.1 27.7 849.3
D 26.3 17.1 41.2 1020.8

MAP 606.8 289.1 401.0 8780.0
No-Op -5.0 -13.5 0.0 7000.0

et al., 2019).

Table 6.8 contains policy evaluation results for the game Breakout. The top half of

the table shows the mean return and 95%-confidence lower bound on the expected return

under the reward function posterior for four evaluation policies as well as the MAP policy

found via Bayesian IRL and a No-Op policy that never chooses to release the ball. Both the

MAP and No-Op policies have high expected returns under the reward function posterior,

but also have high risk (low 0.05-VaR). The MAP policy has much higher risk than the No-

Op policy, despite good true performance. One likely reason is that, as shown in Table 6.6,

the best demonstrations given to Bayesian REX only achieved a game score of 32. Thus,

the MAP policy represents an out of distribution sample and thus has potentially high risk,

109

since Bayesian REX was not trained on policies that hit any of the top layers of bricks. The

ranked demonstrations do not give enough evidence to eliminate the possibility that only

lower layers of bricks should be hit.

To test this hypothesis, we added two new ranked demonstrations, a single rollout

from the MAP policy and a single rollout from the No-Op policy to the original set of 12

ranked demonstrations and performed MCMC with these new preferences. As the bottom

of Table 6.8 shows, adding two more ranked demonstrations results in a significant change

in the risk profiles of the MAP and No-Op policy—the No-Op policy is now correctly

predicted to have high risk and low expected returns and the MAP policy now has a much

higher 95%-confidence lower bound on performance.

To further test Bayesian REX on different learned policies we took a policy trained

with RL on the ground truth reward function for Beam Rider, the MAP policy learned via

Bayesian REX for Beam Rider, and a policy trained with an earlier version of Bayesian

REX (trained without all of the auxiliary losses) that learned a novel reward hack where the

policy repeatedly presses left and then right, enabling the agent’s ship to stay in between

two of the firing lanes of the enemies. The imitation learning reward hack allows the agent

to live for a very long time. We took a 2000 step prefix of each policy and evaluated the

expected and 5th percentile worst-case predicted returns for each policy. We found that

Bayesian REX is able to accurately predict that the reward hacking policy is worse than

both the RL policy and the policy optimizing the Bayesian REX reward. However, we

found that the Bayesian REX policy, while not performing as well as the RL policy, was

given higher expected return and a higher lower bound on performance than the RL policy.

Results are shown in Table 6.9.

110

Table 6.9: Beamrider policy evaluation for an RL policy trained on ground truth reward, an
imitation learning policy, and a reward hacking policy that exploits a game hack to live for
a long time by moving quickly back and forth.

Predicted Ground Truth
Policy Mean 0.05-VaR Avg. Length

RL 36.7 19.5 2135.2 2000
Bayesian REX 68.1 38.1 649.4 2000

Reward Hacking 28.8 10.2 2.2 2000

6.8 High-Confidence Performance Bounds on Human Trajecto-

ries

To investigate whether Bayesian REX is able to correctly rank human demonstrations, one

of the authors provided demonstrations of a variety of different behaviors and then we took

the latent embeddings of the demonstrations and used the posterior distribution to find high-

confidence performance bounds for these different rollouts.

6.8.1 Beam Rider

We generated four human demonstrations: (1) good, a good demonstration that plays the

game well, (2) bad, a bad demonstration that seeks to play the game but does a poor job,

(3) suicidal, a demonstration that does not shoot enemies and seeks enemy bullets, and

(4) adversarial a demonstration that pretends to play the game by moving and shooting

as much as possibly but tries to avoid actually shooting enemies. The results of high-

confidence policy evaluation are shown in Table 6.10. The high-confidence bounds and

average performance over the posterior correctly rank the behaviors. This provides evidence

that the learned linear reward correctly rewards actually destroying aliens and avoiding

getting shot, rather than just flying around and shooting.

111

Table 6.10: Beam Rider evaluation of a variety of human demonstrations.

Predicted Ground Truth
Policy Mean 0.05-VaR Avg. Length

good 12.4 5.8 1092 1000.0
bad 10.7 4.5 396 1000.0

suicidal 6.6 0.8 0 1000.0
adversarial 8.4 2.4 176 1000.0

6.8.2 Space Invaders

For Space Invaders we demonstrated an even wider variety of behaviors to see how Bayesian

REX would rank their relative performance. We evaluated the following policies: (1) good,

a demonstration that attempts to play the game as well as possible, (2) every other, a demon-

stration that only shoots aliens in the 2nd and 4th columns, (3) flee, a demonstration that

did not shoot aliens, but tried to always be moving while avoiding enemy lasers, (4) hide, a

demonstration that does not shoot and hides behind on of the barriers to avoid enemy bul-

lets, (5) suicidal, a policy that seeks enemy bullets while not shooting, (6) shoot shelters, a

demonstration that tries to destroy its own shelters by shooting at them, (7) hold ’n fire, a

demonstration where the player rapidly fires but does not move to avoid enemy lasers, and

(8) miss, a demonstration where the demonstrator tries to fire but not hit any aliens while

avoiding enemy lasers.

Table 6.11 shows the results of evaluating the different demonstrations. The good

demonstration is clearly the best performing demonstration in terms of mean performance

and 95%-confidence lower bound on performance and the suicidal policy is correctly given

the lowest performance lower bound. However, we found that the length of the demon-

stration appears to have a strong effect on the predicted performance for Space Invaders.

Demonstrations such as hide and miss are able to live for a longer time than policies that

actually hit aliens. This results in them having higher 0.05-quantile worst-case predicted

performance and higher mean performance.

112

Table 6.11: Space Invaders evaluation of a variety of human demonstrations.

Predicted Ground Truth
Policy Mean 0.05-VaR Avg. Length

good 198.3 89.2 515 1225.0
every other 56.2 25.9 315 728.0
hold ’n fire 44.3 18.6 210 638.0

shoot shelters 47.0 20.6 80 712.0
flee 45.1 19.8 0 722.0
hide 83.0 39.0 0 938.0
miss 66.0 29.9 0 867.0

suicidal 0.5 -13.2 0 266.0

Table 6.12: Space Invaders evaluation of a variety of human demonstrations when consid-
ering only the first 6000 steps.

Predicted Ground Truth
Policy Mean 0.05-VaR Avg. Length

good 47.8 22.8 515 600.0
every other 34.6 15.0 315 600.0
hold ’n fire 40.9 17.1 210 600.0

shoot shelters 33.0 13.3 80 600.0
flee 31.3 11.9 0 600.0
hide 32.4 13.8 0 600.0
miss 30.0 11.3 0 600.0

To study this further we looked at only the first 600 timesteps of each policy, to re-

move any confounding by the length of the trajectory. The results are shown in Table 6.12.

With a fixed length demonstration, Bayesian REX is able to correctly rank good, every

other, and hold ’n fire as the best demonstrations, despite evaluation policies that are decep-

tive.

6.8.3 Enduro

For Enduro we tested four different human demonstrations: (1) good a demonstration that

seeks to play the game well, (2) periodic a demonstration that alternates between speeding

113

Table 6.13: Enduro evaluation of a variety of human demonstrations.

Predicted Ground Truth
Policy Mean 0.05-VaR Avg. Length

good 246.7 -113.2 177 3325.0
periodic 230.0 -130.4 44 3325.0
neutral 190.8 -160.6 0 3325.0

ram 148.4 -214.3 0 3325.0

up and passing cars and then slowing down and being passed, (3) neutral a demonstration

that stays right next to the last car in the race and doesn’t try to pass or get passed, and (4)

ram a demonstration that tries to ram into as many cars while going fast. Table 6.13 shows

that Bayesian REX is able to accurately predict the performance and risk of each of these

demonstrations and gives the highest (lowest 0.05-VaR) risk to the ram demonstration and

the least risk to the good demonstration.

6.9 Summary

Bayesian reasoning is a powerful tool when dealing with uncertainty and risk; however, ex-

isting Bayesian reward learning algorithms often require solving an MDP in the inner loop,

rendering them intractable for complex problems in which solving an MDP may take several

hours or even days. In this chapter we proposed a novel deep learning algorithm, Bayesian

Reward Extrapolation (Bayesian REX), that leverages preference labels over demonstra-

tions to make Bayesian reward inference tractable for high-dimensional visual imitation

learning tasks. Bayesian REX extends T-REX (Chapter 5) to allow for fast Bayesian infer-

ence and can sample tens of thousands of reward functions from the posterior in a matter

of minutes using a consumer laptop. We tested our approach on five Atari imitation learn-

ing tasks and demonstrated Bayesian REX achieves state-of-the-art performance in 3 out

of 5 games. Bayesian REX also extends the results of Chapter 4 by enabling efficient

high-confidence performance bounds for a wide range of evaluation policies and evaluation

114

trajectories in high-dimensional, visual imitation learning tasks. Furthermore, we demon-

strated that these high-confidence bounds allow accurate comparison of different evaluation

policies and provide a potential way to detect reward hacking and value misalignment.

In Chapter 4 and the current chapter, we have focused on the problem of high-

confidence policy evaluation. While policy evaluation is an important part of safe imitation

learning, we have not addressed in detail the question of what an agent should do if it deter-

mines that, with high-probability, it has poor performance. Nor have we addressed how an

agent should go about optimizing its policy to have good performance with high-confidence

in the first place. In the next two chapters we consider the problems of risk-aware policy

optimization. In Chapter 7 we propose an approach for using a posterior distribution to

directly optimize a robust policy with respect to a specified risk-return trade-off. In Chap-

ter 8 we examine the problem of risk-aware active inverse reinforcement learning, where an

agent can ask for additional help from a demonstrator in order to optimize a robust policy

via repeated interactions with a demonstrator.

115

Chapter 7

Bayesian Robust Optimization for

Imitation Learning

In previous chapters we have considered the problem of high-confidence policy evaluation

(chapters 4 and 6) and risk-neutral imitation learning (Chapter 5). We now turn our atten-

tion to the problem of robust imitation learning via high-confidence policy optimization.

This chapter discusses Contribution 7 of this dissertation: an algorithm for Bayesian ro-

bust imitation learning that optimizes a policy to balance risk and expected return given a

posterior distribution over reward functions.12

One of the main challenges in imitation learning is determining what action an agent

should take when outside the states contained in the demonstrations. Inverse reinforcement

learning (IRL) (Ng and Russell, 2000) is an approach to imitation learning in which the

learning agent seeks to recover the reward function of the demonstrator. Learning a param-

eterized reward function provides a compact representation of the demonstrator’s values

and enables generalization to new states unseen in the demonstrations via policy optimiza-

tion. However, IRL approaches still result in uncertainty over the true reward function and

this uncertainty can have negative consequences if the learning agent infers a reward func-
12This chapter contains work that was done in collaboration with Marek Petrik and Scott Niekum.

116

tion that leads to learn an incorrect policy. In this chapter we propose that an imitation

learning agent should learn a policy that is robust with respect to its uncertainty over the

true objective of a task, but also be able to effectively trade-off epistemic risk with expected

return.

For example, consider two scenarios: (1) an autonomous car detects a novel object

lying in the road ahead of the car and (2) a domestic service robot tasked with vacuuming

encounters a pattern on the floor it has never seen before. The first example concerns

autonomous driving where the car’s decisions have potentially catastrophic consequences.

Thus, the car should treat the novel object as a hazard and either slow down or safely change

lanes to avoid running into it. In the second example, vacuuming the floors of a house has

certain risks, but the consequences of optimizing the wrong reward function are arguably

much less significant. Thus, when the vacuuming robot encounters a novel floor pattern it

does not need to worry as much about negative side-effects.

Risk-averse optimization, especially in financial domains, has a long history of

seeking to address the trade-off between risk and return using measures of risk such as

variance (Markowitz and Todd, 2000; Brown, 2011), value at risk (Jorion, 1997) and condi-

tional value at risk (Rockafellar and Uryasev, 2000). This work has been extended to risk-

averse optimization in Markov decision processes (Ghavamzadeh et al., 2016; Chow et al.,

2015; Petrik and Subramanian, 2012) and in the context of reinforcement learning (Garcıa

and Fernández, 2015; Tamar et al., 2015; Tang et al., 2020), where the transition dynamics

and reward function are not known. However, there has only been limited work in applying

techniques for trading off risk and return in the domain of imitation learning. In chapters 4

and 6 we discussed methods for bounding the value at risk of a policy in the imitation

learning setting; however, directly optimizing a policy for value at risk is NP-hard (Delage

and Mannor, 2010). Lacotte et al. (2019) and Majumdar et al. (2017) assume that risk-

sensitive trajectories are available from a safe demonstrator and seek to optimize a policy

that matches the risk-profile of this expert. In contrast, our approach directly optimizes a

117

policy that balances expected return and conditional value at risk (Rockafellar and Uryasev,

2000) which can be done via convex optimization. Furthermore, we do not try to match

the demonstrator’s risk sensitivity, but instead find a robust policy with respect to uncer-

tainty over the demonstrator’s reward function, allowing us to optimize policies that are

potentially safer than the demonstrations.

One of the concerns of imitation learning, and especially inverse reinforcement

learning, is the possibility of learning an incorrect reward function that leads to negative

side-effects, for example, a vacuuming robot that learns that it is good to vacuum up dirt,

but then goes around making messes for itself to clean up (Russell and Norvig, 2002). To

address negative side-effects, most prior work on safe inverse reinforcement learning takes

a minmax approach and seeks to optimize a policy with respect to the worst-case reward

function (Syed et al., 2008; Hadfield-Menell et al., 2017; Huang et al., 2018); however,

treating the world as if it is completely adversarial (e.g., completely avoiding a novel patch

of red flooring because it could potentially be lava (Hadfield-Menell et al., 2017)) can lead

to overly conservative behaviors. On the other hand, other work on inverse reinforcement

learning and imitation learning takes a risk neutral approach and simply seeks to perform

well in expectation with respect to uncertainty over the demonstrator’s reward function

(Ramachandran and Amir, 2007; Ziebart et al., 2008). This can result in behaviors that are

overly optimistic in the face of uncertainty and can lead to policies with high variance in

performance which is undesirable in high-risk domains such as medicine or autonomous

driving. Instead of assuming either a purely adversarial environment or a risk-neutral one,

we propose the first inverse reinforcement learning algorithm capable of appropriately bal-

ancing caution with expected performance in a way that reflects the risk-sensitivity of the

particular application.

This chapter is outlined as follows. First, we propose Bayesian Robust Optimization

for Imitation Learning (BROIL), the first imitation learning framework to directly optimize

a policy that balances the expected return and the conditional value at risk under an un-

118

certain reward function. Second, we propose and compare two instantiations of BROIL:

optimizing a purely robust policy with respect to uncertainty and optimizing a policy that

minimizes baseline regret with respect to expert demonstrations. Finally, we consider two

case-studies that demonstrate that BROIL can achieve better expected return and robustness

than existing risk-sensitive and risk-neutral IRL algorithms, as well as providing a richer

class of solutions that correctly balance performance and risk based on different levels of

risk aversion.

7.1 Preliminaries

This chapter uses different notation from the rest of the thesis which we introduce briefly

below. We use uppercase and lowercase boldface characters to denote matrices and vectors

respectively.

7.1.1 Markov Decision Processes

We model the environment as a Markov Decision Process (MDP) (Puterman, 2014). An

MDP is a tuple (S,A, r, P, γ, p0), where S = {1, . . . , S} are the states, A = {1, . . . , A}
are the actions, r : S ×A → R is the reward function, P : S ×A×S → R is the transition

dynamics, γ ∈ [0, 1) is the discount factor, and p0 ∈ ∆S is the initial state distribution with

∆k denoting the probability simplex in k-dimensions.

A policy is denoted by π : S × A → [0, 1]. When learning from demonstra-

tions we denote the expert’s policy by πE : S → A. The rewards received by a policy

at each state are rπ where rπ(s) = Ea∼π(s)[R(s, a)] and the transition probabilities for

a policy π: Pπ, treated as a matrix, are defined as: Pπ(s, s′) = Ea∼π(s)[P (s, a, s′)] =∑
a π(a|s)P (s, a, s′). We denote the state-action occupancies of policy π as uπ ∈ RS·A,

where uπ = (ua1π
T, . . . ,uaAπ

T)T and uaπ(s) = E[
∑∞

t=0 γ
t1(st=s∧at=a)]. If we denote the

reward function as a vector r ∈ RS·A, then expected return of policy π under reward func-

tion r is denoted by ρ(π, r) = uT
πr.

119

7.1.2 Linear Reward Functions

We assume, without loss of generality, that the reward function can be approximated as a

linear combination of k features r = Φw, where Φ ∈ RS·A×k is the linear feature matrix

with rows as states and columns as features and w ∈ Rk. This is a strict generalization of

the standard MDP formalism since if Φ is the identity matrix, then each state-action pair is

allowed a unique reward. However, it is often the case that the rewards at different states

are correlated via observable features which can be encoded in Φ. The features themselves

may be highly nonlinear functions of the states and actions that may have been learned

via an auxiliary task as discussed in Chapter 6. Given r = Φw, we denote the expected

discounted feature counts of a policy as µπ = ΦTuπ, where µπ ∈ Rk. In this case, the

return of a policy is given by ρ(π, r) = uT
πΦw = µT

πw.

7.1.3 Distributions over Reward Functions

We are interested in problems where there is uncertainty over the true reward function. We

will model this uncertainty as a distribution over R, the random variable representing the

true reward function. This distribution could be a prior distribution P(R) that the agent

has learned from previous tasks (Xu et al., 2019). Alternatively the distribution could be

the posterior distribution P(R | D) learned via Bayesian inverse reinforcement learning

(Ramachandran and Amir, 2007) given demonstrationsD or the posterior distribution P(R |
R′) learned via inverse reward design given a human-specified proxy reward function R′

(Hadfield-Menell et al., 2017). While the distribution over R may have an analytic form,

this distribution is typically only available via sampling techniques such as Markov chain

Monte Carlo (MCMC) sampling (Ramachandran and Amir, 2007).

7.1.4 Risk Metrics

Value at Risk When dealing with measures of risk we will assume that lower values

are worse. Thus, as depicted in Figure 7.1, we will want to maximize the value at risk

120

Figure 7.1: VaRα measures the (1 − α)-quantile worst-case outcome in a distribution.
CVaRα measures the expectation given that we only consider values less than the VaRα.

(VaR) or conditional value at risk (CVaR). Given a risk-aversion parameter α ∈ [0, 1],

the VaRα is the (1 − α)-quantile worst-case outcome. Thus, VaRα can be written as

VaRα[X] = sup{x : P(X ≥ x) ≥ α}. Typical values of α for risk-sensitive applications

are α ∈ [0.9, 1]. Despite the popularity of VaR, optimizing a policy for VaR has several

problems: (1) VaR is not convex and results in an NP hard optimization problem (Delage

and Mannor, 2010), (2) VaR ignores risk in the tail that occurs with probability less than

(1 − α) which is problematic for domains where there are rare but catastrophic outcomes,

and (3) VaR is not a coherent risk measure (Artzner et al., 1999).

Conditional Value at Risk CVaR is a coherent risk measure (Delbaen, 2002) that is also

commonly referred to as average value at risk, expected tail risk, or expected shortfall. For

continuous distributions, the CVaR is defined as

CVaRα[X] = E [X | X ≤ VaRα[X]] . (7.1)

In addition to being coherent, CVaR is convex, and is a lower bound on VaR. CVaR is

often preferable over VaR because it does not ignore the tail of the distribution and it is

convex (Rockafellar and Uryasev, 2000).

121

7.2 Balancing Risk and Return for Safe Imitation Learning

Let Π be the set of all randomized policies, and let R be the set of all reward functions.

Given some function ψ : Π × R → R representing any performance metric for a policy

under the unknown reward functionR ∼ P(R), we seek to find the policy that is the solution

to the following problem:

max
π

CVaRα[ψ(π,R)] (7.2)

We now discuss how to solve for the policy that optimizes Equation (7.2). We make use

of the one-to-one correspondence between randomized policies π : S → ∆A (where A

is the number of actions) and the state-action occupancy frequencies uπ (Puterman, 2014).

Therefore maxπ ρ(π, r) corresponds to the following linear program (Puterman, 2014; Syed

et al., 2008):

max
u∈RSA

{
rTu |

∑
a∈A

(I − γ · P T
a)ua = p0,u ≥ 0

}
. (7.3)

We denote the posterior distribution over samples from P(R|D) as the vector pR,

where each element of pR represents the probability mass of one of the samples from the

posterior distribution, e.g., pR[i] = 1/N forN sampled reward functionsR1, R2, R3, . . . RN

obtained via MCMC (Ramachandran and Amir, 2007; Brown and Niekum, 2018). Because

posterior distributions obtained via Bayesian IRL are usually discrete (Ramachandran and

Amir, 2007; Sadigh et al., 2017; Hadfield-Menell et al., 2017; Brown and Niekum, 2018),

we cannot directly optimize for CVaR using the definition in Equation (7.1) since this def-

inition only works for atomless distributions (i.e. most continuous distributions). Instead,

we make use of the following convex definition of CVaR (Rockafellar and Uryasev, 2000)

that works for any distribution (discrete or continuous):

CVaRα[X] = max
σ

(
σ − 1

1− αE[(σ −X)+]

)
, (7.4)

where (x)+ = max(0, x) and σ roughly corresponds to the VaRα (Rockafellar and Urya-

122

sev, 2000).

Writing the convex definition of CVaR in terms of a the probability mass vector

pR, results in the following definition of the CVaR of a policy π:

CVaRα[ψ(π,R)] = max
σ

(
σ − 1

1− αp
T
R[σ · 1−ψ(π,R)]+

)
, (7.5)

whereψ(π,R) =
(
ψ(π,R1), . . . , ψ(π,RN)

)T, [·]+ denotes the element-wise non-negative

part of a vector: [y]+ = max{y,0}.One of the main insights of this chapter is that, using

the same approach as the linear program above, we can formulate (7.2) as the following

linear program which can be solved in polynomial time:

max
u∈RAS ,σ∈R

{
σ − 1

1− αp
T
R [σ · 1−ψ(π,R)]+ |

∑
a∈A

(I − γ · P T
a)ua = p0,u ≥ 0

}
.

(7.6)

Given the state-action occupancies u that maximize the above objective, the optimal policy

can be recovered by appropriately normalizing these occupancies (Puterman, 2014). Thus,

the optimal risk-averse IRL policy π? can be constructed from an optimal u? solution to

(7.6) as: π?(s, a) = u?(s,a)/
∑
a′∈A u?(s,a′) .

7.2.1 Balancing Robustness and Expected Return

The above formulation finds a policy that has maximum CVaR. While this makes sense for

highly risk-sensitive domains such as autonomous driving (Wulfmeier et al., 2017; Sadigh

et al., 2017) or medicine (Kalantari et al., 2020; Asoh et al., 2013), in other domains such as

a robot vacuuming office carpets, we may also be interested in efficiency and performance,

rather than pure risk-aversion. Even in highly risky situations, completely ignoring expected

return and optimizing only for low probability events can lead to nonsensical behaviors

that are overly cautious, such as an autonomous car deciding to never merge onto a busy

123

highway.13.

To tune the risk-sensitivity of the optimized policy, we generalize Equation (7.6) in

order to solve for the policy that optimally balances the expected return and epistemic risk

over the reward function. We formalize this via the parameter λ ∈ [0, 1]. When λ = 0

we recover the fully robust policy. When λ ∈ (0, 1) we obtain a soft-robustness, and when

λ = 1 we recover the risk-neutral policy that optimizes for the expected reward function

under the posterior. We denote this generalized problem as Bayesian Robust Optimization

for Imitation Learning or BROIL:

maximize
u∈RSA, σ∈R

(1− λ) ·
(
σ − 1

1− αp
T [σ · 1−Ψ(π,R)]+

)
+ λ · (Rp)Tu

subject to
∑
a∈A

(
I − γ · P T

a

)
ua = p0, u ≥ 0 ,

where R be a matrix (S · A) × N where each column of R represents one sample of

the vector over rewards for each state and action pair, Rp is the mean reward under the

posterior, and λ ∈ [0, 1] is a hyperparameter determining how much we value expected

return over risk minimization.

7.2.2 Measures of Robustness

BROIL provides a general framework for optimizing policies that trade-off risk and return

based on the specific choice of random variable ψ(π,R), representing the desired measure

of the safety or performance of a policy. We next describe two natural choices for defining

ψ(π,R).

Robust Objective If we seek a policy that is robust over the distribution P(R), we should

optimize CVaR with respect to ψ(π,R) = ρ(π,R), the return of the policy. Note that

13e.g. ”Thwarted on the On-ramp: Waymo Driverless Car Doesn’t Feel the Urge to Merge”, accessed:
05.19.2020.

124

https://www.thetruthaboutcars.com/2018/05/thwarted-ramp-waymo-driverless-car-doesnt-feel-urge-merge/

R is a random variable so ρ(π,R) is also a random variable that depends on the posterior

distribution over R and on π. In terms of the linear program above we have ψ(π,R) =

RTuπ.

Robust Baseline Regret Objective If we have a baseline, such as an expert policy or

one or more demonstrated trajectories, we may want maximize CVaR with respect to

ψ(π,R) = ρ(π,R) − ρ(πE , R). This form of BROIL seeks to maximize the margin be-

tween the performance of the policy and the performance of the demonstrator. Rather than

seeking to match the risk of the demonstrator (Lacotte et al., 2019), the Baseline Regret

form of BROIL baselines its performance with respect to the random variable ρ(πE , R),

while still trying to minimize tail risk. In terms of the linear program above we have

ψ(π,R) = RT(uπ − uE). In practice, we typically only have samples of expert be-

havior rather than a full policy. In this case, we compute the empirical expected fea-

ture counts using a set of demonstrated trajectories D = {τ1, . . . , τm} to get µ̂E =

1
|D|
∑

τ∈D
∑

(st,at)∈τ γ
tφ(st, at), where φ : S × A → R denotes the reward features.

We then solve the above linear program with ψ(π,R) = RTuπ −W Tµ̂E , where W is a

matrix of size k-by-N where each column is a feature weight vectorw ∈ Rk corresponding

to each linear reward function sampled from the posterior.

7.3 Experiments

7.3.1 Zero-shot Robust Policy Optimization

We first consider the case where an agent wants to optimize a robust policy with respect

to a prior over reward functions without access to expert demonstrations. This prior could

come from historical data or from meta-learning on similar tasks (Xu et al., 2019).

We consider the machine replacement problem, a common problem in the robust

MDP literature (Delage and Mannor, 2010). In this problem, there is a factory with a

large number of machines with parts that are expensive to replace. There is also a cost

125

1 2 3

Replace Parts

Do Nothing

4

Figure 7.2: Machine Replacement MDP

associated with letting a machine age without replacing parts as this may cause damage

to the machine, but this cost is uncertain. We model this problem as the MDP shown

in Figure (7.2) with 4 states that represent the normal aging process of the machine, two

actions in each state (replace parts or do nothing), discount factor γ = 0.95, and uniform

initial state distribution. The prior distribution over the cost of the Do Nothing action is

modeled as a gamma distribution Γ(x, θ), resulting in low expected costs but increasingly

large tails as the machine ages. The prior distribution over the cost of replacing a part is

modeled using a normal distribution.

Because we have no demonstrations, we use the Robust Objective version of BROIL

(Section 7.2.2). We sampled 2000 reward functions from the prior distributions over costs

and computed the CVaR optimal policy with α = 0.99 for different values of λ. Fig-

ure 7.3 (a) shows the action probabilities of the optimal policy under different values of λ,

where P(Replace Parts) = 1 − P(Do Nothing). Setting λ = 1 gives the optimal policy

with respect to the mean reward under the reward posterior. This policy is risk-neutral and

chooses to never repair the machine since the mean of the gamma distribution is x · θ, so

in expectation it is optimal to do nothing. As λ decreases, the optimal policy hedges more

against tail risk via a stochastic policy that sometimes repairs the machine. With λ = 0,

we recover the robust optimal policy that only seeks to optimize CVaR. This policy is max-

imally risk-sensitive and chooses to probabilistically repair the machine in states 2 and 3

and always repair in state 4 to avoid the risk of doing nothing and incurring a possibly

high cost. Figure 7.3 (b) shows the efficient frontier of Pareto optimal solutions. BROIL

126

(a) Cost Priors (b) Action Probabilities

(c) Efficient Frontier (d) Return Distributions

Figure 7.3: Risk-sensitive (λ ∈ [0, 1)) and risk-neutral (λ = 1) policies for the machine
replacement problem. Varying λ results in a family of solutions that trade-off conditional
value at risk and return. The risk-neutral policy has heavy tails, while BROIL produces
risk-sensitive policies that trade-off a small decrease in expected return for a large increase
in robustness (CVaR).

achieves significant improvements in robustness by sacrificing a small amount of expected

utility. Figure 7.3 (c) shows that the BROIL policies with λ < 1 have much smaller tails

than the policy that only optimizes with respect to the expected rewards.

7.3.2 Ambiguous Demonstrations

Next we consider the case where the agent has no prior knowledge about the reward func-

tion, but where demonstrations are available. In particular, we are interested in the case

where demonstrations cover only part of the state-space, so even after observing a demon-

stration there is still high uncertainty over the true reward function. To clearly showcase the

127

benefits of BROIL, we constructed the MDP shown in Figure 7.4 where there are two fea-

tures (red and white) with unknown costs, a terminal state in the bottom right, and γ = 0.95.

Actions are in the four cardinal directions with deterministic dynamics. The agent observes

the demonstration shown in Figure 7.4 (a) that demonstrates some preference for the white

feature over the red feature and a preference for exiting the MDP. However, the demonstra-

tion does not provide sufficient information to know what to do in the top right states where

demonstrator actions are unavailable. In particular, the agent does not know the true cost of

the red cells and whether taking the shortest path from the top right states to the terminal

state is optimal. We demonstrate that BROIL results in much more sensible policies across

a spectrum of risk-sensitivities, than other state-of-the-art approaches.

Given the single demonstration, we generated 2000 samples from the posterior

P (R|D) using Bayesian IRL (Ramachandran and Amir, 2007). We compare against the

state-of-the-art risk-sensitive, maxmin algorithm, LPAL, proposed by Syed et al. (Syed

et al., 2008) and the state-of-the-art risk-neutral Maximum Entropy IRL algorithm (Ziebart

et al., 2008). Shown in Figure 7.4 are the optimal policies for MaxEnt IRL (Ziebart et al.,

2008), LPAL (Syed et al., 2008), and BROIL using the robust and baseline regret formu-

lations with α = 0.95. We plotted the unique policies and a sample λ that results in each

policy. Note that λ = 1 is equivalent to solving for the optimal policy for the mean reward

Figure 7.4 (h). The baseline regret formulation uses the expert feature counts to baseline

risk and seeks to completely avoid the red feature for λ = 0. As λ increases, the baseline

regret policy is more willing to take a shortcut to get to the terminal state in the bottom right

corner. Conversely, the robust policy takes the shortcut through the far right red cell which

balances the risk of the red feature with the knowledge that the white feature is likely to

also have high cost.

To better understand the differences between these approaches without committing

to a particular ground-truth reward function, we examine each algorithm’s performance

across the posterior distribution P(R|D). Figure 7.5 (a) shows ψ(π,R) = ρ(π,R) sorted

128

from smallest to largest when evaluated under each sample from the posterior. Figure 7.5 (b)

shows the results when ψ(π,R) = ρ(π,R) − ρ(µ̂E , R). LPAL is similar to the baseline

regret formulation of BROIL in that it seeks to optimize a policy that performs better than

the demonstrator; however, unlike BROIL, LPAL uses a fully adversarial maxmin approach

that penalizes the biggest deviation from the demonstrated feature counts (Syed et al., 2008).

This results in always avoiding red cells, but also trying to exactly match the feature counts

of the demonstration. This feature count matching results in a highly stochastic policy that

does not always terminate quickly. MaxEnt IRL is completely risk-neutral, but also seeks

to explicitly match feature counts while maintaining maximum entropy over the policy

actions. This results in a highly stochastic policy that sometimes takes shortcuts through

the red cells, but also sometimes takes actions that move it away from the terminal state.

Figure 7.5 shows that both formulations of BROIL significantly outperform Max-

Ent IRL and LPAL. The return distribution of the robust BROIL policy is flatter than the

other policies as it attempts to find a policy that performs well in the 5% worst-case under

all reward functions and needs to be robust to posterior samples that put high costs on white

cells and only slightly higher costs on red. On the other hand the Baseline Regret formula-

tion computes risk under the posterior with respect to the expected feature counts µ̂E of the

demonstrator. This makes reward function hypotheses that would lead to entering red states

more risky since the demonstrator only visited white states. The regret formulation seeks

to maximize the margin between the return of the baseline regret policy and the return of

the demonstration over the posterior. Thus, the regret policy tracks the performance of the

baseline more than the robust policy as shown in Figure 7.5(a). As shown in Figure 7.5 (b),

the regret formulation has better tail performance with respect to the posterior baseline

regret. Figure 7.5 (c) shows the efficient frontier for the baseline regret formulation and

shows that BROIL dominates LPAL and MaxEnt IRL with respect to both expected return

and robustness.

129

(a) Ambiguous demo (b) MaxEnt IRL (c) LPAL (d) Robust (λ = 0)

(e) Regret (λ = 0) (f) Regret (λ = 0.1) (g) Regret (λ = 0.3) (h) B-IRL (λ = 1)

Figure 7.4: When demonstrations BROIL results in a family of solutions that balance return
and risk based on the value of λ. (a) Ambiguous demonstration that does not convey enough
information to determine how undesireable the red states are. (b-c) MaxEnt IRL (Ziebart
et al., 2008) and LPAL (Syed et al., 2008) results in stochastic policies where size of arrow
reprents probability. (d) The robust policy with λ = 0 balances the goodness and badness
of red and prefers taking a shortcut. (e-g) The regret policy avoids red for small λ. (h) The
optimal policy for the mean reward (λ = 1) takes a short cut through red cells.

130

0 50 100 150 200 250 300
Sorted Reward Function Samples

3.5

3.0

2.5

2.0

1.5

1.0

0.5

Re
tu

rn

demo
Robust
Regret
LPAL
MaxEnt

(a) Robustness

0 50 100 150 200 250 300
Sorted Reward Function Samples

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

Re
tu

rn

(b) Performance over baseline

−0.6−0.5−0.4−0.3−0.2−0.1 0.0

Robustness (CVaR)

−2.6

−2.4

−2.2

−2.0

−1.8

−1.6

−1.4

E
xp

ec
te

d
R

et
ur

n

λ ∈ [0.0, 0.1)

λ ∈ [0.1, 0.3)
λ ∈ [0.3, 0.7)λ ∈ [0.7, 1.0]

BROIL

MaxEnt

LPAL

(c) Efficient frontier

Figure 7.5: Sorted return distributions over the posterior for the BROIL Robust and Baseline
Regret policies compared to the return distributions of the demonstration, MaxEnt IRL
(Ziebart et al., 2008), LPAL (Syed et al., 2008). The robust policy attempts to maximize
worst-case performance over the posterior. The baseline regret also seeks to maximize
worst-case performance but relative to the demonstration.

131

7.4 Summary

In this chapter we proposed Bayesian Robust Optimization for Imitation Learning (BROIL),

a method for optimizing a policy to be robust to conditional value at risk under an unknown

reward function. Our results show that BROIL can result in better overall performance than

existing risk-sensitive maxmin (Syed et al., 2008) and risk-neutral (Ziebart et al., 2008)

approaches to IRL. Our approach balances expected return and conditional value at risk

over a reward function posterior distribution to produce a family of robust solutions pa-

rameterized by the risk-aversion of the user. While our experiments focused on simpler

case-studies, where obtaining a posterior via classical Bayesian IRL (Ramachandran and

Amir, 2007) is tractable, BROIL allows robust policy optimization given any distribution

over reward functions. Thus, our results in Chapter 6 could be used to obtain a posterior

distribution over reward functions without requiring an MDP solver, assuming access to

high-confidence preferences over demonstrations. We leave this extension as an area for

future work.

This chapter focused on the case where there is a fixed posterior distribution over

reward functions and an agent wants to optimize their policy with respect to this fixed

distribution. However, in more interactive settings, the imitation learning agent may be

able to request additional demonstrations or critiques of its behavior. In the next chapter we

examine the setting of interactive policy improvement, where an imitation learning agent

can actively query for additional help from a demonstrator. In particular, we will propose a

novel risk-aware query strategy based on the high-confidence policy evaluation framework

described in Chapter 4.

132

Chapter 8

Risk-Aware Active Inverse

Reinforcement Learning

In this chapter we focus on sample efficient safe imitation learning in an interactive set-

ting where a learning agent is able to interact with a human in order to infer the human’s

intent and optimize a policy that is safe with respect to the learner’s epistemic uncertainty

over the demonstrator’s intent. This chapter presents Contribution 8 of this dissertation:

active learning algorithms that generate risk-aware queries for robust policy improvement.

Our proposed approach utilizes the high-confidence performance bounds from Chapter 4

to synthesize risk-aware queries that ask for help in states from which the robot thinks it

could have high generalization error under the demonstrator’s reward function. Previously,

in Chapter 6, we briefly highlighted the benefits of introducing risk-informed active queries

to refine an imitation learner’s posterior distribution over reward functions. In the sections

that follow, we develop and explore the idea of risk-informed queries in more detail. While

Chapter 7 focuses on the problem of optimizing a policy with regards to a fixed distribution

on reward functions, the current chapter focuses on the orthogonal problem of how to select

active queries in an risk-aware manner in order to refine an existing distribution over reward

133

functions. 14

When a human gives demonstrations to a robot or other autonomous agent, it can

be difficult for a human to understand what demonstrations would be most informative to

provide to a robot, due to inherent physical, perceptual, and representational differences.

To address this issue, active IRL algorithms (Lopes et al., 2009; Cohn et al., 2011; Cui and

Niekum, 2018) have been proposed that reason about uncertainty and information gain to

select queries that are expected to be the most informative under certain criteria. Existing

active IRL algorithms aim to minimize uncertainty over policy (Lopes et al., 2009), min-

imize uncertainty over possible reward functions (Cui and Niekum, 2018), or maximize

expected gain in policy value (Cohn et al., 2011). To allow robots to be programmed by

non-experts, it is crucial that robots can reason about risk and generalization error given

limited, ambiguous demonstrations. However, previous active IRL algorithms do not con-

sider the risk of the actual policy learned by the robot. As an example of a demonstration

that could lead to high generalization error, consider a human giving a single demonstra-

tion placing a vase on the center of a table. There are many plausible motivations for this

demonstration: the vase should be in the center of table, the vase can be anywhere on the

table, the vase should be above a cup, etc. In this chapter we seek to addresses the follow-

ing question: How can a robot that learns from demonstrations actively query for help in

states where its learned policy has the potential for high generalization error under the

demonstrator’s true reward function?

8.1 Methodology

We propose a general framework for risk-aware active queries based on the Value-at-Risk

policy loss bounds for LfD proposed in Chapter 4. Our approach generates active queries

that seek to minimize the policy loss Value-at-Risk of the robot’s learned policy.
14This chapter contains work that was done in collaboration with Yuchen Cui and Scott Niekum and was

previously published at CoRL 2018 (Brown et al., 2018).

134

8.1.1 Bounding the Performance of a Policy Given Demonstrations

As mentioned in the related work, existing active IRL approaches typically do not explicitly

use performance as a query strategy. By applying and extending the results from Chapter 4,

we demonstrate that it is possible to use performance-based active learning to improve a

policy learned purely from demonstration.

In Chapter 4 we used samples from P (R|D) to compute the policy loss α-Value at

Risk (α-quantile worst-case outcome) (Jorion, 1997). Given an MDP\R, a policy to evaluate

πeval, and a set of demonstrations D, the policy loss α-VaR provides a high-confidence

upper bound on the α-worst-case policy loss incurred by using πeval instead of π∗, where

π∗ is the optimal policy under the demonstrator’s true reward function R. The policy loss

of executing πeval under the reward R is given by the Expected Value Difference:

EVD(πeval, R) = V ∗R − V πeval
R . (8.1)

However, IRL is ill-posed—there are an infinite number of reward functions that

explain any optimal policy (Ng and Russell, 2000). Thus, any method that attempts to

bound the performance of a policy given only demonstrations should account for the fact

that there is never one “true” reward function, but rather a set of reward functions that

motivate a demonstration. To bound the policy loss α-VaR of an evaluation policy πeval

given only demonstrations, we proposed in Chapter 4 to use Bayesian IRL to generate

samples of likely reward functions, R, from the posterior P (R|D). Each sample reward

function produces a sample policy loss, EVD(πeval, R), and these policy losses can then

be sorted to obtain a single sided (1− δ)-confidence bound on the policy loss α-VaR. This

allows us to estimate of the Value-at-Risk over any distribution P (R|D).

135

8.1.2 Risk-Aware Active Queries

The method presented in Chapter 4 and summarized above, works for any evaluation policy

πeval. In an active learning setting, we argue that the most useful policy to evaluate is the

robot’s best guess of the optimal policy under the demonstrator’s reward. Thus, we use

πeval = πMAP where πMAP is the optimal policy corresponding to RMAP, the maximum a

posteriori reward given the demonstrations so far; however, our general approach can easily

be applied to any policy learned from demonstrations.

Rather than directly using the approach described in Chapter 4 and Section 8.1.1

to bound the expected α-Value-at-Risk policy loss of the policy πMAP, we instead generate

risk-aware active queries by calculating the α-VaR for each potential query state s and select

the state with the highest policy loss α-VaR as the query. The policy loss of a state s under

πMAP given reward R is:

Z = EVD(s,R | πMAP) = V ∗R(s)− V πMAP
R (s) (8.2)

where π∗ denotes the optimal policy under R. Therefore, the α-VaR for a state can be

found using an extension of the method discussed in Section 8.1.1. We first sample rewards

R ∼ P (R|D) using Bayesian IRL (Ramachandran and Amir, 2007), then for each sampled

R and each potential query state s, we compute a sample policy loss Z using Equation 8.2.

These samples for each state can then be used to obtain one-sided confidence bounds on the

α-VaR for each state as discussed in Chapter 4. Note that the state value functions V ∗R(s) can

be directly computed from the optimal Q-value functions obtained during MCMC sampling

during Bayesian IRL.

We consider two types of interactions with the demonstrator: active action queries

and active critique queries. An active action query is where the robot proposes a state as

its query and a human demonstrator is expected to provide the correct action to take at

that state. The active learning process is summarized in Algorithm 5. The objective of our

136

Algorithm 5 Action Query ActiveVaR(Input: MDP\R, D, α, ε; Output: RMAP , πMAP)

1. Sample a set of reward functions R by running Bayeisan IRL with input D and
MDP\R;

2. Extract the MAP estimate RMAP and compute πMAP ;

3. while true:

(a) sk = arg maxsi∈S(α-VaR(si, πMAP)) ;

(b) Ask for expert demonstration ak at sk and add (sk, ak) into demonstration set
D;

(c) Sample a new set of rewards R by running Bayesian IRL with updated D;

(d) Extract the MAP estimate RMAP and compute πMAP ;

(e) break if maxsi∈S(α-VaR(si, πMAP)) < ε;

4. return RMAP , πMAP

active learning algorithm is to minimize the worst-case generalization error of the learned

policy, with as few queries as possible. To do this we compute the α-VaR for each starting

state state (sampling states for continuous environments). The state with the highest α-VaR

under P (R | D) is the state where the robot’s policy has the highest α-quantile worst-case

policy loss. Thus, selecting this state as the active query is a good approximation for our

objective.

In the second type of query, the robot demonstrates a trajectory to the user and

asks them to critique the demonstration by segmenting the demonstration into desirable and

undesirable segments as proposed by Cui and Niekum (2018). To generate a trajectory for

critique, the state with the highest α-VaR policy loss is computed. A trajectory is then

generated by executing the MAP policy starting at the selected state. This active learning

process is summarized in Algorithm 6, where the demonstrator provides a critique of one of

the agent’s proposed trajectories in the form of segmenting the trajectory into optimal and

suboptimal segements.

Both of the above active learning algorithms repeat until the α-VaR of the robot’s

137

Algorithm 6 Critique Query ActiveVaR(Input: MDP\R, D, α, ε; Output: RMAP , πMAP)

1. Sample a set of reward functions R by running Bayeisan IRL with input D and
MDP\R;

2. Extract the MAP estimate RMAP and compute πMAP ;

3. while true:

(a) sk = arg maxsi∈S(α-VaR(si, πMAP)) ;

(b) Ask for critique of trajectory from πMAP of length L that starts at state sk;

(c) Update D with positive and negative segments from the critique;

(d) Sample a new set of rewards R by running Bayesian IRL with updated dataset
D of positive and negative examples (Cui and Niekum, 2018);

(e) Extract the MAP estimate RMAP and compute πMAP ;

(f) break if maxsi∈S(α-VaR(si, πMAP)) < ε;

4. return RMAP , πMAP

learned policy falls below the desired safety threshold ε. We call our framework Risk-Aware

Active IRL and refer to the corresponding active learning algorithms as ActiveVaR in future

discussion.15

8.1.3 Example

Given samples of reward functions from running Bayesian IRL, there are many different

statistical measurements that can serve as the objective function for active learning. Meth-

ods such as those proposed by Lopes et al. (2009) and Cui and Niekum (2018) are purely

exploratory since they reason only about statistical measures of uncertainty over the reward

function posterior instead of the performance of a specific policy when selecting active

queries. In contrast, our proposed framework instead uses focused exploration based on

high-confidence bounds on the policy loss of the agent’s policy.
15Our implementation of ActiveVaR can be found at: https://github.com/Pearl-UTexas/

ActiveVaR.git

138

https://github.com/Pearl-UTexas/ActiveVaR.git
https://github.com/Pearl-UTexas/ActiveVaR.git

Figure 8.1: Comparison of active action queries based on performance loss risk or action
entropy. The example gridworld has four different unknown features denoted by the yellow,
green, white, and blue colors of the cells. White states are legal initial states. AS is the
active learning algorithm proposed by Lopes et al. (Lopes et al., 2009) and activeVaR is
our proposed active action query algorithm. The first two active queries proposed by each
algorithm are annotated on the heatmaps of VaR and entropy values after each iteration. For
heatmaps, all values are normalized from 0 to 1.

The example in Figure 8.1 shows how focusing on Value-at-Risk, rather than min-

imizing uncertainty over actions as in the Active Sampling (AS) algorithm (Lopes et al.,

2009), leads to more intuitively intelligent queries. In this example, there are four indicator

features denoted by the white, yellow, green, and blue colors on the cells. Given one initial

demonstration going into the green state from a white state, AS and ActiveVaR both pick

the bottom right white state as their first query. However, for the second query, AS picks

another state next to a blue feature while ActiveVaR picks the state next to a yellow feature.

Active queries based on VaR allow the IRL agent to understand that blue feature is unavoid-

able from all the rightmost states so there is no point asking for more demonstrations from

those states while AS only reasons about action entropy.

139

0 5 10 15 20
0

0.5

1

1.5

2

Number of Queries

Po
lic

y
L

os
s

ActiveVaR Random AS

Figure 8.2: A comparison of different active action query strategies. ActiveVar (ours) out-
performs action queries chosen at random as well as action queries chosen based on action
entropy (AS) as proposed by Lopes et al. (2009). Results show averaged policy losses in
8×8 gridworlds with 48 features.

8.2 Experiments

8.2.1 Gridworld Active Action Queries

We first evaluate ActiveVaR on active action queries in which the active learning algorithm

selects a state and asks the demonstrator for an action label. The Active Sampling (AS)

algorithm proposed by Lopes et al. (2009) can only work with action queries. AS is not

as computationally efficient as activeVaR, but is much more computationally efficient than

methods that require sampling hypothesis probability distributions (Cui and Niekum, 2018;

Cohn et al., 2011). We conducted experiments in simulated gridworlds of size 8x8 with 48

random continuous features. The ground-truth feature weights are generated randomly and

normalized such that the L1 norm of the weight vector is 1. The expected losses in return

comparing to the optimal policy are measured and plotted in Figure 8.2, where Random is

a baseline that selects a random state as an active query per iteration. ActiveVaR is able to

rapidly reduce the policy loss over iterations since it directly optimizes for performance.

140

8.2.2 Gridworld Active Critique Queries

The previous section demonstrated that action queries using a risk-aware active learning

approach based on expected performance loss, or risk, outperforms standard entropy-based

queries. We now demonstrate that our risk-aware active learning framework also allows

active critique queries. Cui and Niekum (2018) proposed a novel active learning algorithm,

ARC, where the robot actively chooses sample trajectories to show the human and the

human critiques the trajectories by segmenting them into good and bad segments. This

type of active query can be more natural for a human than giving an out of context action

for a state and only requires the human to be able to recognize, not demonstrate, desirable

and undesirable behavior. However, synthesizing trajectories for critique requires costly

Bayesian inference over possible segmentations. Additionally, it is purely exploratory since

it reasons only about information gain in the reward belief space without reasoning about

the performance of current learned policy.

To generate risk-aware performance-based trajectories we examine the robot’s pol-

icy and evaluate per-state policy loss 0.95-VaR. Because the VaR is calculated based on the

value of executing the robot’s current policy from that state, we sample a trajectory from the

robot’s policy starting at that state and ask the demonstrator to critique it. We conducted ex-

periments in 8x8 gridworlds with 48 different continuous features and allow each algorithm

to generate a trajectory query of length 8 per critiquing iteration. As baselines, Random se-

lects an active query by rolling out the current MAP policy from a randomly selected state.

As shown in Figure 8.3, while ActiveVaR’s performance is not as good as that of ARC per

number of trajectory queries, the time required to run ActiveVaR is much less than that

of ARC. Because ARC’s inference algorithm is sequential, not parallelizable, ActiveVaR

is more practical for real-time active learning scenarios, while also outperforming random

queries. Additional experiments were performed to highlight cases when ActiveVaR out-

performs Random by a much larger margin (see Appendix G.1).

141

5 10
0

2

4

Number of Trajectory Queries

Po
lic

y
L

os
s

ActiveVaR ARC
Random

(a) Averaged policy losses

Algorithm Avg. Time (s)
Random 0.0015

ActiveVaR 0.0101
ARC 865.6993

(b) Timing for one iteration of each algorithm

Figure 8.3: Active critique queries in 8×8 gridworlds with 48 features.

8.2.3 Active Imitation Learning for a 2D Highway Driving Task

We also evaluated ActiveVaR for learning from demonstration in a 2D driving simulator,

in which the transition dynamics are not deterministic and no ground truth reward function

is specified. Human demonstrations are provided by controlling the agent (ourselves) via

keyboard. In the 3-lane driving simulator, the controlled agent moves forward two times

faster than the two other agents on the road and has three available actions at any given

time: moving left, move right, or stay. The states are approximated using discrete features

including lane positions and distances to other agents. Figure 8.4 shows the generated ac-

tive action queries (high-0.95-VaR states) after varying amounts of initial demonstrations

are provided. The provided human trajectories demonstrate a safe driving style by avoiding

collisions and staying on the road (black lanes). As increasing amounts of initial demonstra-

tions are provided, the active queries start to explore less-frequent states and corner cases

that were not addressed in the initial training data.

8.2.4 Robot Table Setting Task

Finally, we consider a robot learning to set a table based on a demonstrator’s preferences

(see Figure 8.5). We model the reward function as a linear combination of Gaussian radial

142

(a) 5 Steps of Demos (b) 10 Steps of Demos (c) 20 Steps of Demos

Figure 8.4: Active action queries in a 2D highway driving task after different numbers of initial hu-
man demonstrations. Initial states are randomly sampled and evaluated; high risk states are selected
as active action queries.

basis functions. Given k items on the table, we assume the reward for placement location x

is given by

R(x) =
k∑
i=1

wi · rbf(x, ci, σ2
i) (8.3)

where rbf(x, c, σ2) = exp(−‖x− c‖2/σ2).

The demonstrator first gives a demonstration from an initial configuration C0. The

robot then needs to infer the correct reward function that matches the demonstrator’s inten-

tion. We consider an active approach where the robot can generate a novel configuration

Ci and ask the demonstrator where it should place the item. The robot hypothesizes multi-

ple configurations Ci and picks the configuration C∗ that has maximum 0.95-VaR over its

current best guess of the demonstrator’s policy.

Given an RBF reward function, the robot needs to estimate an optimal placement

position. To calculate the optimal position we use gradient ascent with random restarts and

pick the best position. The gradient of the reward with respect to the position x is given by:

∇xR(x) =

k∑
i=1

wi · rbf(x, ci, σ2
i)

(−2x+ 2ci
σ2
i

)
. (8.4)

MCMC is used to estimate the posterior P (R|D) and determine the MAP reward

143

(a) Place Spoon (b) Place Vase

Figure 8.5: Setting the table task. (a) Robot actively requests demonstration learning pref-
erences for (a) placing a spoon in the bowl and (b) placing the flower vase in the center of
the table.

RMAP, which is used as the best guess of the demonstrator’s intent. Given the MCMC es-

timate of the reward posterior, the robot samples random table configurations Cj . For each

random configuration, the robot computes the α-VaR by first finding the best placement po-

sition x∗MAP given by the MAP reward function, and then evaluating this placement position

over the estimated posterior found using MCMC. This is done by calculating the placement

loss, Lossi = ‖xiRi−x∗MAP‖2, ∀ Ri ∈ P (R|D), and then sorting to estimate the α-VaR of

that configuration. The robot then picks as the query configuration, Cquery = arg maxj α-

VaR(Cj), and actively asks for a demonstration in this configuration. Note that in this task

the epsilon stopping condition can be defined in terms of placement error (distance between

where demonstrator would place object and where robot would place object).

Figure 8.6 shows the results of two table arrangement experiments. In the first ex-

periment the demonstrator teaches the robot to place a vase of flowers on a table with 4

existing objects. The preference is to place the vase in the center of the table, while avoid-

ing placing it on top of other objects. In the second experiment, the demonstrator teaches

the robot to place a spoon in a bowl on a table with 6 distractor objects. To allow for expres-

sive reward function hypotheses, we model the reward using RBFs centered on all objects

144

on the table along with 9 fixed RBFs evenly spaced on the table to allow for the possibility

of an absolute placement preference. Possible query configurations are randomly gener-

ated by changing the position of one of the objects on the table. We generated synthetic

ground truth rewards that corresponded to each placement preference and generated syn-

thetic demonstrations using these ground truth rewards. This allows us to rigorously test

the active learning process without needing to physically move the objects for each query

configuration. We then validated the learned reward function weights on the real robot in a

variety of test configurations.

Figures 8.6(a) and (c) show a comparison of random queries with actively querying

the configuration with maximum 0.95-VaR out of 50 randomly generated configurations.

Choosing risk-aware queries over random queries results in smaller generalization error. To

test whether 0.95-VaR provides a meaningful and accurate upper bound on the true perfor-

mance of a policy we compared the actual worst-case placement loss under for the robot’s

current policy after each demonstration with the 0.95-VaR upper bound. Figures 8.6(b) and

(d) demonstrate that the 0.95-VaR upper bound accurately upper bounds the actual worst-

case performance and that this bound becomes tighter as more demonstrations are received.

8.3 Choosing an Intuitive Stopping Condition

The ε stopping criterion in our work is based on an upper bound on performance loss.

We know of no other work that has proposed or used such a stopping condition. Without

context, an ε stopping condition based on raw policy loss may not be easy to select; however,

policy loss can be normalized to obtain a percentage that is more semantically meaningful.

The normalization can be computed as

normalized EVD(s,R | πMAP) =
V π∗
R (s)− V πMAP

R (s)

V π∗
R (s)

. (8.5)

145

0 2 4 6 8 10
0

0.05

0.1

0.15

Number of Demonstrations

M
ea

n
Pl

ac
em

en
tE

rr
or ActiveVaR Random

(a) Place Vase

0 2 4 6 8 10
0

0.2

0.4

0.6

Number of Demonstrations

M
ax

Pl
ac

em
en

tE
rr

or Actual Upper bound

(b) Place Vase

0 2 4 6 8 10
0

0.1

0.2

0.3

Number of Demonstrations

M
ea

n
Pl

ac
em

en
tE

rr
or ActiveVaR Random

(c) Place Spoon

0 2 4 6 8 10
0

0.5

1

Number of Demonstrations

M
ax

Pl
ac

em
en

tE
rr

or Actual Upper bound

(d) Place Spoon

Figure 8.6: Results for learning to place a flower vase and learning to place a spoon on
a cluttered table. Active queries in (a) and (c) result in lower error than random queries.
The 0.95-VaR placement error bound shown in (b) and (d) provides an upper bound on the
actual maximum placement error. All results are averaged from 100 trials with 0.5 standard
deviation error bars. Placement error is calculated using 200 random test configurations.

Using the normalized EVD in place of EVD in the above algorithms allows us to calculate

an upper bound on the normalized Value-at-Risk.

For example, if the normalized α-VaR is 5% then we can say with high-confidence

that the expected return of the learned policy is within 5% of the expected return of the

optimal policy under the demonstrators reward. This allows epsilon to be set as a fixed

percentage such as 5% of 1% depending on risk aversion.

146

8.4 Summary

In this chapter we proposed the first active IRL technique that is based on the risk-aware

queries with respect to the performance of the policy learned from demonstrations. In par-

ticular, we used the high-confidence bounds policy loss proposed in Chapter 4 to allow an

imitation learning agent to synthesize queries that target areas of the state space where the

agent has highest policy loss value at risk. We compared our approach against existing

active IRL algorithms and found that our risk-aware approach outperforms entropy based

queries in terms of sample complexity and is comparable to active queries based on infor-

mation gain while requiring three orders of magnitude less computation on the domains we

tested. Experiments in simulated 2-d navigation and highway driving domains, as well as

robot table placement tasks, demonstrate that risk-aware active queries allow robots to ask

for help in areas of the state-space where the robot has the potential for high generalization

error. Our approach allows the robot to upper bound its own policy loss and can be used to

let a robot to know when it has received enough demonstrations to safely perform a task.

147

Chapter 9

Future Work

In this chapter we discuss open questions and areas of future work related to the individual

research chapters in this dissertation.

9.1 High-Confidence Policy Evaluation for Imitation Learning

In Chapter 4 we formulated high-confidence bounds on the policy loss value at risk as our

risk metric; however, this is not the only measure of performance that can be used in our

approach. Because our method estimates the posterior distribution over reward functions,

any risk measure or loss that is a function of a reward function and a policy can be inserted

into our framework in place of EVD. We used value at risk (VaR) because it is and widely

used, easy to implement using Monte-Carlo samples, and is a probabilistic analogue to

the worst-case feature count baseline described in Section 4.3. However, our proposed

methodology can be extended to use other risk measure that can be computed from samples

of a distribution. Alternative risk measures such as conditional value at risk (Rockafellar

and Uryasev, 2000), entropic risk measure (Föllmer and Knispel, 2011), or semideviations

(Ogryczak and Ruszczyński, 1999) could replace VaR in our framework.

Because our high-confidence bounds are based on Bayesian IRL, our method is de-

148

signed to work with partial demonstrations and allows insertion of domain knowledge as

a prior over reward functions. Choi and Kim (2011) showed that many standard IRL al-

gorithms can be transformed into an equivalent Bayesian IRL algorithm by selecting the

appropriate likelihood and prior. Thus, our proposed performance bound can be easily ex-

tended to use alternative likelihoods and priors that match different assumptions and pref-

erences found in the IRL literature. One interesting avenue of future work is to leverage

the work by Zheng et al. (2014) who formulate a Bayesian IRL algorithm that is robust to

sparse demonstration noise. This method could be used to obtain the posterior distributions

we use for high-confidence bounds, enabling us to formulate more accurate bounds when

some of the demonstrations are extremeley noisy or non-sensical. Another interesting area

of future work is to better explore the impact of having a prior distribution over reward

functions. We assumed flat priors in all of our experiments. Future work should investigate

how strong priors affect our bounds. Our results in Hadfield-Menell et al. (2017) propose a

Bayesian IRL method based on maximum entropy IRL (Ziebart et al., 2008) that can learn

a distribution over rewards without access to demonstrator actions, but cannot learn from

partial trajectories. Chapter 4 assumed access to the demonstrator’s actions, future work

should investigate whether similar results can be obtained when learning only from state

observations by formulating a version of Bayesian IRL that can learn from partial state se-

quences or by learning an inverse dynamics model to recover likely demonstrator actions

given state transitions (Torabi et al., 2018a).

Our results in Chapter 4 demonstrated that our high-confidence bounds rely on an

appropriate range for the Boltzman rationality parameter β when running Bayesian IRL.

This parameter represents the confidence that the learning agent has in the demonstrations

being optimal and can have a significant impact on the resulting posterior distribution over

reward functions. Zheng et al. (2014) use an Expectation Maximization approach to learn

this parameter. Bobu et al. (2018) propose to perform Bayesian inference over the Boltz-

man parameter β as well as the reward function parameters. Future work should investigate

149

whether similar approaches can be applied to the setting of high-confidence policy evalua-

tion for imitation learning to learn an appropriate value for β.

9.2 Computationally Efficient Reward Learning from Subopti-

mal Demonstrations

In Chapter 5 we introduced the T-REX and D-REX algorithms for efficient reward inference

from ranked, suboptimal demonstrations. We used undiscounted returns when computing

the loss for training T-REX/D-REX. Future work should examine whether adding a discount

factor helps to stabilize or improve reward training and/or reinforcement learning. While

the pairwise ranking loss that we use is common, it would also be interesting to consider

the impact of different losses such as a hinge loss that would enforce a minimum gap in

predicted return between ranked trajectories, but not push this gap to be as large as possible.

Other areas of future work include examining the effects of different data augmen-

tation methods such as subsampling or supersampling ranked trajectories, examining the

effects of different network architectures, and trying experiments across a wider range of

tasks. We used the default OpenAI Baselines (Dhariwal et al., 2017) implementation of

PPO along with the default settings for Atari and MuJoCo. Better tuning of these parame-

ters as well as a more in-depth study of the effects of different environmental settings and

different policy optimization algorithms would also be interesting.

While we provided separate results for T-REX when using human demonstrations

and when using human rankings, we never fully explored the human-factors of having

demonstrators provide ranked demonstrations. Studying how to make ranking demonstra-

tions easy for human demonstrators is an open area of research. Additionally, studying

whether watching a human demonstrator learn how to perform a task over time provides

sufficient preference information to run the time-ordered version of T-REX would also be

interesting.

150

We focused on the setting of pre-ranked demonstrations, but much research focuses

on active preference learning during policy optimization (Christiano et al., 2017; Ibarz et al.,

2018; Bıyık et al., 2019). Future work should investigate combining pre-ranked demonstra-

tions with active queries during policy optimization. Extending and incorporating ideas

from Chapter 8 to enable risk-aware active queries during policy optimization is also an

open area of research. Combining T-REX and D-REX with other forms of human interac-

tion such as critiques (Knox and Stone, 2009; Cui and Niekum, 2018) would likely lead to

better reward function inference and faster policy optimization.

Because T-REX is a learning from observation method, it can potentially be applied

to settings where the action space of the learner and demonstrator are different. Future

work should investigate how robust T-REX is to changes in actions and transition dynamics

between the demonstrator and imitator. While our D-REX experiments (Section 5.3) use

demonstrator actions to perform behavioral cloning, it is also possible that an imitation

learning from observation method (Torabi et al., 2018a) could be used to learn an initial

cloned policy without requiring demonstrator actions. This would make D-REX robust to

action differences between the demonstrator and learner and allow the learner to potentially

learn a more efficient policy if its action space and transition dynamics are better suited to

the task.

Currently, the main bottleneck in T-REX and D-REX is policy optimization. One

potential way to speed up policy optimization is via model-based reinforcement learning.

This would allow fast reward inference (via T-REX) and fast trajectory optimization via a

high-fidelity model. It would also be interesting to see if T-REX could be combined with

standard reinforcement learning for sparse reward tasks in order to automatically shape

and densify rewards to speed up learning even when an agent has access to a ground-truth

reward function.

151

9.3 Safe Imitation Learning via Fast Bayesian Reward Infer-

ence from Preferences

The high-confidence safety bounds that we propose in Chapter 6 are only safe with respect

to the assumptions that we make: good feature pre-training, rapid MCMC mixing, and ac-

curate preferences over demonstrations. Future work includes using exploratory trajectories

for better pre-training of the latent feature embeddings, using recent advances in contrastive

unsupervised learning (Chen et al., 2020; Srinivas et al., 2020) for feature pre-training, de-

veloping methods to determine when a relevant feature is missing from the learned latent

space, and using high-confidence performance bounds to perform safe policy optimization

in the imitation learning setting.

9.4 Bayesian Robust Optimization for Imitation Learning

Future work includes taking advantage of recent research on efficient non-linear Bayesian

reward learning via Gaussian processes (Biyik et al., 2020) and deep neural networks

(Chapter 6). Future work also includes investigating natural extensions of our work to

continuous state-spaces via approximate linear programming (Petrik, 2010; Pazis and Parr,

2011; Desai et al., 2012). In Chapter 8 we propose an active learning approach that uses VaR

bounds to determine risk-aware queries. Future work also includes investigating whether

similar queries can be generated using our CVaR optimization method.

In Chapter 7 we propose two variants of BROIL: a robust and a baseline regret.

However, there is another possibility. The high-confidence bounds used in chapters 4 and 8

compute policy loss using the expected value difference:

EVD(πeval, R
∗) = V ∗R∗ − V πeval

R∗ . (9.1)

Future work should examine whether robust policy optimization with respect to EVD pro-

152

vides different results when compared to the robust and baseline regret versions of BROIL.

It would also be interesting to combine BROIL with the inverse reward design method pro-

posed by Hadfield-Menell et al. (2017) in order to learn robust policies that balance return

and risk with respect to a distribution over reward functions induced by a hand-designed

proxy reward function.

9.5 Risk-Aware Active Inverse Reinforcement Learning

Our results in Chapter 8 use classical Bayesian IRL to provide a reward posterior. Future

work includes combining the methods from Chapter 6 with risk-aware active queries to

enable robust active IRL that scales to more complex imitation learning domains. Our

results in Chapter 8 show that high-confidence bounds on VaR provide tight and accurate

bounds on the generalization error of an agents policy at test time. In the future, this could

be extended to allow an agent to know when it can tell a human demonstrator that it has

received enough demonstrations. Performing human factors studies to test this hypothesis

is an interesting area of research.

9.6 Additional Frontiers

Throughout this dissertation we have proposed algorithms that provide high-confidence

performance bounds based on a reward function posterior or optimize a robust policy with

respect to the agent’s uncertainty over reward functions. However, this uncertainty is with

respect to the agent’s internal beliefs and possibly over its own learned representation of the

demonstrator’s reward function. Thus, the resulting high-confidence bounds and optimized

policies may not always conform to a human’s intuition about what safe or robust behavior

should look like. Advances in explainable AI systems have the potential to mitigate these

issues, but explainable AI remains an open area of research and effectively conveying the

rationality behind complex risk-return trade-offs is a non-trivial, but important area for

153

future work.

Much of this thesis has either assumed access to the correct reward function features

or assumed that these features can be learned. However, knowing when the agent’s reward

function features are inadequate is a challenging problem with very few proposed solutions

(Bobu et al., 2018). Furthermore, the question of what an agent should do to remedy its

reward function feature representation remains an important but open question.

154

Chapter 10

Conclusion

Recovering the intent of a demonstrator by learning a reward function allows an imitation

learning agent to explain the behavior of the demonstrator and also to optimize its own

behavior using reinforcement learning, in order to successfully imitate the demonstrator.

Recovering a reward function also provides a way to potentially generalize to novel tasks or

embodiments, allows a learner to potentially improve upon the performance of the demon-

strator, and provides a way to explicity measure costs and reason about safety. However,

despite the advantages of imitation learning via inverse reinforcement learning, current in-

verse reinforcement learning algorithms often have limited real-world applicability because

they (1) do not provide practical assessments of safety, (2) often require large numbers of

demonstrations, and (3) have high computational costs. This dissertation made several con-

tributions towards addressing these shortcomings. In particular, this dissertation advanced

both the theory and applicability of safe imitation learning by focusing on the following

question:

How can an autonomous agent efficiently infer the intent of a demonstrator and

provide safety guarantees in the form of high-confidence performance bounds

with respect to the demonstrator’s intent?

In Chapter 4 we presented a theoretical framework and sample efficient algorithm

155

for safe imitation learning via high-confidence performance bounds. These bounds are

orders of magnitude more accurate and sample efficient than the previous state-of-the-art

(Syed and Schapire, 2007). However, despite efficiency in terms of demonstrations, these

bounds required repeatedly solving a potentially complex reinforcement learning problem

in order to obtain a posterior distribution over reward functions.

In Chapter 5 we addressed this inefficiency by proposing reward inference algo-

rithms that do not require an MDP solver or any reward inference time data collection.

Furthermore we provided theory on when better-than-demonstrator performance is possi-

ble and provided reward learning methods that are computationally efficient, scale to high-

dimensional control tasks, and can learn policies that perform significantly better than a

suboptimal demonstrator.

Next, in Chapter 6 we addressed the problem of safe and efficient imitation learning

by extending and combining our results from chapters 4 and 5 to provide the first Bayesian

reward inference algorithm that scales to high-dimensional visual imitation learning tasks

and can provide high-confidence policy evaluation.

Finally, we considered the problem of robust policy optimization. In Chapter 7 we

proposed an algorithm that directly optimizes a policy so that it balances expected return

and conditional value at risk over a reward function posterior distribution. Our resulting

algorithm outperforms state-of-the-art risk-neutral and risk-sensitive imitation learning ap-

proaches. Next, we considered the problem of robust policy improvement in an interactive

setting where an agent can actively query for help in states that have high policy loss risk.

We demonstrated that risk-aware queries outperform existing active IRL approaches and

allow an agent to upper bound its generalization error at test time.

Algorithms that balance risk and return are have been common in financial applica-

tions for a long time, but are just starting to be applied to AI/ML systems. We believe this

is a positive trend as many AI/ML applications have risk and return trade-offs that are not

always adequately addressed. The work presented in this dissertation allows autonomous

156

agents to efficiently learn from demonstrations and to express confidence in the perfor-

mance of their learned policy, based on limited demonstration data. We also demonstrate

that imitation learning agents can optimize their policies to reduce risk while maintaining

good performance. We believe that this dissertation provides important foundational results

towards the development of autonomous agents that can safely and efficiently learn from

human demonstrations in risk-sensitive, real-world environments.

10.1 Contributions

In summary, this dissertation made the following contributions to the imitation learning and

inverse reinforcement learning literature:

1. Formalization of safe imitation learning via high-confidence policy evaluation (Chap-

ter 4).

2. A sample efficient algorithm for obtaining high-confidence performance bounds for

imitation learning (Chapter 4).

3. Theoretical results for better-than-demonstrator imitation learning and preference-

based inverse reinforcement learning (Chapter 5).

4. A computationally efficient algorithm for reward learning from suboptimal, ranked

observations that scales to high-dimensional tasks and can outperform the demon-

strator (Chapter 5).

5. Computationally efficient algorithms for learning to extrapolate intention from unla-

beled suboptimal demonstrations (Chapter 5).

6. A deep Bayesian inverse reinforcement learning algorithm that scales to complex,

high-dimensional tasks (Chapter 6).

157

7. An algorithm for Bayesian robust imitation learning that optimizes a policy to bal-

ance risk and expected return given a posterior distribution over reward functions.

(Chapter 7).

8. An algorithm for risk-aware policy improvement via active inverse reinforcement

learning (Chapter 8).

158

Appendix A

Supplementary Materials for

High-Confidence Performance

Bounds for Imitation Learning

A.1 Code

Code to reproduce the experiments in Chapter 4 can be found at https://github.

com/dsbrown1331/aaai-2018-code.

A.2 L1-norm MCMC Walk

A.2.1 Uniform sampling from L1-unit ball

We derive an algorithm that correctly samples uniformly form the L1-norm unit ball. Our

method is a special case of the result by Barthe et al. (Barthe et al., 2005) as detailed in

Weisstein (Weisstein, 2017). The general result states that if we wish to sample an element

from the L-p ball in d-dimensional space, then we should pick X1, . . . , Xd independently

159

https://github.com/dsbrown1331/aaai-2018-code
https://github.com/dsbrown1331/aaai-2018-code

from the pdf

Pp(x) =
exp(−|x|p)
2Γ(1 + p−1)

(A.1)

where p is the desired p-norm and Γ is the gamma function. Then we draw Y from an

exponential distribution with mean 1 and our resulting sample from the Lp norm ball is

(X1, . . . , Xn)

(Y +
∑n

i=1 |Xi|p)1/p
(A.2)

We wish to sample from the L1-norm boundary, i.e. where the L1-norm is equal to

1. Thus we have p = 1 and Y = 0 above. This means that we need to sample d numbers

independently from the following pdf

P1(x) =
exp(−|x|)

2Γ(2)
=

exp(−|x|)
2

. (A.3)

We can sample from this distribution using the inverse CDF sampling method (c.f.

Bishop (Bishop, 2006)). To draw samples from this distribution we must compute the

inverse of the indefinite integral

z = h(x) =

∫ x

−∞

exp(−|x̂|)
2

dx̂ (A.4)

Note that the desired distribution, P1(x), is a peaked distribution centered at zero,

so half of the probability mass will be less than zero and half will be greater than zero. We

can thus break-up our inverse of the CDF into two cases.

Case 1: If our random uniform sample z ∈ [0, 1/2], then our resulting x should be

non-positive. In this case we can write P1(x) as

P−1 (x) =
exp(x)

2
(A.5)

160

We can now easily solve for f(z) = h−1(z) where

z = h(x) =
1

2

∫ x

−∞
exp(x̂)dx̂. (A.6)

Solving the integral and inverting gives

x = ln(2z). (A.7)

Case 2: z ∈ [1/2, 1]. In this case, x, our resulting sample from P1(x) should be

non-negative. Thus, we can write P1(x) as

P+
1 (x) =

exp(−x)

2
(A.8)

We can now solve for f(z) = h−1(z) where this time

z = h(x) =
1

2

∫ x

−∞
exp(−x̂) (A.9)

=
1

2
+

1

2

∫ x

0
exp(−x̂)dx̂. (A.10)

Solving the and inverting gives

x = − ln(2− 2z). (A.11)

In summary, to sample from P1(x) = exp(−|x|)
2 we first draw z ∼ [0, 1]. Then we

return

x =

ln(2z), for z < 1/2

− ln(2− 2z), otherwise
(A.12)

Using d samples from P1(x) and then normalize the resulting sample gives us a way

to uniformly sample the L1-norm unit sphere. This method summarized in Algorithm 7 for

uniformly sampling from the L1 unit sphere.

161

Algorithm 7 L1-Norm Unit Ball Sampling in Rd

1: input: d . number of dimensions
2: for i = 1 : d do
3: z ∼ U(0, 1)
4: if z ≤ 0.5 then
5: Xi = ln(2z)
6: else
7: Xi = − ln(2− 2z)

8: X← (X1, . . . , Xd)/
∑d

i=1 |Xi|
9: return X

Algorithm 8 L1-Norm Unit Ball Walk

1: input: w ∈ Rd, stepSize . initial weight vector
2: for each pair of dimensions (i, j) : i, j = 1, . . . , d do
3: direction← random(’clockwise’, ’counterclockwise’)
4: if w[i] is not 0 or w[j] is not 0 then
5: w[i], w[j]← L1ManifoldStep(w[i], w[j], direction, η)
6: return w

A.2.2 MCMC implementation details

Our MCMC implementation of BIRL ensures that each proposal step remains on the L1-

norm unit ball. We use Algorithm 8 to generate a proposal by taking a small step along

each pair of axis while staying on the L1-norm unit ball. For each pair of axis we use

Algorithm 9 to step along the manifold defined by the two axis.

In all of our grid world experiments we use stepSize = 0.01 for the L1-Norm Unit

Ball Walk described in Algorithm 8. We run MCMC for 10000 steps using a burn-in of 100

samples and only using every 20th sample to avoid autocorrelation effects.

We found that the BIRL likelihood can be sensitive to data imbalance if the demon-

strations contain some state-action pairs much more frequently than others. To ameliorate

this problem, we remove duplicate state-action pairs from the demonstrations.

162

Algorithm 9 L1ManifoldStep
1: input: w1, w2 ∈ R, direction∈ {clockwise, counterclockwise}, stepSize ∈ R
2: slack = w1 + w2
3: clockwisePos = [“+ +”,“+ -”,“- -”,“- +”], counterclockwisePos = [“+ +”,“- +”,“- -”,“+ -”]
4: clockwiseDir = [+1,-1,+1,-1], counterclockwiseDir = [-1,+1,-1,+1]
5: sign1 = (w1 ≥ 0), sign2 = (w2 ≥ 0) . find starting quadrant
6: if sign1 and sign2 then
7: cyclePos = ”+ +”
8: else if sign1 and not sign2 then
9: cyclePos = ”+ -”;

10: else if not sign1 and sign2 then
11: cyclePos = ”- +”
12: else
13: cyclePos = ”- -”
14: if direction is ”clockwise” then . find direction to change magnitude of w1
15: cycleIndx = clockwisePos.indexOf(cyclePos)
16: else
17: cycleIndx = counterclockwisePos.indexOf(cyclePos)
18: stepRemaining = stepSize
19: while stepRemaining > 0 do . step along 1-D manifold of L1-unit ball in 2-D
20: if direction is ”clockwise” then
21: cycleDir = clockwiseDir[cycleIndx]
22: else
23: cycleDir = counterclockwiseDir[cycleIndx]
24: maxStep = stepRemaining
25: if cycleDir is 1 and (|w1| + cycleDir * stepRemaining) > slack then
26: maxStep = slack - |w1|
27: cycleIndx = mod(cycleIndx + 1, 4)
28: else if cycleDir is -1 and (|w1| + cycleDir * stepRemaining) < 0 then
29: maxStep = |w1|
30: cycleIndx = mod(cycleIndx + 1, 4)
31: w1 = |w1| + cycleDir * maxStep
32: w2 = |w2| - cycleDir * maxStep
33: stepRemaining = stepRemaining - maxStep
34: if randDir is ”clockwise” then . determine correct signs based on final quadrant
35: cyclePos = clockwisePos[cycleIndx]
36: else
37: cyclePos = counterclockwisePos[cycleIndx]
38: if cyclePos is ”- +” then
39: w1 = -w1
40: else if cyclePos is ”+ -” then
41: w2 = -w2
42: else if cyclePos is ”- -” then
43: w1 = -w1
44: w2 = -w2
45: return w1, w2

163

Appendix B

Theory and Proofs for

Computational Efficient Inverse

Reinforcement Learning from

Suboptimal Demonstrations

B.1 Extrapolating Beyond a Demonstrator

We consider the case where the reward function of the demonstrator is approximated by a

linear combination of features R(s) = wTφ(s). Note that these can be arbitrarily complex

features, such as the activations of the penultimate layer of a deep neural network. The

expected return of a policy when evaluated on R(s) is given by

J(π|R) = Eπ
[∞∑
t=0

γtR(st)

]
= wTEπ

[∞∑
t=0

γtφ(st)

]
= wTΦπ, (B.1)

where Φπ are the expected discounted feature counts that result from following the policy

π.

164

Theorem 2. If the estimated reward function is R̂(s) = wTφ(s) and the true reward func-

tion is R∗(s) = R̂(s) + ε(s) for some error function ε : S → R and ‖w‖1 ≤ 1, then

extrapolation beyond the demonstrator, i.e., J(π̂|R∗) > J(D|R∗), is guaranteed if:

J(π∗R∗ |R∗)− J(D|R∗) > εΦ +
2‖ε‖∞
1− γ (B.2)

where π∗R∗ is the optimal policy underR∗, εΦ = ‖Φπ∗−Φπ̂‖∞ and ‖ε‖∞ = sup { |ε(s)| : s ∈ S }.

Proof. In order for extrapolation to be possible, the demonstrator must perform worse than

π̂, the policy learned via IRL, when evaluated under the true reward function. We define

δ = J(π∗R∗ |R∗)−J(D|R∗) as the optimality gap between the demonstrator and the optimal

policy under the true reward function. We want to ensure that J(π∗|R∗) − J(π̂|R∗) < δ.

165

We have

J(π∗R∗ |R∗)− J(π̂|R∗) =

∣∣∣∣Eπ∗[∞∑
t=0

γtR∗(st)
]
− Eπ̂

[∞∑
t=0

γtR∗(st)
]∣∣∣∣ (B.3)

=

∣∣∣∣Eπ∗[∞∑
t=0

γt(wTφ(st) + ε(st))
]
− Eπ̂

[∞∑
t=0

γt(wTφ(st) + ε(st))
]∣∣∣∣

(B.4)

=

∣∣∣∣wTEπ∗[∞∑
t=0

γtφ(st)
]

+ Eπ∗
[∞∑
t=0

γtε(st)
]

− wTEπ̂
[∞∑
t=0

γtφ(st)
]
− Eπ̂

[∞∑
t=0

γtε(st)
]∣∣∣∣ (B.5)

=

∣∣∣∣wTΦπ∗ + Eπ∗
[∞∑
t=0

γtε(st)
]
− wTΦπ̂ − Eπ̂

[∞∑
t=0

γtε(st)
]∣∣∣∣

(B.6)

=

∣∣∣∣wT (Φπ∗ − Φπ̂) + Eπ∗
[∞∑
t=0

γtε(st)
]
− Eπ̂

[∞∑
t=0

γtε(st)
]∣∣∣∣

(B.7)

≤
∣∣∣∣wT (Φπ∗ − Φπ̂) +

[∞∑
t=0

γt sup
s∈S

ε(s)
]
−
[∞∑
t=0

γt inf
s∈S

ε(s)
]∣∣∣∣

(B.8)

=

∣∣∣∣wT (Φπ∗ − Φπ̂) +
(

sup
s∈S

ε(s)− inf
s∈S

ε(s)
) ∞∑
t=0

γt
∣∣∣∣ (B.9)

≤
∣∣∣∣wT (Φπ∗ − Φπ̂) +

2‖ε‖∞
1− γ

∣∣∣∣ (B.10)

≤ |wT (Φπ∗ − Φπ̂)|+
∣∣∣∣2‖ε‖∞1− γ

∣∣∣∣ (B.11)

≤ ‖w‖1‖Φπ∗ − Φπ̂‖∞ +
2‖ε‖∞
1− γ (B.12)

≤ εΦ +
2‖ε‖∞
1− γ (B.13)

where Φπ = Eπ[
∑∞

t=0 γ
tφ(st)] and line (B.12) results from Hölder’s inequality. Thus, as

166

long as δ > εΦ − 2‖ε‖∞
1−γ , then J(π∗|R∗) − J(π̂|R∗) < J(π∗|R∗) − J(D|R∗) and thus,

J(π̂|R∗) > J(D|R∗).

Theorem 1 makes the assumption that the learner and demonstrator operate in the

same state-space. However, because Theorem 1 only involve differences in expected fea-

tures and reward errors over state visitations, the transition dynamics or action spaces are

not required to be the same between the demonstrator and the learner. While T-REX (Sec-

tion 5.2) does not require demonstrator actions, our D-REX experiments (Section 5.3) use

demonstrator actions to perform behavioral cloning. Future work includes use an imitation

learning from observation method (Torabi et al., 2018a) to learn an initial cloned policy

without requiring demonstrator actions. This would make D-REX robust to action differ-

ences between the demonstrator and learner and allow the learner to potentially learn a more

efficient policy if its action space and transition dynamics are better suited to the task.

B.2 Extrapolation via ranked demonstrations

The previous results demonstrate that in order to extrapolate beyond a demonstrator, it is

sufficient to have small reward approximation error. However, the following proposition,

adapted with permission from (Castro et al., 2019), demonstrates that the reward functions

inferred by an IRL or apprenticeship learning algorithm may be quite superficial and may

not accurately represent some dimensions of the true reward function.

Proposition 1. There exist MDPs with true reward function R∗, expert policy πE , approx-

imate reward function R̂, and non-expert policies π1 and π2, such that

πE = arg max
π∈Π

J(π|R∗) and J(π1|R∗)� J(π2|R∗) (B.14)

πE = arg max
π∈Π

J(π|R̂) and J(π1|R̂) = J(π2|R̂). (B.15)

However, enforcing a preference ranking over trajectories, τ∗ � τ2 � τ1, where τ∗ ∼ π∗,

167

τ2 ∼ π2, and τ1 ∼ π1, results in a learned reward function R̂, such that

πE = arg max
π∈Π

J(π|R̂) and J(π1|R̂) < J(π2|R̂). (B.16)

Proof. Consider the MDP shown below. There are three actions a, b, c, with deterministic

transitions. Each transition is labeled by the action name. The true reward received upon

entering a state is indicated in parenthesis, and δ � 0 is some arbitrary constant. Clearly,

πE(s0) = a. Setting R̂(s1) = 1, R̂(s2) = R̂(s3) = 0, π1(s0) = b, and π2(s0) = c provides

the existence proof for Equations (B.14) and (B.15).

Enforcing the preference constraints τ∗ � τ1 � τ2 for τ∗ = (s0, a, s1), τ2 =

(s0, b, s2), τ1 = (s0, c, s3), results in a learned reward function R̂ such that J(τ∗|R̂) >

J(π2|R̂) � J(π1|R̂) which finishes the proof.

Proposition 1 gives a simple example of when learning from an expert demonstra-

tion reveals little about the underlying reward structure of the MDP. While it is true that

solving the MDP in the above example only requires knowing that state s1 is preferable to

all other states, this will likely lead to an agent assuming that both s2 and s3 are equally

undesirable.

This may be problematic for several reasons. The first problem is that learning

a reward function from demonstrations is typically used as a way to generalize to new

situations—if there is a change in the initial state or transition dynamics, an agent can still

168

determine what actions it should take by transferring the learned reward function. However,

if the learned reward function is drastically different than the true reward, this can lead to

poor generalization, as would be the case if the dynamics in the above problem change

and action a now causes a transition to state s2. Another problem is that most learning

from demonstration applications focus on providing non-experts the ability to program by

example. Thus, the standard IRL approach of finding a reward function that maximizes the

likelihood of the demonstrations may lead to reward functions that overfit to demonstrations

and may be oblivious to important differences in rewards.

A natural way to alleviate these problems is via ranked demonstrations. Consider

the problem of learning from a sequence of m demonstrated trajectories τ1, . . . , τm, ranked

according to preference such that τ1 ≺ τ2, . . . ≺ τm. Using a set of strictly ranked demon-

strations avoids the degenerate all-zero reward. Furthermore, ranked demonstrations pro-

vide explicit information about both what to do as well as what not to do in an environment.

B.3 Ranking Theory

IRL is an ill-posed problem due to reward ambiguity—given any policy, there are an infinite

number of reward functions that make this policy optimal (Ng et al., 1999). However, it is

possible to analyze the amount of reward ambiguity. In particular, if the reward is repre-

sented by a linear combination of weights, then the feasible region of all reward functions

that make a policy optimal can be defined as an intersection of half-planes (Brown and

Niekum, 2019b):

Hπ =
⋂
π′∈Π

wT (Φπ − Φπ′) ≥ 0, (B.17)

We define the reward ambiguity, G(Hπ), as the volume of this intersection of half-

planes:

G(Hπ) = Volume(Hπ), (B.18)

where we assume without loss of generality that ‖w‖ ≤ 1, to ensure this volume is bounded.

169

We now prove that a total ranking over policies results in no more reward ambiguity

than simply using the optimal policy.

Proposition 2. Given a policy class Π, an optimal policy π∗ ∈ Π and a total ranking

over Π, and a reward function R(s) = wTφ(s), the reward ambiguity resulting from π∗

is greater than or equal to the reward ambiguity of using a total ranking, i.e., G(H∗π) ≥
G(Hranked).

Proof. Consider policies π1 and π2 where JR∗(π1) ≥ JR∗(π2). We can write this return

inequality in terms of half-spaces as follows:

JR∗(π1) ≥ JR∗(π2) (B.19)

⇐⇒ wTΦπ1 ≥ wTΦπ2 (B.20)

⇐⇒ wT (Φπ1 − Φπ2) ≥ 0 (B.21)

defining a half-space over weight vectors.

Consider the optimal policy π∗r∗ . This policy induces a set of half-space constraints

over all other possible policies π ∈ Π. Thus we have the following half-space constraints:

Hπ∗ =
⋂
π∈Π

wT (Φπ∗ − Φπ) ≥ 0 (B.22)

However, if we have a total ordering over Π, then we have the following intersection

of half-spaces

Hranked =
⋂

πi%πj∈Π

wT (Φπi − Φπj) ≥ 0 (B.23)

= Hπ∗ ∩
(⋂
πi%πj∈Π
πi 6=π∗

wT (Φπi − Φπj) ≥ 0

)
. (B.24)

Thus, Hranked ⊆ Hπ∗ , and the volume of the set of feasible reward functions

170

induced by the total ranking is therefore less than or equal to the volume of Hπ∗ , i.e.,

G(Hranked) ≤ G(Hπ∗).

B.4 Uncertainty Reduction for Random Halfspaces

In this section we seek to bound how many reward hypotheses are removed after a certain

number of ranked trajectories, τi ≺ τj . Our main result that we will prove is that sampling

random half-space constraints causes the reward ambiguity to decrease exponentially.

We assume that the true reward function,R∗(s) = w∗Tφ(s), is a linear combination

of features w ∈ Rn. Let H denote the set of all reward hypotheses. We assume a linear

combination of features R(s) = wTφ(s), so H = Rn. We also make the common as-

sumption that ‖w‖1 ≤ 1 so that H is bounded (Abbeel and Ng, 2004; Brown and Niekum,

2018).

Each pair of trajectories, τi ≺ τj , that are ranked based on R∗, forms a half-space

constraint over the true reward feature weights w∗T :

τi ≺ τj (B.25)

⇒ J(τi|R∗) < J(τj |R∗) (B.26)

⇒ w∗TΦτi < w∗TΦτj (B.27)

⇒ w∗T (Φτj − Φτi) > 0, (B.28)

where Φτ =
∑T

t=0 γ
tφ(st) for τ = (s0, a0, s1, a1, . . . , sT , aT).

We define Ξ to be the set of all trajectories in the MDP. Let X be the set of half-

space constraints that result from all ground-truth rankings over all possible trajectory pairs

from Ξ, i.e.,

X =
{

(Φτj − Φτi) : J(τj |R∗) > J(τj |R∗), τi, τj ∈ Ξ
}
. (B.29)

171

We define the space of all reward feature weight vectors that are consistent with X
asR, where

R =

{
w : w ∈

⋂
x∈X

wTx > 0

}
, (B.30)

where x is one of the half-space normal vectors from the set X . We also define J = H\R,

i.e., the space that gets cut by all the half-spaces defined by the normal vectors in X . Our

goal is to find a lower bound, in expectation, on how much volume is cut from J for k

half-space constraints.

To simplify our proofs and notation, we assume there are only a finite number of

reward weight hypotheses inJ . Denote j as the jth reward hypothesis inJ and let J = |J |
be the total number of these hypotheses. For each halfspace x ∈ X , define Zi(x) as the

binary indicator of whether halfspace x (assumed to be represented by its normal vector)

eliminates the hypothesis j ∈ Rn, i.e.

Zj(x) =

1 if jTx ≤ 0

0 otherwise.
(B.31)

We define

T = {j(
∑
x∈X Zj(x)) : j ∈ J } (B.32)

to be the multiset containing all the hypotheses in J that are eliminated by the half-space

constraints in X . This is a multiset since we include repeats of j that are eliminated by

different half-spaces in X . We use the notation {a(y)} to denote the multiset with y copies

of a. We define T = |T | to be the sum of the total number of reward hypotheses that are

eliminated by each half-space in X . Similarly, we define H = |H| and X = |X | to be the

number of hypothesis inH and the number of half-spaces in X , respectively.

Our goal is to find a lower bound on the expected number of hypotheses that are

removed given k half-space constraints that result from k pairwise trajectory preferences.

172

Note that we can define T as

T =
∑
j∈J

∑
x∈X

Zj(x). (B.33)

We can derive the expected number of unique hypotheses in J that are eliminated by the

first half-space as follows:

E[
∑
j∈J

Zj(x)|x ∼ U(X)] =
∑
j∈J

Ex∈X [Zj(x)] (B.34)

=
∑
j∈J

∑
x∈X

p(x)Zj(x) (B.35)

=
∑
j∈J

∑
x∈X

1

X
Zj(x) (B.36)

=
1

X

∑
j∈J

∑
x∈X

Zj(x) (B.37)

=
T

X
(B.38)

where U(X) represents a uniform distribution over X . There are T hypotheses left to

eliminate and X halfspaces left to choose from. Once we choose all of them we have

eliminated all of T , so, in expectation, each half-space elminates T/X of the hypotheses

in T . We can now consider T to be the total number of hypotheses that remain to be

eliminated after already enforcing some number of half-space constraints, and the same

reasoning applies. We will take advantage of this later to form a recurrence relation over

the elements left in J , i.e. the reward function hypotheses that are false, but have not yet

been eliminated by a pairwise trajectory ranking.

When selecting a half-space from X uniformly, we eliminate T/X unique hypothe-

ses in J in expectation. If we assume that each j ∈ J is distributed uniformly across the

half-spaces, then on average, there are T/J copies of a hypothesis j in T . This can be

173

shown formally as follows:

Ej∈J [
∑
x∈X

Zj(x)] =
∑
j∈J

p(j)

[∑
x∈X

Zj(x)

]
(B.39)

=
1

J

∑
j∈J

∑
x∈X

Zj(x) (B.40)

=
T

J
. (B.41)

Thus, selecting a half-space uniformly at random eliminates T/X unique hypothe-

ses from J ; however, there are T/J copies of each hypothesis on average, so a random

half-space eliminates T 2

JX total hypotheses from T on average.

Recurrence relation The above analysis results in the following system of recurrence

relations where Jk is the number of unique hypotheses that have not yet been eliminated

after k half-spaces constraints, Tk is the sum of the total hypotheses (including repeats) that

have not yet been eliminated the first k half-spaces, and X is the total number of half-space

constraints.

J0 = J (B.42)

T0 = T (B.43)

Jk+1 = Jk −
Tk

X − k (B.44)

Tk+1 = Tk −
T 2
k

Jk · (X − k)
(B.45)

To simplify the analysis we make the following assumptions. First we assume that

R is small compared to the full space of H. Thus, H ≈ J . Since each x ∈ X covers

H/2 hypotheses, then each x ∈ X covers approximately J/2 hypotheses. Summing over

all halfspaces, we have that T0 ≈
∑

x∈X J/2 = XJ/2. Furthermore, if X , the number of

possible half-spaces, is large, then X − k ≈ X .

174

Given these assumptions we now have the following simplified system of recurrence

relations:

J0 = J (B.46)

T0 =
J0X

2
(B.47)

Jk+1 = Jk −
Tk
X

(B.48)

Tk+1 = Tk −
T 2
k

JkX
(B.49)

where Tk and Jk are the number of elements in T and J after k half-spaces constraints

have been applied.

The solution to these recurrences is:

Jk =
J0

2k
, (B.50)

Tk =
J0X

2k+1
. (B.51)

and can be verified by plugging the solution into the above equations and checking that it

satisfies the base cases and recurrence relations.

We can now bound the number of half-space constraints (the number of ranked

random trajectory pairs) that are needed to get J = |J | down to some level ε.

Theorem 3. To reduce the volume of J such that Jk = ε, then it suffices to have k random

half-space constraints, where

k = log2

J0

ε
(B.52)

Proof. As shown above, we have that

Jk =
J0

2k
. (B.53)

175

Solving for k and substituting ε for Jk we get

k = log2

J0

ε
(B.54)

This means that Jk decreases exponentially with k, meaning we only need to sample

a logarithmic number of half-space constraints to remove a large portion of the possible

reward hypotheses.

Corollary 2. To reduce J by x% it suffices to have

k = log2

(
1

1− x/100

)
(B.55)

random half-space constraints.

Proof. We want
x

100
=
J0 − J0

2k

J0
= 1− 1

2k
(B.56)

Solving for k results in

k = log2

(
1

1− x/100

)
. (B.57)

B.5 Noise Injection Theory

Let ε be the probability of taking a random action. We assume that A is finite, and assume

a finite horizon MDP with a horizon of T .

B.5.1 Optimal policy

We start by analyzing what happens when we inject noise into an optimal policy, π∗. We

will inject noise using the ε-greedy policy defined in Equation (D.2). We define pε to be

176

the probability of taking an suboptimal action. For simplicity, we assume that there is only

one optimal action at each state and that the states visited are independent of each other.

This simplifies the analysis, but ignores the problems of compounding error that occur in

sequential decision making tasks (Ross and Bagnell, 2010). We will address the impact of

compounding errors in Section B.5.3.

Given the above assumptions we have

pε =
ε(|A| − 1)

|A| , (B.58)

where A is the set of actions in the MDP.

If we define X to be the random variable representing the number of suboptimal

actions in a trajectory of length T , then we can then analyze the number of suboptimal

actions in the epsilon greedy policy π∗(·|ε) using a binomial distribution with T trials and

probability p = pε.

This gives us E[X] = Tpε. If we assume that |A| is large, then pε ≈ ε and we have

E[X] = Tε. Thus, as ε goes from 0 to 1, the expected number of suboptimal actions in

the policy interpolates between 0 and T . Furthermore, a standard Hoeffding bound shows

that for large T , i.e., long trajectories, the empirical number of suboptimal actions will

concentrate tightly around the mean Tε. Thus, as ε goes from 0 to 1, with high probability

the empirical number of suboptimal actions will interpolate between 0 and T .

B.5.2 Suboptimal cloned policy

Suppose that instead of injecting noise into the optimal policy, we now inject noise into a

policy, πBC, that is cloned from suboptimal demonstrations. Define β to be the probability

that πBC takes the optimal action in a state. Note that here we also simplify the analysis by

assuming that β is a constant that does not depend on the current state. We define poptBC to be

the probability of taking a suboptimal action in state s if πBC would take the optimal action

in that state. Similarly, we define psubBC to be the probability of taking a suboptimal action in

177

state s if πBC would take a suboptimal action in that state.

As before we define pε to be the probability that πBC(·|ε) takes a suboptimal action.

Thus, we have that

pε = βpoptBC + (1− β)psubBC, (B.59)

where

poptBC =
ε(|A| − 1)

|A| (B.60)

and

psubBC = 1− ε+
ε(|A| − 1)

|A| . (B.61)

Thus, we have

pε = β · ε(|A| − 1)

|A| + (1− β) · (1− ε+
ε(|A| − 1)

|A|) (B.62)

= (1− β)(1− ε) +
ε(|A| − 1)

|A| . (B.63)

As expected, when β = 1, then the first term is zero and we have the same result as

for an optimal policy. Also, if ε = 1, then all actions are random and we get the same result

as our above analysis which assumed noise injection into an optimal policy. This is because

the optimality of the cloned policy does not affect the analysis if all actions are random.

If we assume that |A| is large, then we have (|A| − 1)/|A| ≈ 1 and we have

pε = 1− β(1− ε). (B.64)

The expected number of suboptimal actions in the epsilon greedy cloned policy becomes

E[X] = T · (1− β(1− ε)). (B.65)

Thus, with no noise injection (ε = 0), we expect the cloned policy to make (1 − β)T

suboptimal actions. For large enough A and T , as ε goes from 0 to 1 the empirical number

178

of suboptimal actions will, with high probability, interpolate between (1− β)T and T .

B.5.3 Compounding errors

The above analysis has ignored the compounding errors that are accumulated when running

a behavioral cloned policy in a sequential decision making task. Using the same analysis

as Ross and Bagnell (2010), we get the following result that proves that the performance of

the cloned policy with noise injection ε has an increasingly large performance gap from the

expert as ε goes from 0 to 1.

Corollary 3. Given a cloned policy πBC from expert demonstrations, if the cloned policy

makes a mistake with probability 1− β, then

J(πBC(·|ε)) ≤ J(π∗) + T 2(1− β(1− ε)) (B.66)

where T is the time-horizon of the MDP.

Proof. As demonstrated above, given |A| sufficiently large, we can define pε, the probabil-

ity of taking a suboptimal action when following πBC(·|ε) is as follows:

pε = β
ε(|A| − 1)

|A| + (1− β)(1− ε+
ε(|A| − 1)

|A|) (B.67)

= (1− β)(1− ε) +
ε(|A| − 1)

|A| (B.68)

≈ 1− β(1− ε). (B.69)

The inequality then follows from the proof of Theorem 2.1 in (Ross and Bagnell, 2010).

179

Appendix C

Supplementary Materials for

Trajectory-Ranked Reward

Extrapolation

C.1 Code and Videos

Code as well as supplemental videos are available at the project website:

https://github.com/hiwonjoon/ICML2019-TREX.

C.2 T-REX Results on the MuJoCo Domain

C.2.1 Policy visualization

We visualized the T-REX-learned policy for HalfCheetah in Figure C.1. Visualizing the

demonstrations from different stages shows the specific way the policy evolves over time; an

agent learns to crawl first and then begins to attempt to walk in an upright position. The T-

REX policy learned from the highly suboptimal Stage 1 demonstrations results in a similar-

style crawling gait; however, T-REX captures some of the intent behind the demonstration

180

https://github.com/hiwonjoon/ICML2019-TREX

(a) Stage 1

(b) Stage 2

(c) Stage 3

Figure C.1: HalfCheetah policy visualization. For each subplot, (top) is the best given
demonstration policy in a stage, and (bottom) is the trained policy with a T-REX reward
function.

and is able to optimize a gait that resembles the demonstrator but with increased speed,

resulting in a better-than-demonstrator policy. Similarly, given demonstrations from Stage

2, which are still highly suboptimal, T-REX learns a policy that resembles the gait of the

best demonstration, but is able to optimize and partially stabilize this gait. Finally, given

demonstrations from Stage 3, which are still suboptimal, T-REX is able to learn a near-

optimal gait.

C.3 Behavioral Cloning from Observation

To build the inverse transition models used by BCO Torabi et al. (2018a) we used 20,000

steps of a random policy to collect transitions with labeled states. We used the Adam

optimizer with learning rate 0.0001 and L2 regularization of 0.0001. We used the DQN

architecture Mnih et al. (2015) for the classification network, using the same architecture to

predict actions given state transitions as well as predict actions given states. When predict-

ing P (a|st, st+1), we concatenate the state vectors obtaining an 8x84x84 input consisting

of two 4x84x84 frames representing st and st+1.

181

We give both T-REX and BCO the full set of demonstrations. We tried to improve

the performance of BCO by running behavioral cloning only on the bestX% of the demon-

strations, but were unable to find a parameter setting that performed better than X = 100,

likely due to a lack of training data when using very few demonstrations.

C.4 Atari reward learning details

We used the OpenAI Baselines implementation of PPO with default hyperparameters. We

ran all of our experiments on an NVIDIA TITAN V GPU. We used 9 parallel workers when

running PPO.

When learning and predicting rewards, we mask the score and number of lives left

for all games. We did this to avoid having the network learn to only look at the score and

recognize, say, the number of significant digits, etc. We additionally masked the sector

number and number of enemy ships left on Beam Rider. We masked the bottom half of the

dashboard for Enduro to mask the position of the car in the race. We masked the number of

divers found and the oxygen meter for Seaquest. We masked the power level and inventory

for Hero.

To train the reward network for Enduro, we randomly downsampled full trajecto-

ries. To create a training set we repeatedly randomly select two full demonstrations, then

randomly cropped between 0 and 5 of the initial frames from each trajectory and then down-

sampled both trajectories by only keeping every xth frame where x is randomly chosen be-

tween 3 and 6. We selected 2,000 randomly downsampled demonstrations and trained the

reward network for 10,000 steps of Adam with a learning rate of 5e-5.

182

C.5 Comparison to active reward learning

In this section, we examine the ability of prior work on active preference learning to exceed

the performance of the demonstrator. In Table C.1, we denote the results that surpass the

best demonstration with an asterisk (*). DQfD+A only surpasses the demonstrator in 3 out

of 9 games tested, even with thousands of active queries. Note that DQfD+A extends the

original DQfD algorithm Hester et al. (2018), which uses demonstrations combined with

RL on ground-truth rewards, yet is only able to surpass the best demonstration in 14 out

of 41 Atari games. In contrast, we are able to leverage only 12 ranked demos to achieve

better-than-demonstrator performance on 7 out of 8 games tested, without requiring access

to true rewards or access to thousands of active queries from an oracle.

Ibarz et al. (2018) combine Deep Q-learning from demonstrations and active pref-

erence queries (DQfD+A). DQfD+A uses demonstrations consisting of (st, at, st+1)-tuples

to initialize a policy using DQfD Hester et al. (2018). The algorithm then uses the active

preference learning algorithm of Christiano et al. (2017) to refine the inferred reward func-

tion and initial policy learned from demonstrations. The first two columns of Table C.1

compare the demonstration quality given to DQfD+A and T-REX. While our results make

use of more demonstrations (12 for T-REX versus 4–7 for DQfD+A), our demonstrations

are typically orders of magnitude worse than the demonstrations used by DQfD+A: on av-

erage the demonstrations given to DQfD+A are 38 times better than those used by T-REX.

However, despite this large gap in the performance of the demonstrations, T-REX surpasses

the performance of DQfD+A on Q*Bert, and Seaquest. We achieve these results using 12

ranked demonstrations. This requires only 66 comparisons (n · (n − 1)/2) by the demon-

strator. In comparison, the DQfD+A results used 3,400 preference labels obtained during

policy training using ground-truth rewards.

183

C.6 Human Demonstrations and Rankings

C.6.1 Human demonstrations

We used the Atari Grand Challenge data set Kurin et al. (2017) to collect actual human

demonstrations for five Atari games. We used the ground truth returns in the Atari Grand

Challenge data set to rank demonstrations. To generate demonstrations we removed du-

plicate demonstrations (human demonstrations that achieved the same score). We then

sorted the remaining demonstrations based on ground truth return and selected 12 of these

demonstrations to form our training set. We ran T-REX using the same hyperparameters as

described above.

The resulting performance of T-REX is shown in Table 5.2. T-REX is able to outper-

form the best human demonstration on Q*bert, Space Invaders, and Video Pinball; however,

it is not able to learn a good control policy for Montezuma’s Revenge or Ms Pacman. These

games require maze navigation and balancing different objectives, such as collecting ob-

jects and avoiding enemies. This matches our results in the main text that show that T-REX

is unable to learn a policy for playing Hero, a similar maze navigation task with multiple

objectives such as blowing up walls, rescuing people, and destroying enemies. Extending

T-REX to work in these types of settings is an interesting area of future work.

C.7 Atari Reward Visualizations

We generated attention maps for the learned rewards for the Atari domains. We use the

method proposed by Greydanus et al. (2018), which takes a stack of 4 frames and passes

a 3x3 mask over each of the frames with a stride of 1. The mask is set to be the default

background color for each game. For each masked 3x3 region, we compute the absolute

difference in predicted reward when the 3x3 region is not masked and when it is masked.

This allows us to measure the influence of different regions of the image on the predicted

reward. The sum total of absolute changes in reward for each pixel is used to generate an

184

attention heatmap. We used the trajectories shown in the extrapolation plots in Figure 4

of the main text and performed a search using the learned reward function to find the ob-

servations with minimum and maximum predicted reward. We show the minimum and

maximum observations (stacks of four frames) along with the attention heatmaps across all

four stacked frames for the learned reward functions in figures C.2–C.9. The reward func-

tion visualizations suggest that our networks are learning relevant features of the reward

function.

185

Table C.1: Best demonstrations and average performance of learned policies for T-REX
(ours) and DQfD with active preference learning (DQfD+A) (see Ibarz et al. (2018) Ap-
pendix A.2 and G). Results for T-REX are the best performance over 3 random seeds aver-
aged over 30 trials. Results that exceed the best demonstration are marked with an asterisk
(*). Note that T-REX requires at most only 66 pair-wise preference labels (n(n − 1)/2
for n = 12 demonstrations), whereas DQfD+A uses between 4–7 demonstrations along
with 3.4K labels queried during policy learning. DQfD+A requires action labels on the
demonstrations, whereas T-REX learns from observation.

Best Demonstration Received Average Algorithm Performance

Game DQfD+A T-REX DQfD+A T-REX

Beam Rider 19,844 1,188 4,100 *3,335.7
Breakout 79 33 *85 *221.3
Enduro 803 84 *1200 *586.8
Hero 99,320 13,235 35,000 0.0

Montezuma’s Revenge 34,900 - 3,000 -
Pong 0 -6 *19 *-2.0

Private Eye 74,456 - 52,000 -
Q*bert 99,450 800 14,000 *32,345.8

Seaquest 101,120 600 500 *747.3
Space invaders - 600 - *1,032.5

186

(a) Beam Rider observation with maximum predicted reward

(b) Beam Rider reward model attention on maximum predicted reward

(c) Beam Rider observation with minimum predicted reward

(d) Beam Rider reward model attention on minimum predicted reward

Figure C.2: Maximum and minimum predicted observations and corresponding attention
maps for Beam Rider. The observation with the maximum predicted reward shows success-
fully destroying an enemy ship, with the network paying attention to the oncoming enemy
ships and the shot that was fired to destroy the enemy ship. The observation with minimum
predicted reward shows an enemy shot that destroys the player’s ship and causes the player
to lose a life. The network attends most strongly to the enemy ships but also to the incoming
shot.

187

(a) Breakout observation with maximum predicted reward

(b) Breakout reward model attention on maximum predicted reward

(c) Breakout observation with minimum predicted reward

(d) Breakout reward model attention on minimum predicted reward

Figure C.3: Maximum and minimum predicted observations and corresponding attention
maps for Breakout. The observation with maximum predicted reward shows many of the
bricks destroyed with the ball on its way to hit another brick. The network has learned to
put most of the reward weight on the remaining bricks with some attention on the ball and
paddle. The observation with minimum predicted reward is an observation where none of
the bricks have been destroyed. The network attention is focused on the bottom layers of
bricks.

188

(a) Enduro observation with maximum predicted reward

(b) Enduro reward model attention on maximum predicted reward

(c) Enduro observation with minimum predicted reward

(d) Enduro reward model attention on minimum predicted reward

Figure C.4: Maximum and minimum predicted observations and corresponding attention
maps for Enduro. The observation with maximum predicted reward shows the car passing
to the right of another car. The network has learned to put attention on the controlled
car as well as the sides of the road with some attention on the car being passed and on the
odometer. The observation with minimum predicted reward shows the controlled car falling
behind other racers, with attention on the other cars, the odometer, and the controlled car.

189

(a) Hero observation with maximum predicted reward

(b) Hero reward model attention on maximum predicted reward

(c) Hero observation with minimum predicted reward

(d) Hero reward model attention on minimum predicted reward

Figure C.5: Maximum and minimum predicted observations and corresponding attention
maps for Hero. The observation with maximum predicted reward is difficult to interpret, but
shows the network attending to the controllable character and the shape of the surrounding
maze. The observation with minimum predicted reward shows the agent setting off a bomb
that kills the main character rather than the wall. The learned reward function attends to the
controllable character, the explosion and the wall that was not destroyed.

190

(a) Pong observation with maximum predicted reward

(b) Pong reward model attention on maximum predicted reward

(c) Pong observation with minimum predicted reward

(d) Pong reward model attention on minimum predicted reward

Figure C.6: Maximum and minimum predicted observations and corresponding attention
maps for Pong. The network mainly attends to the ball, with some attention on the paddles.

191

(a) Q*bert observation with maximum predicted reward

(b) Q*bert reward model attention on maximum predicted reward

(c) Q*bert observation with minimum predicted reward

(d) Q*bert reward model attention on minimum predicted reward

Figure C.7: Maximum and minimum predicted observations and corresponding attention
maps for Q*bert. The observation for the maximum predicted reward shows an observation
from the second level of the game where stairs change color from yellow to blue. The
observation for the minimum predicted reward is less interpretable. The network attention
is focused on the different stairs, but it is difficult to attribute any semantics to the attention
maps.

192

(a) Seaquest observation with maximum predicted reward

(b) Seaquest reward model attention on maximum predicted reward

(c) Seaquest observation with minimum predicted reward

(d) Seaquest reward model attention on minimum predicted reward

Figure C.8: Maximum and minimum predicted observations and corresponding attention
maps for Seaquest. The observation with maximum predicted reward shows the submarine
in a relatively safe area with no immediate threats. The observation with minimum pre-
dicted reward shows an enemy that is about to hit the submarine—the submarine fires a
shot, but misses. The attention maps show that the network focuses on the nearby enemies
and also on the controlled submarine.

193

(a) Space Invaders observation with maximum predicted reward

(b) Space Invaders reward model attention on maximum predicted reward

(c) Space Invaders observation with minimum predicted reward

(d) Space Invaders reward model attention on minimum predicted reward

Figure C.9: Maximum and minimum predicted observations and corresponding attention
maps for Space Invaders. The observation with maximum predicted reward shows an ob-
servation where all the aliens have been successfully destroyed and the protective barriers
are still intact. Note that the agent never observed a demonstration that successfully de-
stroyed all the aliens. The attention map shows that the learned reward function is focused
on the barriers, but does not attend to the location of the controlled ship. The observation
with minimum predicted reward shows the very start of a game with all aliens still alive.
The network attends to the aliens and barriers, with higher weight on the aliens and barrier
closest to the space ship.

194

Appendix D

Supplementary Materials for

Disturbance-Based Reward

Extrapolation

D.1 D-REX Details

Code and videos can be found at our project webpage:

https://dsbrown1331.github.io/CoRL2019-DREX/.

D.1.1 Demonstrations

To create the demonstrations, we used a partially trained Proximal Policy Optimization

(PPO) agent that was checkpointed every 5 optimization steps (corresponds to 10,240 sim-

ulation steps) for MuJoCo experiments and 50 optimization steps (corresponds to 51,200

simulation steps) for Atari experiments. To simulate suboptimal demonstrations, we se-

lected demonstration checkpoints such that they resulted in an average performance that

was significantly better than random play, but also significantly lower than the maximum

performance achieved by PPO when trained to convergence on the ground-truth reward. All

195

https://dsbrown1331.github.io/CoRL2019-DREX/

checkpoints are included in the source code included in the supplemental materials.

D.1.2 Behavioral cloning

MuJoCo experiments We generated a trajectory of length 1,000, and the given 1,000 pairs

of data is used for training. The policy network is optimized with L2 loss for 10,000 it-

erations using Adam optimizer with a learning rate of 0.001 and a minibatch size of 128.

Weight decay regularization is also applied in addition to regular loss term with a coefficient

of 0.001. A multi-layer perceptron (MLP) having 4 layers and 256 units in the middle is

used to parameterize a policy.

Atari experiments We used the state-action pairs from the 10 demonstrations and

partitioned them into an 80% train 20% validation split. We used the Nature DQN network

architecture and trained the imitation policy using Adam with a learning rate of 0.0001 and

a minibatch size of 32. The state consists of four stacked frames which are normalized

to have a value between 0 and 1, and the scores in the game scene are masked as it is

done in Brown et al. (2019b). We used the validation set for early stopping. In particular,

after every 1000 updates on the training data we fully calculated the validation error of the

current model. We trained the imitation policy until the validation loss failed to improve for

6 consecutive calculations of the validation error.

D.1.3 Synthetic rankings

We then used the cloned policy and generated 100 synthetic demonstrations for different

noise levels. For the MuJoCo experiments, we used 20 different noise levels evenly spaced

over the interval [0.0, 1.0) and generated 5 trajectories for each level.

For the Atari experiments, we used the following noise degradation schedule E =

(1.0, 0.75, 0.5, 0.25, 0.02) and generated K = 20 trajectories for each level. We found that

a non-zero noise was necessary for most Atari games since deterministic policies learned

through behavior cloning will often get stuck in a game and fail to take an action to continue

196

playing. For example, in Breakout, it is necessary to release the ball after it falls past the

paddle, and a deterministic policy may fail to fire a new ball. For a similar reason, we

also found it beneficial to include a few examples of no-op trajectories to encourage the

agent to actually complete the game. For each game, we created an additional “no-op”

demonstration set comprised of four length 500 no-op demonstrations. Without these no-

op demonstrations, we found that often the learned reward function would give a small

positive reward to the agent for just staying alive and sometimes the RL algorithm would

decide to just sit at the start screen and accumulate a nearly indefinite stream of small

rewards rather than play the game. Adding no-op demonstrations as the least preferred

demonstrations shapes the reward function such that it encourages action and progress.

While this does encode some amount of domain knowledge into the reward function, it is

common that doing nothing is worse than actually attempting to complete a task. We note

that in extremely risky scenarios, it may be the case that always taking the no-op action is

optimal, but leave these types of domains for future work.

D.1.4 Noise Degradation

The full set of noise degradation plots for all seven Atari games are shown in Figure D.1.

For MuJoCo experiments, we used 20 different noise levels evenly spaced over the interval

[0.0, 1.0) and generated 5 trajectories for each level. For the Atari experiments, we used

the noise degradation schedule of E = (0.01, 0.25, 0.5, 0.75, 1.0) and generated K = 20

trajectories for each level.

For the MuJoCo tasks, we used the following epsilon greedy policy:

πBC(st|ε) =

πBC(st), with probability 1− ε

at ∼ U([−1, 1]n), with probability ε.
(D.1)

197

For Atari, we used the following epsilon greedy policy:

πBC(at|st, ε) =

1− ε+ ε

|A| , if πBC(st) = at

ε
|A| , otherwise

(D.2)

where |A| is the number of valid discrete actions in each environment.

(a) Beam Rider (b) Breakout (c) Enduro

(d) Pont (e) Q*bert

(f) Seaquest (g) Space Invaders

Figure D.1: The performance degradation of an imitation policy learned via behavioral
cloning as the probability of taking a random action increases. Behavioral cloning is done
on 10 demonstrations. Plots show mean and standard deviations over 20 rollouts per noise
level.

198

D.1.5 Reward function training

For reward function training, we generally followed the setup used in Brown et al. (2019b).

We build a dataset of paired trajectory snippets with ranking, first by choosing two tra-

jectories from given demonstrations and synthetic demonstrations, then by subsampling a

snippet from each of trajectory.

MuJoCo experiments We built 3 datasets having different 5,000 pairs and trained

a reward function for each of dataset using a neural network. Then, the ensemble of three

neural network was used for reinforcement learning step. When two trajectories are selected

from synthetic demonstration set to build a dataset, we discarded a pair whose epsilon dif-

ference is smaller than 0.3. This stabilizes a reward learning process by eliminating negative

samples. Also, when subsampling from a whole trajectory, we limited the maximum length

of snippet as 50 while there is no limitation on the minimum length. We then trained each

neural network for 1,000 interactions with Adam optimizer with a learning rate of 1e-4 and

minibatch size of 64. Weight decay regularization is also used with a coefficient of 0.01. A

3-layer MLP with 256 units in the middle is used to parameterize a reward function.

Atari experiments To generate training samples, we performed data augmentation

to generate 40,000 training pairs. We first sampled two noise levels εi and εj , we then

randomly sampled one trajectory from each noise level. Finally, we randomly cropped

each trajectory keeping between 50 and 200 frames. Following the advice in Brown et al.

(2019b), we also enforced a progress constraint such that the randomly cropped snippet

from the trajectory with lower noise started at an observation timestep no earlier than the

start of the snippet from the higher noise level. To speed up learning, we also only kept

every 4th observation. Because observations are stacks of four frames this only removes re-

dundant information from the trajectory. We assigned each trajectory pair a label indicating

which trajectory had the lowest noise level.

Given our 40,000 labeled trajectory pairs, we optimized the reward function R̂θ

using Adam with a learning rate of 1e-5. We held out 20% of the data as a validation set

199

and optimized the reward function on the training data using the validation data for early

stopping. In particular, after every 1000 updates we fully calculated the validation error of

the current model. We stopped training once the validation error failed to improve for 6

consecutive calculations of the validation error.

We used an architecture having four convolutional layers with sizes 7x7, 5x5, 3x3,

and 3x3, with strides 3, 2, 1, and 1. The 7x7 convolutional layer used 32 filters and each

subsequent convolutional layer used 16 filters and LeakyReLU non-linearities. We then

used a fully connected layer with 64 hidden units and a single scalar output. We fed in

stacks of 4 frames with pixel values normalized between 0 and 1 and masked reward-related

information from the scene; the game score and number of lives, the sector number and

number of enemy ships left on Beam Rider, the bottom half of the dashboard for Enduro to

mask the position of the car in the race, the number of divers found and the oxygen meter

for Seaquest, and the power level and inventory for Hero.

D.1.6 Policy optimization

We optimized a policy by training a PPO agent on the learned reward function. We used

the default hyperparameters in OpenAI Baselines.16 Due to the variability that results from

function approximation when using PPO, we trained models using seeds 0, 1, and 2 and

reported the best results among them.

MuJoCo experiments We trained an agent for 1 million steps, and gradient is es-

timated for every 4,096 simulation steps. As same as the original OpenAI implementation,

we normalized a reward with running mean and standard deviation. Model ensemble of

three neural network is done by averaging such normalized reward.

Atari experiments 9 parallel workers are used to collect trajectories for policy

gradient estimation. To reduce reward scaling issues, we followed the procedure proposed

by Brown et al. (2019b) and normalized predicted rewards by feeding the output of R̂θ(s)

16https://github.com/openai/baselines

200

through a sigmoid function before passing it to PPO. We trained PPO on the learned reward

function for 50 million frames to obtain our final policy.

D.2 GAIL

We used the default implementation of GAIL from OpenAI Baselines for Mujoco. For Atari

we made a few changes to get the Baselines implementation to work with raw pixel obser-

vations. For the generator policy we used the Nature DQN architecture. The discriminator

takes in a state (stack of four frames) and action (represented as a 2-d one-hot vector of

shape (84,84,|A|) that is concatenated to the 84x84x4 observation). The architecture for the

discriminator is the same as the generator, except that it only outputs two logit values for

discriminating between the demonstrations and the generator. We performed one generator

update for every discriminator update.

D.3 D-REX Reward Extrapolation and Attention Heatmaps

Figure D.2 shows the D-REX reward extrapolation plots for all seven Atari games. Fig-

ures D.3–D.9 show the D-REX reward heatmaps for all seven Atari games. We generated

the heatmaps by taking a 3x3 mask and running it over every frame in an observation and

compute the difference in predicted reward before and after the mask is applied. We then

use the cumulative sum over all masks for each pixel to plot the heatmaps.

201

(a) Beam Rider (b) Breakout (c) Enduro

(d) Pong (e) Q*bert

(f) Seaquest (g) Space Invaders

Figure D.2: Extrapolation plots for Atari games. Blue dots represent synthetic demonstra-
tions generated via behavioral cloning with different amounts of noise injection. Red dots
represent actual demonstrations, and green dots represent additional trajectories not seen
during training. We compare ground truth returns over demonstrations to the predicted
returns using D-REX (normalized to be in the same range as the ground truth returns).

202

(a) Beam Rider observation with maximum predicted reward using D-REX.

(b) Beam Rider reward model attention on maximum predicted reward using D-REX.

(c) Beam Rider observation with minimum predicted reward using D-REX.

(d) Beam Rider reward model attention on minimum predicted reward using D-REX.

Figure D.3: D-REX maximum and minimum predicted observations and corresponding
attention maps for Beam Rider across a held-out set of 15 demonstrations. The attention
maps show that the reward is a function of the status of the controlled ship as well as the
enemy ships and missiles.

203

(a) Breakout observation with maximum predicted reward using D-REX.

(b) Breakout reward model attention on maximum predicted reward using D-REX.

(c) Breakout observation with minimum predicted reward using D-REX.

(d) Breakout reward model attention on minimum predicted reward using D-REX.

Figure D.4: D-REX maximum and minimum predicted observations and corresponding
attention maps for Breakout across a held-out set of 15 demonstrations. The observation
with maximum predicted reward shows many of the bricks destroyed. The network has
learned to put most of the reward weight on the remaining bricks. The observation with
minimum predicted reward is an observation where none of the bricks have been destroyed.

204

(a) Enduro observation with maximum predicted reward using D-REX.

(b) Enduro reward model attention on maximum predicted reward using D-REX.

(c) Enduro observation with minimum predicted reward using D-REX.

(d) Enduro reward model attention on minimum predicted reward using D-REX.

Figure D.5: D-REX maximum and minimum predicted observations and corresponding
attention maps for Enduro across a held-out set of 15 demonstrations. The observation
with maximum predicted reward shows the car passing from one section of the race track
to another as shown by the change in lighting. The observation with minimum predicted
reward shows the controlled car falling behind another racer with attention focusing on the
car being controlled as well as the speedometer.

205

(a) Pong observation with maximum predicted reward using D-REX.

(b) Pong reward model attention on maximum predicted reward using D-REX.

(c) Pong observation with minimum predicted reward using D-REX.

(d) Pong reward model attention on minimum predicted reward using D-REX.

Figure D.6: D-REX maximum and minimum predicted observations and corresponding
attention maps for Pong across a held-out set of 15 demonstrations. The network attends
to the ball and paddles along with some artifacts outside the playing field. The observation
with minimum predicted reward shows the ball being sent back into play after the opponent
has scored.

206

(a) Q*bert observation with maximum predicted reward using D-REX.

(b) Q*bert reward model attention on maximum predicted reward using D-REX.

(c) Q*bert observation with minimum predicted reward using D-REX.

(d) Q*bert reward model attention on minimum predicted reward using D-REX.

Figure D.7: D-REX maximum and minimum predicted observations and corresponding
attention maps for Q*bert across a held-out set of 15 demonstrations. The network attention
is focused on the different stairs, but is difficult to attribute any semantics to the attention
maps.

207

(a) Seaquest observation with maximum predicted reward using D-REX.

(b) Seaquest reward model attention on maximum predicted reward using D-REX.

(c) Seaquest observation with minimum predicted reward using D-REX.

(d) Seaquest reward model attention on minimum predicted reward using D-REX.

Figure D.8: D-REX maximum and minimum predicted observations and corresponding
attention maps for Seaquest across a held-out set of 15 demonstrations. The observation
with maximum predicted reward shows the submarine in a safe location with no immediate
threats. The observation with minimum predicted reward shows the submarine one frame
before it is hit and destroyed by an enemy shark. This is an example of how the network
has learned a shaped reward that helps it play the game better than the demonstrator. The
network has learned to give most attention to nearby enemies and to the controlled subma-
rine.

208

(a) Space Invaders observation with maximum predicted reward using D-REX.

(b) Space Invaders reward model attention on maximum predicted reward using D-REX.

(c) Space Invaders observation with minimum predicted reward using D-REX.

(d) Space Invaders reward model attention on minimum predicted reward using D-REX.

Figure D.9: D-REX maximum and minimum predicted observations and corresponding at-
tention maps for Space Invaders across a held-out set of 15 demonstrations. The observation
with maximum predicted reward shows an observation where most of the aliens have been
successfully destroyed and the protective barriers are still intact. The attention map shows
that the learned reward function is focused on the barriers and aliens, with less attention to
the location of the controlled ship. The observation with minimum predicted reward shows
the very start of a game with all aliens still alive. The network attends to the aliens and
barriers, with higher weight on the aliens and the barrier closest to the space ship.

209

Appendix E

Bayesian REX Supplementary

Materials

E.1 MCMC Details

We represent Rθ as a linear combination of pre-trained features:

Rθ(τ) =
∑
s∈τ

wTφ(s) = wT
∑
s∈τ

φ(s) = wTΦτ . (E.1)

We pre-compute and cache Φτi =
∑

s∈τi φ(s) for i = 1, . . . ,m and the likelihood becomes

P (P, D | Rθ) =
∏

(i,j)∈P

eβw
TΦτj

eβw
TΦτj + eβw

TΦτi
. (E.2)

We enforce constraints on the weight vectors by normalizing the output of the

weight vector proposal such that ‖w‖2 = 1 and use a Gaussian proposal function centered

on w with standard deviation σ. Thus, given the current sample wt, the proposal is defined

as wt+1 = normalize(N (wt, σ)), in which normalize divides by the L2 norm of the

sample to project back to the surface of the L2-unit ball.

210

For all experiments, except Seaquest, we used a default step size of 0.005. For

Seaquest increased the step size to 0.05. We run 200,000 steps of MCMC and use a burn-in

of 5000 and skip every 20th sample to reduce auto-correlation. We initialize the MCMC

chain with a randomly chosen vector on the L2-unit ball. Because the inverse reinforcement

learning is ill-posed there are an infinite number of reward functions that could match any

set of demonstrations. Prior work by Finn et al. (2016) demonstrates that strong regulariza-

tion is needed when learning cost functions via deep neural networks. To ensure that the

rewards learned allow good policy optimization when fed into an RL algorithm we used a

non-negative return prior on the return of the lowest ranked demonstration. The prior takes

the following form:

logP (w) =

0 if eβw

TΦτ1 < 0

−∞ otherwise
(E.3)

This forces MCMC to not only find reward function weights that match the rankings, but

to also find weights such that the return of the worse demonstration is non-negative. If

the return of the worse demonstration was negative during proposal generation, then we

assigned it a prior probability of −∞. Because the ranking likelihood is invariant to affine

transformations of the rewards, this prior simply shifts the range of learned returns and does

not affect the log likelihood ratios.

E.2 Pre-training Latent Reward Features

We experimented with several pretraining methods. One method is to train Rθ using the

pairwise ranking likelihood function in Equation (E.2) and then freeze all but the last layer

of weights; however, the learned embedding may overfit to the limited number of prefer-

ences over demonstrations and fail to capture features relevant to the ground-truth reward

function. Thus, we supplement the pairwise ranking objective with auxiliary objectives that

can be optimized in a self-supervised fashion using data from the demonstrations.

211

Table E.1: Self-supervised learning objectives used to pre-train φ(s).

Inverse Dynamics fID(φ(st), φ(st+1))→ at
Forward Dynamics fFD(φ(st), at)→ st+1

Temporal Distance fTD(φ(st), φ(st+x)→ x
Variational Autoencoder fA(φ(st))→ st

We use the following self-supervised tasks to pre-train Rθ: (1) Learn an inverse dy-

namics model that uses embeddings φ(st) and φ(st+1) to predict the corresponding action

at Torabi et al. (2018a); Hanna and Stone (2017), (2) Learn a forward dynamics model that

predicts st+1 from φ(st) and at Oh et al. (2015); Thananjeyan et al. (2019), (3) Learn an

embedding φ(s) that predicts the temporal distance between two randomly chosen states

from the same demonstration Aytar et al. (2018), and (4) Train a variational pixel-to-pixel

autoencoder in which φ(s) is the learned latent encoding Makhzani and Frey (2017); Doer-

sch (2016). Table 6.1 summarizes the auxiliary tasks used to train φ(s).

There are many possibilities for pre-training φ(s); however, we found that each ob-

jective described above encourages the embedding to encode different features. For exam-

ple, an accurate inverse dynamics model can be learned by only attending to the movement

of the agent. Learning forward dynamics supplements this by requiring φ(s) to encode in-

formation about short-term changes to the environment. Learning to predict the temporal

distance between states in a trajectory forces φ(s) to encode long-term progress. Finally,

the autoencoder loss acts as a regularizer to the other losses as it seeks to embed all aspects

of the state.

In the Atari domain, input to the network is given visually as grayscale frames re-

sized to 84 × 84. To provide temporal information, four sequential frames are stacked one

on top of another to create a framestack which provides a brief snapshot of activity. The

network architecture takes a framestack, applies four convolutional layers following a simi-

lar architecture to Christiano et al. (2017) and Brown et al. (2019b), with leaky ReLU units

as non-linearities following each convolution layer. The convolutions follow the following

212

structure:

Filter size Image size Stride

Input - 84× 84× 4 -

1 7x7 26× 26× 16 3

2 5x5 11× 11× 32 2

3 5x5 9× 9× 32 1

4 3x3 7× 7× 16 1

The convolved image is then flattened. Two sequential fully connected layers, with leaky

ReLU applied to the first layer, transform the flattened image into the encoding, φ(s) where

s is the initial framestack. The width of these layers depends on the size of the feature

encoding chosen. In our experiments with a latent dimension of 64, the first layer transforms

from size 784 to 128 and the second from 128 to 64. See Figure 6.2 for a complete diagram

of this process.

Architectural information for each auxiliary task is given below.

1. The variational autoencoder (VAE) tries to reconstruct the original framestack from

the feature encoding using transposed convolutions. Mirroring the structure of the

initial convolutions, two fully connected layers precede four transposed convolution

layers. These first two layers transform the 64-dimensional feature encoding from 64

to 128, and from 128 to 1568. The following four layers’ structures are summarized

below:

Filter size Image size Stride

Input - 28× 28× 2 -

1 3x3 30× 30× 4 1

2 6x6 35× 35× 16 1

3 7x7 75× 75× 16 2

4 10x10 84× 84× 4 1

213

A cross-entropy loss is applied between the reconstructed image and the original, as

well as a term added to penalize the KL divergence of the distribution from the unit

normal.

2. A temporal difference estimator, which takes two random feature encodings from the

same demonstration and predicts the number of timesteps in between. It is a single

fully-connected layer, transforming the concatenated feature encodings into a scalar

time difference. A mean-squared error loss is applied between the real difference and

predicted.

3. An inverse dynamics model, which takes two sequential feature encodings and pre-

dicts the action taken in between. It is again a single fully-connected layer, trained as

a classification problem with a binary cross-entropy loss over the discrete action set.

4. A forward dynamics model, which takes a concatenated feature encoding and action

and predicts the next feature encoding with a single fully-connected layer. This is

repeated 5 times, which increases the difference between the initial and final encod-

ing. It is trained using a mean-squared error between the predicted and real feature

encoding.

5. A T-REX loss, which samples feature encodings from two different demonstrations

and tries to predict which one of them has preference over the other. This is done

with a single fully-connected layer that transforms an encoding into scalar reward,

and is then trained as a classification problem with a binary cross-entropy loss. A 1 is

assigned to the demonstration sample with higher preference and a 0 to the demon-

stration sample with lower preference.

In order to encourage a feature encoding that has information easily interpretable via linear

combinations, the temporal difference, T-REX, inverse dynamics, and forward dynamics

tasks consist of only a single layer atop the feature encoding space rather than multiple

layers.

214

To compute the final loss on which to do the backwards pass, all of the losses de-

scribed above are summed with weights determined empirically to balance out their values.

E.2.1 Training specifics

We used an NVIDIA TITAN V GPU for training the embedding. We used the same 12

demonstrations used for MCMC to train the self-supervised and ranking losses described

above. We sample 60,000 trajectory snippets pairs from the demonstration pool, where

each snippet is between 50 and 100 timesteps long. We use a learning rate of 0.001 and a

weight decay of 0.001. We make a single pass through all of the training data using batch

size of 1 resulting in 60,000 updates using the Adam Kingma and Ba (2014) optimizer.

For Enduro prior work Brown et al. (2019b) showed that full trajectories resulted in better

performance than subsampling trajectories. Thus, for Enduro we subsample 10,000 pairs

of entire trajectories by randomly selecting a starting time between 0 and 5 steps after the

initial state and then skipping every t frames where t is chosen uniformly from the range

[3, 7) and train with two passes through the training data. When performing subsampling for

either snippets or full trajectories, we subsample pairs of trajectories such that one is from

a worse ranked demonstration and one is from a better ranked demonstration following the

procedure outlined in Brown et al. (2019b).

E.2.2 Visualizations of Learned Features

Viewable here17 is a video containing an Enduro demonstration trajectory, its decoding with

respect to the pre-trained autoencoder, and a plot of the dimensions in the latent encoding

over time. Observe how changes in the demonstration, such as turning right or left or a

shift, correspond to changes in the plots of the feature embedding. We noticed that certain

features increase when the agent passes other cars while other features decrease when the

agent gets passed by other cars. This is evidence that the pretraining has learned features
17https://www.youtube.com/watch?v=DMf8kNH9nVg

215

https://www.youtube.com/watch?v=DMf8kNH9nVg
https://www.youtube.com/watch?v=DMf8kNH9nVg

that are relevant to the ground truth reward which gives +1 every time the agent passes a

car and -1 every time the agent gets passed.

Viewable here18 is a similar visualization of the latent space for Space Invaders.

Notice how it tends to focus on the movement of enemy ships, useful for game progress

in things such as the temporal difference loss, but seems to ignore the player’s ship despite

its utility in inverse dynamics loss. Likely the information exists in the encoding but is not

included in the output of the autoencoder.

Viewable here19 is visualization of the latent space for Breakout. Observe that

breaking a brick often results in a small spike in the latent encoding. Many dimensions,

like the dark green curve which begins at the lowest value, seem to invert as game progress

continues on, thus acting as a measure of how much time has passed.

E.3 Imitation Learning Ablations for Reward Function Feature

Pre-Training

Table E.2 shows the results of pre-training reward features only using different losses. We

experimented with using only the T-REX Ranking loss Brown et al. (2019b), only the self-

supervised losses shown in Table 1 of the main paper, and using both the T-REX ranking

loss plus the self-supervised loss function. We found that performance varried over the

different pre-training schemes, but that using Ranking + Self-Supervised achieved high

performance across all games, clearly outperforming only using self-supervised losses and

achieving superior performance to only using the ranking loss on 3 out of 5 games.
18https://www.youtube.com/watch?v=2uN5uD17H6M
19https://www.youtube.com/watch?v=8zgbD1fZOH8

216

https://www.youtube.com/watch?v=2uN5uD17H6M
https://www.youtube.com/watch?v=8zgbD1fZOH8
https://www.youtube.com/watch?v=2uN5uD17H6M
https://www.youtube.com/watch?v=8zgbD1fZOH8

Table E.2: Comparison of different reward feature pre-training schemes. Ground-truth
average returns for several Atari games when optimizing the mean and MAP rewards found
using Bayesian REX. Each algorithm is given the same 12 demonstrations with ground-
truth pairwise preferences. The average performance for each IRL algorithm is the average
over 30 rollouts.

Ranking Loss Self-Supervised Ranking + Self-Supervised

Game Mean MAP Mean MAP Mean MAP

Beam Rider 3816.7 4275.7 180.4 143.7 5870.3 5504.7
Breakout 389.9 409.5 360.1 367.4 393.1 390.7
Enduro 472.7 479.3 0.0 0.0 135.0 487.7

Seaquest 675.3 670.7 674.0 683.3 606.0 734.7
Space Invaders 1482.0 1395.5 391.2 396.2 961.3 1118.8

E.4 Suboptimal Demonstration Details

We used the same suboptimal demonstrations used for the T-REX experiments in Chapter 5

(Brown et al., 2019b). These demonstrations were obtained by running PPO on the ground

truth reward and checkpointing every 50 updates using OpenAI Baselines Dhariwal et al.

(2017). Brown et al. (2019b) make the checkpoint files available, so to generate the demon-

stration data we used their saved checkpoints and followed the instructions in their released

code to generate the data for our algorithm20. We gave Bayesian REX these demonstrations

as well as ground-truth rankings using the game score; however, other than the rankings,

Bayesian REX has no access to the true reward samples. Following the recommendations

of Brown et al. (2019b), we mask the game score and other parts of the game that are di-

rectly indicative of the game score such as the number of enemy ships left, the number of

lives left, the level number, etc. See Brown et al. (2019b) for full details.
20Code from Brown et al. (2019b) was downloaded from https://github.com/hiwonjoon/

ICML2019-TREX

217

https://github.com/hiwonjoon/ICML2019-TREX
https://github.com/hiwonjoon/ICML2019-TREX

E.5 Reinforcement Learning Details

We used the OpenAI Baselines implementation of Proximal Policy Optimization (PPO)

Schulman et al. (2017); Dhariwal et al. (2017). We used the default hyperparameters for

all games and all experiments. We run RL for 50 million frames and then take the final

checkpoint to perform evaluations. We adapted the OpenAI Baselines code so even though

the RL agent receives a standard preprocessed observation, it only receives samples of

the reward learned via Bayesian REX, rather than the ground-truth reward. T-REX Brown

et al. (2019b) uses a sigmoid to normalize rewards before passing them to the RL algorithm;

however, we obtained better performance for Bayesian REX by feeding the unnormalized

predicted reward Rθ(s) into PPO for policy optimization. We follow the OpenAI baselines

default preprocessing for the framestacks that are fed into the RL algorithm as observations.

We also apply the default OpenAI baselines wrappers the environments. We run PPO with

9 workers on an NVIDIA TITAN V GPU.

E.6 High-Confidence Policy Performance Bounds

In this section we describe the details of the policy performance bounds.

E.6.1 Policy Evaluation Details

We estimated Φπeval using C Monte Carlo rollouts for each evaluation policy. Thus, after

generating C rollouts, τ1, . . . , τC from πeval the feature expectations are computed as

Φπeval =
1

C

[
C∑
i=1

∑
s∈τi

φ(s)

]
. (E.4)

We used C = 100 for all experiments.

218

E.6.2 Evaluation Policies

We evaluated several different evaluation policies. To see if the learned reward function

posterior can interpolate and extrapolate we created four different evaluation policies: A, B,

C, and D. These policies were created by running RL via PPO on the ground truth reward

for the different Atari games. We then checkpointed the policy and selected checkpoints

that would result in different levels of performance. For all games except for Enduro these

checkpoints correspond to 25, 325, 800, and 1450 update steps using OpenAI baselines.

For Enduro, PPO performance was stuck at 0 return until much later in learning. To ensure

diversity in the evaluation policies, we chose to use evaluation policies corresponding to

3125, 3425, 3900, and 4875 steps. We also evaluated each game with a No-Op policy.

These policies are often adversarial for some games, such as Seaquest, Breakout, and Beam

Rider, since they allow the agent to live for a very long time without actually playing the

game—a potential way to hack the learned reward since most learned rewards for Atari will

incentivize longer gameplay.

The results for Beam Rider and Breakout are shown in the main paper. For com-

pleteness, we have included the high-confidence policy evaluation results for the other

games here in the Appendix. Table E.3 shows the high-confidence policy evaluation results

for Enduro. Both the average returns over the posterior as well as the the high-confidence

performance bounds (δ = 0.05) demonstrate accurate predictions relative to the ground-

truth performance. The No-Op policy results in the racecar slowly moving along the track

and losing the race. This policy is accurately predicted as being much worse than the other

evaluation policies. We also evaluated the Mean and MAP policies found by optimizing

the Mean reward and MAP reward from the posterior obtained using Bayesian REX. We

found that the learned posterior is able to capture that the MAP policy is more than twice

as good as the evaluation policy D and that the Mean policy has performance somewhere

between the performance of policies B and C. These results show that Bayesian REX has

the potential to predict better-than-demonstrator performance Brown et al. (2019a).

219

Table E.3: Policy evaluation statistics for Enduro over the return distribution from the
learned posterior P (R|D,P) compared with the ground truth returns using game scores.
Policies A-D correspond to checkpoints of an RL policy partially trained on the ground-
truth reward function and correspond to 25, 325, 800, and 1450 training updates to PPO.
No-Op that always plays the no-op action, resulting in high mean predicted performance
but low 95%-confidence return (0.05-VaR).

Predicted Ground Truth
Policy Mean 0.05-VaR Avg. Length

A 324.7 48.2 7.3 3322.4
B 328.9 52.0 26.0 3322.4
C 424.5 135.8 145.0 3389.0
D 526.2 192.9 199.8 3888.2

Mean 1206.9 547.5 496.7 7249.4
MAP 395.2 113.3 133.6 3355.7

No-Op 245.9 -31.7 0.0 3322.0

Table E.4 shows the results for high-confidence policy evaluation for Seaquest. The

results show that high-confidence performance bounds are able to accurately predict that

evaluation policies A and B are worse than C and D. The ground truth performance of

policies C and D are too close and the mean performance over the posterior and 0.05-

VaR bound on the posterior are not able to find any statistical difference between them.

Interestingly the no-op policy has very high mean and 95%-confidence lower bound, despite

not scoring any points. However, as shown in the bottom half of Table E.4, adding one more

ranked demonstration from a 3000 length segment of a no-op policy solves this problem.

These results motivate a natural human-in-the-loop approach for safe imitation learning.

Finally, Table E.5 shows the results for high-confidence policy evaluation for Space

Invaders. The results show that using both the mean performance and 95%-confidence

lower bound are good indicators of ground truth performance for the evaluation polices.

The No-Op policy for Space Invaders results in the agent getting hit by alien lasers early in

the game. The learned reward function posterior correctly assigns low average performance

and high risk (low 95%-confidence lower bound).

220

Table E.4: Policy evaluation statistics for Seaquest over the return distribution from the
learned posterior P (R|D,P) compared with the ground truth returns using game scores.
Policies A-D correspond to checkpoints of an RL policy partially trained on the ground-
truth reward function and correspond to 25, 325, 800, and 1450 training updates to PPO.
No-Op always plays the no-op action, resulting in high mean predicted performance but
low 0.05-quantile return (0.05-VaR). Results predict that No-Op is much better than it really
is. However, simply adding a single ranked rollout from the No-Op policy and rerunning
MCMC results in correct relative rankings with respect to the No-Op policy

Predicted Ground Truth
Policy Mean 0.05-VaR Avg. Length

A 24.3 10.8 338.6 1077.8
B 53.6 24.1 827.2 2214.1
C 56.0 25.4 872.2 2248.5
D 55.8 25.3 887.6 2264.5

No-Op 2471.6 842.5 0.0 99994.0

Results after adding one ranked demo from No-Op

A 0.5 -0.5 338.6 1077.8
B 3.7 2.0 827.2 2214.1
C 3.8 2.1 872.2 2248.5
D 3.2 1.5 887.6 2264.5

No-Op -321.7 -578.2 0.0 99994.0

221

Table E.5: Policy evaluation statistics for Space Invaders over the return distribution from
the learned posterior P (R|D,P) compared with the ground truth returns using game scores.
Policies A-D correspond to checkpoints of an RL policy partially trained on the ground-
truth reward function and correspond to 25, 325, 800, and 1450 training updates to PPO.
The mean and MAP policies are the results of PPO using the mean and MAP rewards,
respectively. No-Op that always plays the no-op action, resulting in high mean predicted
performance but low 0.05-quantile return (0.05-VaR).

Predicted Ground Truth
Policy Mean 0.05-VaR Avg. Length

A 45.1 20.6 195.3 550.1
B 108.9 48.7 436.0 725.7
C 148.7 63.6 575.2 870.6
D 150.5 63.8 598.2 848.2

Mean 417.4 171.7 1143.7 1885.7
MAP 360.2 145.0 928.0 1629.5
NoOp 18.8 3.8 0.0 504.0

222

Appendix F

Supplementary Materials for

Bayesian Robust Optimization for

Imitation Learning

In this appendix we provide further implementation and hyperparameter details for the al-

gorithms discussed in the main text.

F.1 Linear Programming Details

The BROIL objective is:

maximize
u∈RSA, σ∈R

(1− λ) ·
(
σ − 1

1− αp
T [σ · 1−Ψ(π,R)]+

)
+ λ · (Rp)Tu

subject to
∑
a∈A

(
I − γ · P T

a

)
ua = p0, u ≥ 0 ,

This can be written as a linear program in standard form as follows:

223

min
σ,u

−(1− λ)(σ +
1

1− αp
Tz)− λpTRTu (F.1)

s.t. −RTu+ σ1− z ≤ −RTuE (F.2)

[
(I − γP T

a1), . . . , (I − γP T
am)
]
ua1

...

uan

 = p0 (F.3)

u ≥ 0, z ≥ 0, σ ∈ R (F.4)

We use Scipy’s linear programming software (v 1.4.1) when solving this LP in the

experiments in the paper 21.

F.2 Bayesian IRL Details

We use β = 10 for all of our experiments. We use a Gaussian proposal with standard

deviation of 0.2. We use a burn-in period of 500 samples and skip every 5th sample after

that to reduce autocorrelation. We tried a range of values for β and found very similar

results. The step size was tuned to result in an accept ratio close to 0.4. Because scaling

a reward function does not affect the optimal policy, we following prior work (Abbeel and

Ng, 2004; Syed et al., 2008; Brown and Niekum, 2018) and assume that the reward function

is scaled. For each proposal we project to the L2-norm ball to ensure that ‖w‖2 = 1.

F.3 Maximum Entropy IRL Detais

We compare against Maximum Entropy IRL (Ziebart et al., 2008). We use the implemen-

tation presented by Ziebart et al. (Ziebart et al., 2008), but to make it more comparable to
21https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.

linprog.html

224

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linprog.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linprog.html

Bayesian IRL we also add a boltzman parameter β to the likelihood such that

P (ξ) ∝ exp(βR(ξ)). (F.5)

where ξ is a trajectory and R(ξ) is the cumulative return of a trajectory. We used a horizon

equal to the number of states in the MDP for the MaxEnt IRL algorithm Ziebart et al.

(2008). We use β = 10 to match our implementation choice for Bayesian IRL. For gradient

ascent, we used a learning rate of 0.01 and perform projected gradiant descent by projecting

to the L2-norm ball such that ‖w‖2 = 1. We stop gradient ascent on the likelihood function

once it has converged. Convergence is detected by measuring the difference in the L2-norm

of the updated and prior weights and check if that is within a precision value of 0.00001. If

so, then we stop gradient ascent. We experimented with several different values for each of

these hyperparameters and found these to provide best performance.

F.4 LPAL Details

Linear Programming Apprenticeship Learning (LPAL) (Syed et al., 2008) has a robust form

that is similar to ours but makes several critical and limiting assumptions: (1) they assume

that the reward weights are strictly positive, this means they assume that the feature vector

φ(s) explicitly encodes whether a feature is good or bad by its sign. (2) They assume very

accurate estimation of the expert’s expected feature counts µ̂E . This requires an extremely

large number of demonstrations (see Chapter 4). (3) Finally, they assume a worst-case ad-

versarial reward function that will penalize whatever the learner does that is most different

from the demonstrator, even if this reward function completeley contradicts the demonstra-

tions, i.e., it does not take into account the likelihood of reward functions.

To compare BROIL against a state-of-the-art robust IRL approach, we implemented

Linear Programming Apprenticeship Learning (Syed et al., 2008). The original paper as-

sumes that the signs of the feature weights determine whether a feature is good or bad

225

and that the feature weights w lie on the probability simplex. In our work we do not as-

sume prior knowledge about which features are good or bad (we seek to infer this from

demonstrations). Thus, we implemented LPAL in a way that allows it to work with any

features and feature weights that can be both positive and negative. We simply assume that

‖w‖1 ≤ 1.

The original formulation of LPAL (which assumes knowledge of which reward fea-

tures are good and bad) is as follows:

max
u,B

{
B | B1 ≤ ΦT

LPALu− µ̂E ,
∑
a∈A

(I − γ · PT
a)ua = p0, u ≥ 0, B ∈ R

}
. (F.6)

In the paper we compare against the solution to the following derivation of the

LPAL algorithm which does not assume the weights are non-negative, thus removing the

need to know beforehand which features are good or bad. We solve for the LPAL solution

using the following linear program in standard form:

−min
B,u

B (F.7)

s.t. B1− ΦTu ≤ −µ̂E (F.8)

−B1 + ΦTu ≤ µ̂E (F.9)

[
(I − γPT

a1), . . . , (I − γPT
am)
]

ua1
...

uan

 = p0 (F.10)

u ≥ 0 (F.11)

B ∈ R (F.12)

We derive this formulation of the maxmin objective for LPAL as follows. The basic

226

LPAL objective is

max
u∈U

min
w>=0,‖w‖1≤1

(utΦw − uEΦw) (F.13)

If we want to get rid of the requirement for positive weights then we have

max
u∈U

min
‖w‖1≤1

(utΦw − uEΦw) (F.14)

The inner minimization can be changed into a maximization as follows:

max
u∈U
− max
||w||1≤1

−((utΦ− uEΦ)w) (F.15)

Next we use the fact that the infinity norm and 1-norm are dual to each other and that

||z|| = || − z|| to get the following optimization problem:

max
u∈U
−||uTΦ− uTEΦ||∞ (F.16)

We change the minimization to a maximization by changing signs:

−min
u∈U
‖uTΦ− uTEΦ‖∞ (F.17)

Using a standard linear programming trick we can write the above objective as follows:

− min
u∈U,B

{
B | B1 ≥ uTΦ− uTEΦ,−B1 ≥ −uTΦ + uTEΦ, B ∈ R

}
. (F.18)

227

Appendix G

Supplementary Materials for

Risk-Aware Active IRL

G.1 Comparing ActiveVaR and Random

In the experiments of navigation in random gridworld (section 5.3), as shown in Figure 8.3,

the improvement of ActiveVaR over Random is not prominent. We believe it is due to the

fact that we used dense features and dense rewards that make random queries informative.

Therefore, we ran additional experiments where we force the true reward and features to be

sparse and the gridworld has only a few informative initial states such that there is a lower

chance to sample a trajectory from an informative state.

Figure G.1 shows a selected setup and the policy loss averaged over 10 different

runs in the selected environment. As shown in the plot, under this setting, ActiveVaR has a

much larger improvement over random.

We also computed the worst-case actual policy loss, as this is what our method seeks

to minimize, on a similar barrier domain with all possible states as initial states. In this

setting random queries require on average 3.45 times more demonstrations than activeVaR

queries to achieve low (< 0.01) worst-case policy loss.

228

(a) Gridworld Setup: each color (except light or-
ange) is an unique feature; pink feature is the only
feature with positive weight, other colors all have
negative weights; states shaded with light orange
are designated initial states.

(b) Binary Policy Loss Over Queries

Figure G.1: Gridworld navigation experiment with a sparse reward function consisting of a
weighted combination of binary reward features.

229

Bibliography

Abbeel, P. and Ng, A. Y. (2004). Apprenticeship learning via inverse reinforcement learn-

ing. In Proceedings of the 21st international conference on Machine learning. xvii, 2,

10, 16, 22, 28, 30, 31, 35, 40, 42, 46, 49, 55, 98, 171, 224

Akgun, B., Cakmak, M., Yoo, J. W., and Thomaz, A. L. (2012). Trajectories and keyframes

for kinesthetic teaching: A human-robot interaction perspective. In Proceedings of the

seventh annual ACM/IEEE international conference on Human-Robot Interaction, pages

391–398. ACM. 53

Akrour, R., Schoenauer, M., and Sebag, M. (2011). Preference-based policy learn-

ing. In Joint European Conference on Machine Learning and Knowledge Discovery

in Databases, pages 12–27. Springer. 19, 92

Amin, K. and Singh, S. (2016). Towards resolving unidentifiability in inverse reinforcement

learning. arXiv preprint arXiv:1601.06569. 13

Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., and Mané, D. (2016).

Concrete problems in ai safety. arXiv preprint arXiv:1606.06565. 2, 12, 13, 14, 55, 93,

108

Argall, B. D., Chernova, S., Veloso, M., and Browning, B. (2009). A survey of robot

learning from demonstration. Robotics and autonomous systems, 57(5):469–483. 11, 55

230

Armstrong, S. and Mindermann, S. (2018). Occam’s razor is insufficient to infer the prefer-

ences of irrational agents. In Advances in Neural Information Processing Systems, pages

5598–5609. 53

Arora, S. and Doshi, P. (2018). A survey of inverse reinforcement learning: Challenges,

methods and progress. arXiv preprint arXiv:1806.06877. 11, 51

Artzner, P., Delbaen, F., Eber, J.-M., and Heath, D. (1999). Coherent measures of risk.

Mathematical finance, 9(3):203–228. 15, 121

Asoh, H., Akaho, M. S. S., Kamishima, T., Hasida, K., Aramaki, E., and Kohro, T. (2013).

An application of inverse reinforcement learning to medical records of diabetes treat-

ment. In ECML-PKDD Workshop on Reinforcement Learning with Generalized Feed-

back. 123

Aytar, Y., Pfaff, T., Budden, D., Paine, T. L., Wang, Z., and de Freitas, N. (2018). Playing

hard exploration games by watching youtube. arXiv preprint arXiv:1805.11592. 99, 212

Babes, M., Marivate, V., Subramanian, K., and Littman, M. L. (2011). Apprenticeship

learning about multiple intentions. In Proceedings of the 28th International Conference

on Machine Learning. 23

Bain, M. and Sommut, C. (1999). A framework for behavioural claning. Machine intelli-

gence, 15(15):103. 80

Baker, C. L., Saxe, R., and Tenenbaum, J. B. (2009). Action understanding as inverse

planning. Cognition, 113(3):329–349. 23

Barreto, A., Dabney, W., Munos, R., Hunt, J. J., Schaul, T., van Hasselt, H. P., and Silver, D.

(2017). Successor features for transfer in reinforcement learning. In Advances in neural

information processing systems, pages 4055–4065. 98

231

Barthe, F., Guédon, O., Mendelson, S., Naor, A., et al. (2005). A probabilistic approach to

the geometry of the `np -ball. The Annals of Probability, 33(2):480–513. 159

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M. (2013). The arcade learning

environment: An evaluation platform for general agents. Journal of Artificial Intelligence

Research, 47:253–279. 20, 106

Ben-Tal, A., Bertsimas, D., and Brown, D. B. (2010). A Soft Robust Model for Optimiza-

tion Under Ambiguity. Operations Research, 58(4):1220–1234. 15

Ben-Tal, A., El Ghaoui, L., and Nemirovski, A. (2009). Robust Optimization. Princeton

University Press. 15

Bishop, C. M. (2006). Pattern recognition and machine learning. springer. 160

Biyik, E., Huynh, N., Kochenderfer, M. J., and Sadigh, D. (2020). Active preference-based

gaussian process regression for reward learning. In Proceedings of Robotics: Science

and Systems (RSS). 152

Bıyık, E., Palan, M., Landolfi, N. C., Losey, D. P., and Sadigh, D. (2019). Asking easy

questions: A user-friendly approach to active reward learning. In Conference on Robot

Learning (CoRL). 94, 151

Bobu, A., Bajcsy, A., Fisac, J. F., and Dragan, A. D. (2018). Learning under misspecified

objective spaces. In Conference on Robot Learning, pages 796–805. 149, 154

Boularias, A., Kober, J., and Peters, J. (2011). Relative entropy inverse reinforcement learn-

ing. In Proceedings of the Fourteenth International Conference on Artificial Intelligence

and Statistics, pages 182–189. 13

Bradley, R. A. and Terry, M. E. (1952). Rank analysis of incomplete block designs: I. the

method of paired comparisons. Biometrika, 39(3/4):324–345. 59, 94

232

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and

Zaremba, W. (2016). Openai gym. arXiv preprint arXiv:1606.01540. 59, 61

Brown, D. S. (2011). Learning and control techniques in portfolio optimization. Under-

graduate honors thesis, Brigham Young University. 117

Brown, D. S., Coleman, R., Srinivasan, R., and Niekum, S. (2020). Safe imitation learning

via fast bayesian reward inference from preferences. In Proceedings of the 37th Interna-

tional Conference on Machine Learning, ICML. 2, 5, 92

Brown, D. S., Cui, Y., and Niekum, S. (2018). Risk-aware active inverse reinforcement

learning. In Proceedings of the 2nd Annual Conference on Robot Learning (CoRL). 2,

91, 134

Brown, D. S., Goo, W., and Niekum, S. (2019a). Better-than-demonstrator imitation learn-

ing via automatically-ranked demonstrations. In Proceedings of the 3rd Conference on

Robot Learning. 2, 5, 49, 94, 105, 219

Brown, D. S., Goo, W., Prabhat, N., and Niekum, S. (2019b). Extrapolating beyond subop-

timal demonstrations via inverse reinforcement learning from observations. In Proceed-

ings of the 36th International Conference on Machine Learning, ICML. xix, 2, 4, 11, 49,

75, 79, 80, 82, 88, 94, 106, 107, 196, 199, 200, 212, 215, 216, 217, 218

Brown, D. S. and Niekum, S. (2017). Toward probabilistic safety bounds for robot learning

from demonstration. In AAAI Fall Symposium on AI for HRI. 4, 26

Brown, D. S. and Niekum, S. (2018). Efficient Probabilistic Performance Bounds for In-

verse Reinforcement Learning. In AAAI Conference on Artificial Intelligence. 2, 4, 24,

26, 103, 122, 171, 224

Brown, D. S. and Niekum, S. (2019a). Deep bayesian reward learning from preferences. In

NeurIPS Workshop on Safety and Robustness in Decision Making. 5, 92

233

Brown, D. S. and Niekum, S. (2019b). Machine teaching for inverse reinforcement learning:

Algorithms and applications. In AAAI Conference on Artificial Intelligence. 53, 169

Burchfiel, B., Tomasi, C., and Parr, R. (2016). Distance minimization for reward learning

from scored trajectories. In AAAI, pages 3330–3336. 19

Cao, Z., Qin, T., Liu, T.-Y., Tsai, M.-F., and Li, H. (2007). Learning to rank: from pairwise

approach to listwise approach. In Proceedings of the 24th international conference on

Machine learning. 81, 90

Castro, P. S., Li, S., and Zhang, D. (2019). Inverse reinforcement learning with multiple

ranked experts. arXiv preprint arXiv:1907.13411. 52, 167

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. (2020). A simple framework for

contrastive learning of visual representations. arXiv preprint arXiv:2002.05709. 152

Chen, W., Liu, T.-Y., Lan, Y., Ma, Z.-M., and Li, H. (2009). Ranking measures and loss

functions in learning to rank. In Advances in Neural Information Processing Systems,

pages 315–323. 90

Choi, J. and Kim, K.-E. (2011). Map inference for bayesian inverse reinforcement learning.

In Advances in Neural Information Processing Systems. 24, 28, 35, 149

Choi, S., Lee, K., and Oh, S. (2019). Robust learning from demonstrations with mixed

qualities using leveraged gaussian processes. IEEE Transactions on Robotics. 12

Chow, Y., Tamar, A., Mannor, S., and Pavone, M. (2015). Risk-sensitive and robust

decision-making : A CVaR optimization approach. In Neural Information Processing

Systems (NIPS). 14, 117

Christiano, P. F., Leike, J., Brown, T., Martic, M., Legg, S., and Amodei, D. (2017). Deep

reinforcement learning from human preferences. In Advances in Neural Information

Processing Systems, pages 4299–4307. 19, 49, 54, 59, 88, 92, 94, 151, 183, 212

234

Chua, K., Calandra, R., McAllister, R., and Levine, S. (2018). Deep reinforcement learn-

ing in a handful of trials using probabilistic dynamics models. In Advances in Neural

Information Processing Systems, pages 4754–4765. 75

Chuck, C., Laskey, M., Krishnan, S., Joshi, R., Fox, R., and Goldberg, K. (2017). Statistical

data cleaning for deep learning of automation tasks from demonstrations. In 2017 13th

IEEE Conference on Automation Science and Engineering (CASE), pages 1142–1149.

IEEE. 53

Cohn, R., Durfee, E., and Singh, S. (2011). Comparing action-query strategies in semi-

autonomous agents. In Twenty-Fifth AAAI Conference on Artificial Intelligence. 18, 35,

37, 42, 134, 140

Cui, Y. and Niekum, S. (2018). Active reward learning from critiques. In IEEE Interna-

tional Conference on Robotics and Automation (ICRA). xix, 18, 104, 105, 134, 137, 138,

140, 141, 151

de Haan, P., Jayaraman, D., and Levine, S. (2019). Causal confusion in imitation learning.

In Advances in Neural Information Processing Systems, pages 11693–11704. 108

Deisenroth, M. and Rasmussen, C. E. (2011). Pilco: A model-based and data-efficient ap-

proach to policy search. In Proceedings of the 28th International Conference on machine

learning (ICML-11), pages 465–472. 75

Delage, E. and Mannor, S. (2010). Percentile optimization for markov decision processes

with parameter uncertainty. Operations research, 58(1):203–213. 15, 117, 121, 125

Delbaen, F. (2002). Coherent risk measures on general probability spaces. In Advances in

finance and stochastics, pages 1–37. Springer. 121

Derman, E., Mankowitz, D., Mann, T. A., and Mannor, S. (2018). Soft-Robust Actor-Critic

Policy-Gradient. In Uncertainty in Artificial Intelligence (UAI). 15

235

Desai, V. V., Farias, V. F., and Moallemi, C. C. (2012). Approximate dynamic programming

via a smoothed linear program. Operations Research, 60(3):655–674. 152

Dhariwal, P., Hesse, C., Klimov, O., Nichol, A., Plappert, M., Radford, A., Schulman, J.,

Sidor, S., Wu, Y., and Zhokhov, P. (2017). Openai baselines. https://github.

com/openai/baselines. 60, 82, 98, 150, 217, 218

Doersch, C. (2016). Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908.

99, 212

El Asri, L., Piot, B., Geist, M., Laroche, R., and Pietquin, O. (2016). Score-based in-

verse reinforcement learning. In Proceedings of the 2016 International Conference on

Autonomous Agents & Multiagent Systems, pages 457–465. International Foundation for

Autonomous Agents and Multiagent Systems. 19

Eric, B., Freitas, N. D., and Ghosh, A. (2008). Active preference learning with discrete

choice data. In Advances in neural information processing systems, pages 409–416. 19

Finn, C., Levine, S., and Abbeel, P. (2016). Guided cost learning: Deep inverse optimal

control via policy optimization. In International Conference on Machine Learning. 10,

49, 55, 211

Fisac, J. F., Akametalu, A. K., Zeilinger, M. N., Kaynama, S., Gillula, J., and Tomlin,

C. J. (2018). A general safety framework for learning-based control in uncertain robotic

systems. IEEE Transactions on Automatic Control. 2

Föllmer, H. and Knispel, T. (2011). Entropic risk measures: Coherence vs. convexity, model

ambiguity and robust large deviations. Stochastics and Dynamics, 11(02n03):333–351.

148

Follmer, H. and Schied, A. (2011). Stochastic Finance: An Introduction in Discrete Time.

Walter de Gruyter, 3rd edition. 15

236

https://github.com/openai/baselines
https://github.com/openai/baselines

Fu, J., Luo, K., and Levine, S. (2017). Learning robust rewards with adversarial inverse

reinforcement learning. arXiv preprint arXiv:1710.11248. 2, 49

Gao, Y., Lin, J., Yu, F., Levine, S., Darrell, T., et al. (2018). Reinforcement learning from

imperfect demonstrations. arXiv preprint arXiv:1802.05313. 12

Gao, Y., Peters, J., Tsourdos, A., Zhifei, S., and Meng Joo, E. (2012). A survey of inverse

reinforcement learning techniques. International Journal of Intelligent Computing and

Cybernetics, 5(3):293–311. 11

Garcıa, J. and Fernández, F. (2015). A comprehensive survey on safe reinforcement learn-

ing. Journal of Machine Learning Research, 16(1):1437–1480. 2, 3, 13, 14, 117

Ghavamzadeh, M., Petrik, M., and Chow, Y. (2016). Safe policy improvement by minimiz-

ing robust baseline regret. In Advances in Neural Information Processing Systems, pages

2298–2306. 117

Goo, W. and Niekum, S. (2019). One-shot learning of multi-step tasks from observation

via activity localization in auxiliary video. In 2019 IEEE International Conference on

Robotics and Automation (ICRA). 11

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,

Courville, A., and Bengio, Y. (2014). Generative adversarial nets. In Advances in neural

information processing systems, pages 2672–2680. 10, 11

Greydanus, S., Koul, A., Dodge, J., and Fern, A. (2018). Visualizing and understanding

atari agents. In International Conference on Machine Learning, pages 1787–1796. 84,

184

Grollman, D. H. and Billard, A. (2011). Donut as i do: Learning from failed demonstra-

tions. In Robotics and Automation (ICRA), 2011 IEEE International Conference on,

pages 3804–3809. IEEE. 12

237

Hadfield-Menell, D., Milli, S., Abbeel, P., Russell, S. J., and Dragan, A. (2017). Inverse

reward design. In Advances in neural information processing systems, pages 6765–6774.

15, 118, 120, 122, 149, 153

Hanna, J. P. and Stone, P. (2017). Grounded action transformation for robot learning in

simulation. In Thirty-First AAAI Conference on Artificial Intelligence. 99, 212

Hanna, J. P., Stone, P., and Niekum, S. (2017). Bootstrapping with models: Confidence

intervals for off-policy evaluation. In Proceedings of the 16th Conference on Autonomous

Agents and Multiagent Systems. 14

Henderson, P., Chang, W.-D., Bacon, P.-L., Meger, D., Pineau, J., and Precup, D. (2018).

Optiongan: Learning joint reward-policy options using generative adversarial inverse

reinforcement learning. In Thirty-Second AAAI Conference on Artificial Intelligence. 11,

55

Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W., Horgan, D.,

Piot, B., Azar, M., and Silver, D. (2018). Rainbow: Combining improvements in deep

reinforcement learning. In Thirty-Second AAAI Conference on Artificial Intelligence. 93

Hester, T., Vecerik, M., Pietquin, O., Lanctot, M., Schaul, T., Piot, B., Horgan, D., Quan,

J., Sendonaris, A., Osband, I., et al. (2018). Deep q-learning from demonstrations. In

Thirty-Second AAAI Conference on Artificial Intelligence. 12, 49, 88, 183

Ho, J. and Ermon, S. (2016). Generative adversarial imitation learning. In Advances in

Neural Information Processing Systems, pages 4565–4573. xvii, xviii, xix, xxiv, 10, 11,

15, 16, 49, 61, 62, 64, 65, 85, 86, 106, 107

Huang, J., Wu, F., Precup, D., and Cai, Y. (2018). Learning safe policies with expert

guidance. In Advances in Neural Information Processing Systems, pages 9105–9114. 15,

16, 118

238

Iancu, D. A. and Trichakis, N. (2014). Pareto Efficiency in Robust Optimization. Manage-

ment Science, 60(1):130–147. 15

Ibarz, B., Leike, J., Pohlen, T., Irving, G., Legg, S., and Amodei, D. (2018). Reward

learning from human preferences and demonstrations in atari. In Advances in Neural

Information Processing Systems. xxi, 19, 59, 63, 65, 79, 93, 108, 151, 183, 186

Ijspeert, A. J., Nakanishi, J., Hoffmann, H., Pastor, P., and Schaal, S. (2013). Dynamical

movement primitives: learning attractor models for motor behaviors. Neural computa-

tion, 25(2):328–373. 1

Jacq, A., Geist, M., Paiva, A., and Pietquin, O. (2019). Learning from a learner. In Inter-

national Conference on Machine Learning, pages 2990–2999. 12, 75, 94

Jorion, P. (1997). Value at risk. McGraw-Hill, New York. 14, 31, 32, 102, 117, 135

Kalakrishnan, M., Pastor, P., Righetti, L., and Schaal, S. (2013). Learning objective func-

tions for manipulation. In 2013 IEEE International Conference on Robotics and Automa-

tion, pages 1331–1336. IEEE. 13

Kalantari, J., Nelson, H., and Chia, N. (2020). The unreasonable effectiveness of inverse

reinforcement learning in advancing cancer research. In Association for the Advancement

of Artificial Intelligence (AAAI). 123

Karasev, V., Ayvaci, A., Heisele, B., and Soatto, S. (2016). Intent-aware long-term predic-

tion of pedestrian motion. In IEEE International Conference on Robotics and Automa-

tion, pages 2543–2549. 23

Kent, D., Saldanha, C., and Chernova, S. (2017). A comparison of remote robot teleoper-

ation interfaces for general object manipulation. In Proceedings of the 2017 ACM/IEEE

International Conference on Human-Robot Interaction, pages 371–379. ACM. 53

239

Kim, B. and Pineau, J. (2016). Socially adaptive path planning in human environments

using inverse reinforcement learning. International Journal of Social Robotics, 8(1):51–

66. 23

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980. 60, 215

Knox, W. B. and Stone, P. (2009). Interactively shaping agents via human reinforcement:

The tamer framework. In Proceedings of the fifth international conference on Knowledge

capture, pages 9–16. ACM. 17, 151

Kober, J. and Peters, J. R. (2009). Policy search for motor primitives in robotics. In Ad-

vances in neural information processing systems, pages 849–856. 12

Kurin, V., Nowozin, S., Hofmann, K., Beyer, L., and Leibe, B. (2017). The atari grand

challenge dataset. arXiv preprint arXiv:1705.10998. xvii, 67, 70, 184

Lacotte, J., Ghavamzadeh, M., Chow, Y., and Pavone, M. (2019). Risk-sensitive genera-

tive adversarial imitation learning. In The 22nd International Conference on Artificial

Intelligence and Statistics, pages 2154–2163. 15, 16, 117, 125

Laskey, M., Lee, J., Fox, R., Dragan, A., and Goldberg, K. (2017). Dart: Noise injection

for robust imitation learning. Conference on Robot Learning (CoRL). 13

Leike, J., Martic, M., Krakovna, V., Ortega, P. A., Everitt, T., Lefrancq, A., Orseau, L., and

Legg, S. (2017). Ai safety gridworlds. arXiv preprint arXiv:1711.09883. 93

Levine, S., Popovic, Z., and Koltun, V. (2011). Nonlinear inverse reinforcement learning

with gaussian processes. In Advances in Neural Information Processing Systems. 23, 28

Littman, M. L., Dean, T. L., and Kaelbling, L. P. (1995). On the complexity of solving

markov decision problems. Proceedings of the Eleventh Conference on Uncertainty in

Artificial Intelligence. 97

240

Liu, Y., Gupta, A., Abbeel, P., and Levine, S. (2018). Imitation from observation: Learning

to imitate behaviors from raw video via context translation. In 2018 IEEE International

Conference on Robotics and Automation (ICRA), pages 1118–1125. IEEE. 11

Lopes, M., Melo, F., and Montesano, L. (2009). Active learning for reward estimation in

inverse reinforcement learning. In Joint European Conference on Machine Learning and

Knowledge Discovery in Databases. xxix, 18, 37, 134, 138, 139, 140

Lopes, M., Melo, F. S., and Montesano, L. (2007). Affordance-based imitation learning in

robots. In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages

1015–1021. 23

Luce, R. D. (2012). Individual choice behavior: A theoretical analysis. Courier Corpora-

tion. 59, 81

MacGlashan, J., Ho, M. K., Loftin, R., Peng, B., Wang, G., Roberts, D. L., Taylor, M. E.,

and Littman, M. L. (2017). Interactive learning from policy-dependent human feedback.

In International Conference on Machine Learning, pages 2285–2294. 17

Majumdar, A., Singh, S., Mandlekar, A., and Pavone, M. (2017). Risk-sensitive inverse

reinforcement learning via coherent risk models. In Robotics: Science and Systems. 16,

117

Makhzani, A. and Frey, B. J. (2017). Pixelgan autoencoders. In Advances in Neural Infor-

mation Processing Systems, pages 1975–1985. 99, 212

Markowitz, H. M. and Todd, G. P. (2000). Mean-variance analysis in portfolio choice and

capital markets, volume 66. John Wiley & Sons. 117

Michini, B. and How, J. P. (2012a). Bayesian nonparametric inverse reinforcement learn-

ing. In Joint European Conference on Machine Learning and Knowledge Discovery in

Databases. 23

241

Michini, B. and How, J. P. (2012b). Improving the efficiency of bayesian inverse reinforce-

ment learning. In IEEE International Conference on Robotics and Automation, pages

3651–3656. 38

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves,

A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-level control

through deep reinforcement learning. Nature, 518(7540):529. 93, 181

Ng, A. Y., Harada, D., and Russell, S. (1999). Policy invariance under reward transforma-

tions: Theory and application to reward shaping. In ICML, volume 99, pages 278–287.

12, 55, 93, 169

Ng, A. Y. and Russell, S. J. (2000). Algorithms for inverse reinforcement learning. In

Proceedings of the International Conference on Machine Learning, pages 663–670. 2,

10, 15, 22, 53, 54, 116, 135

Ogryczak, W. and Ruszczyński, A. (1999). From stochastic dominance to mean-risk

models: Semideviations as risk measures. European Journal of Operational Research,

116(1):33–50. 148

Oh, J., Guo, X., Lee, H., Lewis, R. L., and Singh, S. (2015). Action-conditional video pre-

diction using deep networks in atari games. In Advances in neural information processing

systems, pages 2863–2871. 99, 212

Osa, T., Pajarinen, J., Neumann, G., Bagnell, J. A., Abbeel, P., Peters, J., et al. (2018). An

algorithmic perspective on imitation learning. Foundations and Trends R© in Robotics,

7(1-2):1–179. 11

Palan, M., Landolfi, N. C., Shevchuk, G., and Sadigh, D. (2019). Learning reward func-

tions by integrating human demonstrations and preferences. In Proceedings of Robotics:

Science and Systems (RSS). 19, 79, 88, 92, 94

242

Paraschos, A., Daniel, C., Peters, J. R., and Neumann, G. (2013). Probabilistic movement

primitives. In Advances in neural information processing systems, pages 2616–2624. 1

Pazis, J. and Parr, R. (2011). Non-parametric Approximate Linear Programming for MDPs.

In Conference on Artificial Intelligence (AAAI). 152

Petrik, M. (2010). Optimization-based Approximate Dynamic Programming. PhD thesis,

University of Massachusetts Amherst. 152

Petrik, M. and Russell, R. H. (2019). Beyond confidence regions: Tight bayesian ambiguity

sets for robust mdps. arXiv preprint arXiv:1902.07605. 14

Petrik, M. and Subramanian, D. (2012). An approximate solution method for large risk-

averse Markov decision processes. In Uncertainty in Artificial Intelligence (UAI). 117

Pirotta, M. and Restelli, M. (2016). Inverse reinforcement learning through policy gradient

minimization. In Proceedings of the AAAI Conference on Artificial Intelligence, pages

1993–1999. 22, 29

Pomerleau, D. A. (1991). Efficient training of artificial neural networks for autonomous

navigation. Neural Computation, 3(1):88–97. 1, 9

Pradier, M. F., Pan, W., Yao, J., Ghosh, S., and Doshi-Velez, F. (2018). Projected bnns:

Avoiding weight-space pathologies by learning latent representations of neural network

weights. arXiv preprint arXiv:1811.07006. 96

Puterman, M. L. (2014). Markov decision processes: discrete stochastic dynamic program-

ming. John Wiley & Sons. 8, 21, 119, 122, 123

Ramachandran, D. and Amir, E. (2007). Bayesian inverse reinforcement learning. In Pro-

ceedings of the 20th International Joint Conference on Artifical intelligence, pages 2586–

2591. 4, 10, 23, 24, 28, 33, 35, 49, 55, 91, 93, 102, 118, 120, 122, 128, 132, 136

243

Rockafellar, R. T. and Uryasev, S. (2000). Optimization of conditional value-at-risk. Jour-

nal of risk, 2:21–42. 14, 117, 118, 121, 122, 148

Ross, S. and Bagnell, D. (2010). Efficient reductions for imitation learning. In Proceedings

of the thirteenth international conference on artificial intelligence and statistics, pages

661–668. 177, 179

Ross, S., Gordon, G., and Bagnell, D. (2011). A reduction of imitation learning and struc-

tured prediction to no-regret online learning. In Proceedings of the fourteenth interna-

tional conference on artificial intelligence and statistics, pages 627–635. 9, 17

Rothkopf, C. A. and Ballard, D. H. (2013). Modular inverse reinforcement learning for

visuomotor behavior. Biological cybernetics, 107(4):477–490. 23

Russell, R. H. and Petrik, M. (2019). Beyond Confidence Regions: Tight Bayesian Am-

biguity Sets for Robust MDPs. In Advances in Neural Information Processing Systems

(NeurIPS). 15

Russell, S. and Norvig, P. (2002). Artificial intelligence: a modern approach. 118

Sadigh, D., Dragan, A. D., Sastry, S. S., and Seshia, S. A. (2017). Active preference-based

learning of reward functions. In Proceedings of Robotics: Science and Systems (RSS).

18, 19, 22, 28, 54, 79, 88, 92, 122, 123

Santara, A., Naik, A., Ravindran, B., Das, D., Mudigere, D., Avancha, S., and Kaul, B.

(2017). Rail: Risk-averse imitation learning. arXiv preprint arXiv:1707.06658. 16

Sarafian, E., Tamar, A., and Kraus, S. (2018). Safe policy learning from observations. arXiv

preprint arXiv:1805.07805. 12

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal policy

optimization algorithms. arXiv preprint arXiv:1707.06347. 60, 81, 106, 218

244

Sermanet, P., Lynch, C., Chebotar, Y., Hsu, J., Jang, E., Schaal, S., Levine, S., and Brain, G.

(2018). Time-contrastive networks: Self-supervised learning from video. In 2018 IEEE

International Conference on Robotics and Automation (ICRA), pages 1134–1141. IEEE.

11

Shah, R., Gundotra, N., Abbeel, P., and Dragan, A. (2019). On the feasibility of learning,

rather than assuming, human biases for reward inference. In International Conference

on Machine Learning, pages 5670–5679. 23

Shapiro, A., Dentcheva, D., and Ruszczynski, A. (2014). Lectures on stochastic program-

ming: Modeling and theory. 15

Shiarlis, K., Messias, J., and Whiteson, S. (2016). Inverse reinforcement learning from

failure. In Proceedings of the 2016 International Conference on Autonomous Agents &

Multiagent Systems. 12

Srinivas, A., Laskin, M., and Abbeel, P. (2020). Curl: Contrastive unsupervised represen-

tations for reinforcement learning. arXiv preprint arXiv:2004.04136. 152

Sugiyama, H., Meguro, T., and Minami, Y. (2012). Preference-learning based inverse rein-

forcement learning for dialog control. In INTERSPEECH, pages 222–225. 19

Sutton, R. S. and Barto, A. G. (1998). Introduction to reinforcement learning, volume 135.

MIT press Cambridge. 2, 8, 10, 21, 33, 52, 74

Sutton, R. S., McAllester, D. A., Singh, S. P., and Mansour, Y. (2000). Policy gradient

methods for reinforcement learning with function approximation. In Advances in neural

information processing systems, pages 1057–1063. 74, 97

Syed, U., Bowling, M., and Schapire, R. E. (2008). Apprenticeship learning using linear

programming. In Proceedings of the 25th international conference on Machine learning,

pages 1032–1039. xxviii, 15, 16, 118, 122, 128, 129, 130, 131, 132, 224, 225

245

Syed, U. and Schapire, R. E. (2007). A game-theoretic approach to apprenticeship learning.

In Advances in neural information processing systems, pages 1449–1456. xvii, 12, 16,

29, 31, 35, 41, 42, 46, 156

Tamar, A., Glassner, Y., and Mannor, S. (2015). Optimizing the cvar via sampling. In

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, pages 2993–

2999. 14, 31, 117

Tang, Y. C., Zhang, J., and Salakhutdinov, R. (2020). Worst cases policy gradients. In

Kaelbling, L. P., Kragic, D., and Sugiura, K., editors, Proceedings of the Conference

on Robot Learning, volume 100 of Proceedings of Machine Learning Research, pages

1078–1093. PMLR. 14, 117

Taylor, M. E. and Stone, P. (2009). Transfer learning for reinforcement learning domains:

A survey. Journal of Machine Learning Research, 10(Jul):1633–1685. 93

Taylor, M. E., Suay, H. B., and Chernova, S. (2011). Integrating reinforcement learning

with human demonstrations of varying ability. In The 10th International Conference

on Autonomous Agents and Multiagent Systems-Volume 2, pages 617–624. International

Foundation for Autonomous Agents and Multiagent Systems. 12

Thananjeyan, B., Balakrishna, A., Rosolia, U., Li, F., McAllister, R., Gonzalez, J. E.,

Levine, S., Borrelli, F., and Goldberg, K. (2019). Safety augmented value estimation

from demonstrations (saved): Safe deep model-based rl for sparse cost robotic tasks.

arXiv preprint arXiv:1905.13402. 1, 99, 212

Thomas, P., Theocharous, G., and Ghavamzadeh, M. (2015a). High confidence policy im-

provement. In Proceedings of the 32nd International Conference on Machine Learning,

pages 2380–2388. 14

Thomas, P. S., da Silva, B. C., Barto, A. G., Giguere, S., Brun, Y., and Brunskill, E. (2019).

246

Preventing undesirable behavior of intelligent machines. Science, 366(6468):999–1004.

2, 13

Thomas, P. S., Theocharous, G., and Ghavamzadeh, M. (2015b). High-confidence off-

policy evaluation. In Proceedings of the AAAI Conference on Artificial Intelligence,

pages 3000–3006. 14, 27

Todorov, E., Erez, T., and Tassa, Y. (2012). Mujoco: A physics engine for model-based con-

trol. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference

on, pages 5026–5033. IEEE. 59

Torabi, F., Warnell, G., and Stone, P. (2018a). Behavioral cloning from observation. In

Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI).

xvii, xxiv, 1, 9, 11, 55, 61, 62, 64, 65, 99, 149, 151, 167, 181, 212

Torabi, F., Warnell, G., and Stone, P. (2018b). Generative adversarial imitation from obser-

vation. arXiv preprint arXiv:1807.06158. 11

Tucker, A., Gleave, A., and Russell, S. (2018). Inverse reinforcement learning for video

games. In Proceedings of the Workshop on Deep Reinforcement Learning at NeurIPS.

11, 65

Volkovs, M. N. and Zemel, R. S. (2014). New learning methods for supervised and unsuper-

vised preference aggregation. The Journal of Machine Learning Research, 15(1):1135–

1176. 94

Weisstein, E. (2017). Ball point picking. From MathWorld–A Wolfram Web Resource.

http://mathworld. wolfram. com/BallPointPicking. html. 159

Wilson, A., Fern, A., and Tadepalli, P. (2012). A bayesian approach for policy learning from

trajectory preference queries. In Advances in neural information processing systems,

pages 1133–1141. 92

247

Wirth, C., Akrour, R., Neumann, G., and Fürnkranz, J. (2017). A survey of preference-

based reinforcement learning methods. Journal of Machine Learning Research,

18(136):1–46. 19

Wirth, C., Fürnkranz, J., and Neumann, G. (2016). Model-free preference-based reinforce-

ment learning. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence,

pages 2222–2228. AAAI Press. 19

Wulfmeier, M., Ondruska, P., and Posner, I. (2015). Maximum entropy deep inverse rein-

forcement learning. arXiv preprint arXiv:1507.04888. 28

Wulfmeier, M., Rao, D., Wang, D. Z., Ondruska, P., and Posner, I. (2017). Large-scale

cost function learning for path planning using deep inverse reinforcement learning. The

International Journal of Robotics Research, 36(10):1073–1087. 123

Wyrobek, K. A., Berger, E. H., Van der Loos, H. M., and Salisbury, J. K. (2008). Towards

a personal robotics development platform: Rationale and design of an intrinsically safe

personal robot. In 2008 IEEE International Conference on Robotics and Automation,

pages 2165–2170. IEEE. 2

Xu, K., Ratner, E., Dragan, A., Levine, S., and Finn, C. (2019). Learning a prior over

intent via meta-inverse reinforcement learning. International Conference on Machine

Learning. 120, 125

Yu, T., Finn, C., Xie, A., Dasari, S., Zhang, T., Abbeel, P., and Levine, S. (2018). One-shot

imitation from observing humans via domain-adaptive meta-learning. arXiv preprint

arXiv:1802.01557. 11

Zhang, J. and Cho, K. (2017). Query-efficient imitation learning for end-to-end simulated

driving. In Thirty-First AAAI Conference on Artificial Intelligence. 15

Zheng, J., Liu, S., and Ni, L. M. (2014). Robust bayesian inverse reinforcement learning

248

with sparse behavior noise. In Proceedings of the AAAI Conference on Artificial Intelli-

gence, pages 2198–2205. 12, 16, 149

Zhu, Y., Wang, Z., Merel, J., Rusu, A., Erez, T., Cabi, S., Tunyasuvunakool, S., Kramár,

J., Hadsell, R., de Freitas, N., et al. (2018). Reinforcement and imitation learning for

diverse visuomotor skills. arXiv preprint arXiv:1802.09564. 1

Ziebart, B. D., Maas, A. L., Bagnell, J. A., and Dey, A. K. (2008). Maximum entropy

inverse reinforcement learning. In Proceedings of the 23rd AAAI Conference on Artificial

Intelligence, pages 1433–1438. xxviii, 10, 13, 15, 22, 28, 49, 55, 118, 128, 130, 131,

132, 149, 224, 225

249

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Chapter Introduction
	Contributions

	Chapter Background and Related Work
	Reinforcement Learning
	Imitation Learning
	Behavioral Cloning
	Inverse Reinforcement Learning
	Learning from Observation
	Better-than-Demonstrator Imitation Learning

	Safety
	Reinforcement Learning
	Safe Imitation Learning
	High-Confidence Performance Bounds for Imitation Learning

	Learning from Human Feedback
	Interactive Reinforcement Learning
	Active Inverse Reinforcement Learning
	Preference-Based Learning

	Chapter Notation and Preliminaries
	Markov Decision Processes
	Linear Reward Functions
	Bayesian Inverse Reinforcement Learning

	Chapter High-Confidence Performance Bounds for Safe Imitation Learning
	High-Confidence Policy Evaluation for Imitation Learning
	High-Confidence Bounds on Policy Loss
	Worst-Case Bound
	EVD Value-at-Risk Bound
	Empirical Results
	Infinite Horizon Grid Navigation
	Noisy Demonstrations
	Sensitivity to Evaluation Policy
	High-Confidence Policy Selection for a Simulated Driving Task
	High-confidence policy improvement

	Summary

	Chapter Computationally Efficient Reward Learning from Suboptimal Demonstrations
	Better-than-Demonstrator Performance: Theory
	Extrapolating Beyond a Demonstrator
	Extrapolation via ranked demonstrations

	Trajectory-Ranked Reward Extrapolation
	Problem Definition
	Algorithm
	MuJoCo Experiments and Results
	Atari Experiments and Results
	Robustness to Noisy Rankings
	Discussion

	Ranking-Based Reward Extrapolation Without Rankings
	Learning from a Learner
	Disturbance-Based Reward Extrapolation
	Algorithm
	Experimental Results

	Summary

	Chapter Safe Imitation Learning via Fast Bayesian Reward Inference from Preferences
	Bayesian Reward Extrapolation
	Optimizations
	Pre-Training Reward Function Features
	HCPE-IL via Bayesian REX
	High-Confidence Policy Evaluation for Imitation Learning
	Computation Details

	Experimental Comparison of Bayesian IRL vs. Bayesian REX
	Ranked Suboptimal vs. Optimal Demonstrations
	Only Ranked Suboptimal Demonstrations
	Only Optimal Demonstrations

	Visual Imitation Learning Results
	High-Confidence Policy Evaluation Results
	High-Confidence Performance Bounds on Human Trajectories
	Beam Rider
	Space Invaders
	Enduro

	Summary

	Chapter Bayesian Robust Optimization for Imitation Learning
	Preliminaries
	Markov Decision Processes
	Linear Reward Functions
	Distributions over Reward Functions
	Risk Metrics

	Balancing Risk and Return for Safe Imitation Learning
	Balancing Robustness and Expected Return
	Measures of Robustness

	Experiments
	Zero-shot Robust Policy Optimization
	Ambiguous Demonstrations

	Summary

	Chapter Risk-Aware Active Inverse Reinforcement Learning
	Methodology
	Bounding the Performance of a Policy Given Demonstrations
	Risk-Aware Active Queries
	Example

	Experiments
	Gridworld Active Action Queries
	Gridworld Active Critique Queries
	Active Imitation Learning for a 2D Highway Driving Task
	Robot Table Setting Task

	Choosing an Intuitive Stopping Condition
	Summary

	Chapter Future Work
	High-Confidence Policy Evaluation for Imitation Learning
	Computationally Efficient Reward Learning from Suboptimal Demonstrations
	Safe Imitation Learning via Fast Bayesian Reward Inference from Preferences
	Bayesian Robust Optimization for Imitation Learning
	Risk-Aware Active Inverse Reinforcement Learning
	Additional Frontiers

	Chapter Conclusion
	Contributions

	Appendix Supplementary Materials for High-Confidence Performance Bounds for Imitation Learning
	Code
	L1-norm MCMC Walk
	Uniform sampling from L1-unit ball
	MCMC implementation details

	Appendix Theory and Proofs for Computational Efficient Inverse Reinforcement Learning from Suboptimal Demonstrations
	Extrapolating Beyond a Demonstrator
	Extrapolation via ranked demonstrations
	Ranking Theory
	Uncertainty Reduction for Random Halfspaces
	Noise Injection Theory
	Optimal policy
	Suboptimal cloned policy
	Compounding errors

	Appendix Supplementary Materials for Trajectory-Ranked Reward Extrapolation
	Code and Videos
	T-REX Results on the MuJoCo Domain
	Policy visualization

	Behavioral Cloning from Observation
	Atari reward learning details
	Comparison to active reward learning
	Human Demonstrations and Rankings
	Human demonstrations

	Atari Reward Visualizations

	Appendix Supplementary Materials for Disturbance-Based Reward Extrapolation
	D-REX Details
	Demonstrations
	Behavioral cloning
	Synthetic rankings
	Noise Degradation
	Reward function training
	Policy optimization

	GAIL
	D-REX Reward Extrapolation and Attention Heatmaps

	Appendix Bayesian REX Supplementary Materials
	MCMC Details
	Pre-training Latent Reward Features
	Training specifics
	Visualizations of Learned Features

	Imitation Learning Ablations for Reward Function Feature Pre-Training
	Suboptimal Demonstration Details
	Reinforcement Learning Details
	High-Confidence Policy Performance Bounds
	Policy Evaluation Details
	Evaluation Policies

	Appendix Supplementary Materials for Bayesian Robust Optimization for Imitation Learning
	Linear Programming Details
	Bayesian IRL Details
	Maximum Entropy IRL Detais
	LPAL Details

	Appendix Supplementary Materials for Risk-Aware Active IRL
	Comparing ActiveVaR and Random

	Bibliography

