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ABSTRACT

LEARNING AND CONTROL TECHNIQUES IN

PORTFOLIO OPTIMIZATION

Daniel S. Brown

Department of Computer Science

Bachelor of Science

This thesis provides an introduction to modern portfolio theory and focuses

on two fundamental models: the Markowitz Mean-Variance model and the

Mean Absolute Deviation model. The optimal portfolios generated by these

models are compared and contrasted using S&P 500 historical stock returns

from 2007 to 2010. The results show that the MAD and Markowitz models are

very comparable in performance. However, the MAD model is computationally

much faster making it more practical for most problems. Simulation results

show significant return on investment for several of the portfolios studied.

Using the standard MAD model with a 63 day rebalancing horizon, a return

of 261.26% is achieved despite the recession. Several other unusual results are

reported: it is shown that the Markowitz model while being slower, actually

uses fewer stocks than the MAD model; also an unusual bump is found in the

time complexity of the Markowitz model and it is shown that for very large



time horizons the time complexity of the Markowitz model is similar to the

MAD model. Based on the overall results, the MAD model solved with the

simplex method requires the least amount of computation time, is robust to

overdiversification, and achieves the highest returns.
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Chapter 1

Introduction

The recent chaos in the financial world has made increasingly clear the great value

and importance of risk analysis when making financial decisions. Much research has

been done in the field of computational finance in an attempt to accurately model fi-

nancial markets and their inherent risks. Because we do not have perfect information

about future events such as returns on derivatives and securities, financial analysts

implement various learning algorithms in an attempt to forecast such behavior. These

algorithms yield predictive models that analysts use to make optimal decisions. Re-

searching ways to approach risk management and optimal decision-making through

the use of learning algorithms and control techniques will be the underlying theme of

this thesis. I will focus specifically on portfolio optimization.

1.1 Portfolio Optimization

Building optimal investment portfolios is a major focus in computational finance.

Given a set of potential investments, a portfolio manager must decide on the number

and proportion of investments to acquire in order to reach an objective. These objec-

1



1.2 Using Information to Make Optimal Decisions 2

tives are typically formulated as optimization problems where the portfolio manager

desires to maximize returns given an admissible level of risk or to minimize risk given a

required level of return. Portfolios often consist of stocks and bonds, but may include

other investment vehicles such as contracts to buy or sell commodities, or actual phys-

ical resources such as power plants or retail stores. In 1990 Harry Markowitz received

the Nobel Prize in Economics for his portfolio optimization model that addressed the

tradeoff between portfolio risk and return [19].

Since Markowitz published his seminal paper in 1952, the field of portfolio theory

has grown as researchers have criticized his model and proposed alternatives to his

approach [21] [8] [14]. Researchers continue to question how to best estimate future

returns and how to measure portfolio risk. In 1991 Konno and Yamazaki proposed

an alternative to Markowitz’s model that uses mean absolute deviation instead of

variance as the measure of portfolio risk [14]. Their Mean Absolute Deviation (MAD)

portfolio optimization model results in a more computationally tractable solution that

can be found through linear programming techniques.

1.2 Using Information to Make Optimal Decisions

Finding the solution to a portfolio optimization problem often requires the use of al-

gorithms that take available information and utilize it to make good decisions. These

types of problems are referred to as decision and control problems. Portfolio opti-

mization is typically referred to as an open-loop control problem because a portfolio

manager can be thought of as a price taker whose decisions are influenced by the

market, but whose actions have a negligible impact on the market as a whole.
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1.2.1 Decision and Control Problems

A decision and control problem consists of three parts: (1) A clear objective, (2)

A complete description of the available choices, and (3) An understanding of the

consequences of available choices in terms of how they impact the objective. In

order to solve decision and control problems, we often need information about the

future to know how certain actions will affect our objective. When we do not have

perfect information about future events and consequences, we must create a model we

believe best predicts the future and use the outputs of this model in place of perfect

information. This process of developing a model to make inferences about the future

based on the past involves solving what is called a learning problem.

1.2.2 Learning Problems

A learning problem is the task of selecting out of a set of potential models the model

that best fits the data of interest according to some quality metric. There are three

fundamental pieces needed to solve a learning problem: (1) A parameterized family

of mathematical models, (2) Data, and (3) A quality metric that scores a particular

model given the available data. Scientists often develop learning algorithms that solve

learning problems. These algorithms select a model that best fits the available data

according to a desired metric.

1.3 Linear and Quadratic Programming

Throughout this thesis I assume the reader has a general familiarity with basic con-

cepts in convex optimization such as objective functions, decision variables, con-

straints, etc. This thesis focuses particularly on Linear and Quadratic programming

as methods for solving portfolio optimization problems. An excellent introduction to
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these topics can be found in [28] and [4].



Chapter 2

Portfolio Optimization

The following chapter provides an in depth treatment of the portfolio optimization

problem. I show two standard ways of formulating the problem: first, I derive

Markowitz’s Mean-Variance approach for portfolio optimization; and second, I de-

rive the Mean Absolute Deviation (MAD) model. I compare and contrast these basic

methods and provide a review of other adaptations that have been made since the

Markowitz and MAD methods were first published. I also formulate the learning

problem associated with the portfolio optimization problem.

2.1 Investment Portfolios

Consider an investor who wants to invest in the stock market and must select from a

set of n possible investments. The investor faces the choice of which investments to

pick and how much money to invest in each. Before formulating the portfolio opti-

mization problem as a decision and control problem, I first introduce some notation

and definitions that will be helpful throughout the rest of this chapter. Let Rj be a

random variable representing the total return in the next time period for investment

5
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j, j = 1, . . . , n. For example, if you invest $1 today in stock j, it will be worth

$Rj tomorrow. A portfolio is defined as a set of variables xj, j = 1, . . . , n, that are

nonnegative (no short selling) and sum to one. Each xj represents the fraction of the

portfolio invested in stock j. It follows that the return of this portfolio is

R =
∑
j

xjRj.

2.1.1 Simple Decision Problem with Perfect Information

Our objective is to maximize the total return, R, of our portfolio. This can be

formulated as the following optimization problem:

max
∑
j

xjRj

subject to
∑
j

xj = 1

xj ≥ 0 j = 1, . . . , n. (2.1)

If we have perfect information about the returns Rj, the problem becomes trivial;

the optimal portfolio is found by simply setting xj = 1 where j = argmax Rj
j

. How-

ever, in the real world perfect information is hard, if not impossible, to obtain. If it

is absolutely impossible to know anything about the future value of a stock’s return,

then we must resign ourselves to the fact that we will never find a portfolio that can

be deemed optimal in any way. Whether or not financial time series can be accurately

predicted is a topic of great debate in the financial community and revolves around

what is referred to in finance and economics as the Efficient Market Hypothesis.

2.1.2 The Efficient Market Hypothesis

The Efficient Market Hypothesis (EMH) states that financial markets are efficient—

all of the information related to a certain investment is contained in the current
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investments price—and that because they are efficient, excess returns cannot be made

using publicly available information. There are three versions of the hypothesis: weak,

semi-strong, and strong. The weak efficient market hypothesis is that prices reflect all

past publicly available data. The semi-strong efficient market hypothesis states that

not only do prices reflect all public information, but that prices instantly change to

reflect new information. This implies that neither technical analysis nor fundamental

analysis will yield information about future returns since information such as paid

dividends and company cash flows and price trends will already be incorporated into

the current market price. The strong efficient market hypothesis asserts everything

contained in the semi-strong hypothesis with the addition that prices instantly reflect

insider information [2]. Several studies show evidence for and against the weak and

semi-strong versions of the EMH, and there is much evidence against the strong

EMH [10, 23]. Due to the recent financial crisis, many have begun questioning the

validity of the EMH and it has come under scrutiny by the media [16] [5]. Throughout

this thesis it is assumed that we can use historical data to gain some information

regarding future stock returns.

2.1.3 Predicting the Future

As discussed previously, the solution to a learning problem involves choosing a specific

model from a class of models that best describes the available data according to some

metric. These solutions are often found through the use of a learning algorithm.

In finance, we often assume that stock prices come from a Gaussian distribution

characterized by a specific mean and variance. Once we have collected a time series

of historical prices, our learning algorithm computes the sample mean and sample

variance to determine a parameterized Gaussian distribution that best fits our data.
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Given T samples of stock j the sample mean is defined as

R̄j =
1

T

T∑
t=1

Rj(t), (2.2)

where Rj(t) is the historical return for asset j at time t. The sample covariance

matrix C is defined as

Cij =
1

T − 1

T∑
t=1

(Ri(t) − R̄j)(Rj(t) − R̄j), i = 1, . . . , n j = 1, . . . , n. (2.3)

The question now is how to use these estimates in our decision and control prob-

lem. We could just substitute our sample mean in place of future returns in Equation

2.1; however, this would imply that we believe the solution to our learning problem

is just as good as knowing the actual future returns. Because our estimate is not

exact, we want to incorporate into our model a measure of how confident we are in

the forecasts produced by our learning algorithm.

2.1.4 Markowitz and Risk Reward Trade-off

Harry Markowitz received the 1990 Nobel Prize in Economics for coming up with

a solution to this problem and in the process showed mathematically why investors

diversify their portfolios. Markowitz observed that investments with high expected

returns in the long run can be very erratic in the short term. This led him to use

the covariance of portfolio returns as a measure of risk. Because predictions of future

returns are not perfectly accurate, Markowitz reformulated the decision and control

problem to account for an investor’s risk aversion. Rather than just substituting the

solution to our learning problem in place of perfect information, we should weight our

objective function to represent how close we believe our predictions match reality.
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Markowitz’s portfolio optimization problem can be formulated as follows:

max
n∑

j=1

xjR̄j − µ

n∑
i=1

n∑
j=1

xixjCij (2.4)

subject to
n∑

j=1

xj = 1

xj ≥ 0 j = 1, . . . , n.

Using this formulation and setting µ equal to zero, we get the same result as

just replacing future information with our predictions in Equation 2.1. Markowitz’s

insight was that because we don’t believe our predictions to be perfectly accurate, we

should discount them by including a term that quantifies the risk or unpredictability

of our forecasts. The risk aversion parameter µ allows individual investors to adjust

their portfolios according to their risk and reward preferences: when µ is small the

portfolio will be chosen to focus more on maximizing reward; when µ is large more

emphasis is put on minimizing the riskiness of the portfolio.

Markowitz wasn’t the first to tell people to diversify their portfolios—this was

already a common practice. He was, however, one of the first to show mathemati-

cally why diversification is optimal. Figure 2.1 shows how changing the risk aversion

parameter µ affects the composition of a portfolio obtained by solving Markowitz’s

optimization model (2.4). The x-axis is the risk aversion and the y-axis is the percent

of the portfolio allocated to a particular stock. Each color represents a different stock

and the proportion of the colored area represents the proportion of the portfolio that

is invested in that particular stock. When the risk aversion is zero the portfolio con-

sists of only one stock; however, as the risk aversion increases the portfolio becomes

more diversified to account for the greater emphasis on risk rather than reward.

Figure 2.2 shows the trade-off between risk and reward when selecting an optimal

portfolio. Each point along the blue line represents an optimal portfolio defined by

its risk and reward. The entire set of these points is called the efficient frontier. As
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Figure 2.1 Optimal portfolios as a function of risk aversion µ

the reward of a portfolio on the efficient frontier increases so does its risk and vice

versa. Each red dot represents a portfolio consisting entirely of one stock. As seen in

Figure 2.2 all of the optimal portfolios are diversified except for the maximum reward

portfolio (the upper right point on the blue curve) which corresponds to a portfolio

consisting entirely of the stock with the highest expected reward and is found by

setting µ to zero.

Figure 2.2 Trade-off between risk and reward in an optimal portfolio
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2.1.5 The Mean Absolute Deviation Portfolio Model

Despite its prominence in portfolio theory, Markowitz’s portfolio optimization model

has come under criticism for several reasons. In 1991, Hiroshi Konno and Hiroaki

Yamazaki pointed out three flaws to Markowitz’s portfolio optimization model [14]:

1. Computational Burden. The Markowitz model has a quadratic cost function

which can be very time intensive to solve depending on the number of stocks

being considered. Konno and Yamazaki argued that this computational cost

can be impractical for investors trading on a real-time basis.

2. Investor’s perception against risk and distribution of stock prices. Using the

variance as a measure of risk seems pessimistic since most investors are happy

when a stock outperforms and yields a larger profit. Furthermore, studies of

the Tokyo Stock Market showed that most returns are not normally distributed,

so the mean and variance may not be an accurate representation of a stocks’s

return distribution [13].

3. Transaction/management cost and cut-off effect. An optimal solution to the

Markowitz model generally consists of many nonzero elements; however, often

many of these elements represent only a fraction of a percent of the total portfo-

lio. Solutions such as this are not realistic because of the significant amount of

transaction costs associated with a very large portfolio of investments. Manag-

ing a very large portfolio can also be very time consuming. To try and avoid this

problem an investor may choose to eliminate stocks from the optimal portfolio

which have smaller weights; however, this distorts the optimal solution and may

result in a portfolio with larger risk.

Because of the difficulties involved in using the Markowitz model directly, in [14],

Konno and Yamazaki introduced the L1 risk or mean absolute deviation from the
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mean:

E

[∣∣∣∣∣
(

n∑
j=1

xj (Rj − E[Rj])

)∣∣∣∣∣
]
. (2.5)

Using this linear risk measure the portfolio optimization problem can be formu-

lated as

max
n∑

j=1

xjR̄j − µ
1

T

T∑
t=1

yt (2.6)

subject to yt −
n∑

j=1

xj
(
Rj(t) − R̄j

)
≥ 0 t = 1, . . . , T

yt +
∑n

j=1 xj
(
Rj(t) − R̄j

)
≥ 0 t = 1, . . . , T

n∑
j=1

xj = 1

xj ≥ 0 j = 1, . . . , n

where R̄j = 1
T

∑T
t=1Rj(t).

This formulation has many advantages. One of the most important is that, rather

than computing an n× n covariance matrix and using quadratic programming tech-

niques, this problem requires much less computational effort to formulate and can

be solved quickly using linear programming techniques. This problem has 2T + 1

constraints so by the Fundamental Theorem of Linear Programming there will be at

most 2T + 1 nonzero variables [28]. This means that an optimal portfolio generated

by the Mean Absolute Deviation (MAD) model using the simplex method [6] will only

contain 2T + 1 stocks regardless of the value of n. This is a substantial improvement

over the Markowitz model which has no limit on the number of stocks included in

the optimal portfolio. This also means we can use T as a control variable to limit the

number of assets in the portfolio.
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2.1.6 Other Methods Found in Literature Review

Since the publications of Markowitz’s Mean-Variance model and Konno and Ya-

mazaki’s MAD model there have been numerous papers published on the topic of

portfolio optimization. In [9], Feinstein and Thapa show that a simple manipula-

tion of the MAD model results in a linear program with only T + 2 constraints,

further decreasing the computational cost of finding an optimal portfolio. In [25]

and [24], Sharpe develops two linear programming approximations to Markowitz’s

mean-variance model. Stone also provides a linear programming approach to the

portfolio selection problem and shows how it can be used to approximate a mean-

variance-skewness portfolio model [27]. In [21], Peng adds transaction costs to the

standard Markowitz model. He shows that the new model moderates the transaction

volume and provides a significant improvement over the Markowitz model when deal-

ing with transaction costs. In [8] Fazel formulates the portfolio optimization problem

as a more general convex optimization problem and also develops a model that takes

into account linear transaction costs.

Many other studies have focused on using different risk measures other than the

variance or mean absolute deviation. A study of downside-risk measures is performed

in [11]. Some specific alternate risk measures include Value at Risk [7], Tail or Con-

ditional Value at Risk [15], and Shortfall [3]. In [1] Barmish develops a robust control

paradigm for trading equities. Primbs [22] shows how the portfolio optimization

problem can be formulated using stochastic receding horizon control.



Chapter 3

A Comparison of the MAD and

Markowitz Models

In the previous chapter we discussed both the Markowitz model and the MAD model

as potential solutions to the portfolio optimization problem. This chapter compares

the performance of portfolios generated using the MAD and Markowitz models. The

goal is to use historical data to determine whether one model produces portfolios that

consistently perform better than the other.

In [14], Konno and Yamazaki state that the MAD model is comparable to the

Markowitz model and show that if the returns are multivariate normal that the mean

absolute deviation and the standard deviation measures of risk are essentially the

same. There has been very little work recently comparing the performance of the

MAD and Markowitz models. In 2003 Mansini et al. compared the Markowitz

and MAD models and found that the MAD model performs slightly better than

the Markowitz model [18]. Their study used only stocks in the Milan Stock Exchange

and considers four sets of data from 1994-1998. In 2010 Hoe et al. performed an

empirical comparison of different risk measures in portfolio optimization using only

14
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54 stocks in the Kuala Lumpur Composite Index from January 2004 until December

2007 [12]. Hoe found that the portfolios generated by the MAD and Markowitz mod-

els use very similar stocks but have different portfolio weights. Most of the analysis

in [12] focuses on risk measures other than mean absolute deviation and standard

deviation, and little focus is given to comparing the MAD and Markowitz portfolios;

however, Hoe’s comparison does find that the Markowitz mean-variance portfolio has

the lowest risk-adjusted performance overall.

There are two main problems with these papers: (1) They only calculate the

optimal portfolios once and do not allow the portfolio to be periodically rebalanced,

(2) They only use data before 2008, thereby avoiding data related to the recent market

crash and ensuing recovery. This chapter will address these two issues and provide

a more complete comparison of the MAD and Markowitz models using more recent

data and allowing portfolios to be rebalanced throughout the study.

3.1 Data

In order to test Konno and Yamazaki’s claim that the MAD and Markowitz models

are comparable I collected historical price data from Yahoo Finance for all the stocks

in the S&P 500 from January 2007 through December 2010. The S&P 500 was chosen

to provide a representative sampling of commonly traded stocks from different sectors.

The time period was chosen to obtain a large sample of historical data that includes

the recent stock market crash and recession and the recent recovery. This data set

allows the MAD and Markowitz portfolio optimization algorithms to be evaluated over

a range of market conditions which are often avoided in financial studies. During the

period of time from 2007–2010 there were several changes made to the S&P 500 listing

as stocks were added and removed. Because of these discrepancies I chose to limit
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this case study to companies which were included in the S&P 500 for the full four

years of interest (2007–2010). After eliminating any stocks which were not included

in the S&P 500 for the full length of the study, I was left with 485 stocks each with

1008 days of total returns. Throughout the rest of this thesis, this subset of the S&P

500 will be referred to for simplicity as the S&P 500, or stocks in the S&P 500, with

the understanding that in actuality we are only considering 485 stocks. For a list of

the stocks that were not included see Appendix A.

3.2 Portfolio Optimization Models

This case study seeks to provide an “apples to apples” comparison of the MAD and

Markowitz models. To do this we must first formulate the problems in such a way

that this comparison can be made. To achieve this goal I chose to formulate both

models as minimization problems where the objective function is either the variance

of the portfolio (Markowitz) or the average mean absolute deviation (MAD). The

constraints are similar to those posed earlier in this thesis with the addition of a

minimum desired return. The Markowitz model is formulated as follows:

minimize
n∑

i=1

n∑
j=1

xixjCij

subject to
n∑

j=1

xjR̄j ≥ ρM0 (3.1)

n∑
j=1

xj = M0

xj ≥ 0 j = 1, . . . , n

where R̄j = E[Rj], Cij = E[(Ri − R̄i)(Rj − R̄j)], ρ is a parameter representing

the minimal expected return required by an investor, and M0 is the total amount of
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money available for investing. It is important to note that the decision variables (xj)

now represent actual dollar ammounts rather than a proportion of available funds.

The MAD model is formulated similarly:

minimize
1

T

T∑
t=1

yt

subject to
n∑

j=1

xjR̄j ≥ ρM0 (3.2)

yt +
n∑

j=1

xj
(
Rj(t) − R̄j

)
≥ 0

yt −
n∑

j=1

xj
(
Rj(t) − R̄j

)
≥ 0

n∑
j=1

xj = M0

xj ≥ 0 j = 1, . . . , n

yt ≥ 0 t = 1, . . . , T.

Both models have the same constraints: the average expected value of the portfolio

must be above some benchmark ρ, the sum of the amount of money invested in each

stock must equal the total money invested, M0, and decision variables must be positive

(no short selling). Because the only difference between the two models is the measure

of risk, the above formulations allow us to fix ρ and M0 and accurately compare the

performance of the portfolios generated by each model.

3.3 Computation

I ran all the experiments for this thesis using MATLAB. Solutions for the MAD and

Markowitz portfolio optimization models were obtained using MATLAB’s linear and

quadratic programming routines. MATLAB allows the user to specify whether the
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linear programming routine uses the simplex method or an interior-point method.

Unless otherwise specified, the MAD model will be solved using the interior point

method which is the default method for solving linear programs in MATLAB.

3.4 Learning

The purpose of this experiment is to compare the portfolio net worths of the MAD and

Markowitz models. In order to gain insight into the relative performance of the MAD

and Markowitz models, I performed several tests by varying the time horizon and the

desired portfolio return ρ. Both the MAD and Markowitz portfolio models require

an estimate of the expected return of each potential investment. In this experiment

I used the arithmetic mean of past returns as a learning algorithm to estimate the

true expected value. One of the choices that arises from using this type of estimator

is how much data to use to solve the learning problem. For this study I chose to use

the four different time horizons in Table 3.1. The data used to estimate the expected

return is referred to as the ‘training data’ for the learning algorithm.

Horizon Days

Yearly 252

Semi-Annually 126

Quarterly 63

Monthly 21

Table 3.1 Different Time Horizons for Learning

For example, when using the yearly time horizon of 252 days, the past 252 days

of stock returns are used to calculate the average return for each stock (I do not use

365 because the stock market is not open on weekends or holidays). These average
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returns are then used as inputs to the MAD and Markowitz models.

Another decision that must be made is how often to rebalance a portfolio. Because

of changing market conditions, an optimal portfolio from a month ago may not be

the optimal portfolio today. Deciding when and how to rebalance a portfolio as time

progresses is an important problem in portfolio optimization.

3.5 Rebalancing and Parameter Selection

After learning on the past m days the optimal MAD and Markowitz portfolios are

computed by solving equations (3.1) and (3.2). These portfolios are then held con-

stant and tested on the next n days before the optimization is reevaluated. For this

experiment, I decided to let m = n so that the horizons for the training and test data

are equal. Continuing with our previous example of using the yearly time horizon of

252 days, we would train on the first 252 days, then compute the optimal portfolio

using the MAD and Markowitz models. These portfolios would then be tested on

the next 252 days. We would then form a new training set consisting of the returns

from days 253–504 (the second set of 252 days). After learning on this data we would

compute a new portfolio and test it over the 3rd set of 252 days, and so on. In this

manner we learn on n days, test on the next n days and then shift everything forward

by n days and repeat until we reach the end of our data sample. Figure 3.1 shows a

graphical example of a 252 day rebalancing strategy and illustrates how the training

and test data sets change over time. This procedure is often called ‘back-testing’,

and essentially takes the algorithm back in time so its performance can be tested on

historical data.

The free parameters in (3.1) and (3.2) are M0 and ρ, and must be chosen for

each simulation. I chose to set M0 = $100, 000 for every simulation, although any
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Figure 3.1 Example of 252 day rebalancing strategy

dollar amount would have sufficed. To decide on an appropriate value for ρ it is

beneficial to remember that the ρ parameter determines how much expected return

on investment we require from our portfolio. The higher we set ρ the more risk we

are willing to accept in order to achieve our desired expected return; however, if

we require our portfolio to have an expected return that is too high, our linear or

quadratic program will be infeasible. For example, if we consider only two stocks, A

and B, with expected total returns 1.02 and 1.07, respectively, it is impossible to find

a portfolio which has an expected return greater than 1.07. Because of this fact, we

see that for a given training set consisting of n time series S1 . . . Sn, the upper and

lower bounds on admissible values of ρ are as follows:
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ρupper = max
i

(E[Si]) (3.3)

ρlower = min
i

(E[Si]).

Because the upper and lower bounds are functions of the training set, they will

change over the course of the experiment. This experiment uses three different values

of ρ for both the MAD and Markowitz models:

ρLow = ρlower + (ρupper − ρlower)/10 (3.4)

ρMed = ρlower + (ρupper − ρlower)/2

ρHigh = ρlower + 9 · (ρupper − ρlower)/10

These three values were chosen to provide a very conservative, moderate, and

high target return portfolio to allow for a more thorough comparison of the MAD

and Markowitz models over a rang of possible investor preferences. The values of

ρLow, ρMed, and ρHigh depend on the training data, but are consistent for both the

MAD and Markowitz models. This is reasonable because it reflects how real investors

update their views on how much return they expect from their portfolio based on

recent data. Using the three values of ρ defined in 3.4, I compared the results from

12 different MAD portfolios (3 ρ values × 4 update horizons) and 12 Markowitz

portfolios.

3.6 Results and Analysis

Table 3.2 shows the results from comparing the MAD and Markowitz portfolios for

different values of ρ and different rebalancing schedules. The MAD and Markowitz

portfolios are compared based on three different performance categories: the average



3.6 Results and Analysis 22

value over the entire study, the average value of the portfolio at the end of each rebal-

ancing horizon, and the final net worth of the portfolio. ‘MAD’ represents a test where

the MAD portfolio performed better in all three categories. ‘Markowitz’ represents a

test where the Markowitz portfolio performed better in all three categories. The ‘?’

represents a test which was inconclusive (see Appendix A for the exact values).

Horizons 252 126 63 21

ρLow MAD Markowitz Markowitz MAD

ρMed ? ? Markowitz MAD

ρHigh ? Markowitz MAD Markowitz

Table 3.2 Portfolio Results for Multiple Time Horizons and Multiple ρ

As can be seen from Table 3.2, there are cases where the Markowitz portfolio

performs better than the MAD portfolio and vice versa, but there is no clear winner.

Tables 3.3 and 3.4 show the return on investment for the Markowitz and MAD port-

folios. The 63 day rebalancing strategy did extraordinarily well when the required

rate of return was equal to ρHigh. The entries highlighted in green show the highest

return achieved for each portfolio and those highlighted in red show the lowest return

achieved. The highest and lowest returns were obtained when the required minimum

rate of return was set to ρHigh for both the Markowitz and the MAD portfolios. A

higher value of ρ will force the portfolio to invest in stocks with higher average returns

even if they are more volatile; however, despite the higher risk that comes from using

ρHigh, the only portfolios with negative returns were the ones using a 252 rebalanc-

ing strategy—all the others had returns above 15%. Tables 3.5 and 3.6 show the

annualized returns from tables 3.3 and 3.4 for the Markowitz and MAD portfolios.

The lowest returns (highlighted in red) were when rebalancing yearly (252 days)

and the highest returns were achieved when rebalancing every three months (63 days).
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Horizons 252 126 63 21

ρLow 2.57% 3.54% 20.76% 3.13%

ρMed 1.37% 25.23% 50.60% 38.32%

ρHigh -33.04% 19.01% 192.88% 133.23%

Table 3.3 Return on investment for Markowitz Portfolio over multiple time
horizons and multiple ρ values. Green is the best, red is the worst.

Horizons 252 126 63 21

ρLow 4.87% 1.58% 11.98% 11.29%

ρMed -0.11% 28.35% 40.13% 52.91%

ρHigh -32.23% 15.43% 261.26% 124.22%

Table 3.4 Return on investment for MAD Portfolio over multiple time hori-
zons and multiple ρ values. Green is the best, red is the worst.

This shows that more frequent rebalancing tends to improve the return on investment.

This makes sense intuitively because more frequent rebalancing allows a portfolio to

adapt quickly to a changing market. It is also interesting to note that the 21 day

rebalancing strategy was not as profitable as the 63 day rebalancing strategy. This

seems to contradict the notion that more frequent updating is better; however, we

must realize that with 21 day rebalancing we are only using the past 21 days to make

Horizons 252 126 63 21

ρLow 0.85% 0.99% 5.16% 0.79%

ρMed 0.45% 6.64% 11.54% 8.64%

ρHigh -12.51% 5.10% 33.18% 24.14%

Table 3.5 Annualized return on investment for Markowitz Portfolio over
multiple time horizons and multiple ρ values. Green is the best, red is the
worst.
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Horizons 252 126 63 21

ρLow 1.60% 0.45% 3.06% 2.77%

ρMed -0.037% 7.39% 9.41% 11.45%

ρHigh -12.16% 4.19% 40.85% 22.89%

Table 3.6 Annualized return on investment for MAD Portfolio over multiple
time horizons and multiple ρ values. Green is the best, red is the worst.

decisions versus the 63 days of historical data used for 63 day rebalancing. Later on

in this thesis I investigate whether a portfolio with a better final return can be found

by varying the learning and rebalancing horizons.

Right now is a good time to point out that all is not what it seems; this experiment

has left out one important factor that faces real investors: namely, transaction costs.

A conservative estimate of how the portfolio would have performed with transaction

costs is to assume that every time the portfolio was rebalanced that 485 transactions

were made (we will see later that the actual number of transactions is much lower

than this). If the investor were charged $10 per trade, rebalancing every 63 days, the

total cost would be $77600. This seems like a lot, but the final return on investment

would still be 183.65% which is not too bad for a four year investment during the

recession.

Figures 3.2-3.5 show how closely the MAD and Markowitz models track each other

through the entire four year simulation. From these graphs we see that the portfolios

using ρLow had their best performance when rebalancing every 252 days (Figure 3.2),

but performed worse than the ρMed and ρHigh portfolios when using the 126, 63 and 21

day rebalancing strategies. Figure 3.3 shows that the portfolios using ρMed performed

best when using the 126 day rebalancing strategy. The portfolios using ρHigh in

Figure 3.3 performed very well at first but were hit hard by the market crash. Figure
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3.4 shows that both the Markowitz and MAD models using a rebalancing strategy

of 63 days and ρHigh were able to achieve phenomenal growth. The portfolios using

ρHigh also performed very well when using the 21 day rebalancing strategy (see Figure

3.5). All four figures show that a portfolio requiring a higher expected return is more

sensitive to market conditions and will lose more value in a recession, but will often

make up for these losses with high gains as market conditions improve.

The performance of the Markowitz and MAD portfolios is extremely similar. Ex-

amining figures 3.2 - 3.5, it is apparent that both portfolios track each other closely.

The only large discrepancy between the MAD and Markowitz portfolios was found

when both portfolios were using a 63 day rebalancing schedule and ρHigh (Figure 3.4).

When holding ρ constant and varying the rebalancing strategy, it is apparent that the

63 day rebalancing horizon performs the best for both the Markowitz and the MAD

model with the one exception being the MAD model with a ρMed which achieves its

best performance when using the 21 day rebalancing horizon (see Appendix B).

3.6.1 Differences Between Portfolio Net Worths

To determine how much difference there was between the net worths of the MAD

and Markowitz portfolios I computed the average difference between the daily net

worth values. The results are contained in Table 3.7. The values are reported in

thousands of dollars where positive values represent cases where, on average, the

MAD portfolio performed better than the Markowitz portfolio, and negative values

are cases where the Markowitz portfolio performed better on average. As noted

previously, the largest difference between the MAD and Markowitz portfolios is when

ρHigh and 63 day rebalancing are used. The entries highlighted in green show the

highest difference in favor of the MAD model and those in red represent the lowest

difference. Negative values represent cases where the Markowitz model outperformed
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Figure 3.2 Portfolio net worths with 252 day rebalancing
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Figure 3.3 Portfolio net worths with 126 day rebalancing



3.6 Results and Analysis 27

0 100 200 300 400 500 600 700 800 900 1000

0.5

1

1.5

2

2.5

3

3.5

x 10
5

Days

P
o

rt
fo

lio
 V

al
u

e

 

 

 
MAD Low Rho
Markowitz Low Rho
MAD Med Rho
Markowitz Med Rho
MAD High Rho
Markowitz High Rho

Figure 3.4 Portfolio net worths with 63 day rebalancing
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Figure 3.5 Portfolio net worths with 21 day rebalancing
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Horizons 252 126 63 21

ρLow 1.047 -3.025 -2.603 3.942

ρMed 0.126 -.475 -1.793 8.145

ρHigh -1.050 -1.682 34.141 -11.533

Table 3.7 Average Portfolio Differences (in $ 1000) for Multiple Time Hori-
zons and Multiple ρ

Horizons 252 126 63 21

ρLow 78.44% 2.27% 33.86% 96.35%

ρMed 46.96% 47.85% 40.32% 98.68%

ρHigh 21.30% 34.58% 95.56% 12.16%

Table 3.8 Percent of total days where the MAD portfolio outperformed the
Markowitz portfolio

the MAD model.

Table 3.8 compares the individual daily values of each portfolio to determine the

percentage of days where the MAD portfolio performed better than the Markowitz

portfolio. Examining this table, we see that there is a wide range of values; however

taking the average of the averages to get a more overall view we find that MAD is

better than Markowitz only 50.69 % of the time. This value is interesting because

it shows that while there is a large variation between performance of the MAD and

Markowitz algorithms in the 12 simulations, on average both portfolios perform very

similarly.

3.6.2 Simplex vs. Interior-Point Methods

Earlier we mentioned that MATLAB provides two methods for solving linear pro-

grams, the simplex method, and an interior-point method (for a good treatment of



3.6 Results and Analysis 29

0 100 200 300 400 500 600 700 800 900 1000

0.5

1

1.5

2

2.5

3

3.5

x 10
5

Days

P
or

tfo
lio

 V
al

ue

 

 

 
MAD−IP Low Rho
MAD−Simplex Low Rho
MAD−IP Med Rho
MAD−Simplex Med Rho
MAD−IP High Rho
MAD−Simplex High Rho

Figure 3.6 MAD-IP and MAD-Simplex portfolio net worths with 21 day
rebalancing

these methods see [28]). Using the same parameters as before I computed the MAD

portfolio twice, once using simplex and once using interior-points. These two methods

will be referred to as MAD with Simplex and MAD with Interior Points, or simply

MAD-Simplex and MAD-IP. Portfolios were generated for all four rebalancing hori-

zons and all three required minimum returns. The resulting portfolios were identical

except for the 21 day rebalancing portfolios which are shown in Figure 3.6.

In Figure 3.6 there is a slight difference between the portfolio net worths for low

and medium ρ values, but the portfolios with high-rho values are identical. As can

be seen in the figure, the MAD-Simplex portfolio is slightly better than the MAD-

IP portfolio. Indeed, the MAD-Simplex portfolio outperforms the MAD-IP portfolio

for 98% of the study, but the value of the MAD-Simplex portfolio is on average

only 0.9% and 0.86% higher than the MAD-IP portfolio for the low and medium
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ρ values respectively. These results demonstrate that for longer time horizons the

MAD-Simplex and MAD-IP portfolios are identical; however for lower horizons the

simplex method seems to perform slightly better.

3.6.3 Starting Portfolio Trading at the Same Time

All of the portfolios up until now have waited a certain number of days before starting

to invest. For example, the 252 day rebalancing portfolio uses the past 252 days to

make a prediction of the expected return of each stock. This means that the portfolio

will wait one year and watch the market then start trading on the 253rd day. The 21

day rebalancing strategy will start trading on the 22nd day and will have rebalanced

11 times before the 252 rebalancing portfolio has made a single transaction. The

advantage in using this methodology is that each portfolio is given the same amount

of data and then the learning algorithm determines when to start investing.

Another approach is to use a single starting date for each portfolio. Each learning

algorithm uses the past m days before this starting date to estimate expected returns.

The advantage of this method is that each portfolio is held for the same amount of

time and some portfolios do not start making/losing money before others; however,

this also means each portfolio has access to different amounts of data which will also

affect the results. To see if our conclusions still hold when starting each portfolio on

the same date, I redid the previous experiment, starting every portfolio on day 253

and letting each portfolio have access to the necessary amount of previous data to

start trading on the same date. This gives a study window of three years on which

to test the MAD and Markowitz portfolios. The net worths of these new portfolios

are recorded in tables 3.9 and 3.10.

These values are not as high as the four year study with different start dates,

but it is interesting to note the that highest returns were obtained from the same
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Horizons 252 126 63 21

ρLow 2.57% 1.25% 8.19% -3.97%

ρMed 1.37% 18.99% 37.22% 30.22%

ρHigh -33.04% -46.26% 70.96% 38.83%

Table 3.9 Return on investment for Markowitz Portfolio over multiple time
horizons and multiple ρ values

Horizons 252 126 63 21

ρLow 4.87% -.01% -3.65% .73%

ρMed -0.11% 18.35% 21.89% 31.57%

ρHigh -32.23% -48.14% 79.86% 36.53%

Table 3.10 Return on investment for MAD Portfolio over multiple time
horizons and multiple ρ values

parameters–63 day rebalancing and ρHigh. Computing the average portfolio differ-

ences for multiple horizons and multiple ρ values for portfolios starting on the same

date produced the results in Table 3.11. The highest and lowest average portfolio

differences are much smaller than those reported in Table 3.7. I also compared the

individual daily values of each portfolio to determine the percentage of days where

the MAD portfolio performed better than the Markowitz portfolio. Table 3.8 shows

Horizons 252 126 63 21

ρLow 1.047 -2.789 -6.7081 1.9134

ρMed 0.126 -3.68 -6.9441 -0.6765

ρHigh -1.050 -1.16 4.9258 -7.2834

Table 3.11 Average Portfolio Differences (in $ 1000) for Multiple Time Hori-
zons and Multiple ρ
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Horizons 252 126 63 21

ρLow 78.44% .79% 0.93% 80.42%

ρMed 46.96% .93% 0.26% 42.33%

ρHigh 21.30% 26.98% 96.43% 1.72%

Table 3.12 Percent of total days where the MAD portfolio outperformed
the Markowitz portfolio

these percentages.

Taking the average of all of these values the MAD portfolio outperformed the

Markowitz portfolio only 33.12% of the time. This value is much lower than the

previous experiment and implies that the Markowitz portfolios actually performed

better than the MAD portfolios on average; however, the actual differences between

the MAD and Markowitz portfolios is smaller, and there is little consistency among

different parameter combinations.

In conclusion, I found that when using MATLAB’s interior-point method to solve

the MAD and Markowitz models there is no clear winner between the two. Sometimes

MAD is better and sometimes Markowitz is better; however, we see that on average

they both have similar performance. Studying the results of the individual simulations

I found that the MAD and Markowitz portfolio values track each other and have

similar net worths for every simulation. To get a more accurate picture of which

model is best I present an analysis of the individual portfolio compositions of the

MAD and Markowitz portfolios as well as an analysis of the differences between using

the simplex and interior-point methods for computing the optimal MAD portfolio.
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3.7 Analysis of Portfolio Compositions

We now turn our attention to the actual stocks that compose the portfolios we have

been studying. Each portfolio can consist of anywhere from 1 to 485 different in-

vestments, each consisting of a certain percentage of the investor’s wealth, allowing

for an infinite number of possible compositions. Through an analysis of the portfo-

lio compositions determined by the MAD and Markowitz models, I show that both

portfolios use similar numbers of stocks, but that despite this similarity there is still

variation between the types of stocks and the investment amounts chosen.

3.7.1 Average Stocks in Portfolio

In order to further investigate the similarities and differences between the MAD and

Markowitz portfolios, I first examined the number of stocks included in each portfolio.

Tables 3.13-3.15 show the average number of stocks in each portfolio using ρLow, ρMed,

and ρHigh.

As can be seen from all three tables, the average number of stocks for the MAD-

Simplex and MAD-IP are the same for every experiment except for the 21 day horizons

using ρLow and ρMed. For these simulations the MAD-IP (highlighted in red) had

several portfolios that used every single stock in the optimal portfolio thus increasing

the average number. Another surprising result was the average number of stocks used

Horizons 252 126 63 21

MAD-Simplex 23.333 21.714 20.133 14.936

MAD-IP 23.333 21.714 20.133 34.681

Markowitz 21 20 20.333 14.766

Table 3.13 Average Number of Stocks in portfolio for different horizons
using ρLow
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Horizons 252 126 63 21

MAD-Simplex 17 19.143 18.733 14.043

MAD-IP 17 19.143 18.733 33.766

Markowitz 15 16.857 17.933 13.894

Table 3.14 Average Number of Stocks in portfolio for different horizons
using ρMed

Horizons 252 126 63 21

MAD-Simplex 5.333 4.286 5.133 5.383

MAD-IP 5.333 4.286 5.133 5.383

Markowitz 5 4.286 4.933 5.511

Table 3.15 Average Number of Stocks in portfolio for different horizons
using ρHigh

in the Markowitz portfolios. Except for the portfolio that used the 21 day horizon and

ρHigh (highlighted in blue), the Markowitz portfolios actually used fewer stocks than

both of the MAD portfolios. This contradicts the third assertion made by Konno and

Yamazaki in [14] that the Markowitz portfolio suffers from too many small portfolio

values.

When I initially ran my simulations, the MATLAB quadratic programming opti-

mization algorithm would reach the maximum number of iterations before converging

and the resulting portfolio would consist of almost every stock; however, increasing

the maximum iterations to 2000 eliminated the problem and allowed MATLAB’s al-

gorithm to converge to an optimal solution. The results in this thesis show that

optimal solutions to the Markowitz model use slightly fewer rather than more stocks

than solutions to the MAD model. The only instances of Markowitz portfolios which

consist of small investments in almost every stock have been found when the opti-
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mization algorithm terminated before finding an optimal solution. In contrast to the

assertion made in [14], it appears that the interior point method used by MATLAB

for solving linear programs occasionally falls into the trap of investing small amounts

in every stock. The entries highlighted in red show that the MAD-IP algorithm can

select too many stocks and come up with an unrealistic portfolio consisting of too

many small investments.

One final observation is that the best portfolio considered so far (the MAD portfo-

lio using 63 day rebalancing and ρHigh) used a very small number of stocks to achieve

superior performance. The entries highlighted in green show that the MAD algorithm

used on average 5.133 stocks in its portfolio, yet was able to achieve 261.26% returns

as reported in Table 3.4. This shows that only a small number of stocks are needed

to achieve high returns and that the 63 day rebalancing portfolio with high required

returns was able to select out of 485 choices those 5 or 6 stocks which had exceptional

performance. For a list of the stocks used in this portfolio see Appendix A.

3.7.2 Similarity of Stock Choices

We have seen that the average number of stocks used in the MAD and Markowitz

portfolios are very similar. I next investigated whether the actual stocks used in each

portfolio were the same or whether the portfolios were achieving similar performance

with different stocks. I calculated the percent of stocks that were shared between the

Markowitz portfolio and the MAD-Simplex portfolio. The results are shown in tables

3.16 and 3.17.

These values show that while the average number of stocks included in each port-

folio is very similar, on average only 75% of the stocks in each portfolio match. This

shows that while the MAD-Simplex and Markowitz portfolios exhibit similar returns,

there is still variation between the two portfolios.
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ρLow 252 126 63 21

ρMed 68.98% 62.72% 66.43% 72.98%

ρHigh 74.10% 65.48% 65.29% 71.96%

Markowitz 91.67% 77.86% 88.87% 79.83%

Table 3.16 Average percent of stocks in MAD-Simplex portfolio that were
also included in the Markowitz portfolio for different horizons and ρ values

ρLow 252 126 63 21

ρMed 77.64% 68.41% 66.32% 73.98%

ρHigh 85.29% 73.47% 71.21% 73.41%

Markowitz 95.24% 78.57% 89.04% 78.56%

Table 3.17 Average percent of stocks in Markowitz portfolio that were also
included in the MAD-Simplex portfolio for different horizons and ρ values

3.8 Analysis of Computational Complexity

I have shown that the resulting portfolios from the MAD and Markowitz models are

similar and have comparable performance; however, the computational complexity

of each algorithm must also be considered. Time complexity is an important topic

in algorithm analysis because if one algorithm has higher performance than another

algorithm, but takes twice as long to compute it may be better to use the algorithm

with a lower performance in order to meet time constraints. For this experiment

I compare and contrast the computational time required to compute each portfolio

in MATLAB using the MAD and Markowitz optimization method. The Markowitz

model is a quadratic program so its theoretical time complexity is much larger than

the MAD model solved with an interior-point method. The simplex method has

an exponential worst case time complexity, but typically performs well in actual

practice [28]. I first compare how the time complexity of these three methods grows
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as n, the number of stocks available for the portfolio, increases.

Using the timer feature in MATLAB I ran one optimization using the MAD-

Simplex, MAD-IP, and Markowitz models for varying numbers of stocks. I started

with 5 stocks and then continued to add 20 stocks until the maximum of 485 stocks

was reached. Figure 3.7 shows the results of this experiment where the points for

each individual experiment have been connected to approximate the time complexity

curve. I set the required return to ρHigh and used the first 63 days of return values to

calculate the each optimal portfolio.
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Figure 3.7 Time complexity as number of available stocks increases

Figure 3.7 shows the quadratic time complexity of the Markowitz model as the

number of stocks considered in the portfolio grows. Both the MAD-Simplex and

MAD-IP time complexity is linear, and much lower than the Markowitz time com-

plexity. Also, even though the MAD-Simplex is an exponential time algorithm, in

this case, it has an even lower time complexity than the MAP-IP algorithm. Tests
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Figure 3.8 Time complexity as Learning Horizon Increases using ρHigh

were done using different values of ρ but showed no significant change from the results

of Figure 3.7 so they are not included.

Figure 3.7 clearly shows that the Markowitz model has a quadratic computational

complexity as the number of stocks considered for the portfolio increases. Another

feature to consider is how the time complexity increases as the historical time horizon

m increases. Using the same framework as above I kept the number of stocks fixed at

485 and varied m. Starting with m = 5 (the first 5 days of 2007) I continued to add 20

days until the S&P 500 data sample was exhausted. I repeated this simulation using

ρLow, ρMed, and ρHigh as the required minimum return. The results of the portfolios

using ρHigh are graphed in Figure 3.8. The portfolios using ρMed and ρLow were almost

identical so they are not included.

Figure 3.8 shows that even though the MAD-Simplex and MAD-IP algorithms

take less time to compute than the Markowitz model for smaller time horizons, for
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horizons longer than 500 days the three portfolios take roughly the same amount of

time to find an optimal solution. The large bump in the time complexity for the

Markowitz model seemed counterintuitive, and I thought at first that there had been

a problem with MATLAB; however, using output from the MATLAB optimizations

I verified that all the runs had converged successfully to an optimal solution.

To investigate this further I compared the compositions of the Markowitz port-

folios with the compositions obtained by both of the MAD algorithms. All three

algorithms showed very similar results in terms of portfolio composition. The MAD-

Simplex and MAD-IP portfolios were identical except for the portfolio with a time

horizon of 5 days. The Markowitz portfolio had very similar stocks but the actual

amount invested in each stock was different than the two MAD portfolios. Because

all three algorithms selected very similar stocks, this provides strong evidence that

the portfolios being generated by the Markowitz model are optimal, and that the

large bump in Figure 3.8 is not a result of the algorithm terminating early. The

similarity in portfolio composition can be seen by comparing the graphs in Figure

3.9. The colored areas represent the proportion of the portfolio invested in different

stocks. Comparing all three figures we see that despite minor differences, the overall

compositions of the three portfolio are extremely similar. In fact the only difference

between 3.9b and 3.9c is the initial portfolio composition with a time horizon of 5

days which is not noticeable in the figures.

I also plotted the number of iterations needed by each algorithm to compute the

optimal portfolio. Figure 3.10 shows that the number of iterations required to find the

Markowitz portfolio and the MAD portfolio using interior points are relatively stable;

however, the number of iterations to compute the MAD portfolio using simplex is

steadily increasing as the horizon increases so this rules out the number of iterations

as a possible cause of the bump in time complexity.
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(a) Markowitz Model
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(b) MAD-IP Model
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(c) MAD-Simplex Model

Figure 3.9 Portfolio compositions as time horizon changes
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Figure 3.10 Number of iterations to compute optimal portfolio over chang-
ing horizon



3.8 Analysis of Computational Complexity 42

0 200 400 600 800 1000 1200
0

1

2

3

4

5

6

7

8

9

Length of Time Horizon (Days)

T
im

e 
(s

ec
o

n
d

s)

 

 
MAD with Simplex
MAD with I.P.
Markowitz

(a) Forward

0 200 400 600 800 1000 1200
0

1

2

3

4

5

6

7

8

9

Length of Time Horizon (Days)

T
im

e 
(s

ec
o

n
d

s)

 

 
MAD with Simplex
MAD with I.P.
Markowitz

(b) Backwards

Figure 3.11 Time Complexity using 100 stocks

I also ran a series of experiments using different numbers of stocks rather than

just using all 485. I first ran a series of experiments where I fixed the number of

potential stocks and the progressively increased the time horizon starting with day 1

(Jan 1 2007) and adding consecutive days and stocks in increasing order. To check

these results I also ran the same experiment backwards using the same values for

number of stocks and number of days in the time horizon, but starting with day 1008

and stock number 485 and reversing the order that stocks and days were added. This

provides a test to see if the observed trend is related to the specific data or if it is

a more general trend that is true regardless of the specific data. For a fixed number

of stocks less than 200 the computation time for the Markowitz portfolio was much

smaller than both the MAD-IP and MAD-Simplex portfolios. Also the time required

to generate the MAD-Simplex portfolio took longer than the time to generate the

MAD-IP portfolio. Figure 3.11 shows the results when 100 stocks are used.

Above 200 stocks the bump in time complexity around the 200 day horizon mark
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(a) Forward
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(b) Backwards

Figure 3.12 Time Complexity using 200 stocks

begins to grow and the time required to for the simplex algorithm drops below the

interior point method. Even though there is a large bump in the time required for

the Markowitz model, after the time horizon has reached 400 days, the time for the

Markowitz model drops below the time required to compute the MAD portfolio using

the interior-point method. Figures 3.12 and 3.19 show the results for 200, 300, 400 and

485 stocks. The results of running the experiments backwards are plotted alongside

the original experiments and showed the same trend.

Figures 3.16 - 3.21 show the results of holding the time horizon constant and

varying the number of stocks considered by the optimization algorithm. These ex-

periments were run forwards and backwards and show the same pattern as Figures

3.11 - 3.14. Figures 3.16 - 3.20 show clearly the quadratic increase in time for the

Markowitz model. Examining the range y-axis we also see the time required to com-

pute the optimal portfolio is highest for the 252 day horizon (Figure 3.20).

Examining the MAD-Simplex, MAD-IP, and Markowitz portfolios individually,
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(b) Backwards

Figure 3.13 Time Complexity using 300 stocks
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(b) Backwards

Figure 3.14 Time Complexity using 400 stocks
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(b) Backwards

Figure 3.15 Time Complexity using 485 stocks
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(b) Backwards

Figure 3.16 Time Complexity using 21 days
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(b) Backwards

Figure 3.17 Time Complexity using 63 days
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(b) Backwards

Figure 3.18 Time Complexity using 126 days
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(b) Backwards

Figure 3.19 Time Complexity using 252 days
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(b) Backwards

Figure 3.20 Time Complexity using 504 days
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(b) Backwards

Figure 3.21 Time Complexity using 1008 days

there is a clear trend– the MAD-Simplex and MAD-IP portfolios take longer to com-

pute as the time horizon increases, but the time to compute the Markowitz portfolio

first increases and then decreases as the time horizon gets larger. For separate plots

of each of these algorithms see Appendix C.

3.8.1 Time Complexity Using Random Returns

As one final test the unusual time complexity bump, I created a data set of random

daily returns with 485 artificial stocks each with 1008 random returns sampled from

a normal distribution with mean 1 and standard deviation 0.01. This data set was

designed to be the same size as the S&P 500 data set to compare time complexity

results. I tested 5 different numbers of stocks: 100, 200 ,300, 400, 485. For each of

these five experiments the number of stocks was held constant and the time horizon

was slowly increased starting with 5 days and continuing to add 20 stocks until the

entire data set was exhausted. The results closely match the time complexity results
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for the S&P 500 data set and are included in Appendix D.

3.8.2 Time Complexity Summary

These results show that the large bump when using 485 stocks is not data specific,

but is potentially related to the optimization algorithms used by MATLAB. Further

investigation into this phenomenon would be instructional, but because understanding

the time complexity of the Markowitz model is not the main goal of this thesis so I

note this strange occurrence, but admit that I do not have any explanation for its

cause.

3.9 Analysis of Different Test Horizons and Rebal-

ancing Strategies

For this experiment I wanted to see if I could find a rebalancing strategy with higher

returns than the MAD portfolio with 63 day rebalancing. I tested over the following

rebalancing horizons: 5, 10, 15, 21, 35, 49, 63, 84, 105, 126. The training horizon for

this experiment is equal to the testing horizon. Because portfolios using ρLow had the

lowest average performance in previous experiments, I decided to test these horizons

only using ρMed and ρHigh. I used the same four year data set of S&P 500 stock

returns.

3.9.1 Results of Multiple Test Horizons

The final values of each portfolio are graphed in Figure 3.22. From this bar graph we

see that the 63 day rebalancing horizon had the highest final return when using the

parameter ρHigh. The 21 day and 15 day horizons also performed very well. The 15
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Figure 3.22 Final Portfolio Values for MAD and Markowitz portfolios using
different rebalancing horizons for medium and high ρ values

day horizon had the highest final portfolio value when ρMed was used. It is interesting

that the 35 and 49 day horizons performed so much worse than the 63, 21, and 15

day horizons. The reason for this is unclear, but from this analysis we see that the

63 day horizon had the best performance out of all other rebalancing horizons.

3.9.2 Changing the Learning Horizon

Next, I investigated whether changing the learning horizon had any impact on the

performance of the different portfolios. The goal of this experiment is to test whether

learning on more data improves portfolio performance. For this experiment I decided

to use the original test horizons of 21 and 63 days but change the amount of data

that is used to estimate the expected returns. The length of the training data was

determined by multiplying the test horizon by a training multiple and rounding up to
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the nearest whole number. I did experiments with the following training multiples:

0.5, 1, 1.5, 2, and 3. For example, when running the experiments for the 21 day test

horizon I used training horizons of 11, 21, 32, 42, and 63 days. I also ran an experiment

for each test horizon where the learning algorithm used all available historical data.

For each run using all available data, I started with a training set equal to the test

set and then continued to add days to the training set until the simulation was done.

For example, when computing the optimal portfolio for the last 21 day rebalancing

horizon, the test set consisted of returns from days 988 to 1008 and the training set

consisted of days 1 to 987.

3.9.3 Results From Using Different Learning Horizons

Using the previously mentioned six different learning horizons and using low, med,

and high ρ values, I ran each rebalancing strategy and recorded which strategies

performed better than the original strategy with a training multiple of 1.0. The

results can be seen in tables 3.18 and 3.19.

Examining both tables we see that six out of twelve portfolios achieved their

highest final value using a training multiple of 1.0. One surprising result was that

using a training multiple of 0.5 was better than a multiple of 1 in two cases, but in

both cases using all the data was also better than a multiple of 1. These results seemed

Horizons 21 63

ρLow 0.5, 3, all 1.5, all

ρMed - 1.5

ρHigh all -

Table 3.18 Training multiples with higher final MAD portfolio value than
a training multiple of 1.0
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Horizons 21 63

ρLow 0.5, 3, all -

ρMed - -

ρHigh all -

Table 3.19 Training Multiples with higher final Markowitz portfolio value
than a training multiple of 1.0

rather arbitrary and the main conclusion from this experiment was that a training

multiple of 1 produced good results and that using all available data also has good

performance. I had expected that on average portfolios using the 0.5 training multiple

would have a lower performance than those using the 1 and 1.5 training multiples,

and was surprised by the results. I also expected that more data will provide less

accurate predictions of the expected value over time and would lead to lower portfolio

performance which also was not true. Because there were no clear trends, it appears

that the performance is highly dependent on the data and the other parameters, and

that the learning horizon has less of an impact on portfolio returns.

3.10 Risk Adjusted Returns

I have shown that several of the portfolios in this study achieved phenomenal growth

despite varying market conditions; however, one question still remains—did these

portfolios actually beat the market? To answer this question it is necessary to not

only consider the return of each portfolio, but to also consider each portfolio’s risk.

Having a risky portfolio is not necessarily a bad thing, as long as the returns gained

from the portfolio provide adequate compensation for the risks taken. In order to

evaluate the performance of the different portfolios studied in this thesis, I consider

two measures of risk-adjusted performance: the Sharpe ratio, and the Modigliani
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Horizons 252 126 63 21

ρLow 0.0080 0.0051 0.0190 0.0046

ρMed 0.0090 0.0216 0.0367 0.0246

ρHigh 0.0030 0.0217 0.0506 0.0412

Table 3.20 Sharpe ratio of daily returns for Markowitz Portfolio over multi-
ple time horizons and multiple ρ values. Green is the best, red is the worst.

risk-adjusted measure [20,26].

3.10.1 Analysis of Portfolio Performance using the Sharpe

Ratio

Using daily returns for each portfolio I computed the Sharpe ratio for each portfolio.

The Sharpe ratio is defined as

r̄p − r̄f
σp

(3.5)

where r̄p is the average portfolio return, r̄f is the average return of the risk-free

alternative, and σp is the standard deviation of portfolio returns or volatility [26].

The Sharpe ratio gives a measure of the excess returns achieved by a portfolio in

relation to the amount of volatility in that portfolio where higher ratios indicate

better risk-adjusted performance.

The results of calculating the Sharpe ratio for each portfolio are shown in tables

3.20 and 3.21. Yearly returns for 3 month T-Bills were converted into daily returns

and used as a substitute for the risk-free rate. Comparing Sharpe ratio values we see

that the best and worst Sharpe ratios correspond to the highest and lowest overall

performance reported in tables 3.3 and 3.4.

The Sharpe ratio tells us the portfolios with the best risk-adjusted return; however,

it tells us nothing of how the portfolios compared with the overall market. Using
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Horizons 252 126 63 21

ρLow 0.0104 0.0033 0.0115 0.0106

ρMed 0.0077 0.0239 0.0303% 0.0302

ρHigh 0.0028 0.0206 0.0577 0.0397

Table 3.21 Sharpe ratio of daily returns for MAD Portfolio over multiple
time horizons and multiple ρ values. Green is the best, red is the worst.

daily returns for the S&P 500 index from 2007-2010, I found the Sharpe ratio to be

-0.00092. Comparing this value with the Sharpe ratios for each portfolio we see that

every portfolio had a higher risk-adjusted return than the market index.

3.10.2 Analysis of Portfolio Performance using the M 2 Mea-

sure

Because the Sharpe ratio can be difficult to interpret, another measure of performance,

the Modigliani risk-adjusted measure or M2 measure, is often used. The M2 measure

was developed by Leah and Franco Modigliani and gives a differential return relative

to a benchmark index [20]. The M2 measure is defined as

M2 = r̄P ∗ − r̄M (3.6)

where r̄P ∗ is the average return of a portfolio which has been adjusted to match the

volatility of the benchmark index and r̄M is the average return of the benchmark

index. The average return of the adjusted portfolio, r̄P ∗ , is calculated using the

following formula:

r̄p∗ = (r̄P − r̄f )
σM
σP

+ r̄f (3.7)

where σM is the volatility of the benchmark index.

Tables 3.22 and 3.23 show the results of using the M2 measure to compare the
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Horizons 252 126 63 21

ρLow 0.0130% 0.0176% 0.0363% 0.0115%

ρMed 0.0150% 0.0478% 0.0678% 0.0464%

ρHigh 0.0034% 0.0479% 0.0924% 0.0752%

Table 3.22 M2 measure of daily returns for the Markowitz Portfolio over
multiple time horizons and multiple ρ values. Green is the best, red is the
worst.

Horizons 252 126 63 21

ρLow 0.0176% 0.0142% 0.0230% 0.0220%

ρMed 0.0124% 0.0519% 0.0563% 0.0561%

ρHigh 0.0032% 0.0459% 0.1049% 0.0726%

Table 3.23 M2 measure of daily returns for the MAD Portfolio over multiple
time horizons and multiple ρ values. Green is the best, red is the worst.

Markowtiz and MAD portfolios using the S&P 500 as the benchmark index. These

values seem very small, but after annualizing the risk-adjusted returns we see in tables

3.24 and 3.25 that even the portfolios with the worst performance still had a slightly

better risk-adjusted performance than the S&P 500 index. Furthermore, we see that

the best performing portfolios had average excess returns of 26.20% and 30.25% above

the average risk-adjusted S&P 500 index returns.
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Horizons 252 126 63 21

ρLow 3.33% 4.53% 9.56% 2.93%

ρMed 3.85% 12.81% 18.63% 12.40%

ρHigh 0.86% 12.81% 26.20% 20.86%

Table 3.24 M2 measure of annualized returns for the Markowitz Portfolio
over multiple time horizons and multiple ρ values. Green is the best, red is
the worst.

Horizons 252 126 63 21

ρLow 4.54% 3.65% 5.96% 5.69%

ρMed 3.16% 13.98% 15.25% 15.19%

ρHigh 0.80% 12.26% 30.25% 20.07%

Table 3.25 M2 measure of annualized returns for the MAD Portfolio over
multiple time horizons and multiple ρ values. Green is the best, red is the
worst.



Chapter 4

Conclusion

This thesis has focused on the application of learning and control techniques for mak-

ing decisions in portfolio optimization. In particular, I showed the importance of

explicitly formulating a solution to both the learning problem and the decision and

control problem when solving financial optimization problems. In Chapter 2, I for-

mulated the portfolio optimization problem and compared the different risk measures

found in the Markowitz and MAD optimization models.

In Chapter 3 I performed an extensive study of the MAD and Markowitz models

using returns from the stocks in the S&P 500 from 2007 through 2010. This large

data set provided an ideal test bed to run simulations and observe the performance

of portfolios over changing market conditions. Rather than limit the study to a single

optimized portfolio, I implemented various rebalancing strategies to obtain a more

realistic comparison. Through the comparison of portfolios generated by the MAD

and Markowitz optimization models I showed that both portfolios achieve similar

net worths and consist of similar but slightly different portfolio compositions. I also

showed that the basic MAD model using a 63 day rebalancing horizon and ρHigh

achieved outstanding performance and had a final four-year return on investment of
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261.26%. I also showed that this portfolio had the highest Sharpe ratio and that it had

an average annualized risk-adjusted return that was 30.25% more than the average

risk-adjusted return of the S&P 500 index. Using the M2 performance measure, I

showed that all 24 portfolios described in section 3.6 outperformed the market.

Through an analysis of the average number of stocks in the MAD and Markowitz

portfolios I showed that contrary to Konno and Yamazaki’s claim in [14], the Markowitz

model implemented in MATLAB actually uses slightly fewer stocks on average than

the MAD-IP and MAD-Simplex models. I also observed that the MAD-IP portfolio

will occasionally over diversify and invest very small amount of money in almost every

possible stock. I also investigated the time complexity of the MAD-Simplex, MAD-IP,

and Markowitz models. I discovered an interesting bump in the time complexity of

the Markowitz model. Using several simulations I confirmed that this is not related to

the specific data set but appears to be related either to the optimization algorithms in

MATLAB, or my method of implementation. Based on this analysis I showed that the

MAD and Markowitz models achieve similar returns, but that the Markowitz model

is much more computationally intensive. I also showed that in many cases MAT-

LAB’s simplex method requires less time to compute than the interior-point method,

and that the simplex method is more stable in terms of the number of investments.

Finally, I examined a wider range of learning horizons and rebalancing strategies, but

was unable to find a portfolio that performed better than the MAD model with 63

day rebalancing and a high required return. Based on the overall results, the MAD

model solved with the simplex method requires the least amount of computation time,

is robust to overdiversification, and achieves the highest returns.
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4.1 Future Research

As with any research paper, there comes a time when new ideas and research directions

must be put on hold and saved for another day. There were several research areas

that I initially investigated where the research and results did not progress far enough

to be included in this thesis. In the future I would like to perform a more careful

analysis of the Markowitz model’s time complexity when implemented in MATLAB. It

would be beneficial to also implement the algorithm using several other computational

languages to compare the results to see if the bump in time complexity is a general

phenomenon or if it is unique to my implementation in MATLAB. It would also be

beneficial to carefully examine the covariance matrix of stock returns in the Markowitz

model to check for near singularity which may be affecting the computation time.

The use of different learning algorithms to predict future stock prices was men-

tioned in this thesis but the analysis and case studies only used the arithmetic mean as

an estimator. Future research would benefit from exploring the use of different learn-

ing algorithms and comparing the performance of the MAD and Markowitz models

when using these predictors. Another area of potential future research would be to

develop algorithms that pick their learning horizons and rebalancing horizons. One

way of doing this would be to have the optimization adjust for transaction costs,

thereby limiting the number of daily transactions but allowing more flexibility when

trading.

4.2 Epilogue

You’ve probably been wondering how well these models would perform in the future.

It is an interesting question with no perfect answer since we don’t know what surprises

the future will hold. However, if you happen to have $100,000 lying around and
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are feeling daring, here’s what the MAD-Simplex model would pick using a 63 day

rebalancing horizon and ρHigh: ‘Biogen Idec Inc.’, ‘Cephalon, Inc.’, ‘Lorillard, Inc ’,

and ‘National Semiconductor Corporation’. I’m not making any promises, but if you

happen to make 200% returns over the next four years, remember me.



Appendix A

Tables and Lists

A.1 Stocks from S&P 500 not included in study

The total list of all 500 stocks in the S&P 500, as of March 2011, were obtained from

the Stock Screener on FINVIZ.com. The following stocks were added to the S&P 500

between January 2007 and December 2010: V, TWC, TDC, SNI, QEP, PM, PEG,

PCS, MMI, MJN, LO, DPS, DFS, COV, CFN. These stocks were not included in the

research for this thesis to prevent missing data points and to only keep stocks which

were in the S&P 500 for the full two years of the study and may be considered more

‘constant’ during this time period and representative of the market.
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Table A.1 Portfolio Results (in $100,000) for Low ρ

Average Value Average Horizon Value Final Networth

Mad 252 0.888 0.92 1.0487

Mark 252 0.8775 0.9027 1.0257

Mad 126 0.9212 0.9198 1.0158

Mark 126 0.9515 0.9512 1.0354

Mad 63 1.0298 1.0346 1.1198

Mark 63 1.0558 1.0626 1.2076

Mad 21 0.9345 0.9376 1.1129

Mark 21 0.895 0.8965 1.0313

Table A.2 Portfolio Results (in $100,000) for Med ρ

Average Value Average Horizon Value Final Networth

Mad 252 0.7957 0.9200 0.9989

Mark 252 0.7944 0.9027 1.0137

Mad 126 1.0232 0.9198 1.2835

Mark 126 1.0279 0.9512 1.2523

Mad 63 1.1047 1.0346 1.4013

Mark 63 1.1226 1.0626 1.5060

Mad 21 1.0695 0.9376 1.5291

Mark 21 0.9880 0.8965 1.3832
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Table A.3 Portfolio Results (in $100,000) for High ρ

Average Value Average Horizon Value Final Networth

Mad 252 0.6248 0.5757 0.6777

Mark 252 0.6353 0.5743 0.6696

Mad 126 1.1260 1.1748 1.1543

Mark 126 1.1428 1.1948 1.1901

Mad 63 2.0903 2.1858 3.6126

Mark 63 1.7489 1.8224 2.9288

Mad 21 1.4070 1.4141 2.2422

Mark 21 1.5224 1.5301 2.3323

A.2 Exact Results from Experiment 1

A.3 Ticker Symbols of Stocks Used in MAD 63

Day High Rho Portfolio

‘AAPL’ ‘ADM’ ‘AIG’ ‘AKAM’ ‘AKS’ ‘AMD’ ‘AMZN’ ‘APOL’ ‘BBT’ ‘BIG’ ‘BIIB’

‘CAH’ ‘CF’ ‘CHK’ ‘CLF’ ‘COG’ ‘CPWR’ ‘CTXS’ ‘EOG’ ‘EXPE’ ‘F’ ‘FDO’ ‘FFIV’

‘FHN’ ‘FIS’ ‘FSLR’ ‘FTI’ ‘GCI’ ‘GENZ’ ‘GNW’ ‘HBAN’ ‘HCBK’ ‘HIG’ ‘HP’ ‘HSY’

‘ISRG’ ‘JBL’ ‘JDSU’ ‘KMX’ ‘LEG’ ‘MA’ ‘MEE’ ‘NBR’ ‘NFLX’ ‘NVDA’ ‘PCLN’

‘PHM’ ‘PXD’ ‘R’ ‘RSH’ ‘S’ ‘SLM’ ‘SRCL’ ‘THC’ ‘TSN’ ‘TSO’ ‘WDC’ ‘WFMI’ ‘WHR’

‘WYNN’ ‘ZION’



Appendix B

Plots

B.1 63 Day Rebalancing Horizon Over Different

Rho Values

When holding ρ constant and varying the rebalancing strategy, it is apparent that the

63 day rebalancing horizon performs the best for both the Markowitz and the MAD

model with the one exception being the MAD model with a ρMed which achieves its

best performance when using the 21 day rebalancing horizon.
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Figure B.1 Portfolio Net Worths using ρLow
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(a) Markowitz Model
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Figure B.2 Portfolio Net Worths using ρMed
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Figure B.3 Portfolio Net Worths using ρHigh



Appendix C

Plots

C.1 Separate plots for MAD-Simplex, MAD-IP,

and Markowitz models showing trends
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Figure C.1 Time Complexity for MAD-Simplex over multiple horizons
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C.1 Separate plots for MAD-Simplex, MAD-IP, and Markowitz models showing
trends 69
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Figure C.2 Time Complexity for MAD-IP over multiple horizons
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Figure C.3 Time Complexity for Markowitz over multiple horizons



Appendix D

Plots

D.1 Time complexity plots using random returns
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Figure D.1 Time Complexity using 100 artificial stocks with random normal
returns
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Figure D.2 Time Complexity using 200 artificial stocks with random normal
returns
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Figure D.3 Time Complexity using 300 artificial stocks with random normal
returns
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Figure D.4 Time Complexity using 400 artificial stocks with random normal
returns
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Figure D.5 Time Complexity using 485 artificial stocks with random normal
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