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Abstract— Bio-inspired robot swarms encompass a rich space
of dynamics and collective behaviors. Given some agent mea-
surements of a swarm at a particular time instance, an
important problem is the classification of the swarm behavior.
This is challenging in practical scenarios where information
from only a small number of agents may be available, resulting
in limited agent samples for classification. Another challenge is
recognizing emerging behavior: the prediction of swarm behav-
ior prior to convergence of the attracting state. In this paper
we address these challenges by modeling a swarm’s collective
motion as a low-dimensional linear subspace. We illustrate that
for both synthetic and real data, these behaviors manifest as
low-dimensional subspaces, and that these subspaces are highly
discriminative. We also show that these subspaces generalize
well to predicting emerging behavior, highlighting that there
exists low-dimensional structure in transient agent behavior. In
order to learn distinct behavior subspaces, we extend previous
work on subspace estimation and identification from missing
data to that of compressive measurements, where compressive
measurements arise due to agent positions scattered throughout
the domain. We demonstrate improvement in performance over
prior works with respect to limited agent samples over a wide
range of agent models and scenarios.

I. INTRODUCTION

Biological swarms are composed of many simple indi-
viduals following basic rules to form complex collective
behaviors. Examples include flocks of birds, schools of fish,
and colonies of bacteria, bees, and ants. The collective be-
haviors and movement patterns of swarms have long amazed
observers, inspiring much recent research into designing bio-
inspired robotic swarms that use simple algorithms to col-
lectively accomplish complex tasks [5], [16], [18]. Recently
many researchers have tried to understand how to influence
the collective behavior of a swarm using limited interactions
[4], [10], [7], [22]; however, little work has looked at the
reverse problem of trying to determine the collective behavior
of a swarm from limited samples.

In this paper we focus on the problem of classification
of swarm behaviors. Identifying the specific behavior of a
swarm is extremely useful for a number of applications.
For example, in the robotics, controls, and human-factors
communities, the specific collective state of a swarm may
determine the best control policy to guide a swarm to a
desired behavior. On the other hand, biologists may wish
to classify the collective behavior of a school, flock, or herd
as they track and evaluate how these biological swarms react
to external stimuli.

In particular, identifying emerging behavior or transient
behavior, which leads to a specific form of behavior is very
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important for applications in swarm control, where we may
want to ensure swarms exhibit certain forms of behavior
and guide them away from other unwanted behaviors. Early
detection and prediction of emerging collective behaviors
are also important problems in observational biology, where
scientists may want to determine exact causes for changes
in collective behaviors [19], [12].

In many real-world situations, however, it is infeasible to
assume that all members of a swarm are observable, posing
significant challenges for classification. Many potential ap-
plications for swarms of robots include environments where
limited and lossy communication may be the norm, such
as exploring other planets, assessing and repairing damaged
coral reefs, or locating tumors inside a human body. In these
types of applications, it is unrealistic to assume that all of the
robots can be observed at all times. Indeed, due to bandwidth
constraints, occlusions, and noisy measurements it may be
extremely difficult to get accurate information from even a
small subset of the swarm. Thus, it is important to have
methods for classifying and detecting collective behaviors
that work well with limited samples.

In this work, we cast swarm behavior classification from
limited agent measurements as a problem of subspace iden-
tification. Our key observation is that many forms of swarm
behavior dynamics, represented as collective agent motion,
may be modeled as low-dimensional linear subspaces and
that each behavior’s subspace is highly discriminative with
respect to other behaviors. We also show that even for
emerging behaviors, the transient dynamics are similarly low-
dimensional and discriminative. Swarm identification thus
can be reduced to identifying the subspace that the limited
agent measurements most closely project onto.

More specifically, we represent a single time instance of
a swarm as a velocity field, where the collection of agent
velocities are mapped to an underlying fixed resolution grid.
A velocity field is identified as a point in a high dimensional
space by associating each dimension with its unique grid
location and vector coordinate, i.e. its x or y coordinate
in 2D. This high dimensional space is the ambient space
in which we seek to learn a subspace from a collection of
vector fields. Note that we are faced with limited information
even in learning a subspace for a given behavior, as it is
highly unlikely for each grid location to map to a unique
agent. To support agents positioned at arbitrary locations we
treat the agent velocities as compressive measurements due
to interpolation from the grid to each agent position. We ex-
tend previous work which handles subspace estimation from
missing data [2] to this case of compressive measurements.
We then leverage prior work on subspace detection from



compressive measurements [1] to robustly identify behavior
types from just a few agent measurements.

Our main contributions are summarized as follows:
• We present a scalable and robust approach to learn

discriminative behavior-specific subspaces from highly
incomplete, compressive agent measurements.

• Our approach is general with respect to different types
of swarm behaviors. We assume that each behavior
manifests as a discriminative low-dimensional subspace,
compared to other approaches that use hand-engineered
features or domain-specific classification techniques.

• We obtain significant improvements in performance
over the state-of-the-art in swarm classification, com-
prehensively demonstrated for different swarm models,
agent sampling schemes, and for classifying both con-
verged behavior and emerging behavior.

II. RELATED WORK

The limited-observation swarm classification problem was
first proposed by Brown et al. [6]. Brown et al. examined
swarm behavior classification for a model of robotic swarm-
ing which allows changes in the collective state of the swarm
through limited interactions [7]. They show that a simple
Naive Bayes classifier given limited samples from a swarm
performs extremely well when trained on local features that
directly relate to global collective features [6]. Brown et al.
use a limited number of samples of agents’ turning rate and
number of local neighbors to perform classification. This
approach is computationally simple and works reasonably
well even when only one agent can be sampled. However,
they show that their model achieves only low to middling
accuracy when there are transients in the behaviors. Another
downside to this approach is that it requires hand-crafted
features, limiting its applicability to swarm behaviors and
data sets where this information may not be available.

Recent work by Wagner et al. [21] investigated an alter-
native approach to swarm classification given limited obser-
vations that models a swarm as a Gaussian distribution over
velocity fields and uses maximum likelihood estimations to
impute unobserved entries of the velocity field. The benefits
of this approach are that it provides a way to reconstruct a full
velocity field based on a small number of observed agent’s
positions and velocities. The downside is that this approach
not only requires knowing the positions and velocities of
every sampled agent, but also requires performing a Singular
Value-based transformation to register the swarm onto a
uniform grid. This transformation requires knowledge of
the bounding box that encloses the entire swarm, including
members of the swarm that are not assumed to be visible.

Our approach is based on recent work in subspace esti-
mation and identification from incomplete and more gener-
ally, compressive measurements. Balzano et al. [3] provided
sample complexity bounds for reliably detecting whether an
incomplete data vector belongs to a given subspace. The
authors followed this by proposing a method for estimating
a subspace from incomplete data, via a stochastic gradient
descent technique restricted to the Grassmannian manifold,

termed GROUSE [2]. Other related approaches have been
proposed to incorporate different regularization priors [15]
to improve stability. Compressive measurements serve as a
generalization to incomplete measurements, where there has
been work on subspace detection from such data [1]. Krish-
namurthy et al. [14] consider a similar compressive subspace
learning problem as we do, however they assume that the
original data is given and random projection operators may
be generated to produce compressive measurements. In our
approach, we are instead given compressive measurements,
i.e. sampled agent velocities and define a compressive pro-
jection which interpolates the velocity field onto the agent
positions.

III. SUBSPACE MODELING OF SWARMS

Our approach to swarm behavior identification is to first
learn a subspace—per behavior type—from a set of char-
acteristic fields of a swarm that collectively capture the
dynamics of the swarm. In our work we take a swarm’s
characteristic field as its velocity field defined over a regular
grid of a fixed resolution, as in [21]. We make two key
assumptions on the resulting subspaces:

• Each subspace is low dimensional. This assumes that
the collective motion of the agents associated with
a swarm behavior are characterized by some low-
dimensional dynamics.

• The subspaces are discriminative with respect to each
other. That is, when any given point on one subspace
is projected into another subspace, its projection error
is high.

From these assumptions, a given swarm is then classified
based on its velocity field’s projection into each subspace,
taking the predicted subspace as that which gives the lowest
projection error.

The ambient space is a fixed resolution regular grid
containing velocities of the swarm behavior. In practice,
however, we are only given velocity vectors associated with
agents scattered throughout the domain. This poses a major
challenge—both for learning the subspace from training data
and classifying behavior from a snapshot of a swarm at test
time. In the following subsections, we detail our approaches
for subspace learning and identification from collections of
swarm velocities.

A. Subspace Model

Our approach learns a subspace from a collection of
velocity fields for a given swarm behavior. We assume that
we are given a collection of frames representing swarms—
we make no assumptions on temporal coherency of swarms,
we process all frames independently. The set of frames
may arise from different simulations, different observation
periods, etc.., yet we assume that collectively they form some
underlying low-dimensional dynamics characteristic of the
behavior. More specifically, assume that we have T frames
of a swarm behavior, where the t’th frame has nt agents
with positions Pt = {p1,p2, ...,pnt

} and velocity vectors
Vt = {v1,v2, ...,vnt

}, where each pi,vi ∈ Rd. We first



map the agent positions Pt to a regular grid of a fixed
resolution (s×s), where we map the minimum and maximum
bounds of the agent positions at each frame to the minimum
and maximum bounds of the grid. This is similar to the
setup of [21], however, we do not attempt to find an affine
transformation to compensate for distortion in the mapping.
Instead, we assume the learned subspace will compensate for
this distortion.

The regular grid, of total dimension m = d · s2, is the
ambient space for our learned subspace. It represents the
space of all possible vector fields for swarm frames. Our aim
is to learn a linear subspace which spans all possible types
of motion, modeled via agent velocities, for a given behavior
type. However, each swarm frame contains velocities that are
positioned at scattered points throughout the domain, hence
standard subspace learning methods such as PCA are not
appropriate, as we are not given velocities at the nodes of
the grid.

One possible solution to this problem is to interpolate the
agent velocity vectors onto all grid nodes, and then perform
subspace learning from the resulting dense field. However,
the velocity vectors at grid nodes far away from all of the
agent positions may not be well defined. To get around this,
we may mark all such grid nodes as missing, and learn
the subspace directly from these incomplete data vectors—
the collection of grid nodes that contain interpolated ve-
locity values, demonstrated in Figure 1(a). The method
of GROUSE [2] has proven powerful for this problem of
subspace estimation from incomplete data. GROUSE learns
a subspace by performing stochastic gradient descent on the
Grassmannian manifold—the space of all linear subspaces
constrained to be orthogonal. They handle missing data by
restricting subspace projections to observed values. In our
scenario, we represent observed agent velocities for frame t
sampled at mt grid nodes as a vector f̂t ∈ Rd·mt . Then for
a given subspace U ∈ Rm×r of dimension r to be learned,
GROUSE minimizes:

F (U) = min
at

‖UΩt
at − f̂t‖22 s.t. UTU = I, (1)

where Ωt contains the mt indices corresponding to those
grid nodes which have interpolated values corresponding to
f̂t, and UΩt ∈ Rd·mt×r subsamples the rows of U from Ωt.

A drawback to this approach, however, is that the subspace
is learned from data that may fail to reflect the original
agent velocities. In particular, for highly nonuniform data,
the quality of the result can become highly dependent on the
choice of interpolant, while for sparse data, an interpolant
of local support may produce piecewise constant vectors in
certain portions of the grid. More generally, it is nontrivial
to determine the overall support of an interpolant—deciding
on which grid nodes should be reported empty or not.

B. Compressive Subspace Learning

To circumvent these issues, we propose an approach which
learns directly from the agent velocities ft by interpolating
the subspace, rather than the given data. In a sense, this is

(a) Data Interpolation (b) Subspace Interpolation

Fig. 1. Subspace learning with two different data models: (a) the subspace
is learned from the field obtained by interpolating the input velocity vectors
onto the grid, where in (b) we take a dual approach: the subspace is learned
such that the subspace projection’s interpolation matches the input velocities.
The latter is more faithful to the input data and less sensitive to highly sparse
and nonuniformly distributed data.

dual to the scheme described above, where rather than inter-
polate the velocities onto the grid, we define an interpolant
on the grid nodes for each individual agent velocity—see
Figure 1(b). We first define ft ∈ Rd·nt , consisting of the nt
agent velocities. We view ft as being drawn from a latent
vector field defined on the regular grid gt ∈ Rm, where ft is
formed by projecting gt onto the agent positions Pt via an
interpolation matrix Wt ∈ Rd·nt×m, i.e. ft = Wtgt. As in
practice d·nt � m, we can interpret ft as a compressive mea-
surement, with Wt as the compressive projection. Our goal
is to learn a subspace from these compressive measurements,
using the compressive projections taken as interpolants.

Our approach extends GROUSE by defining the subspace
projection with respect to the interpolation matrix, rather than
a subsampling operator. This results in the following online
formulation for a given swarm frame t:

F (U) = min
at

‖WtUat − ft‖22 s.t. UTU = I. (2)

Here at is the subspace representation of ft which best
fits the projection’s interpolation, found by a standard least-
squares solve. We seek a descent direction for U, via its
gradient, which minimizes F while keeping us on the Grass-
mannian. Following the stochastic gradient descent protocol,
the gradient of F follows as:

∇F = −2WT
t (ft −WtUat)a

T
t . (3)

A gradient step that preserves orthogonality is ultimately
a function of the singular value decomposition (SVD) of
∇F . Similar to GROUSE, ∇F is rank one, hence its
SVD has a simple form in terms of the residual vec-
tor r = WT

t (ft −WtUat), at, and its sole singular value
σ = 2‖r‖‖at‖. For a given step size ηi, the update is [2]:

U
′

= U +

(
(cos(ηiσ)− 1)

‖at‖
Uat + sin(ηiσ)

r

‖r‖

)
aTt
‖at‖

.

(4)
In practice, we first initialize U to be a random orthogonal

matrix and then perform several passes over the swarm
frames, updating U via the stochastic gradient step from



a single frame at a time. We use a decaying step size as
suggested in [2], such that ηi ∝ 1

i for the i’th iteration
corresponding to a specific pass on a swarm frame. In all
experiments we found that the subspace converged in at most
five passes over the data. Regarding the interpolation matrix
Wt, we simply use bilinear interpolation as highlighted in
Figure 1(b), resulting in each row of Wt consisting of at
most four nonzero entries. Hence, sparse matrix routines
ensure that the algorithm can scale to very large data. Indeed,
the overall complexity of the method is O(Tmr), where r
is usually very small—see Section IV-D for more details on
setting r. Note that the previous work of [21] has complexity
O(Tm2).

The original formulation of GROUSE is in fact a special
case of our compressed formulation—if we assign each row
of Wt a single 1 and 0 elsewhere, then Wt acts as a
subsampling operator. One may also formulate this problem
in terms of matrix completion with terms linear in X:

argmin
X

‖X‖∗ +

T∑
i=1

(WtXt − ft)
2, (5)

where Xt is a data column of X. One may then simply
take the top left singular vectors of X as the subspace.
However, matrix completion methods such as Singular Value
Thresholding [8] do not scale well to the problem settings
we consider for swarm identification, where m ∝ 104 and
T ∝ 105. Furthermore, we are not concerned with data
imputation, we only require the subspace for identification.

C. Swarm Classification via Subspace Identification

At test time, given a set of swarm velocities at a frame f ,
classification is rather straightforward: we find the subspace
in which the projection error of f is smallest, similarly to [1].
More formally, given f and its associated interpolation matrix
W, its predicted behavior p(f) is:

p(f) = argmin
i

=
‖(I− PWUi

)f‖22
‖f‖22

, (6)

where I is the identity matrix, and PWUi is the com-
pressed subspace projection operator, defined as PWUi =
WUi(U

T
i W

TWUi)
−1UT

i W
T . We divide by the squared

norm of f to provide a normalized error, making the results
interpretable for variably sampled agents. Different from [1],
we do not transform W to be orthogonal, as it has no bearing
on classification.

There exists two remaining challenges we must address
in classifying swarm behavior: handling a behavior whose
subspace overlaps with other swarm behavior subspaces and
determining bounds from subsampled agent measurements.

1) Classification via Projection Score Features: For cer-
tain types of swarm behaviors, their learned subspaces may
intersect with other behavior subspaces, resulting in ambigu-
ities for classification. Furthermore, other types of behaviors
that are completely unstructured (i.e. agents moving ran-
domly) may simply have a poorly fit subspace. To address
both issues, we modify our classification scheme to treat
each subspace projection score as a feature, and concatenate

(a) torus (b) flock (c) disordered

Fig. 2. Emergent swarm behaviors. Straight lines represent agent headings.

these scores as a feature space, from which we train a SVM
to classify behaviors. Hence, a behavior whose projection
error is low with respect to another behavior, but varies
across other behaviors, will result in a discriminative feature.
We can also classify the extreme case, a behavior that has
high projection error on all subspaces, such as the disordered
behavior shown in Figure 2(c).

2) Sliding Window Detection: An issue with limited agent
information is that bounds of the agents may fail to match
the original bounds of the full swarm data. The method
of [21] assumes that the bounds for subsampled data are
obtained from the original fully-sampled swarm data. In
certain applications these bounds may be known a priori,
i.e. due to environmental constraints, but in general this
information may not be known.

We propose a simple way to handle missing bounds by
sliding an appropriate window over the subsampled agent’s
domain, performing classification for each window, and
taking the behavior which contains the strongest detection.
We first compute behavior-specific mean bound sizes from
training data swarm frames, using this as the expected bound
size for the subsampled agents. A random window is gener-
ated by applying a transformation to the subsampled bounds
such that the window size equals the expected bound size,
while ensuring each agent is contained in the window. The
strongest detection is determined via the highest SVM score,
performed in a standard one-versus-all SVM classification.

IV. EXPERIMENTAL SETUP

In order to thoroughly test our subspace identification
against previous approaches, we test across several different
data models, subsampling schemes, and behavior types. We
describe each of these components below.

A. Swarm Datasets

1) Kerman Model: The Kerman model [13] consists of a
set of agents following the dynamics

ẋi = s · cos θi, ẏi = s · sin θi, θ̇i = ωi, (7)

where (xi(t), yi(t)) ∈ R2 is the ith agent’s position at time
t, θi ∈ [−π, π] is the ith agent’s angular heading, s is
the constant agent speed, and ωi is the ith agent’s angular
velocity. Similar to Reynolds’ boids model [17], agents react
to neighbors within an attraction, orientation, and repulsion
zone. At each time step an agent’s neighbors are randomly
chosen, where the probability of being neighbors is inversely
proportional to the square of the distance between agents—
yielding a simple model of occlusions and distance-limited



sensing between agents. This model exhibits an interesting
bi-stability—depending on the initial conditions, the simu-
lation will converge to a stable flock or a stable torus with
equal likelihood—see Figure 2.

2) Couzin Model: Couzin’s model [9] is similar to the
Kerman model, but has several differences: it produces three
possible group types: torus, flock, and disordered (see Figure
2); agents have a blind spot; agents react to neighbors within
a maximum sensing range Ra; and it adds explicit noise
to the individual agent headings. These differences result in
noisier behaviors that are more difficult to classify.

3) Golden Shiner Data: We obtained four data sets used
by Tunstrøm et al. [19] to study collective states in schooling
fish. This data was obtained by tracking groups of Golden
Shiners in a broad shallow pool. The data includes each
fish’s position and velocity. Despite the shallow depth, fish
can still pass under one another. Due to these occlusions
and tracking error, most frames have missing data. The four
data sets correspond to schools of size 30, 70, 150, and 300
fish. Each school was filmed for 56 minutes at 30 frames
per second. These schools of fish exhibit the three behaviors
from Couzin’s model (disordered, torus, and flock) as well as
transitory states as the school transitions between behaviors.

4) Labels: Each frame of the above data sets was labeled
using the order parameter classification method described by
Tunstrøm et al. that classifies swarm behaviors based on the
alignment and rotation of the entire swarm [19].

B. Subsampling Models

We use two different types of agent subsampling schemes.
We use uniform subsampling to select agents at random
through the domain, simulating a random agent communi-
cation model, where only information from a subset of the
swarm is available. This type of sampling was used in [6] to
model unreliable or contested communication with a robot
swarm. We also use a visibility-based subsampling model,
similar to [21]. We associate each agent with a fixed radius,
and designate a random position outside of the domain as
an “observer”. Only agents which are seen by the observer
are then taken as the samples, where an observer sees an
agent if it is not occluded by any other agent. An agent is
considered occluded if it has a neighbor that is closer to
the observer and if a ray drawn from the observer to the
agent in question intersects the “body” of the neighbor. We
model each agent’s body by a disc centered at the agent’s
position with the aforementioned radius. This tends to result
in agents sampled near the boundary, only within the view
of the outside observer, leading to very different sampling
patterns from uniform sampling.

C. Agent Behaviors

We use two different types of agent behaviors in our ex-
periments. One is considered converged, where the agents are
definitively in one type of state, as determined by Tunstrøm’s
order parameters criteria [19]. For the Kerman and Couzin
model we take the end of the simulations as being converged,
while for the fish data we take frames which are classified
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Fig. 3. Error plots depicting quality of subspace learning for the Kerman
model for (a) swarm frames that have converged to their attracting behavior
and (b) swarm frames that are emerging towards their attracting behavior.

as a certain type of behavior based on the frame’s order
parameters. We also consider emerging behavior, wherein
we would like to classify a transient swarm frame, based
on the fact that we know which type of distinct behavior
the agents will eventually form. We consider two types
of experiments in this scenario: both training and testing
on transient behavior, and training on converged behavior,
while testing on transient behavior. The latter is especially
challenging, as it tests to see how well a given classification
method can generalize to unseen transient behavior.

D. Implementation Details

There are two main parameters to be set in our method:
grid resolution and dimension of the subspace. The grid
resolution needs to be large enough to faithfully interpolate
the subspace to the given observations. This is a function
of the ratio between the maximum and minimum distance
between agent positions. We verified this distance ratio on
the fish dataset, and found that a grid resolution of (64×64)
adequately represented the data, hence for simplicity we used
this resolution in all of our experiments. Since the Kerman
and Couzin models contain repulsive forces, the minimum
distance is lower bounded, and so this resolution is also
suitable for these models. We found higher resolutions did
not improve performance in our experiments.

The subspace dimension should be large enough to cap-
ture variations in the swarms, yet small enough to still be
discriminative with respect to other swarm behaviors. To
better understand what the subspace dimensions should be,
we trained our subspace on a converged set of frames for the
Kerman model on flock and torus behaviors and analyzed
the normalized projection error of the swarm frames as a
function of dimension—see Figure 3(a).

We observe that the subspace dimension for torus is 1 and
for flock it is 2, up to the noise level in the data. This matches
the intuition behind the different behaviors: velocity fields
from a torus behavior are pointing in one direction or another,
while flock behavior is unique up to a rotation, representing
the additional dimension. Figure 4(a) visualizes the flock
subspace via its spanning pair of vector fields. Note that any
flock direction may be expressed as a linear combination of
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Fig. 4. Vector fields, visualized as flows via line integral convolution,
which span the subspace for converged and emerging flock behavior.

these fields. For generality across all data models, we have
set the subspace dimensions for all convergent behaviors to
2 in all experiments.

Transient swarm behavior prior to convergence to an
attracting state is more nuanced: although agents are not
moving in a defined behavior, there still exists structure
in their motion. We observe this in Figure 3(b), where
we show a similar experiment for determining the proper
subspace dimension on the Kerman model for swarm frames
sampled near the point of transition in the simulation:
where transient behavior becomes either a torus or flock.
We see that, although the subspace dimension is not as
clear as the case of converging states, it still exhibits low-
dimensional structure, roughly leveling off at a dimension
of 3. Figure 4(b) visualizes the 3-dimensional subspace for
Kerman flock behavior, where we can observe the original
flock behavior augmented with smooth transitions to flock. In
practice, we set the dimension to be 3 for emerging behavior
in all of our experiments.

V. RESULTS

We compare our approach with the Naive Bayes
method [6], denoted NB throughout, as well as the vector
field Gaussian Process regression approach [21], denoted GP.
NB was trained for the Kerman and Couzin models using
turning rate and number of local neighbors as the features
as detailed in [6]. We do not apply this classifier to the
Golden Shiner since this data set does not include these
features. To perform classification using GP we follow the
methodology detailed in [21] to obtain reconstructed order
parameters, where we set the grid resolution to (20× 20)—
larger resolutions were computationally prohibitive. Using
Tunstrøm’s order parameter definitions of the disordered,
torus, and flock, we label the frame as the behavior closest to
the predicted order parameters. We present our approach for
when the bounding box of the test swarm frame is known
(Subspace), as well as the sliding window method which
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Fig. 5. Results for the Kerman swarm model for converged behavior across
uniformly subsampled agents and visibility subsampled agents.

does not assume bounds (W-Subspace). For each experiment
we evaluate the methods on 10 train/test splits, reporting the
mean behavior classification accuracy and standard deviation.

A. Kerman Model

We evaluate our approach on the Kerman model for con-
verged and emerging behavior, across uniform and visibility-
based sampling. We used the same parameters as [6] to pro-
duce a flock or torus with approximately equal likelihood. We
generated our data set by running 100 simulations starting
from random initial conditions, resulting in 49 simulations
that converged to a flock and 51 simulations that converged
to a torus. Each simulation consists of 2000 frames for
each behavior, giving enough time for the behaviors to fully
emerge and stabilize. The converged behavior is taken to be
the last 10% of each simulation, resulting in approximately
12000 frames for training and 8000 frames for testing,
where we have verified that these frames correspond to their
respectively consistent behavior according to [19]. We define
emerging behavior to be frames sampled immediately before
and after a transition point, unique for each simulation. The
transition point is found as the last frame in the simulation
which fails to be the particular behavior—i.e., every frame
afterwards is consistently torus/flock as determined by the
order parameter classification introduced by Tunstrøm [19].

Figure 5 shows the converged behavior on uniform sam-
pling and visibility sampling. We find that our method
consistently outperforms GP on both sampling schemes,
highlighting that our approach is insensitive to the specific
form of missing data. NB performs slightly better for very
low uniform sampling rates, yet these particular experiments
conform to their hand-engineered features quite well. Our
sliding window method performs quite well, and usually has
issues only for very small sampling rates (i.e. 2 agents).

Table I shows the results for emerging behavior on uni-
form and visibility sampling. Compared to NB, our method
performs much better when faced with visibility-subsampled
data. Compared to GP we find that we are competitive,
if slightly worse. We find that emerging behavior for the
Kerman model can have large variation and our subspace
model may not distinguish well between these variations.
However, our comparable results come at a much lower



Kerman Uniform Sampling Kerman Visibility Sampling Couzin Uniform Sampling Couzin Visibility Sampling
5 10 15 .03 .04 .05 5 10 15 .03 .04 .05

NB .82± .02 .85± .02 .87± .02 .61± .01 .60± .01 .59± .01 .63± .01 .69± .01 .72± .01 .60± .02 .56± .02 .54± .03
GP .85± .01 .87± .02 .88± .01 .80± .02 .77± .02 .77± .01 .83± .01 .90± 0.0 .93± .01 .73± .01 .69± .01 .66± .01
CS .84± .02 .87± .03 .88± .02 .78± .02 .75± .02 .73± .01 .82± .01 .90± .01 .93± .01 .73± .01 .69± .01 .66± .01
SW .81± .02 .85± .03 .86± .02 .74± .02 .71± .03 .69± .01 .81± .01 .90± .01 .93± .01 .73± .01 .69± .01 .66± .01

TABLE I
EMERGING BEHAVIOR RESULTS FOR THE KERMAN AND COUZIN MODELS. ALGORITHM NOTATIONS: NB [6], GP [21], CS IS OUR METHOD WITH

KNOWN BOUND INFORMATION, AND SW IS OUR SUBSPACE-BASED SLIDING WINDOW CLASSIFICATION.
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Fig. 6. Results for the Couzin swarm model for converged behavior across
uniformly subsampled agents and visibility subsampled agents.

average computational cost: our method takes approximately
7 seconds to train on the swarm frames, whereas GP takes
approximately 500 seconds.

B. Couzin Model

Our Couzin model data set is generated with the same
parameters used in [6] to reliably produce the model’s
distinct behaviors. We generated 100 simulations each for
flock, torus, and disordered behaviors. Each simulation starts
from random initial conditions and consists of 1000 frames,
giving enough time for each behavior to fully converge
and stabilize, resulting in approximately 18000 frames for
training and 12000 frames for testing. We use the same
experimental protocol as the Kerman model for converging
and emerging behavior, as well as uniform and visibility
sampling, with the exception that for emerging behavior, we
only test for flock or torus, as the disordered behavior fails
to demonstrate transient behavior.

Figure 6 shows results for converged behavior on uniform
and visibility sampling. We find that our method greatly
outperforms both methods across the different subsampling
schemes. The Couzin model is quite noisy, yet we find that
our method can both robustly learn subspaces, as well as
reliably perform subspace projections for classification when
faced with noisy and limited agent samples. GP performed
rather poorly in classifying the disordered behavior, mainly
due to a poor velocity field reconstruction, whereas we use
the subspace projection error to determine that neither flock
or torus is likely from the given data.

Table I shows the results for emerging behavior on uniform
and visibility sampling. Although our method performs much
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Fig. 7. Results for the Golden Shiner fish for converged behavior across
uniformly subsampled and visibility subsampled agents.

better than NB, we obtain very comparable results to GP.
We note that compared to GP, our method achieves these
results without resorting to domain-specific classification;
furthermore the Window-Subspace method does not require
knowledge of the entire swarm’s bounds. Hence, we see that
the generality and ecological validity of our method does not
come at the cost of lower performance.

C. Golden Shiner Data

Last, we evaluate our method on the Golden Shiner fish
dataset. Each frame of each dataset has its behavior labeled
from [19], which we use to form the converging behavior
experiments, using 10000 frames for training and 4000
frames for testing. For emerging behavior, here we wish to
see if we can predict emerging behavior by only training
on converged behavior in order to test the expressivity of
our models. We fix the subsampling in these experiments
(10 samples for uniform, radius of 2% of bound diagonal
for visibility), and test on transient frames going backwards
from the start of a converged state. In other words, we would
like to see how early on we can predict where a transient
behavior will eventually lead.

Figures 7 and 8 show that our method consistently outper-
forms GP on all experiments. The sliding window technique
mostly performs better, while assuming less information than
GP. However, the gap in performance between Subspace and
W-Subspace is larger compared with the synthetic datasets,
as we found the nonuniformity in the fish positions to pose
a larger challenge in the sliding window detection. Never-
theless, relative to GP, we find that our method performs
quite well on the fish data in classifying emerging behavior
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Fig. 8. Results for the Golden Shiner fish for emerging behavior. Here we
fix the uniform subsampling to 10 frames and the agent radius (expressed
as percentage of bounding box diagonal) to 2%, and vary the number of
transient frames, going backwards from the start of converged frames.

compared to the Kerman and Couzin models, even with a
more challenging train/test setup. The results on real data are
highly encouraging, as they indicate the potential efficacy
to be applied to collective motion patterns of actual robot
swarms in the future.

VI. CONCLUSIONS

We have presented a method for swarm classification
from partial data using subspace learning. We extend prior
methods on subspace learning from incomplete information
to that of compressive measurements, where we show that
we are able to successfully learn subspaces from agent-based
velocity fields, and classify swarms via subspace detection.
Note the generality of our method—we do not perform data
imputation, nor compute hand-engineered features at any
stage of our approach.

For future work, we would like to consider additional
types of behavior models for classification. As our method
is general, it should extend to arbitrary types of behaviors so
long as each is driven by some underlying low-dimensional
dynamics. For instance, the behaviors in [20] are modeled
and parameterized via an ODE. We postulate that these
degrees of freedom should manifest as such low-dimensional
dynamics given observations of the agent velocities. We
would also like to extend our formulation to detect outliers—
agents which fail to adhere to the collective motion dynam-
ics, modeled by the low-dimensional subspace. We note that
our compressive subspace learning formulation uses an l2
norm in its energy, where by replacing it with a sparsity-
seeking l1 norm as in [11], our approach can be readily
adapted to handle outliers, both in learning the subspace as
well as classifying swarm behavior.
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