
LAAIR: A Layered Architecture for Autonomous Interactive Robots

Yuqian Jiang∗1, Nick Walker∗1, Minkyu Kim2, Nicolas Brissonneau2,
Daniel S. Brown1, Justin W. Hart1, Scott Niekum1, Luis Sentis2, Peter Stone1

1Department of Computer Science, University of Texas at Austin, Austin, USA
2Department of Aerospace Engineering and Engineering Mechanics, University of Texas at Austin, Austin, USA

{jiangyuqian, nickswalker, steveminq, nicolasb}@utexas.edu
{dsbrown, hart, sniekum}@cs.utexas.edu, lsentis@austin.utexas.edu, pstone@cs.utexas.edu

Abstract

When developing general purpose robots, the overarching
software architecture can greatly affect the ease of accom-
plishing various tasks. Initial efforts to create unified robot
systems in the 1990s led to hybrid architectures, emphasiz-
ing a hierarchy in which deliberative plans direct the use of
reactive skills. However, since that time there has been sig-
nificant progress in the low-level skills available to robots,
including manipulation and perception, making it newly fea-
sible to accomplish many more tasks in real-world domains.
There is thus renewed optimism that robots will be able to
perform a wide array of tasks while maintaining responsive-
ness to human operators. However, the top layer in traditional
hybrid architectures, designed to achieve long-term goals, can
make it difficult to react quickly to human interactions during
goal-driven execution. To mitigate this difficulty, we propose
a novel architecture that supports such transitions by adding
a top-level reactive module which has flexible access to both
reactive skills and a deliberative control module. To validate
this architecture, we present a case study of its application on
a domestic service robot platform.

Introduction
Researchers have long sought to develop robots that are able
to undertake complex tasks autonomously in real-world en-
vironments. Early efforts to develop such robots resulted in
deliberative systems, in which the robot plans a sequence
of actions to achieve a goal, and reactive systems, in which
layers of local behaviors react to sensor input (Kortenkamp,
Simmons, and Brugali 2016). Hybrid architectures, which
layer deliberation and reactivity, emerged as a promising ap-
proach to the creation of integrated autonomous robots.

As efforts to improve individual robotic capabilities dom-
inated the research landscape, the outline of hybrid archi-
tectures for general purpose robotics has seen few changes
in the past two decades. In this time, researchers have
made significant progress towards robust robot capabilities
such as autonomous localization and navigation (Fox et
al. 1999), object manipulation (Gualtieri et al. 2016), ob-
ject recognition (Krizhevsky, Sutskever, and Hinton 2012).
This increased capacity—the fruit of better system mod-
eling, increased computational power, and new tools and

∗Equal contribution.

techniques—has made it feasible for robots to act intelli-
gently in more dynamic, real-world settings.

There is a renewed vision that robots will not only op-
erate autonomously, but do so in challenging environments
such as the home or office, where they must regularly in-
teract with humans. Many projects have taken on the grand
challenge of creating interactive autonomous robots for use
in daily settings (Khandelwal et al. 2017), and international
robotics communities have created competitions such as
RoboCup@Home (Holz and Iocchi 2013) and the World
Robot Summit Challenge1 to encourage research efforts in
this direction.

Though some hybrid architectures for general purpose
robots were created with human interaction in mind, the ex-
tent to which robots operate in populated human environ-
ments was neither possible nor expressly accounted for in
their design. In a typical layered architecture like 3T (Pe-
ter Bonasso et al. 1997), skills, which control the connec-
tions between sensors and actuators, are placed at the bot-
tom. These low-level control components are invoked and
monitored by the middle sequencer layer to achieve planned
behaviors. At the top, a task planning layer decomposes the
current task into a plan of lower-level behaviors. Given an
input task specification, these layers provide the complete
loop of planning, monitoring and executing a task.

This design does not address the desire for robot assistants
that constantly interact with people and dynamically receive
and execute all kinds of tasks in the environment over ex-
tended periods of time. In order to seamlessly respond to
human interactions, the top layer must be reactive and main-
tain direct control of the lower level components, such as a
dialogue handling skill and a component that parses com-
mands.

In this paper, we propose a layered architecture for au-
tonomous interactive robots, LAAIR, to facilitate complex
tasks in long-term settings and dynamic interactions with
humans in real-world domains. The top-level of a LAAIR
system is reactive control, which sequences and executes
skills in response to the environment and interactions. When
the top-level encounters tasks that cannot be statically de-
composed, it invokes a deliberative controller which plans
and executes actions to accomplish the goal. The bottom

1http://worldrobotsummit.org/en/about/



level consists of skills which interface with the world. We
contrast LAAIR with existing robot architectures and present
a case study of applying LAAIR on a mobile robot platform.

Related Work
The problem of structuring the software of an intelligent
robotic system has long been pursued. Early architectures
centered on robot planning systems, built around “sense-
think-act” cycles. Shakey, for example, leveraged a STRIPS
planner (Nilsson 1984). At the time of their development,
computational limitations made complex modeling method-
ologies such as those used for inverse-kinematic motion
planning an inaccessibly slow process, and technologies for
perception such as object recognition lacked the maturity of
modern systems. Partially as a response, reactive systems,
which more closely coupled sensing and acting, emerged.
In the Subsumption architecture, a well-known example, the
robot’s behavior is governed by a hierarchy of reactive layers
in which control from higher levels subsumes that of lower
levels (Brooks 1986).

Hybrid architectures draw together deliberative and reac-
tive control, most commonly by placing a high level plan-
ner in control of various reactive components. In three layer
architectures, this connection is mediated by an executive,
commonly a hierarchical state machine, which orchestrates
the particular low-level skills used to accomplish a plan
(Gat 1997). Notable examples of such architectures include
3T (Peter Bonasso et al. 1997), TCA (Simmons 1994) and
ATLANTIS (Gat 1992).

Our architecture shares many attributes with ATLANTIS.
In both architectures, the task planner is only called by the
executive control. In ATLANTIS, this design was driven by
the need to support asynchronous calls to the slow planning
process. Where ATLANTIS makes the planner the primary
decision maker for the system, in LAAIR, the top layer is
reactive control. This layer is responsible for decomposing
tasks, either by invoking the deliberative control layer or by
directly sequencing skills. This is driven by the need to en-
code both static and dynamic task decomposition and main-
tain responsiveness during long-term autonomous deploy-
ments.

In recent decades, many advancements have been made
towards general purpose autonomous interactive robots.
Robot Operating System (ROS) has emerged as a domi-
nant software framework in the community, encouraging
roboticists to think of their system as an agglomeration of
standard, interchangeable components (Quigley et al. 2009).
Many robotic systems have leveraged ROS and other stan-
dardized software components as a foundation on which to
improve specific skills or tasks.

These efforts have laid the groundwork for new ap-
proaches to the design of general purpose robot architec-
tures, the challenge LAAIR addresses. While several inte-
grated systems have been designed to address particular
challenges for service robots, such as interfaces to natural
language commands (Chen, Yang, and Chen 2016), plan-
ning in realistic domains (Tran et al. 2017; Hanheide et al.
2017), and real-world scene perception (Beetz et al. 2015).

Reactive Control

Deliberative Control

Skills

World

Figure 1: The prototype for a LAAIR system

Although these systems tackle similar challenges in archi-
tecting complex robotic systems, none of these efforts have
proposed an overall architecture to support general purpose
service robots. LAAIR was designed to organize and reuse
interfaces and skills across robots and tasks.

LAAIR
LAAIR, depicted in Figure 1, is a three layer hybrid archi-
tecture, consisting of a pool of modular skills, a deliberative
control layer that can sequence these skills to achieve goals,
and a reactive control layer which drives the system’s be-
havior. The reactive control layer can either directly sched-
ule skills or delegate to the deliberative control layer. Each
layer has asynchronous supervisory control over the layers
beneath it. This makes it easy to specify systems that remain
responsive to human interaction by, for instance, running
a user engagement detection skill from the reactive layer,
which can then redirect the rest of the system’s behavior.

LAAIR facilitates code and logic reuse by separating low-
level, often robot-specific implementation of skills from
robot-independent task structure. The top-level reactive
layer simplifies the specification of the top-level scripted be-
havior of the robot. The deliberative control layer provides
the robot with the ability to reason about its environment
flexibly as necessary.

Skills
Skills are the primary interface between the system and the
world. They encode robot behaviors, ranging from low-level
actions, like moving a joint, to higher level actions, like pick-
ing up an object. Everything from perceptual capabilities
to the robot’s dialog agent are implemented as skills. Skills
may accept parameters and are responsible for detecting and
reporting their own failure. Importantly, skills must adhere
to some uniform interface so they can be directly sequenced
by either reactive or deliberative control. This constraint pro-
motes the reuse of skills in different contexts and the porta-
bility of the architecture across different platforms. Outside
of these constraints, skills may be implemented as best suits
their objective—whether it be a procedural program, a state
machine or otherwise.



Deliberative Control
The deliberative control layer is responsible for turning a
goal into a sequence of actions that accomplish that goal.
These actions should either map directly to skills or be de-
composable into a sequence of skills. In addition to the ac-
tual process of generating the sequence of skills, the deliber-
ative control layer is responsible for monitoring the execu-
tion of the sequence, intervening when it determines that re-
sequencing or other corrective action is necessary. The delib-
erative control layer reports major milestones in execution,
such as completed actions or exceptional behavior to the re-
active control layer, so that they may be optionally handled
in a task-specific manner.

Because LAAIR gives the reactive control layer discretion
on the specification of goals, the architecture can be instanti-
ated with a broad range of deliberative components, or even
use different components within the course of accomplish-
ing a single task. Further, goal specification flexibility allows
the reactive control layer to statically decompose a compli-
cated task into several goals to limit the computational ex-
pense of deliberation.

Reactive Control
The reactive control layer is the primary executive in the
system. It contains a high-level representation of the robot’s
task, for instance, a hierarchical finite state machine. In sim-
ple cases, this layer uses a static representation of the task
to sequence skills and handle contingencies for different ex-
ecution outcomes. In complicated tasks where static decom-
position is infeasible, this layer produces a goal or goals that
can be dynamically resolved by the deliberative control layer
into a sequence of skills. The reactive control layer is respon-
sible for monitoring and handling the outcomes of the skills
that it directly calls, as well as for supervising deliberative
execution. This gives the layer overarching control of the
system, allowing it to preempt execution when, for instance,
a human engages with the robot.

The reactive control layer also facilitates the hand-
specification of actions for static parts of a task, while si-
multaneously supporting the use of deliberative control for
instances where the task is dynamic. Because executive con-
trol over the rest of the system is maintained from this layer,
the robot’s behavior is always attributable to some portion
of its top level representation. This makes LAAIR systems
easier to understand at runtime and easier to debug during
development.

Case Study
We show the instantiation of LAAIR on a Toyota Human
Support Robot (HSR) as part of an entry into the 2018
RoboCup@Home Domestic Standard Platform League. The
system is designed to execute both highly prescribed tasks,
like guiding a person from a vehicle to an apartment, as well
as open-ended tasks, like servicing requests that could re-
quire the robot to execute any number of actions in arbitrary
order.

HSR is a domestic robot platform equipped with an omni-
directional base, an arm, stereo and RGB-D vision systems,

a speaker as well as a microphone array. The software stack
of HSR is based on ROS. In this instantiation of the archi-
tecture, depicted in Figure 2, the reactive control layer is
provided by hierarchical finite state machines, deliberative
control leverages a symbolic task planner, and skills range
from custom implementations to open source components.

Reactive Control
We use SMACH2 to implement hierarchical finite state ma-
chines describing each RoboCup@Home task. Many of the
tasks follow a static series of steps, so they are implemented
purely by sequencing skills. When the robot is required to
accept natural language commands and dynamically decom-
pose the task, we enter a sub-state machine which calls skills
to formulate a goal that can be delegated to the delibera-
tive control layer. If the plan execution encounters errors, a
sub-state machine in the reactive control layer engages to ei-
ther specify another goal or execute a remedial sequence of
skills. The reactive layer connects a command dialogue skill
to a constantly-running wrist tap detection skill to enable the
robot to accept new tasking.

Deliberative Control
We implement the deliberative control of our robot using a
task planner and a plan executor. The task planner is based
on Answer Set Programming (ASP) (Lifschitz 2002), and
we use the answer set solver CLINGO to generate plans (Geb-
ser et al. 2011). The plan executor is responsible for invoking
the planner after receiving a goal, calling the corresponding
skills, and monitoring the execution.

Knowledge Base
Besides the control layers, central to our system is a knowl-
edge base module that stores a concept network and situated
knowledge about the domain. We implement the knowledge
base with a relational database managed by MySQL. The
knowledge base represents entities and attributes. Each en-
tity is assigned an ID, and can represent an abstract concept
or a concrete object in the environment. Attributes describe
properties and relations of entities.

The knowledge base is accessed by all layers of control in
the architecture: the reactive executive writes and reads the
identity of the operator and other task-level information; the
deliberative control plans over domain knowledge; the skill
components retrieve relevant information and update state as
necessary.

Skills
We leverage the action server/client abstraction available in
ROS to implement skills as processes which can be provided
a goal, send feedback to a supervisor, accept cancellation re-
quests and return outcomes. In exceptional cases, such as
skills that return significant amounts of data, we implement
skills as library functions to avoid interprocess communica-
tion overhead. Adopting this standardized interface for most
skills simplifies how the deliberative or reactive layers inter-
acts with them.

2http://wiki.ros.org/smach



Plan Executor

Reactive 
Control

Deliberative
Control

Skills

Planner Database

Knowledge 
Representation

Pick-up Navigate to Follow

Hierarchical Finite State Machines

Interfaces
...

Figure 2: Functional components of our LAAIR implementation for HSR.

The selection of skills described in this section highlight
the wide range of implementation in this layer.

Command Dialog agent This skill manages a dialogue
with the operator, parses the command, and resolves the
task type and parameters. The commands are generated from
the fixed grammar used in the Robocup@Home Competi-
tion3. Our current system understands 32 high-level domes-
tic tasks, such as finding people, answering questions, and
delivering objects, which can be sequenced in any order to
form a wide variety of complex commands.

Our implementation of the skill transcribes an utterance
using the Google Cloud Speech-to-Text API. We then build
a parse tree by expanding the production rules to all possible
sentences. For each command, we traverse the parse tree to
match the task type, such as “navigate to”, and to fill in task
parameters, such as “dining table”.

After fully parsing a command, we resolve coreferences
by searching backwards in the sentence to find the closest
name or object. If a coreference cannot be resolved, or a
command is incomplete, we engage in a correction dialogue
to attempt to recover the missing information. Based on the
semantics and type of missing information, the robot selects
from a library of templates in order to ask an appropriate
clarification question and resolve the parse.

Detection of movable objects We assume that objects
which the robot may need to move—to clear a path for nav-
igation, for instance—include a curved surface and at most
two accumulated degrees of freedom. We detect potentially
movable objects through two independent methods:

The first runs continuously, recording a 2D ground map of
the environment based on laser and depth readings and com-
paring it with incoming readings. This method is robust to
small changes to the environment, making it appropriate for
detecting whether small items such as books, bags or cans
on the floor have moved. The second searches for cylindri-
cal surfaces in the scene and classifies them as part of po-
tentially movable objects. This method is more efficient for
identifying bigger obstacles such as rolling chairs or doors
as it relies on their degrees of freedom.

Person Following We divide the person following skill
into three steps; detecting the target, tracking the target with

3https://github.com/kyordhel/GPSRCmdGen

?

Is target found? Look for target

Track target ?

Navigate to target 
directly

Navigate to target 
with collision 

avoidance

Figure 3: Behavior tree for person following skill. Arrows
indicate sequence nodes and question marks indicate fall-
back nodes.

the robot’s head, and navigating towards the target for fol-
lowing. These behaviors must be coordinated based on the
state of the robot and its surroundings. We model this task as
a behavior tree, which provides a compact representation of
how the robot should move between actions while executing
the behavior. Our implementation leverages a ROS behav-
ior tree framework, described in (Colledanchise 2017). Our
behavior tree is designed with two fallback nodes and two
sequence nodes as shown in Figure 3.

Future Work
Our case study has demonstrated the potential for LAAIR
to address the needs of a general purpose robot operating
in a human-populated environment. We are currently imple-
menting LAAIR on an office robot platform to demonstrate
how the architecture enables a high degree of software porta-
bility across service robots. In further instantiations, we plan
to demonstrate the architecture’s ability to handle interup-
tions and concurrency.

Acknowledgements
This work has taken place in the Learning Agents Research
Group (LARG) at UT Austin. LARG research is supported
in part by NSF(IIS-1637736, IIS-1651089, IIS-1724157),
Intel, Raytheon, and Lockheed Martin. Peter Stone serves
on the Board of Directors of Cogitai, Inc. The terms of this
arrangement have been reviewed and approved by the Uni-
versity of Texas at Austin in accordance with its policy on
objectivity in research.



References
Beetz, M.; Bálint-Benczédi, F.; Blodow, N.; Nyga, D.;
Wiedemeyer, T.; and Marton, Z.-C. 2015. Robosherlock:
Unstructured information processing for robot perception.
In IEEE International Conference on Robotics and Automa-
tion (ICRA-2015), 1549–1556. IEEE.
Brooks, R. A. 1986. A Robust Layered Control System For
A Mobile Robot. IEEE Journal on Robotics and Automa-
tion.
Chen, K.; Yang, F.; and Chen, X. 2016. Planning with task-
oriented knowledge acquisition for a service robot. In Pro-
ceedings of the Twenty-Fifth International Joint Conference
on Artificial Intelligence, IJCAI’16, 812–818. AAAI Press.
Colledanchise, M. 2017. Behavior Trees in Robotics. Ph.D.
Dissertation, KTH Royal Institute of Technology.
Fox, D.; Burgard, W.; Dellaert, F.; and Thrun, S. 1999.
Monte Carlo Localization: Efficient Position Estimation for
Mobile Robots. In Proceedings of the Sixteenth National
Conference on Artificial Intelligence and the Eleventh In-
novative Applications of Artificial Intelligence Conference
Innovative Applications of Artificial Intelligence, AAAI
’99/IAAI ’99, 343–349. Menlo Park, CA, USA: American
Association for Artificial Intelligence.
Gat, E. 1992. Integrating Planning and Reacting in a Hetero-
geneous Asynchronous Architecture for Controlling Real-
world Mobile Robots. In Proceedings of the Tenth National
Conference on Artificial Intelligence, AAAI’92, 809–815.
AAAI Press.
Gat, E. 1997. On Three-Layer Architectures. In Ko-
rtenkamp, D.; Bonnasso, R. P.; and Murphy, R., eds., Ar-
tificial Intelligence and Mobile Robots.
Gebser, M.; Kaufmann, B.; Kaminski, R.; Ostrowski, M.;
Schaub, T.; and Schneider, M. 2011. Potassco: The pots-
dam answer set solving collection. Ai Communications
24(2):107–124.
Gualtieri, M.; ten Pas, A.; Saenko, K.; and Platt, R. 2016.
High precision grasp pose detection in dense clutter. In 2016
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), volume 2016-Novem, 598–605. IEEE.
Hanheide, M.; Göbelbecker, M.; Horn, G. S.; Pronobis, A.;
Sjöö, K.; Aydemir, A.; Jensfelt, P.; Gretton, C.; Dearden, R.;
Janicek, M.; Zender, H.; Kruijff, G. J.; Hawes, N.; and Wy-
att, J. L. 2017. Robot task planning and explanation in open
and uncertain worlds. Artificial Intelligence.
Holz, D., and Iocchi, L. 2013. Benchmarking Intelli-
gent Service Robots through Scientific Competitions : The
RoboCup @ Home Approach. Technical report.
Khandelwal, P.; Zhang, S.; Sinapov, J.; Leonetti, M.;
Thomason, J.; Yang, F.; Gori, I.; Svetlik, M.; Khante, P.; Lif-
schitz, V.; Aggarwal, J. K.; Mooney, R.; and Stone, P. 2017.
BWIbots: A platform for bridging the gap between ai and
human–robot interaction research. The International Jour-
nal of Robotics Research.
Kortenkamp, D.; Simmons, R.; and Brugali, D. 2016.
Robotic Systems Architectures and Programming. In Bruno,

S., and Oussama, K., eds., Springer Handbook of Robotics.
Switzerland: Springer, Cham, 2 edition.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012.
Imagenet classification with deep convolutional neural net-
works. In Proceedings of the 25th International Confer-
ence on Neural Information Processing Systems - Volume
1, NIPS’12, 1097–1105. USA: Curran Associates Inc.
Lifschitz, V. 2002. Answer set programming and plan gen-
eration. Artificial Intelligence 138(1-2):39–54.
Nilsson, N. J. 1984. Shakey the robot. Technical Report 323,
AI Center, SRI International, 333 Ravenswood Ave., Menlo
Park, CA 94025.
Peter Bonasso, R.; James Firby, R.; Gat, E.; Kortenkamp, D.;
Miller, D. P.; and Slack, M. G. 1997. Experiences with an
architecture for intelligent, reactive agents. Journal of Ex-
perimental & Theoretical Artificial Intelligence 9(2-3):237–
256.
Quigley, M.; Conley, K.; Gerkey, B. P.; Faust, J.; Foote,
T.; Leibs, J.; Wheeler, R.; and Ng, A. Y. 2009. ROS: an
open-source Robot Operating System. In ICRA Workshop
on Open Source Software.
Simmons, R. G. 1994. Structured control for autonomous
robots. IEEE transactions on robotics and automation
10(1):34–43.
Tran, T. T.; Vaquero, T.; Nejat, G.; and Beck, J. C. 2017.
Robots in retirement homes: Applying off-the-shelf plan-
ning and scheduling to a team of assistive robots. In IJCAI
International Joint Conference on Artificial Intelligence.


