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Abstract. We model an intelligence collection activity as multiobjective
optimization on a binary stochastic physical search problem, providing
formal definitions of the problem space and nondominated solution sets.
We present the Iterative Domination Solver as an approximate method
for generating solution sets that can be used by a human decision maker
to meet the goals of a mission. We show that our approximate algorithm
performs well across a range of uncertainty parameters, with orders of
magnitude less execution time than existing solutions on randomly gen-
erated instances.
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1 Introduction

We address the challenge of utilizing Intelligence, Surveillance, and Reconnais-
sance (ISR) assets to locate and identify Anti-satellite weapons (ASAT), which
we refer to as AS-ISR. Sites that support ASAT require fixed infrastructure to
deploy, but can house mobile equipment that may be located at any site. Con-
struction of the proper infrastructure only indicates that the site is capable of
housing the weapon, but provides no guarantee that it will be located there.
Due to the high cost of the equipment, and a motivation to not have a small
easily identified set of target, there are often more sites than platforms. There-
fore, there is uncertainty surrounding the existence of an ASAT that can only
be dispelled by sending a sensor-laden platform to the site. This problem can be
represented as a planar graph, with vertices representing the site of interest and
edges denoting the travel cost between sites.

The AS-ISR problem seeks solutions that minimize cost and minimize the
probability of failure, objectives that are in conflict. Additionally, conducting
these missions requires human oversight to assure objectives are met. The deci-
sion maker may have a preference prior to search, allowing the search to focus
on a single objective. But commonly, the decision maker may wish to evaluate a
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set of alternatives after analyzing a set of alternatives against their own prefer-
ence [9]. In the latter case, a solution set needs to be generated that spans the
objective space.

If the decision maker is able to provide additional budget or probability of
failure constraints, the goal is to find a path that meets one of two objective
functions, both of which have been shown to be NP-complete [8] on general
graphs:

– Minimize budget: given a required probability of failure p∗fail, minimize
the budget necessary to ensure an active site is located with certainty of at
least 1− p∗fail. This answers the question, ”How much budget will I need to
ensure the risk of failure is below acceptable levels?”

– Minimize probability of failure: given a fixed starting budget B∗, mini-
mize the probability of failing to find an active site, while ensuring the sum
of travel and purchase costs do not exceed B∗. This addresses, ”What risk
of failure can I expect given this limited budget?”

A user may want to be presented with a range of options representing the
trade-off between budget and risk. For example, the mission may be a part
of a larger operation and is one of many competing objectives, which requires
evaluating the overall efficiency of the search process to determine if it should be
carried out at all, or if additional resources are needed. If a decision maker has
a requirement for a maximum travel cost, or minimum risk, we can optimize the
solution for the other objective. Otherwise, we must present the user with a set
of alternatives that they can choose from. While similar formulations exist [8] [5],
to our knowledge this is the first work to provide solutions for this multiobjective
optimization problem.

2 Related work

This problem is similar to a Traveling Salesman Problem and its variations (see
[4] for a comprehensive review), but varies in signficant ways. In this work, each
site has a distinct probability of failure that differentiates it from other sites,
imposing a preference order. More recent work extended the TSP to include
features that assign value to visited locations [1] [11], but these models assume
that costs are fixed and known. The Orienteering Problem with Stochastic Profits
(OPSP) introduces a distribution over the profits at each site and seeks to meet
a profit threshold within a given time limit [12].

Another key difference of this domain from prior work is the minimization of
multiple competing objectives. Multi-objective optimization for path planning
has been approached using evolutionary algorithms [6], but has often been lim-
ited to simple cycles on graphs. The Traveling Purchaser Problem with Stochas-
tic Prices [8] introduces the model used in this work, but generates solutions
by generalizing the cost distribution at each site as the expected cost, which we
compare against in our evaluation in Section 6. More recent work has provided
solutions for maximizing probability with a fixed budget and minimizing budget
with a fixed probability [5] [2], but provides solutions for a path.
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3 Problem formulation

We formulate the AS-ISR problem as a stochastic physical search problem (SPSP),
where we are given an undirected network G(S+, E) with a set of sites S+ =
S ∪ {o, d} where S = {s1, ..., sm} is the set of m sites that may be active, o
and d are the origin and destination locations. We are also given a set of edges
E = {(i, j)] : i, j ∈ S+}. Each (i, j) has the cost of travel tij that is deterministic
and known. An agent must start at origin node o, visit a subset of sites in S to
find an active site, and then end at the destination point d.

The cost of identifying an ASAT at each site si ∈ S is an independent random
variable Ci with an associated probability mass function Pi(c), which gives the
probability that determining if a site is active will cost c at site si. This cost
may be infinity, which indicates the site is not active and no information can
be gained, or 0 to indicate there is no cost. We refer to this specialization as
a Binary SPSP. A site si is active with some probability pi, or inactive with
probability 1 − pi, and the objective is to minimize the cost and probability of
failure for visiting an active site.

A solution is a path π, a list of length n where π(i) and π(i+1) are consecutive
locations along a path, with π(1) = o and π(n) = d . We define π(i, j) as the the
sub-path of π containing consecutive path locations π(i) through π(j). In Figure
1 we show a small instance of an AS-ISR problem with 5 sites and the associated
pareto set of path solutions. The longest solution path, the shortest path that
visits all sites, is also the solution to the Traveling Salesman Path Problem [4].

Fig. 1: An AS-ISR instance (left) with starting location s and 5 sites. Below each
site is the probability that the site is active. The set of solutions (right) contains
a collection of nondominated paths and their associated cost and probability.
Each point is labeled with the path, which is the order of site visits starting
from s. A single path (blue) is shown on both graphs, for reference.
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4 Multiobjective optimization of SPSP

A multi-objective optimization problems (MOP) represents a trade-off between
competing objectives. Efficient exploration of the solution space is difficult in
the case where MOP criteria share dependencies on a common set of variables,
such as budget and prob of failure, in this case. The following definitions are
derived from multiobjective optimization literature [13], with adaptations for
the specifics of the B-SPSP.

In general, a multi-objective problem is characterized by a vector of r deci-
sion variables, x = (x1, x2, ..., xr) ∈ X, and k criteria. There is an evaluation
function F : X → A, where A = (a1, a2, ...ak) represents the k attributes of
interest. We represent the fitness of vector x as F (x) = (f1(x), f2(x), ...fk(x)),
where fi(x) is the mapping from the decision variable vector to a single attribute
ai.

Definition 1.1 (Multiobjective Optimization for SPSP) We define a set
of decision variables x denoting a path, a set of 2 objective functions for cost,
f1 : X → R, and probability of failure, f2 : X → [0, 1], and a set of m constraints
that require a decision vector be a valid path. We use probability of failure for
clarity of definition, allowing us to minimize both objectives. The optimization
goal is to

minimize F (x) = (f1(x), f2(x))
subject to e(x) = (e1(x), e2(x), ..., em(x)) ≤ 0
where x = (x1, x2, ..., xn) ∈ X

(1)

The feasible set Xf is defined as the set of decision vectors in X that form a valid
path, with each decision vector x satisfying the path constraints e(x), and such
that Xf = {x ∈ X|e(x) ≤ 0}. While we would prefer solutions that provide the
minimum probability of failure at the minimum cost without violating the con-
straints, the objectives do not have optima that correspond to the same solution.

Definition 1.2. For a pair of objective vectors u and v,

u = v iff ∀i ∈ {1, 2, ..., k} : ui = vi
u ≤ v iff ∀i ∈ {1, 2, ..., k} : ui ≤ vi
u < v iff u ≤ v ∧ u 6= v

(2)

The relations ≥ and > are defined similarly.

These definitions impose a partial order on solutions. When none of these
relations hold between u and v, we can only state that u � v and u � v, mean-
ing neither is superior. A solution that provides higher probability and higher
cost than another solution is just as strong and may prove more effective if the
additional budget is available to spend.

Definition 1.3 (Pareto Dominance) For any decision vectors b and c,
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b � c (b dominates c) iff F (b) < F (c)
b � c (b weakly dominates c) iff F (b) ≤ F (c)
b v c (b is indifferent to c) iff F (b) � F (c) ∧ F (b) � F (c)

(3)

The definitions for ”dominated by” (≺,�,v) are analogous.
An optimal solution is one that can not be improved by any other solution

in the feasible set. This does not include solutions that are indifferent, as they
are not comparable within the partial order imposed by pareto dominance. A
decision vector x ∈ Xf is nondominated with respect to a set D ⊆ Xf iff
@a ∈ D : a � x. We refer to a solution x as Pareto optimal iff x is nondominated
by Xf . Because the set of all solutions may be a partial order, there can be two
or more Pareto optimal solutions for a given problem instance. The collection of
all nondominated solutions with respect to the set of all solutions is referred to
as the nondominated solution set.

LetD ⊆ Xf . The function n(D) = {d ∈ D : d is nondominated regarding D}
outputs the set of nondominated decision vectors in D. The objective vectors
in f(n(D)) is the nondominated front regarding D. The set Xn = n(Xf ) is re-
ferred to as the Pareto-optimal set (Pareto set). We use the term solution set
to denote both nondominated decision set and their associated objective val-
ues. Solution sets represent the output of a solver that can be used to evaluate
performance on problem instances.

4.1 Comparing solution sets

We desire a measure to compare solution sets, so that we can determine the
trade-offs between using different solution techniques. Because the budget val-
ues are not normalized, and will vary greatly with respect to the number of sites,
it is important that any measure be scale-independent. We use a measure similar
to the S metric [13] on a two-dimensional space.

Definition 1.4 (Size of solution set) Let D = (d1, d2, ..., dm) ⊆ X be a
set of decision vectors, ordered by f1. The function S(D) returns the union of
the area enclosed by the objective values for each vector di. The area enclosed
by a single decision vector di is a rectangle defined by the points (f1(di+1), 0)
and (f1(di), f2(di)). If i = m, then let f1(di+1) = f1(di).

Using the S metric, we can derive a measure of error with respect to the
optimal solution.

Definition 1.5 (Solution set error) Let B∗ = (x∗1, x
∗
2, ..., x

∗
m) ⊆ Xf be the

optimal set of decision vectors. Given a decision vector D = (x1, x2, ..., xm) ⊆ X
we define the error of C as

E(D) =

(
S(D)

S(B∗)

)
− 1 (4)
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A solution set should seek to minimize the E metric, with E(D) = 0 indicating
solution set D is optimal.

5 Approach

The Iterative Domination Solver (IDS) starts by generating all paths containing
one market and adding them to the active set. Each iteration of of the algorithm
consists of two phases: the search phase and the domination phase. In the search
phase, remaining sites are added to all paths in the active set. This generates
a new set of candidate paths that are added to the active set. In the domi-
nation phase, the solver evaluates new candidate paths and determines if they
are dominated or dominate any other solutions. Depending on the filter depth
parameter, dominated solution are removed from the active set, preventing any
further search using that path. This procedure allows us to focus search on high
value sub-paths without expending significant effort on paths that are low value
and unlikely to be found on a non-dominated path.

5.1 Search Phase

A site is added to the previous path immediately after the start site or previous
to the destination site, which ever adds lower total travel cost. This operation
prevents insertions that break up edges from the last iteration, preserving inter-
site edges that exist in sub-paths. An example of this operation is shown in Figure
2. This process continues, iteratively adding new markets to the candidate paths,
until we have the path that visits all sites in the problem, at which point the
process terminates and the non-dominated set of intervals is returned.

Fig. 2: Illustration of the insertion step for the IDS algorithm. A new node sk
is added to the search path after the origin site or before the destination site,
whichever has the lower added path cost. This preserves the edges from the
previous path in the search process, exploiting nondominated substructure.

We can reduce the search space via a filter depth (fd) parameter, which is
path length at which we start pruning out dominated solutions. For example, if
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we set fd = 1, only a single path consisting of (o, si, d) will remain after initial
path generation, and all paths of length 2 must contain si. Then, if the only
nondominated size 2 path contains si and sj , all resulting paths from the next
iteration must contain that ordered pair, and so on. Using filter depth is an
effective pruning strategy because it prefers edges with shorter path lengths and
there is a diminishing return on probability as the problem size increases.

5.2 Domination phase

A quad tree [3] is a rooted data structure where a node may have up to 4 children.
For our purposes, each child represents a quadrant in the 2D plane of budget
and probability of failure. This is defined recursively, making it an extension of a
binary tree to 2 dimensions. The quad tree data structure allows us to store the
value pairs (cost, probability) and their associated paths, while also detecting
when a new solution is dominated or dominates another solution.

Because the number of possible paths is exponential with respect to the
number of sites [10], storing all solutions is unreasonable. When a domination
relation is detected, we use the structure to search for entries that should be
removed or preserved and restructure the tree as necessary. This adds additional
overhead during storage of individual solutions, but allows us to limit the space
complexity of storing candidate solutions. The efficiency of searching this struc-
ture is sensitive to proper selection of the initial root node, an optimization still
being investigated. In this work we choose to seed the tree with a random path
using half of the markets, but better methods are certain to exist.

6 Experimental Results

We evaluate our approach using randomly generated problem instances and com-
paring performance against a number of intuitive approaches to solving the B-
SPSP. Site networks are formed by placing sites randomly in a 1000 × 1000,
with travel cost tij being the Euclidean distance between sites si and sj . The
probability of failure at each sites is drawn from a Gaussian distribution with
varying mean and variance. All results are based on 100 instances, with error
bars indicating a 95% confidence interval. We use a naming convention based on
the chosen filter depth. If fd = k then we refer to the algorithm as IDS-k.

In order to determine the relative performance of IDA, we compare against
a solver for these problem types that minimizes Expected Cost (EC), adapted
from the approach outlined in [8]. Changes to the algorithm are the acquisition
of only a single ‘item’, and the removal of item cost, which is 0 in this domain.

At each step, EC will provide a path the minimizes the overall cost of the
complete path, without consideration for budget or some fixed probability of
success. In order to generate a solution set from this single path, we include all
sub-paths of the solution beginning at the starting site. This gives us a step-wise
set of intervals that still meet the criterion of minimizing expected cost. We also



8 Multiobjective Optimization for the Stochastic Physical Search Problem

0.0

0.1

0.2

0.3

0.4

µ
=

0
.7

0.0

0.1

0.2

0.3

0.4

E
r
r
o
r

µ
=

0
.5

0.0

0.1

0.2

0.3

0.4

5 6 7 8 9 10 11 12 13

µ
=

0
.3

σ = 0.1

5 6 7 8 9 10 11 12 13

Site Count
σ = 0.2

5 6 7 8 9 10 11 12 13

σ = 0.3

IDS-1 EC Greedy

Fig. 3: Comparison of error on random instances with respect to mean and vari-
ance of probability of failure on sites

include a greedy solution that generates a set of solutions by selecting the lowest
cost edge available.

Using the E metric defined in Section 4.1, we can compute the error of each
approach with respect to optimal. In Figure 3, we show the effectiveness of IDS
with respect to both changes in the mean and variance of the probability of
failure. As the mean probability of failure increases, all 3 algorithms perform
closer to optimal. This is due mostly to each site individually moving closer to
0% failure, leaving less room for error, in general.

As the variance on the probability is increased, expected cost seems rela-
tively unaffected, the greedy solver performs significantly worse, and IDS sees
significant improvement. Increased variance distinguishes the site probabilities,
making higher cost edges feasible options for paths that may be non-dominated.
This makes the single path with low average cost less likely to cover the space
of non-dominated solutions.

In Figure 4 we show the execution time of IDS with expected cost, optimal
and a random solver that generates 30,000 randomly selected paths. IDS com-
pletes search orders of magnitude faster than optimal and EC, mainly due to
being able to terminate search before expanding the search tree on paths that
are not of good quality.

Because the optimal solution requires exponential time to solve as the prob-
lem size increases, it is difficult to compare performance against optimal for large
instances. To show that the performance of IDS is maintained for large problem
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Fig. 4: Comparison of average execution time among solvers (left) and execution
time for various IDS filter depths (right).

instances, we compare against a random solver, which generates 30,000 random
paths and generates a solution set from all enumerated sub-paths. We define the

lift of set D as
(
S(D)
S(R)

)
− 1, where R is the nondominated solution set generated

by the random solver. The results of this analysis are shown in Figure 5. While
increasing the filter depth provides minor gains in performance, the increased
computational demand is significant, especially for large instances.

Fig. 5: Lift of IDS and greedy versus random sampling

7 Conclusions and Future Work

We have presented B-SPSP as a method for solving AS-ISR problems, providing
analysis of the problem space and a characterization of nondominated solution
sets. We have also presented the Iterative Domination Solver as an approximate
method for generating solution sets. We have shown that IDS performs better
than existing approaches across a wide range of problem parameters with orders
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of magnitude less execution time on randomly generated instances. While the
filter depth can be increased for minor performance gains on instances of the
AS-ISR problem, in most cases IDS-1 will prove sufficient.

Future work will focus on solution sets for general SPSP instances with mul-
tiple costs per site, which will significantly increase the complexity of finding
optimal solutions due to the branching of search on cost realizations at each
site. We plan to explore how IDS can be adapted to solve these instances using
the same iterative approach with pruning, and we expect to see larger gains
from increased filter depth. Additionally, a number of solution concepts have
been developed for TSP that could, in some cases, be adapted for this problem
formulation.
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