
Algorithms for Stochastic Physical Search on General Graphs

Daniel S. Brown and Jeffrey Hudack
AFRL Information Directorate

Rome, NY 13441
{daniel.brown.81, jeffrey.hudack}@us.af.mil

Bikramjit Banerjee
University of Southern Mississippi

Hattiesburg, MS 39402
bikramjit.banerjee@usm.edu

Abstract

Stochastic Physical Search (SPS) refers to the search for
an item in a physical environment where the item’s price
is stochastic, and where the cost to obtain the item in-
cludes both travel and purchase costs. This type of prob-
lem models task planning scenarios where the cost of
completing an objective at a location is drawn from a
probability distribution, reflecting the influence of un-
known factors. Prior work on this domain has focused
on solutions where the expected cost is minimized. Re-
cently, SPS problems with other objectives have been
proposed and theoretically analyzed, in particular when
either the budget or the desired probability of success is
fixed. However, general optimal solvers for these new
variants do not yet exist. We present algorithms for op-
timal solution of these variants on general graphs. We
formulate them as mixed integer linear programming
problems, and solve them using an off-the-shelf MILP
solver. We then develop custom branch and bound algo-
rithms which result in a dramatic reduction in compu-
tation speed. Using these algorithms, we generate em-
pirical insights into the hardness landscape of the fixed
budget and fixed probability of success SPS variants.

Introduction
For agents operating in both real-world and virtual environ-
ments, completing a set of objectives may require costly ex-
ploration to dispel uncertainty before selecting from avail-
able options. These types of problems appear in many dif-
ferent domains. Shoppers may need to pay for gas or public
transportation in order to visit several stores to find the best
deal on a commodity. Utility companies searching for dam-
aged equipment when service is lost will need to generate a
search path that minimizes fuel costs and considers the un-
certain amount of equipment and time needed for repairs.
A search-and-rescue plane looking for a missing airliner at
various locations (with varying likelihoods of success) in an
ocean will want to optimize its chance of success while min-
imizing cost (fuel, time) and risk (local weather).

We refer to scenarios such as these as Stochastic Physical
Search (SPS). In these situations, a priori information can
provide estimates of the expected cost of achieving an ob-

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

jective at a given location. However, the actual cost of com-
pleting an objective at a location is drawn from a probabil-
ity distribution, reflecting the influence of unknown factors.
Additionally, this uncertainty can only be removed through
actually visiting locations, thus incurring an exploration or
travel cost. This work provides solution methods with in-
creased flexibility and robustness to deal with uncertainty,
which is an inevitable feature of operating in the real world.

Previous work on physical search with uncertainty has de-
veloped exact and heuristic solutions that minimize expected
cost (Kang and Ouyang 2011). This works well for envi-
ronments where we seek to meet objectives on a recurring
basis. However, for mission-critical applications where we
only get one chance to succeed, it is important to generate
solutions that accommodate for limited resources and an ac-
ceptable risk of failure. This viewpoint is shared by Hazon,
et al. in their recent work on physical search with proba-
bilistic knowledge (Hazon et al. 2013), where they provide
a thorough examination of the complexity and methodology
for generating solution of this form on a path graph. Apply-
ing their problem formulation to find optimal solutions on
general graphs is the focus of our research.

There are two key components of a solution to an SPS
instance: budget and probability of success. Given a fixed
budget to work with, we may seek to find a Max-Probability
path that maximizes the probability of success. Alterna-
tively, we may have some threshold on the risk of failure,
and we seek a Min-Budget path that minimizes the budget
required to meet that threshold. We can also combine both
of these objectives into the overall goal of finding a Min-
Expected-Cost path.

The contributions of this work are: 1) A generalization of
Stochastic Physical Search to general graphs, 2) A mixed-
integer linear programming formulation of the Min-Budget
and Max-Probability SPS variants on complete graphs, 3)
branch and bound algorithms that find exact solutions for
these variants, and 4) An empirical investigation of the hard-
ness landscape of these problem variants on random graphs.

Problem formulation
A stochastic physical search problem is defined by a graph
G(S+, E) with a set of sites S+ = S ∪ {o, d} where S =
{s1, ..., sm} is the set of m sites offering an item of interest,
o and d are the origin and destination locations, and E ⊆

S+×S+ is the set of edges. We define adj(i) = {j : (i, j) ∈
E}. Each (i, j) ∈ E has a non-negative cost of travel tij that
is deterministic and known. An agent must start at origin site
o, visit a subset of points in S to purchase a item, and then
end at the destination point d. It is assumed that item cannot
be obtained at the origin and destination sites.

The cost of purchasing the item at each site si ∈ S is
a random variable Ci with an associated probability mass
function Pi(c), which gives the probability that the item will
cost c at site si. We assume that the actual cost is not re-
vealed until the agent visits the site and that the cost remains
fixed thereafter. We further assume that there is a finite num-
ber of possible costs in the support of Pi(c), ∀i ∈ S.

The goal is to find an acyclic path that meets one of three
objective functions (Hazon et al. 2013)
• Min-Expected-Cost: minimize the expected total cost to

travel and purchase the item.
• Min-Budget: given a required probability of success
p∗succ, minimize the budget necessary to ensure the item
can be purchased with probability at least p∗succ.

• Max-Probability: maximize the probability of purchas-
ing the item while ensuring the sum of travel and purchase
costs do not exceed an initial budget, B∗.

Where for a path < v1, v2, . . . , vk > with vi ∈ S+ and
v1 = o, vk = d, the probability of success is psucc = 1 −∏
i Pr(failure given budget bi at vi) and bi+1 = bi−tvi,vi+1

(i = 1, . . . , k − 1).
We note that in the Min-Budget and Max-Probability vari-

ants it is assumed that the agent will purchase the item at the
first available opportunity (i.e. when its budget at a site is ≥
the revealed price at that site) and terminate search. In these
cases the destination site acts simply as a marker for the end
of search and we assign a zero cost edge leading from each
site offering the item to the destination site.

Intuitively, it may seem that a solution that minimizes ex-
pected cost could also be used to provide optimal solutions
to the fixed budget and fixed probability of success formula-
tions for SPS. We provide a simple counterexample in Fig-
ure 1, where s1 is the start site and we seek to determine
a strategy that meets the desired objectives. Each site has a
probability distribution over the cost of the item at that site
and a fixed travel cost exists between all sites in the graph.
We assume the destination node, d, is connected to s2, s3, s4
with zero cost edges.

We iterate over all possible paths that visit all sites in the
network, and show the values for each formulation in Ta-
ble 1. As a baseline, we compute cost of each path, as would
be used in a TSP (open-tour) solution. Even though all sites
have the same expected cost, the shortest path cost is clearly
not equivalent to the Min-Expected-Cost results. To further
motivate our focus on the bounded cases of Min-Budget and
Max-Probability, we also show that the minimum expected
cost values do not provide the respective minimum and max-
imum values for these formulations. This example highlights
the differences between these problems, and justifies new so-
lution concepts for cases when the objective is to maximize
the probability of success with a limited budget, or to min-
imize budget with a fixed probability of success, and when

Figure 1: A simple SPS problem with 4 sites. For each site i, there
is a set of costs Ci, and their associated probability Pi. The agent
starts at site s1 and must determine a path through the graph that
meets a given objective function. All sites have the same expected
cost of 88.

Table 1: The resulting values for different problem formulations
based on the example in Figure 1. We consider TSP minimum
length path, the expected cost, the probability of success given a
maximum budget of 100, and the budget required to achieve a prob-
ability of a success of at least 0.75. Each of these formulations re-
turns different best (green) and worst (red) values, showing they
are not equivalent.

an average or expected cost approach is unwanted, given the
non-repetitive nature of the task.

Related Work
There is a significant and varied body of work relating to
search problems, beginning with the “secretary problem”
(Ferguson 1989) and the well-known Traveling Salesman
Problem (TSP); see (Gutin and Punnen 2002) for a compre-
hensive review. There are many variants of the TSP, such
as the Traveling Repairman Problem (Afrati et al. 1986),
the k-TSP (Arora and Karakostas 2000), the Generalized
TSP (GTSP) (Snyder and Daskin 2006), and the Traveling
Purchaser Problem (TPP) (Ramesh 1981; Singh and van
Oudheusden 1997; Laporte, Riera-Ledesma, and Salazar-
González 2003), all of which have attracted researchers in
both operations research and artificial intelligence. However,
the majority of this work assumes the costs involved are
fixed and known.

A number of related works have introduced stochastic
or unknown travel and item costs, an early example being
Pandora’s Problem (Weitzman 1979), which solves for the
threshold on cost for choosing to open boxes with stochas-

tic rewards. The Stochastic TSP, which has stochastic travel
costs, has been solved for maximizing probability on in-
stances with fixed time windows (Carraway, Morin, and
Moskowitz 1989). Finally, the Orienteering Problem with
Stochastic Profits (OPSP) introduces a distribution over the
profits at each site and seeks to meet a profit threshold
within a given time limit (Tang and Miller-Hooks 2005;
Campbell, Gendreau, and Thomas 2011).

The Min-Expected-Cost problem variant has recently
been solved for general graphs (Kang and Ouyang 2011).
Kang et al. formulate this problem as a Traveling Purchaser
Problem with stochastic prices, where an agent must find a
minimum-expected-cost path between markets to purchase
a set of required commodities. This work does not consider
risk or the probability of success and assumes an unbounded
budget. Our work complements the work of Kang et al. by
providing solvers for the Min-Budget and Max-Probability
problem variants on general graphs.

The concept of a physical search problem and the Min-
Expected-Cost, Min-Budget, and Max-Probability variants
were introduced by Aumann et al. and Hazon et al. (Aumann
et al. 2008; Hazon, Aumann, and Kraus 2009; Hazon et al.
2013). They show that the Min-Expected-Cost variant is NP-
hard in general metric spaces and that the Min-Budget and
Max-Probability variants are NP-Complete on general met-
ric spaces and on trees. They also provide polynomial-time
algorithms for solving these variants when the sites are lo-
cated along a path for both the single and multi-agent cases,
but never evaluate these algorithms on any actual problem
instances. Our work extends this work by providing, to our
knowledge, the first exact solvers for the Min-Budget and
Max-Probability variants on general graphs. We further pro-
vide the first empirical insights into the hardness landscapes
of the Min-Budget and Max-Probability problem instances.

MILP Formulation
Let the possible values of the item’s cost at site i ∈ S be
{ci,1, ci,2, . . . ci,ρ}, given in increasing order. This induces a
set of exclusive cost intervals at i, Ri = {[ci,y, ci,y+1) | y =
0, 1, . . . ρ}, where ci,0 = 0, ci,ρ+1 =∞. We assume that all
sites have ρ cost values; if any site i has fewer cost values
then it can be augmented with arbitrary dummy cost values
c with Pi(c) = 0. Specifically, for i = o, d, Pi(c <∞) = 0,
Pi(∞) = 1, i.e., the item cannot be purchased at o, d.

We formulate both the Min-Budget and Max-Probability
problems as mixed-integer linear programming problems.
We define xij as a binary decision variable where xij = 1
means that edge (i, j) is part of the optimal solution, and
xij = 0 otherwise. We define two continuous variables
bi, and lpi for each i ∈ S+. The variable bi represents
the budget available upon arriving at site i and the vari-
able `pi represents the log probability of failing to obtain
the item of interest at site i with budget bi. Lastly, for each
site i ∈ S+, and for each possible cost interval r ∈ Ri, we
define two binary indicator variables α1

ir and α2
ir. Suppose

r = [ci,y, ci,y+1), for some 0 ≤ y ≤ ρ. Then α1
ir = 1

iff bi < ci,y , and α2
ir = 1 iff bi ≥ ci,y+1. In other words,

α1
ir = α2

ir = 0 iff bi ∈ [ci,y, ci,y+1).

Due to the requirement of linearity, we use log probabil-
ities to enable summations rather than products. For each
site i ∈ S and each cost interval r = [ci,y, ci,y+1) ∈ Ri
we define constants pir as the log probability of failing
to obtain the item at site i given that the available budget
bi ∈ [ci,y, ci,y+1). Thus, pir are computed from the input as
pir = log(

∑
y<x≤ρ Pi(ci,x)).

Min-Budget
The formulation of the min budget problem is as follows:

min bo (1)
subject to∑

i∈adj(j)

xij −
∑

k∈adj(j)

xjk = 0, ∀j ∈ S, (2)

∑
i∈adj(j)

xij ≤ 1, ∀j ∈ S, (3)

∑
i∈adj(o)

xoi = 1,
∑

i∈adj(d)

xid = 1, (4)

xio = 0, xdi = 0, ∀i ∈ S+, (5)∑
(i,j)∈W×W

xij ≤ |W | − 1, ∀W ⊆ S, (6)

bi − xij · tij ≥ bj − (1− xij) ·M,

bi − xij · tij ≤ bj + (1− xij) ·M,

}
∀i, j ∈ S+, (7)

bi ≤
∑

j∈adj(j)

xij ·M, ∀i ∈ S, (8)

lpi ≥ −
∑

j∈adj(i)

xij ·M, ∀i ∈ S (9)

∑
j∈S

lpj ≤ log(1− p∗succ) (10)

bi − ci,y +M · α1
ir ≥ 0,

bi − ci,y + δ −M(1− α1
ir) ≤ 0,

bi − ci,y+1 + δ −M · α2
ir ≤ 0,

bi − ci,y+1 +M(1− α2
ir) ≥ 0,

lpi − pir +M · α2
ir ≥ 0,

lpi − pir −M · α1
ir ≤ 0,


∀i ∈ S,
∀r = [ci,y, ci,y+1) ∈ Ri,

(11)

bi ≥ 0, ∀i ∈ S+, (12)
lpi ≤ 0, ∀i ∈ S, (13)

xij ∈ {0, 1}, ∀i, j ∈ S+, (14)

α1
ir, α

2
ir ∈ {0, 1}, ∀i ∈ S, r ∈ Ri (15)

The objective function (1) is to minimize the starting bud-
get at the origin. Constraints (2) and (3) are the linkage con-
straints that ensure that every site in S that is entered must
be exited and that each site can be visited at most once. Con-
straints (4) and (5) make sure that the solution path starts at
the origin and ends at the destination. Constraint (6) elmi-
nates cycles in the path. Constraints (7) ensure that if the

edge (i, j) is in the solution, then the budget at site j is equal
to the budget at site i minus the cost to travel from i to j,
where M is a sufficiently large constant value. Constraints
(8) and (9) ensure that bi and lpi can be nonzero only when
site i is on the solution path. Constraint (10) ensures that the
solution will successfully obtain the item with probability
psucc. Constraints (11) represent the conditional constraint(

ci,y ≤ bi < ci,y+1

)
⇒
(
lpi = pir

)
∀i ∈ S, r = [ci,y, ci,y+1) ∈ Ri. These constraints ensure
that the log probability of failure at site i is set to the cor-
rect value based on the available budget bi. The value δ is a
small constant required because of the non-inclusive upper
bound, ci,y+1, in the cost interval [ci,y, ci,y+1). Finally, con-
straints (12) – (15) ensure that all decision variables are in
the correct ranges.

Max-Probability
To obtain the Max-Probability version we can simply re-
place the objective (1) with

min
∑
j∈N

lpj (1*)

and replace constraint (10) with the budget constraint

bo = B∗ (10*)

where B∗ is the starting budget. The remaining constraints
are unchanged.

The MILP formulations provide a nice formalism and can
be solved using off-the-shelf solvers to provide baseline so-
lutions. However, it is often the case that custom branch-and-
bound techniques out-perform generic MILP solvers. In the
next section we give the details of custom branch-and-bound
algorithms for Min-Budget and Max-Probability.

Branch-and-Bound Formulations
Due to space constraints, we detail only the state representa-
tion, the initial state, successor function, and bounding cri-
teria, for each algorithm. Each algorithm performs a stan-
dard depth first branch-and-bound search on the state space,
bounding and pruning sections of the search space as ex-
plained later.

We define a failure function fi(b) that gives the probabil-
ity of failure when budget b is presented at site i. This is a
decreasing function given by

fi(b) =
∑

x:ci,x>b

Pi(ci,x).

Min-Budget
State representation When the search reaches site i with
a budget range [li, ui), the branch-and-bound state is repre-
sented as:

〈π, [li, ui), p〉
where π = 〈o, . . . , i〉 is the path (sequence of sites) followed
in G to reach site i starting at the origin o and ending at site
i, and p is the probability of failure accumulated along the
path π in the branch-and-bound tree. The initial state is then
〈〈o〉, [0,∞), 1.0〉.

Successor function Suppose Sπ is the set of all sites on
a path π. Given a state 〈π, [li, ui), p〉 we create its potential
successor states as follows: for each site j ∈ adj(i) \ Sπ ,
and for each cost interval [cj,x, cj,x+1) at site j, we cre-
ate a potential successor state 〈π′, [lj , uj), p′〉, where π′ =
〈o, . . . , i, j〉 is the concatenation of j to π, [lj , uj) is a pro-
jection of the available budget [li, ui) onto j’s cost interval
[cj,x, cj,x+1) after traversing the edge (i, j), given by

[lj , uj) = [max(li − tij , cj,x),min(ui − tij , cj,x+1)) (16)

and p′ = p · fj(lj). If [lj , uj) is empty, then the corre-
sponding successor can be discarded.

When a terminal state (one with no successor)
〈π, [li, ui), p〉 is reached, it is a feasible solution if p ≤
1 − p∗succ, otherwise it can be discarded. If it is a feasible
solution, then the minimum initial budget required to travel
along π and reach i with a budget in the range [li, ui) can be
computed as

σi = li +

|π|−2∑
h=0

tπh,πh+1

Bounding criteria A state 〈π, [li, ui), p〉 and the entire
branch-and-bound sub-tree rooted at this state can be pruned
if either:

(1) σi ≥ B∗, where B∗ is the best min budget solution found
so far that achieves p∗succ;

(2) or the following holds:

p ·
∏

j∈S\Sπ

fj

(
ui − min

k∈(S\Sπ)∪{i}
tkj

)
> 1− p∗succ.

Proposition 1. For any state 〈π, [li, ui), p〉 and any of its
successors 〈π′, [lj , uj), p′〉, σi ≤ σj .
Proof: We have the following:

σi = li +

|π|−2∑
h=0

tπh,πh+1

= (li − tij) +
|π|−2∑
h=0

tπh,πh+1
+ tij

= li − tij +
|π′|−2∑
h=0

tπ′h,π′h+1
, ∵ π ≡ π′ up to i

≤ lj +

|π′|−2∑
h=0

tπ′h,π′h+1
, by equation 16

= σj .

In words, the above proposition shows that the minimum ini-
tial budget increases monotonically along any search path,
hence the first bounding criterion is correct. The following
proposition establishes the correctness of the second bound-
ing criterion.

Proposition 2. For any state 〈π, [li, ui), p〉, if the condition
in the second bounding criterion is satisfied then there can
be no feasible solution in the branch-and-bound sub-tree
rooted at this state.
Proof: (by contradiction) If possible, let 〈π′, [lz, uz), p′〉 be
a feasible solution (i.e., terminal state with p′ ≤ 1−p∗succ) in
the branch-and-bound sub-tree rooted at 〈π, [li, ui), p〉. Con-
sider any index k on the path π′ beyond π, i.e., |π| ≤ k ≤
|π′| − 1. By equation 16, the upper end of the budget range
in the corresponding state is
uπ′k ≤ uπ′k−1

− tπ′k−1,π
′
k

≤ . . .

≤ uπ′|π|−1
−

h=k∑
h=|π|

tπ′h−1,π
′
h

= ui −
h=k∑
h=|π|

tπ′h−1,π
′
h

≤ ui − tπ′k−1,π
′
k
, if edge costs are non-negative

≤ ui − min
h∈(S\Sπ)∪{i}

th,π′k

As a result, fπ′k(lπ′k) ≥ fπ′k(uπ′k) ≥ fπ′k(ui −
minh∈(S\Sπ)∪{i} th,π′k), since f is a decreasing function.
Now,

p′ = p ·
|π′|−1∏
k=|π|

fπ′k(lπ′k)

≥ p ·
|π′|−1∏
k=|π|

fπ′k(ui − min
h∈(S\Sπ)∪{i}

th,π′k)

≥ p ·
∏

j∈S\Sπ

fj(ui − min
h∈(S\Sπ)∪{i}

th,j)

> 1− p∗succ, by the 2nd bounding criterion,
where the penultimate step considers all sites j ∈ S \ Sπ
regardless of whether j is on the path π′ or not, since
fj(·) ≤ 1. The above is a contradiction.

Before we explain the branch-and-bound algorithm for
Max-Probability we note that while Min-Budget is NP-
Complete, a polynomial time solution exists for the special
case of p∗succ = 1.
Proposition 3. When p∗succ = 1, Min-Budget can be solved
in time O(|E|+ |S| log |S|).
Proof: To achieve p∗succ = 1, the optimal path π∗ must reach
at least one site, i∗ ∈ S, with budget b = ci∗,ρ, to ensure
fi∗(b) = 0. Any path to i∗ other than the least cost path will
require more budget, and thus be suboptimal. Thus, once we
have found the least cost path, π̂i, from o to site i, ∀i ∈ S,
we have

B∗ = min
i∈S

|π̂i|−2∑
h=0

tπ̂ih,π̂ih+1
+ ci,ρ

 . (17)

The least cost path from o to every site in S can be calculated
in time O(|E|+ |S| log |S|), using Dijkstra’s algorithm with
a Fibonacci heap (Fredman and Tarjan 1987).

Max-Probability
The formulation for Max-Probability is similar, albeit sim-
pler, with a state representation of 〈π, bi, p〉 where bi is the
actual budget brought to site i. π and p are as in the Min-
Budget formulation. The initial state is 〈〈o〉, B∗, 1.0〉, and
the successor function is defined as follows: given a state
〈π, bi, p〉, for each site j ∈ adj(i) \Nπ we create a potential
successor state as 〈π′, bi − tij , p′〉 where π′ is as defined in
the Min-Budget formulation and p′ = p · fj(bi − tij). The
successor is discarded if tij ≥ bi. The surviving successors
can be sorted in increasing order of p′, for efficiency. A state
〈π, bi, p〉 is terminal if it has no successor, or if p = 0 (i.e.,
the item will be purchased for sure). If p = 0 we can end
the search since no further improvement of psucc = 1 − p
is possible. If the best max probability (of success) solution
found so far is p∗succ, then a state 〈π, bi, p〉 can be pruned if

p ·
∏

j∈S\Nπ

fj

(
bi − min

k∈(S\Nπ)∪{i}
tkj

)
> 1− p∗succ.

The correctness of the above bounding criterion can be es-
tablished in a way similar to Proposition 2.

Experimental Results and Analysis
To investigate the hardness landscape of the Min-Budget and
Max-Probability problems we generated random problem
instances with various numbers of sites each having two pos-
sible costs. Both costs were chosen random uniformly from
the interval [1, 100]. The probability of the lower cost p was
chosen randomly and the probability of the higher cost was
then assigned to 1− p. Symmetric edge costs between every
two sites were chosen random uniformly from the interval
[1, 100], except for edge costs to the destination site d, which
were set to 0.

MILP vs. Branch-and-Bound
We compare the run-time complexity of solving the MILP
formulation using an off-the-shelf solver versus solving us-
ing our custom branch-and-bound algorithms. We solved the
Min-Budget and Max-Probability MILP problems using the
cplex based Scip solver available on NEOS (Czyzyk, Mes-
nier, and Moré 1998; Dolan 2001; Gropp and Moré 1997).
We generated SPS problems with the number of site |S|
ranging from 2 to 9 sites and generated 20 random prob-
lem instances for each value of |S|. We then computed
the average run-time for the different solution methods on
these instances. The results for solving Min-Budget with
Psucc = 0.75 and Max-Probability withB∗ = 50 are shown
in Figure 2 (note the log scale of the y-axis). As anticipated,
average run-time for the MILP is drastically longer than the
run-time for the branch-and-bound solutions. Based on these
results we chose to restrict our remaining analysis to the
branch-and-bound algorithms.

Branch-and-Bound Analysis for Min-Budget
To study the properties of the min-budget problem we gen-
erated a set of random problem instances, with the number
of sites varying between 5 and 50. For each problem size, we

Figure 2: Comparison of average run-times for the MILP
and branch-and-bound algorithms.

(a) (b)

Figure 3: (a) Average run-time for the Min-Budget branch-
and-bound algorithm. (b) Average minimum budget results
from the Min-Budget branch-and-bound algorithm.

generated 100 random graphs with edge costs and item costs
randomly chosen between 1 and 100 and evaluated our algo-
rithm on these 100 replicates. Figure 3(a) shows that the run-
time of the Min-Budget branch-and-bound solver increases
exponentially as expected as the number of sites increases.
We also see that requiring a higher probability of success re-
quires significantly more computational time as the number
of sites increases.

Figure 3(b) shows that as the number of sites increases,
the optimal minimum budget steadily decreases. These re-
sults make sense given that a larger number of sites means a
higher chance of being able to purchasing the item at a low
price. Additionally, as expected we see that higher required
probabilities of success require higher budgets.

Branch-and-Bound Analysis for Max-Probability
We also investigated the Max-Probability branch-and-bound
algorithm using the same random problem generation ap-
proach. Figure 4(a) shows the average run-time results over
100 randomly generated complete graphs with different
numbers of sites. We see an interesting trend as the avail-
able starting budget is increased from 0 to 100. When the
starting budget is between 20 and 40 we see an exponen-
tial increase in run-time (note the log scale of the y-axis) as
|S| increases to between 30 and 40 and then decreases as
the budget approaches 100. This peak in the run-time occurs
because problems with very small budgets cannot explore
much of the search space before running out of budget. Ad-

(a) (b)

Figure 4: (a) Average run-time for the Max-Probability
branch-and-bound algorithm. (b) Average maximum psucc
results from the Max-Probability branch-and-bound algo-
rithm.

ditionally, because we terminate search if we ever find a path
with psucc = 1.0, problems with large available starting
budget allow the algorithm to quickly find these “perfect”
solution paths and terminate the search before exploring all
branches.

Figure 4(b) shows a similar result, but in terms of the max-
imum probability of success of the optimal path found by the
Max-Probability branch-and-bound algorithm. We see a sig-
moidal phase transition over the average probability of suc-
cess as the available budget is increased for different num-
bers of sites.

Conclusions
We provided a generalization of Stochastic Physical Search
to general graphs. To the best of our knowledge, this work
provides the first exact algorithmic solutions to the Min-
Budget and Max-Probability variants on general graphs. We
first formulated the problem as a mixed-integer linear pro-
gram. This provides a theoretical formalism and bench-mark
from which we developed custom branch-and-bound algo-
rithms to find the exact solutions for the Min-Budget and
Max-Probability formulations. The results for the branch-
and-bound algorithm show that taking advantage of the
problem structure and knowledge of the cost profiles of un-
visited sites allow much faster execution times.

We also generated empirical insights into the hardness
landscape of the variants. Based on these results, we see that
while similar, the Min-Budget and Max-Probability prob-
lems have interesting characteristics. Both exhibit worst case
exponential complexity; however, we see that the size of
problem and the starting budget and required probability
of success have a large impact on tractability. In problems
where a high probability of success is required, but a perfect
solution cannot be found, both problems become intractable
for large numbers of sites. Thus, while we have developed
the first ever exact algorithms for the Min-Budget and Max-
Probability SPS variants, heuristic and approximate solu-
tions will be needed to deal with these difficult problem in-
stances. Future work also includes extending this work to the
multi-item and multi-agent cases on general graphs, investi-
gating other methods of problem generation, and exploring
real world data sets.

References
Afrati, F.; Cosmadakis, C.; Papadimitriou, G.; Papageor-
giou, N.; and Papakostantinou. 1986. The complexity of
the traveling repairman problem. Theoret. Inform. Appl. 20
79–87.
Arora, S., and Karakostas, G. 2000. A 2+ ε approxima-
tion algorithm for the k-mst problem. In Proceedings of the
eleventh annual ACM-SIAM symposium on Discrete algo-
rithms, 754–759. Society for Industrial and Applied Mathe-
matics.
Aumann, Y.; Hazon, N.; Kraus, S.; and Sarne, D. 2008.
Physical search problems applying economic search mod-
els. In AAAI, 9–16.
Campbell, A. M.; Gendreau, M.; and Thomas, B. W. 2011.
The orienteering problem with stochastic travel and service
times. Annals of Operations Research 186(1):61–81.
Carraway, R. L.; Morin, T. L.; and Moskowitz, H. 1989.
Generalized dynamic programming for stochastic combina-
torial optimization. Operations Research 37(5):819–829.
Czyzyk, J.; Mesnier, M. P.; and Moré, J. J. 1998. The neos
server. Computing in Science and Engineering 5(3):68–75.
Dolan, E. D. 2001. Neos server 4.0 administrative guide.
arXiv preprint cs/0107034.
Ferguson, T. S. 1989. Who solved the secretary problem?
Statistical science 282–289.
Fredman, M. L., and Tarjan, R. E. 1987. Fibonacci heaps
and their uses in improved network optimization algorithms.
Journal of the ACM (JACM) 34(3):596–615.
Gropp, W., and Moré, J. 1997. Optimization environments
and the neos server. Approximation theory and optimization
167–182.
Gutin, G., and Punnen, A. P. 2002. The traveling salesman
problem and its variations, volume 12. Springer.
Hazon, N.; Aumann, Y.; and Kraus, S. 2009. Collaborative
multi agent physical search with probabilistic knowledge.
In Twenty-First International Joint Conference on Artificial
Intelligence.
Hazon, N.; Aumann, Y.; Kraus, S.; and Sarne, D. 2013.
Physical search problems with probabilistic knowledge. Ar-
tificial Intelligence 196:26–52.
Kang, S., and Ouyang, Y. 2011. The traveling pur-
chaser problem with stochastic prices: Exact and approx-
imate algorithms. European Journal of Operational Re-
search 209(3):265–272.
Laporte, G.; Riera-Ledesma, J.; and Salazar-González, J.-J.
2003. A branch-and-cut algorithm for the undirected trav-
eling purchaser problem. Operations Research 51(6):940–
951.
Ramesh, T. 1981. Traveling purchaser problem. Opsearch
18:78–91.
Singh, K. N., and van Oudheusden, D. L. 1997. A branch
and bound algorithm for the traveling purchaser problem.
European Journal of Operational Research 97(3):571–579.

Snyder, L. V., and Daskin, M. S. 2006. A random-key ge-
netic algorithm for the generalized traveling salesman prob-
lem. European Journal of Operational Research 174(1):38–
53.
Tang, H., and Miller-Hooks, E. 2005. A tabu search heuristic
for the team orienteering problem. Computers & Operations
Research 32(6):1379–1407.
Weitzman, M. L. 1979. Optimal search for the best alter-
native. Econometrica: Journal of the Econometric Society
641–654.

