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Abstract Emergent collective behaviors have long interested researchers. These be-
haviors often result from complex interactions between many individuals following
simple rules. However, knowing what collective behaviors are possible given a lim-
ited set of capabilities is difficult. Many emergent behaviors are counter-intuitive
and unexpected even if the rules each agent follows are carefully constructed. While
much work in swarm robotics has studied the problem of designing sets of rules and
capabilities that result in a specific collective behavior, little work has examined the
problem of exploring and describing the entire set of collective behaviors that can
result from a limited set of capabilities. We take what we believe is the first approach
to address this problem by presenting a general framework for discovering collective
emergent behaviors that result from a specific capability model. Our approach uses
novelty search to explore the space of possible behaviors in an objective-agnostic
manner. Given this set of explored behaviors we use dimensionality reduction and
clustering techniques to discover a finite set of behaviors that form a taxonomy over
the behavior space. We apply our methodology to a single, binary-sensor capability
model. Using our approach we are able to re-discover cyclic pursuit and aggrega-
tion, as well as discover several behaviors previously unknown to be possible with
only a single binary sensor: wall following, dispersal, and a milling behavior often
displayed by ants and fish.
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1 Introduction

Biological swarms have long fascinated researchers and laymen alike. The ability
of these swarms to perform complex tasks such as building temperature-controlled
nests, comparing potential new nest sites, and coordinating and synchronizing flight
patterns [4] have caused some observers to attribute these behaviors to supernatu-
ral abilities such as telepathy between flying birds [19] or centralized control from
a queen. This notion has continued to persist in the popular media where swarm
intelligence is often portrayed as many individuals controlled simultaneously by
a single individual. However, despite humans’ seemingly innate desire to attribute
complex behaviors to higher-level, complex intelligence, researchers in robotics,
biology, computer science, and physics continue to show that complex swarm be-
haviors are often a result of extremely simple local rules. Indeed, much of the re-
search on swarms is focused on finding mappings between sets of specific rules and
sets of specific behaviors and can be broken down into two questions: (1) Given
a desired behavior, can we determine a set of rules that synthesize this behavior?
and (2) Given a specific set of rules, can we determine what the resulting emergent
collective behavior will be?

We propose to study a third fundamental, yet less well-defined question, that has
received little attention: (3) Given a set of capabilities (i.e., computational power,
number and type of sensors, communication range, etc.) what are the possible col-
lective behaviors that can emerge?

Knowing what collective behaviors are possible given a limited set of capabili-
ties is often quite difficult. Many emergent behaviors are counterintuitive and unex-
pected. Furthermore, even if the rules each agent follows are carefully constructed,
it is difficult to predict what behavior will emerge. While much work has studied the
problem of designing sets of rules and capabilities that result in a desired collective
behavior, little work has examined the problem of characterizing the set of possible
collective behaviors that can result from a limited set of rules or behaviors. We take
what we believe is the first approach to address this problem.

In particular, we propose a general architecture for discovering a taxonomy of
possible emergent swarm behaviors given a set of capabilities. Similar to Wolfram’s
work on characterizing the behaviors of simple cellular automata [23] we take the
approach of a naturalist and seek a taxonomy of possible collective behaviors that
can result from a set of capabilities. To form a taxonomy of the emergent behav-
iors that result from a given capability model, we use an approach based on nov-
elty search [13] which allows us to explore the space of possible behaviors in an
objective-agnostic manner. By optimizing novelty rather than any particular task or
objective, and keeping track of novel behaviors in an archive, we are able to generate
a large number of controllers that synthesize a wide variety of behaviors. Given this
set of explored behaviors we use dimensionality reduction and clustering techniques
to explore and categorize the space of possible behaviors.

We evaluate our architecture on a simple agent capability model that assumes
only a single line-of-sight sensor that has only two possible values. Despite this
parsimonious agent model, we show that there is a surprising variety of interesting
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collective behaviors. This approach allows us to “re-discover” previously studied
computation-free circling and aggregation [7] as well as identify several behaviors
previously unknown to be possible given a swarm of memory-less, single-sensor
agents. These new behaviors include wall following, dispersal, and coordinated
milling often found in ants and schools of fish [18, 21].

Our main contributions are summarized as follows:

• We propose the first general architecture to explore and form a taxonomy of the
space of possible behaviors given a limited-capability robot model.

• We demonstrate the feasibility of using novelty search and archive clustering to
generate a set of representative behaviors for a simple single-sensor robot capa-
bility model.

• We validate our approach by showing that it discovers previously known behav-
iors, as well as discovering several behaviors previously unknown to be possible
for swarms of single-sensor robots.

2 Problem Statement

The main question this research seeks to answer can be stated as follows:

What is the set of possible emergent behaviors in a swarm of robots
possessing a specific set of individual capabilities?

To formalize this problem we provide the following definitions. We define a ca-
pability model as a three-tuple 〈S,M,A〉 composed of sensors S, memory and com-
putational processing resources M, and actuators A. The capability model captures
what information a robot can collect from the world, how it can process that infor-
mation, and how it can change its state and the state of its environment. Given a set
of N agents each with capability model ci = 〈Si,Mi,Ai〉 for i = 1, . . . ,N, we define
the capability model of the swarm as C = {ci : i = 1, . . . ,N}. 1

We define an emergent behavior as a global pattern or structure resulting from
local interactions between a collection of agents. We denote the set of possible emer-
gent behaviors as B.

We also define an environment E . Given a capability model C and an environ-
ment E we desire to find a mapping from capabilities and environments to behav-
iors. Note that we have made no mention of how the capabilities are used by an agent
with capability ci ∈ C in environment E . Rather than specifying the controller, we
desire to find the image of a function Φ that maps from all possible controllers that
can be instantiated on capability model C for environment E to the set of possible
emergent behaviors B. Thus we desire to find B where

1 This formalism also captures homogeneous swarms which can be modeled by letting ci = c, ∀i.
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Fig. 1 Simple neural network controller for a single binary line-of-sight differential drive robot.
The sensor value is input to the network which outputs the left and right wheel velocities.

Φ : U (C )×E →B (1)

where U (C ) is the controller space resulting from the capability model C .
It is worth noting that in general the controller space is enormous. For exam-

ple, consider the popular, and very simple, Kilobot robot platform [17]. A Kilobot
could be modeled as a three-tuple 〈Sk,Mk,Ak〉 where Sk includes the infrared re-
ceiver and the ambient light sensor, Mk represents all programs programmable on
an Atmega328 microprocessor with 32K of memory, and Ak includes the speed of
the two vibrating motors, as well as the output of the infrared LED transmitter.

As a first step towards discovering novel collective behaviors, we examine an
even simpler capability model based on the e-puck robot [16], where S is a single,
on/off, binary sensor, A consists of two differential drive wheels, and M is a fully
connected 2 layer neural network connecting sensor inputs to wheel velocities. This
capability model is depicted in Figure 1. Even for this simple example, the controller
space is R4, the space of all neural network weights.

Given the size of the controller-space, brute force or analytical methods for de-
termining the mapping Φ would be incredibly difficult, if not impossible. Thus, we
resort to a genetic search methodology outlined in the next section.

3 Behavior Discovery Architecture

Our proposed architecture relies heavily on novelty search as a means for exploring
the space of emergent behaviors. Lehman and Stanley [13] proposed novelty search
as a way to avoid getting stuck in local minima and to overcome deceptive fitness
landscapes in genetic algorithms. Rather than using an objective function that re-
wards fitness, they show that simply trying to maximize the novelty of an evolved
behavior will often generate a solution to the original problem more quickly than
using pure fitness.

Rather than measuring similarity on the actual genotype, novelty measures sim-
ilarity on the phenotype—the actual behavior resulting from executing the evolved
controller. There are many potential ways for a user to define a behavior space;
however, behavior spaces are typically represented by a vector with components
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that contain statistics over the state of the simulation collected periodically [13, 10].
Given a representation of a learned behavior in d dimensional behavior space, the
typical measure of novelty as used in [13] is the sparseness of a point b ∈ Rd in be-
havior space, defined as Novelty(b) = 1

k ∑
k
i=0 dist(b,βi),where βi is the ith nearest

neighbor of b with respect to the distance metric dist. The nearest neighbor calcu-
lations take into consideration both individuals in the current population as well as
previous members of the population that are stored in an archive that is updated each
generation.

Novelty search has been used successfully to evolve many different types of sin-
gle agent [6] and swarm behaviors [10]. The success of novelty search is attributed
to its success in exploring the behavior space and discovering successively more
complex behaviors [13]; however, to the best of our knowledge, our approach is the
first to use novelty search purely for exploration without a specific task in mind.

Our approach proceeds as follows, we first start with a random population of
controllers. Each controller is evaluated in our environment and a feature vector
describing the resulting behavior is calculated. Given these behavior features, each
policy is evaluated for novelty. Based on some archiving scheme, some or all of the
policies are stored in an archive. Then, artificial evolution and mutation is used to
create the next generation of controllers, where novelty is used as the fitness score.
This process is repeated until it reaches some stopping criterion, at which point the
discovered behaviors in the archive are clustered and representatives of each cluster
are used to form an approximate taxonomy of possible emergent behaviors. The
basic algorithmic outline is given in Algorithm 1.

Algorithm 1 NovelBehaviorDiscovery
Require: environment E , capability model C , and controller model U

P← InitializePolicies(U (C )) . Generate initial population P0
archive← InitializeArchive(P)
while stopping criterion not met do

for each policy pi in population P do
fi← ExtractFeatures(pi,E ) . extract features by evaluating policy
ni(t)← Novelty( fi,archive) . evaluate novelty
if addToArchive(〈pi, fi(t)〉) then

archive.add(〈pi, fi〉) . store individual in novelty archive
end if

end for
P← Update(P, f ) . update population using a GA with fitness replaced by novelty

end while
K← Cluster(archive) . Cluster on archive and return K representative behaviors
return K . Return cluster representatives as taxonomy
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4 Implementation

4.1 Simple Capability Model

We use a homogeneous capability model based on Gauci et al.’s recently proposed
single, binary-sensor, line-of-sight robots [7]. Each robot is equipped with a differ-
ential drive and a single line-of-sight sensor that provides it with one bit of informa-
tion that lets the robot know whether it is facing another agent (see Figure 1(a)).

Using this simple robot capability model, Gauci et al. optimized controllers to
perform aggregation [7] demonstrating that highly robust aggregation was possible
despite extremely limited capabilities. Subsequent research has shown that increas-
ing the robot capability to include trinary sensors allows specific controllers to be
evolved to accomplish tasks such as collecting pucks [8] and forming a perimeter,
aggregating to a specific location, and foraging [11]. Our work extends previous
work on simple, single-sensor swarms by examining the entire space of collective
behaviors that are possible given a swarm of robots whose input is limited to a sin-
gle, binary, line-of-sight sensor.

4.2 Simulation Environment

Due to the infeasibility of evaluating thousands of controllers on physical robots, we
follow the common practice of using a simulator [7, 10] to allow rapid exploration
of the behavior space. Following recent work on novelty search for swarms [10], we
used the MASON multi-agent simulation environment [14] to simulate the physics
of simple differential drive robots modeled after the e-puck robot [16]. Agent move-
ment is simulated within a frictionless walled region of 50 by 50 units, where one
unit equals one robot diameter. Each agent has two differential drive wheels. The
controller for each robot is a simple neural network with one input node for the bi-
nary sensor and one output node for each wheel. The output is fixed in the range
[-1,1] by a tanh function. The actual robot velocity on each wheel is then the output
multiplied by the maximum speed. Figure 1 shows a representation of the robot and
the controller architecture.

Following the approach used by [10], we use NeuroEvolution of Augmenting
Topologies (NEAT) [20] with novelty search to optimize the weights on the neural
network controller shown in Figure 1(b). We computed novelty using the 15 nearest
neighbors in the archive, consistent with best practices found by Gomes et al. [9]. In
our work we are interested in the full space of behaviors so we keep all individuals
from each generation and add them to the novelty archive.
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Table 1 Behavior vector feature descriptions

Name Equation Name Equation

average speed
1
N

N

∑
i=1
‖vi‖2 scatter

1
R2 ·N

N

∑
i=1
‖xi−µ‖2

ang. momentum
1

R ·N

N

∑
i=1

(vi× (xi−µ)) group rotation
1
N

N

∑
i=1

(
vi×

xi−µ

‖xi−µ‖

)

radial variance
1

R2 ·N

N

∑
i=1

(
‖xi−µ‖− 1

N

N

∑
i=1
‖xi−µ‖

)2

4.3 Behavior vector

To explore the impacts of different behavior features on the discovered behaviors,
we used a five element behavior vector. The five element behavior vector measures
the average speed, scatter, radial scatter, angular momentum, and group rotation.
Average speed measures the average speed of the agents in the swarm. Scatter [7]
measures the average squared distance of the agents to the center of mass µ where
µ = 1

N ∑
N
i=1 xi. Radial variance measures the variance of the distance of the agents

to the center of mass µ . Angular momentum measures the true angular momentum
about the center of mass of the swarm. Finally, group rotation measures a normal-
ized angular momentum, ignoring the length of the moment arm [21]. R is the world
radius (distance from center of world to corner in the case of a square world). The
value R is used to normalize several of the features to be invariant to the size of
the world. To create our final behavior vector, we used a sliding window average of
each feature over the last 100 time steps. The details of these behavior vectors are
shown in Table 1.

4.4 Dimensionality reduction and clustering

While it is possible to cluster in the high-dimensional behavioral space, interpret-
ing the clusters becomes more difficult and single behaviors tend to be falsely
split into multiple clusters. To reduce the dimensionality of our data we use t-
distributed stochastic neighbor embedding (t-SNE) [22], a state-of-the-art dimen-
sionality reduction technique shown to outperform other standard techniques such
as PCA, Sammon mapping, and Isomap. t-SNE is especially suited for taking high-
dimensional data that lies on several low-dimensional manifolds and mapping it to
a 2-dimensional mapping that preserves and reveals this structure. We used t-SNE
[22] to reduce the dimensionality and compare two types of clustering: k-means
and hierarchical single-link (min distance) agglomerative clustering to partition the
behaviors.
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Fig. 2 Two-dimensional projections of the behavior space. The y-axis is group rotation.

5 Results and Analysis

Using novelty search we ran 100 generations of 100 populations using NEAT to
obtain an archive of 8020 data points2 in 5 dimensional behavior space. Each exper-
iment used 30 simulated robots. Figure 2 shows several 2-dimensional projections of
the 5-dimensional data. Based on these results we see that there is definite structure
captured by these features. We also see that group rotation and angular momentum
are highly correlated, as expected, but do capture different information.

We used the MATLAB implementation of t-SNE3 to map our 5-dimensional data
to 2 dimensions. The resulting 2-dimensional data has definite structure and visible
clusters as seen in Figure 4, as opposed to the projected data shown in Figure 2.
We performed the dimensionality reduction before clustering to both reduce the
computation time required for clustering and to make the results easy to visualize.

5.1 k-Medoids

k-Means is the de facto clustering algorithm to begin data exploration. We use a
related clustering algorithm called k-Medoids that returns k actual data points as
cluster centers. We use the medoids as the representative behaviors.

Because our goal is to discover and categorize emergent behaviors, we do not
have any way of knowing the number of clusters ahead of time. Thus, we explored
the resulting clusters for values of k between 2 and 10 and visually inspected the
behavior of the resulting medoids for each value of k. The results are shown in
Table 3(a) using the abbreviations listed in Table 2. Sample trajectories of these
behaviors are shown in Figure 3.

An example of the results is shown in Figure 4(a). We evaluated each cluster
by comparing the medoids. While k-Medoids works well for forming equally sized

2 Due to the elitism feature of NEAT, the best performing policies (most novel) in one generation
are kept in the population for the next generation. Thus, the algorithm explores fewer than 10,000
unique controllers.
3 https://lvdmaaten.github.io/drtoolbox/
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(a) Cyclic pursuit (b) Wall following

(c) Aggregation (d) Milling

(e) Dispersal (f) Random

Fig. 3 Partial trajectories of swarm behaviors possible given a single, line-of-sight sensor. Cyclic
pursuit forms a perfectly spaced, revolving circle. Wall following consists of agents spreading out
to the boundary and then sliding along the walls. In Aggregation, the robots spiral into a single
cluster. Robots in the Milling behavior constantly chase each other around in circles without ever
forming a perfect circle. Dispersal is the opposite of the aggregation behavior, and results in agents
spiraling away from each other. Finally, some behaviors were classified as Random due to agents
never forming a coherent behavior.
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Table 2 Abbreviations used to describe common behaviors.
abbreviation description abbreviation description

cycp cyclic pursuit mill milling
wall wall slide rand individual circling w/out emergence
aggr aggregation cw clockwise motion
disp dispersal ccw counterclockwise motion

Table 3 Results of examining centers from k-Medoids and Hierarchical clustering on the t-SNE
embedded behavioral data. #x denotes that # cluster medoids were of that type.

(a) k-Medoids
cycp wall aggr disp mill rand

k cw ccw cw ccw cw ccw
2 x x
3 x x x
4 x x x x
5 x 2x 2x
6 x x x x x x
7 x x x x x x x
8 x x 2x x x x x
9 x x 2x x x x x
10 x 2x 2x x x x x x

(b) Hierarchical Clustering

cycp wall aggr disp mill rand
k cw ccw cw ccw cw ccw
2 x x
3 x x x
4 x 2x x
5 x 2x x x
6 x 3x x x
7 x 4x x x
8 x 4x 2x x
9 2x 4x x x x
10 4x 4x x x

(a) k-Medoids (b) Hierarchical Clustering

Fig. 4 An example clustering from k-medoids with k = 6. This approach partitions the t-SNE
embedded behavior space into roughly equal partitions.

clusters, it also ignores much of the structure in the 2-dimensional embedding. This
is a common downside to k-Means and k-Medoids clustering.

5.2 Hierarchical Single-Link Clustering

The previous section showed that just a simple k-Medoids approach allows us to par-
tition the behavior space into roughly equal cells. We then examined the medoids
returned from each cluster to determine how many distinct behaviors were discov-
ered. However, even a superficial examination of the 2-dimensional t-SNE embed-
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ding and the clustering shown in Figure 4(a) shows that clusters in many cases do
not fit well with the underlying structure. To try to remedy this we next examined
hierarchical agglomerative single-link clustering.

As shown in Figure 4(b) hierarchical clustering sequentially picks out isolated
islands in the embedded 2-d space. However, the resulting cluster centers do not
exhibit the range of behaviors found through k-Medoids. We inspected the clusters
and representative behaviors and found that many of the small clusters were simply
different variations of cyclic pursuit with variations in radius and speed.

6 Discussion

Our clustering results show that k-Medoids provides the most representative sam-
pling of distinctly different behaviors, while hierarchical clustering tended towards
finding different variations of cyclic pursuit while failing to find the milling behav-
ior. One method is not clearly better than the other. If finding the largest number
of clearly distinct behaviors is desired, then k-Medoids seems to perform the best.
On the other hand, if a more nuanced definition of emergent behavior is desired, the
hierarchical clustering seems better at uncovering the variations within behaviors.

Our clustering analysis found six possible behaviors. However, one of them, ran-
dom circling, appears to not have any kind of collective behavior but is instead just
a collection of robots moving in circles with no emergent properties. Thus, we focus
on the five behaviors that we classify as emergent: cyclic pursuit, aggregation, wall
following, dispersal, and milling. Cyclic pursuit resulting from robots with a single,
binary sensor was first mentioned by Gauci et al. [7], but treated as a local minima
in the search for an aggregation controller. Our method is able to “rediscover” this
emergent behavior without an explicit objective. Cyclic pursuit is also well stud-
ied problem in control theory [15]; however, these problems are often solved using
complex policies requiring positional and heading information, as opposed to the
simple capability model we study here.

Aggregation is another behavior re-discovered by out method. Gauci et al. [7]
first explored the problem of using a single-binary sensor to investigate whether they
could evolve an aggregation algorithm that required no computation or memory.

Unlike cyclic pursuit or aggregation, the wall following behavior found by our al-
gorithm is, to the best of our knowledge, a novel behavior for our capability model.
While this behavior is a result of our specific environment, namely a walled en-
vironment without friction, it shows the power of our method in finding a novel
behavior unknown to be possible in a swarm of memoryless single sensor robots.
While it is possible to argue that wall following is simply a circle that is too big
for the world size, this ignores the fact that the space of behaviors is inherently tied
to the characteristics of the environment. As stated in our problem formalism, we
are interested in discovering the different behaviors that are possible given both a
capability model as well as an environment. Thus, for our specific environment, we
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argue that the wall following and cyclic pursuit are different behaviors due to their
unique movement patterns and behavioral features.

The dispersal behavior is also a novel behavior that has not been previously
shown to exist for single sensor swarms. Given that aggregation has previously been
shown possible, it is not surprising that dispersal is also possible; however, the fact
that our method finds both aggregation and dispersal shows the effectiveness of our
approach.

The final emergent behavior that our method discovered in the milling, or torus
behavior. The existence of this behavior is rather remarkable given the limited ca-
pability model we studied. It is well known that ants and fish form these types of
milling patterns in the wild. However, we believe this is the first demonstration of
these patterns shown to be possible with no memory and only a single bit of sensory
information. This behavior is well-studied in the swarming community and is one
of the four fundamental group types shown to emerge from the celebrated Couzin’s
model [5]. However, unlike Couzin’s model, which makes strong assumptions about
every agent being able to sense and respond to its neighbor’s relative positions and
velocities, we have discovered that a milling behavior is possible using only a single
binary sensor.

7 Conclusions and Future Work

In this paper we formalized the problem of determining the emergent behaviors
possible given a limited set of capabilities. Applying our method to a single bi-
nary sensor model, first proposed by Gauci et al. [7], we found that our method
was able to rediscover a cyclic pursuit circling behavior, as well as aggregation. We
also discovered three new behaviors not previously shown to be possible given our
assumed capabilities: wall following, dispersal, and milling. We investigated both
k-means clustering and hierarchical clustering after reducing the dimensionality of
our data. We found that the centers of the k-Medoids clusters resulted in a wider va-
riety of behaviors than the centers of clusters obtained from hierarchical clustering.
Hierarchical clustering found fewer distinctly different behaviors, but was able to
better select for variations within behaviors, such as speed, rotation direction, and
radius.

While we believe that the problem we have studied is of fundamental and prac-
tical importance, we acknowledge the fundamental subjectivity in assigning bound-
aries between behavior types. Though this is an inherently subjective problem that
may never admit an objective solution, we believe we have made some progress
towards the goal of discriminating between qualitative behavioral groups in a prin-
cipled way. While emergent behaviors will always, in some sense, be relative to the
eye of the beholder, our approach allowed us to find a set of visually distinct behav-
iors, some of which were not previously known to exist for the single binary sensor
capability model. While is it still difficult to know how well our approach will scale
to more complex capability models, our proposed methodology could be useful to
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both scientists wanting to understand why some collective behaviors are present in
a given animal species as well as engineers wishing to explore and design emergent
behaviors to accomplish different tasks.

Future work should extend our method to investigate the space of possible emer-
gent behaviors given more complex models, such as multiple sensors with more than
two possible inputs, limited communication between agents, and more complex en-
vironments that include obstacles and movable items. It also remains to be seen how
changes in the size and shape of the environment and number of robots affect the
behaviors that are possible.

Future work should also investigate better techniques for determining what fea-
tures are important for clustering. Our results have shown the difficulty in defining
a behavior and in partitioning the explored space of behaviors without requiring a
user to visually inspect the results and hand-tune parameters such as the number
of clusters. There has been some work on using hand-crafted or learned features
for classifying swarm behaviors [2, 1]; however, these methods are designed for
already known behaviors, whereas we are interested in finding features that allow
us to discover new behaviors. One possible avenue toward better disambiguation
between behaviors would be to leverage crowd sourcing or machine learning. We
hypothesize that human feedback combined with more advanced machine learning
techniques such as deep convolutional neural networks [12] could allow us to better
learn behavior features and similarities and improve the scalability of our approach.

Finally, we note that while discovering emergent behaviors is an interesting sci-
entific question, there are also many open questions about how to interact with and
use these behaviors. As more complex emergent behaviors are discovered, we hope
there will also be research into how to use simple interactions with a swarm, either
by changing the behavior of a subset of the agents [3], or even by changing the
environment [11], to control and switch between different collective behaviors to
accomplish interesting tasks.
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